linux/drivers/acpi/processor_idle.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *                      - Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *                      - Added support for C3 on SMP
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/tick.h>
  20#include <linux/cpuidle.h>
  21#include <linux/cpu.h>
  22#include <acpi/processor.h>
  23
  24/*
  25 * Include the apic definitions for x86 to have the APIC timer related defines
  26 * available also for UP (on SMP it gets magically included via linux/smp.h).
  27 * asm/acpi.h is not an option, as it would require more include magic. Also
  28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  29 */
  30#ifdef CONFIG_X86
  31#include <asm/apic.h>
  32#endif
  33
  34#define ACPI_PROCESSOR_CLASS            "processor"
  35#define _COMPONENT              ACPI_PROCESSOR_COMPONENT
  36ACPI_MODULE_NAME("processor_idle");
  37
  38#define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  39
  40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  41module_param(max_cstate, uint, 0000);
  42static unsigned int nocst __read_mostly;
  43module_param(nocst, uint, 0000);
  44static int bm_check_disable __read_mostly;
  45module_param(bm_check_disable, uint, 0000);
  46
  47static unsigned int latency_factor __read_mostly = 2;
  48module_param(latency_factor, uint, 0644);
  49
  50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  51
  52struct cpuidle_driver acpi_idle_driver = {
  53        .name =         "acpi_idle",
  54        .owner =        THIS_MODULE,
  55};
  56
  57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  58static
  59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  60
  61static int disabled_by_idle_boot_param(void)
  62{
  63        return boot_option_idle_override == IDLE_POLL ||
  64                boot_option_idle_override == IDLE_HALT;
  65}
  66
  67/*
  68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  69 * For now disable this. Probably a bug somewhere else.
  70 *
  71 * To skip this limit, boot/load with a large max_cstate limit.
  72 */
  73static int set_max_cstate(const struct dmi_system_id *id)
  74{
  75        if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  76                return 0;
  77
  78        pr_notice("%s detected - limiting to C%ld max_cstate."
  79                  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  80                  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  81
  82        max_cstate = (long)id->driver_data;
  83
  84        return 0;
  85}
  86
  87static const struct dmi_system_id processor_power_dmi_table[] = {
  88        { set_max_cstate, "Clevo 5600D", {
  89          DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  90          DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  91         (void *)2},
  92        { set_max_cstate, "Pavilion zv5000", {
  93          DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  94          DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  95         (void *)1},
  96        { set_max_cstate, "Asus L8400B", {
  97          DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  98          DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  99         (void *)1},
 100        {},
 101};
 102
 103
 104/*
 105 * Callers should disable interrupts before the call and enable
 106 * interrupts after return.
 107 */
 108static void __cpuidle acpi_safe_halt(void)
 109{
 110        if (!tif_need_resched()) {
 111                safe_halt();
 112                local_irq_disable();
 113        }
 114}
 115
 116#ifdef ARCH_APICTIMER_STOPS_ON_C3
 117
 118/*
 119 * Some BIOS implementations switch to C3 in the published C2 state.
 120 * This seems to be a common problem on AMD boxen, but other vendors
 121 * are affected too. We pick the most conservative approach: we assume
 122 * that the local APIC stops in both C2 and C3.
 123 */
 124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 125                                   struct acpi_processor_cx *cx)
 126{
 127        struct acpi_processor_power *pwr = &pr->power;
 128        u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 129
 130        if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 131                return;
 132
 133        if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 134                type = ACPI_STATE_C1;
 135
 136        /*
 137         * Check, if one of the previous states already marked the lapic
 138         * unstable
 139         */
 140        if (pwr->timer_broadcast_on_state < state)
 141                return;
 142
 143        if (cx->type >= type)
 144                pr->power.timer_broadcast_on_state = state;
 145}
 146
 147static void __lapic_timer_propagate_broadcast(void *arg)
 148{
 149        struct acpi_processor *pr = (struct acpi_processor *) arg;
 150
 151        if (pr->power.timer_broadcast_on_state < INT_MAX)
 152                tick_broadcast_enable();
 153        else
 154                tick_broadcast_disable();
 155}
 156
 157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 158{
 159        smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 160                                 (void *)pr, 1);
 161}
 162
 163/* Power(C) State timer broadcast control */
 164static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 165                                       struct acpi_processor_cx *cx,
 166                                       int broadcast)
 167{
 168        int state = cx - pr->power.states;
 169
 170        if (state >= pr->power.timer_broadcast_on_state) {
 171                if (broadcast)
 172                        tick_broadcast_enter();
 173                else
 174                        tick_broadcast_exit();
 175        }
 176}
 177
 178#else
 179
 180static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 181                                   struct acpi_processor_cx *cstate) { }
 182static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 183static void lapic_timer_state_broadcast(struct acpi_processor *pr,
 184                                       struct acpi_processor_cx *cx,
 185                                       int broadcast)
 186{
 187}
 188
 189#endif
 190
 191#if defined(CONFIG_X86)
 192static void tsc_check_state(int state)
 193{
 194        switch (boot_cpu_data.x86_vendor) {
 195        case X86_VENDOR_HYGON:
 196        case X86_VENDOR_AMD:
 197        case X86_VENDOR_INTEL:
 198        case X86_VENDOR_CENTAUR:
 199        case X86_VENDOR_ZHAOXIN:
 200                /*
 201                 * AMD Fam10h TSC will tick in all
 202                 * C/P/S0/S1 states when this bit is set.
 203                 */
 204                if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 205                        return;
 206
 207                /*FALL THROUGH*/
 208        default:
 209                /* TSC could halt in idle, so notify users */
 210                if (state > ACPI_STATE_C1)
 211                        mark_tsc_unstable("TSC halts in idle");
 212        }
 213}
 214#else
 215static void tsc_check_state(int state) { return; }
 216#endif
 217
 218static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 219{
 220
 221        if (!pr->pblk)
 222                return -ENODEV;
 223
 224        /* if info is obtained from pblk/fadt, type equals state */
 225        pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 226        pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 227
 228#ifndef CONFIG_HOTPLUG_CPU
 229        /*
 230         * Check for P_LVL2_UP flag before entering C2 and above on
 231         * an SMP system.
 232         */
 233        if ((num_online_cpus() > 1) &&
 234            !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 235                return -ENODEV;
 236#endif
 237
 238        /* determine C2 and C3 address from pblk */
 239        pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 240        pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 241
 242        /* determine latencies from FADT */
 243        pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 244        pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 245
 246        /*
 247         * FADT specified C2 latency must be less than or equal to
 248         * 100 microseconds.
 249         */
 250        if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 251                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 252                        "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 253                /* invalidate C2 */
 254                pr->power.states[ACPI_STATE_C2].address = 0;
 255        }
 256
 257        /*
 258         * FADT supplied C3 latency must be less than or equal to
 259         * 1000 microseconds.
 260         */
 261        if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 262                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 263                        "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 264                /* invalidate C3 */
 265                pr->power.states[ACPI_STATE_C3].address = 0;
 266        }
 267
 268        ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 269                          "lvl2[0x%08x] lvl3[0x%08x]\n",
 270                          pr->power.states[ACPI_STATE_C2].address,
 271                          pr->power.states[ACPI_STATE_C3].address));
 272
 273        snprintf(pr->power.states[ACPI_STATE_C2].desc,
 274                         ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 275                         pr->power.states[ACPI_STATE_C2].address);
 276        snprintf(pr->power.states[ACPI_STATE_C3].desc,
 277                         ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 278                         pr->power.states[ACPI_STATE_C3].address);
 279
 280        return 0;
 281}
 282
 283static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 284{
 285        if (!pr->power.states[ACPI_STATE_C1].valid) {
 286                /* set the first C-State to C1 */
 287                /* all processors need to support C1 */
 288                pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 289                pr->power.states[ACPI_STATE_C1].valid = 1;
 290                pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 291
 292                snprintf(pr->power.states[ACPI_STATE_C1].desc,
 293                         ACPI_CX_DESC_LEN, "ACPI HLT");
 294        }
 295        /* the C0 state only exists as a filler in our array */
 296        pr->power.states[ACPI_STATE_C0].valid = 1;
 297        return 0;
 298}
 299
 300static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 301{
 302        int ret;
 303
 304        if (nocst)
 305                return -ENODEV;
 306
 307        ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 308        if (ret)
 309                return ret;
 310
 311        /*
 312         * It is expected that there will be at least 2 states, C1 and
 313         * something else (C2 or C3), so fail if that is not the case.
 314         */
 315        if (pr->power.count < 2)
 316                return -EFAULT;
 317
 318        pr->flags.has_cst = 1;
 319        return 0;
 320}
 321
 322static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 323                                           struct acpi_processor_cx *cx)
 324{
 325        static int bm_check_flag = -1;
 326        static int bm_control_flag = -1;
 327
 328
 329        if (!cx->address)
 330                return;
 331
 332        /*
 333         * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 334         * DMA transfers are used by any ISA device to avoid livelock.
 335         * Note that we could disable Type-F DMA (as recommended by
 336         * the erratum), but this is known to disrupt certain ISA
 337         * devices thus we take the conservative approach.
 338         */
 339        else if (errata.piix4.fdma) {
 340                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 341                                  "C3 not supported on PIIX4 with Type-F DMA\n"));
 342                return;
 343        }
 344
 345        /* All the logic here assumes flags.bm_check is same across all CPUs */
 346        if (bm_check_flag == -1) {
 347                /* Determine whether bm_check is needed based on CPU  */
 348                acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 349                bm_check_flag = pr->flags.bm_check;
 350                bm_control_flag = pr->flags.bm_control;
 351        } else {
 352                pr->flags.bm_check = bm_check_flag;
 353                pr->flags.bm_control = bm_control_flag;
 354        }
 355
 356        if (pr->flags.bm_check) {
 357                if (!pr->flags.bm_control) {
 358                        if (pr->flags.has_cst != 1) {
 359                                /* bus mastering control is necessary */
 360                                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 361                                        "C3 support requires BM control\n"));
 362                                return;
 363                        } else {
 364                                /* Here we enter C3 without bus mastering */
 365                                ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 366                                        "C3 support without BM control\n"));
 367                        }
 368                }
 369        } else {
 370                /*
 371                 * WBINVD should be set in fadt, for C3 state to be
 372                 * supported on when bm_check is not required.
 373                 */
 374                if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 375                        ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 376                                          "Cache invalidation should work properly"
 377                                          " for C3 to be enabled on SMP systems\n"));
 378                        return;
 379                }
 380        }
 381
 382        /*
 383         * Otherwise we've met all of our C3 requirements.
 384         * Normalize the C3 latency to expidite policy.  Enable
 385         * checking of bus mastering status (bm_check) so we can
 386         * use this in our C3 policy
 387         */
 388        cx->valid = 1;
 389
 390        /*
 391         * On older chipsets, BM_RLD needs to be set
 392         * in order for Bus Master activity to wake the
 393         * system from C3.  Newer chipsets handle DMA
 394         * during C3 automatically and BM_RLD is a NOP.
 395         * In either case, the proper way to
 396         * handle BM_RLD is to set it and leave it set.
 397         */
 398        acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 399
 400        return;
 401}
 402
 403static int acpi_processor_power_verify(struct acpi_processor *pr)
 404{
 405        unsigned int i;
 406        unsigned int working = 0;
 407
 408        pr->power.timer_broadcast_on_state = INT_MAX;
 409
 410        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 411                struct acpi_processor_cx *cx = &pr->power.states[i];
 412
 413                switch (cx->type) {
 414                case ACPI_STATE_C1:
 415                        cx->valid = 1;
 416                        break;
 417
 418                case ACPI_STATE_C2:
 419                        if (!cx->address)
 420                                break;
 421                        cx->valid = 1;
 422                        break;
 423
 424                case ACPI_STATE_C3:
 425                        acpi_processor_power_verify_c3(pr, cx);
 426                        break;
 427                }
 428                if (!cx->valid)
 429                        continue;
 430
 431                lapic_timer_check_state(i, pr, cx);
 432                tsc_check_state(cx->type);
 433                working++;
 434        }
 435
 436        lapic_timer_propagate_broadcast(pr);
 437
 438        return (working);
 439}
 440
 441static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 442{
 443        unsigned int i;
 444        int result;
 445
 446
 447        /* NOTE: the idle thread may not be running while calling
 448         * this function */
 449
 450        /* Zero initialize all the C-states info. */
 451        memset(pr->power.states, 0, sizeof(pr->power.states));
 452
 453        result = acpi_processor_get_power_info_cst(pr);
 454        if (result == -ENODEV)
 455                result = acpi_processor_get_power_info_fadt(pr);
 456
 457        if (result)
 458                return result;
 459
 460        acpi_processor_get_power_info_default(pr);
 461
 462        pr->power.count = acpi_processor_power_verify(pr);
 463
 464        /*
 465         * if one state of type C2 or C3 is available, mark this
 466         * CPU as being "idle manageable"
 467         */
 468        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 469                if (pr->power.states[i].valid) {
 470                        pr->power.count = i;
 471                        if (pr->power.states[i].type >= ACPI_STATE_C2)
 472                                pr->flags.power = 1;
 473                }
 474        }
 475
 476        return 0;
 477}
 478
 479/**
 480 * acpi_idle_bm_check - checks if bus master activity was detected
 481 */
 482static int acpi_idle_bm_check(void)
 483{
 484        u32 bm_status = 0;
 485
 486        if (bm_check_disable)
 487                return 0;
 488
 489        acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 490        if (bm_status)
 491                acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 492        /*
 493         * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 494         * the true state of bus mastering activity; forcing us to
 495         * manually check the BMIDEA bit of each IDE channel.
 496         */
 497        else if (errata.piix4.bmisx) {
 498                if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 499                    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 500                        bm_status = 1;
 501        }
 502        return bm_status;
 503}
 504
 505static void wait_for_freeze(void)
 506{
 507#ifdef  CONFIG_X86
 508        /* No delay is needed if we are in guest */
 509        if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 510                return;
 511#endif
 512        /* Dummy wait op - must do something useless after P_LVL2 read
 513           because chipsets cannot guarantee that STPCLK# signal
 514           gets asserted in time to freeze execution properly. */
 515        inl(acpi_gbl_FADT.xpm_timer_block.address);
 516}
 517
 518/**
 519 * acpi_idle_do_entry - enter idle state using the appropriate method
 520 * @cx: cstate data
 521 *
 522 * Caller disables interrupt before call and enables interrupt after return.
 523 */
 524static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 525{
 526        if (cx->entry_method == ACPI_CSTATE_FFH) {
 527                /* Call into architectural FFH based C-state */
 528                acpi_processor_ffh_cstate_enter(cx);
 529        } else if (cx->entry_method == ACPI_CSTATE_HALT) {
 530                acpi_safe_halt();
 531        } else {
 532                /* IO port based C-state */
 533                inb(cx->address);
 534                wait_for_freeze();
 535        }
 536}
 537
 538/**
 539 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 540 * @dev: the target CPU
 541 * @index: the index of suggested state
 542 */
 543static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 544{
 545        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 546
 547        ACPI_FLUSH_CPU_CACHE();
 548
 549        while (1) {
 550
 551                if (cx->entry_method == ACPI_CSTATE_HALT)
 552                        safe_halt();
 553                else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 554                        inb(cx->address);
 555                        wait_for_freeze();
 556                } else
 557                        return -ENODEV;
 558        }
 559
 560        /* Never reached */
 561        return 0;
 562}
 563
 564static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 565{
 566        return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 567                !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 568}
 569
 570static int c3_cpu_count;
 571static DEFINE_RAW_SPINLOCK(c3_lock);
 572
 573/**
 574 * acpi_idle_enter_bm - enters C3 with proper BM handling
 575 * @pr: Target processor
 576 * @cx: Target state context
 577 * @timer_bc: Whether or not to change timer mode to broadcast
 578 */
 579static void acpi_idle_enter_bm(struct acpi_processor *pr,
 580                               struct acpi_processor_cx *cx, bool timer_bc)
 581{
 582        acpi_unlazy_tlb(smp_processor_id());
 583
 584        /*
 585         * Must be done before busmaster disable as we might need to
 586         * access HPET !
 587         */
 588        if (timer_bc)
 589                lapic_timer_state_broadcast(pr, cx, 1);
 590
 591        /*
 592         * disable bus master
 593         * bm_check implies we need ARB_DIS
 594         * bm_control implies whether we can do ARB_DIS
 595         *
 596         * That leaves a case where bm_check is set and bm_control is
 597         * not set. In that case we cannot do much, we enter C3
 598         * without doing anything.
 599         */
 600        if (pr->flags.bm_control) {
 601                raw_spin_lock(&c3_lock);
 602                c3_cpu_count++;
 603                /* Disable bus master arbitration when all CPUs are in C3 */
 604                if (c3_cpu_count == num_online_cpus())
 605                        acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 606                raw_spin_unlock(&c3_lock);
 607        }
 608
 609        acpi_idle_do_entry(cx);
 610
 611        /* Re-enable bus master arbitration */
 612        if (pr->flags.bm_control) {
 613                raw_spin_lock(&c3_lock);
 614                acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 615                c3_cpu_count--;
 616                raw_spin_unlock(&c3_lock);
 617        }
 618
 619        if (timer_bc)
 620                lapic_timer_state_broadcast(pr, cx, 0);
 621}
 622
 623static int acpi_idle_enter(struct cpuidle_device *dev,
 624                           struct cpuidle_driver *drv, int index)
 625{
 626        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 627        struct acpi_processor *pr;
 628
 629        pr = __this_cpu_read(processors);
 630        if (unlikely(!pr))
 631                return -EINVAL;
 632
 633        if (cx->type != ACPI_STATE_C1) {
 634                if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 635                        index = ACPI_IDLE_STATE_START;
 636                        cx = per_cpu(acpi_cstate[index], dev->cpu);
 637                } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 638                        if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 639                                acpi_idle_enter_bm(pr, cx, true);
 640                                return index;
 641                        } else if (drv->safe_state_index >= 0) {
 642                                index = drv->safe_state_index;
 643                                cx = per_cpu(acpi_cstate[index], dev->cpu);
 644                        } else {
 645                                acpi_safe_halt();
 646                                return -EBUSY;
 647                        }
 648                }
 649        }
 650
 651        lapic_timer_state_broadcast(pr, cx, 1);
 652
 653        if (cx->type == ACPI_STATE_C3)
 654                ACPI_FLUSH_CPU_CACHE();
 655
 656        acpi_idle_do_entry(cx);
 657
 658        lapic_timer_state_broadcast(pr, cx, 0);
 659
 660        return index;
 661}
 662
 663static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 664                                   struct cpuidle_driver *drv, int index)
 665{
 666        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 667
 668        if (cx->type == ACPI_STATE_C3) {
 669                struct acpi_processor *pr = __this_cpu_read(processors);
 670
 671                if (unlikely(!pr))
 672                        return;
 673
 674                if (pr->flags.bm_check) {
 675                        acpi_idle_enter_bm(pr, cx, false);
 676                        return;
 677                } else {
 678                        ACPI_FLUSH_CPU_CACHE();
 679                }
 680        }
 681        acpi_idle_do_entry(cx);
 682}
 683
 684static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 685                                           struct cpuidle_device *dev)
 686{
 687        int i, count = ACPI_IDLE_STATE_START;
 688        struct acpi_processor_cx *cx;
 689
 690        if (max_cstate == 0)
 691                max_cstate = 1;
 692
 693        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 694                cx = &pr->power.states[i];
 695
 696                if (!cx->valid)
 697                        continue;
 698
 699                per_cpu(acpi_cstate[count], dev->cpu) = cx;
 700
 701                count++;
 702                if (count == CPUIDLE_STATE_MAX)
 703                        break;
 704        }
 705
 706        if (!count)
 707                return -EINVAL;
 708
 709        return 0;
 710}
 711
 712static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 713{
 714        int i, count;
 715        struct acpi_processor_cx *cx;
 716        struct cpuidle_state *state;
 717        struct cpuidle_driver *drv = &acpi_idle_driver;
 718
 719        if (max_cstate == 0)
 720                max_cstate = 1;
 721
 722        if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 723                cpuidle_poll_state_init(drv);
 724                count = 1;
 725        } else {
 726                count = 0;
 727        }
 728
 729        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 730                cx = &pr->power.states[i];
 731
 732                if (!cx->valid)
 733                        continue;
 734
 735                state = &drv->states[count];
 736                snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 737                strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 738                state->exit_latency = cx->latency;
 739                state->target_residency = cx->latency * latency_factor;
 740                state->enter = acpi_idle_enter;
 741
 742                state->flags = 0;
 743                if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 744                        state->enter_dead = acpi_idle_play_dead;
 745                        drv->safe_state_index = count;
 746                }
 747                /*
 748                 * Halt-induced C1 is not good for ->enter_s2idle, because it
 749                 * re-enables interrupts on exit.  Moreover, C1 is generally not
 750                 * particularly interesting from the suspend-to-idle angle, so
 751                 * avoid C1 and the situations in which we may need to fall back
 752                 * to it altogether.
 753                 */
 754                if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 755                        state->enter_s2idle = acpi_idle_enter_s2idle;
 756
 757                count++;
 758                if (count == CPUIDLE_STATE_MAX)
 759                        break;
 760        }
 761
 762        drv->state_count = count;
 763
 764        if (!count)
 765                return -EINVAL;
 766
 767        return 0;
 768}
 769
 770static inline void acpi_processor_cstate_first_run_checks(void)
 771{
 772        static int first_run;
 773
 774        if (first_run)
 775                return;
 776        dmi_check_system(processor_power_dmi_table);
 777        max_cstate = acpi_processor_cstate_check(max_cstate);
 778        if (max_cstate < ACPI_C_STATES_MAX)
 779                pr_notice("ACPI: processor limited to max C-state %d\n",
 780                          max_cstate);
 781        first_run++;
 782
 783        if (nocst)
 784                return;
 785
 786        acpi_processor_claim_cst_control();
 787}
 788#else
 789
 790static inline int disabled_by_idle_boot_param(void) { return 0; }
 791static inline void acpi_processor_cstate_first_run_checks(void) { }
 792static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 793{
 794        return -ENODEV;
 795}
 796
 797static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 798                                           struct cpuidle_device *dev)
 799{
 800        return -EINVAL;
 801}
 802
 803static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 804{
 805        return -EINVAL;
 806}
 807
 808#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 809
 810struct acpi_lpi_states_array {
 811        unsigned int size;
 812        unsigned int composite_states_size;
 813        struct acpi_lpi_state *entries;
 814        struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 815};
 816
 817static int obj_get_integer(union acpi_object *obj, u32 *value)
 818{
 819        if (obj->type != ACPI_TYPE_INTEGER)
 820                return -EINVAL;
 821
 822        *value = obj->integer.value;
 823        return 0;
 824}
 825
 826static int acpi_processor_evaluate_lpi(acpi_handle handle,
 827                                       struct acpi_lpi_states_array *info)
 828{
 829        acpi_status status;
 830        int ret = 0;
 831        int pkg_count, state_idx = 1, loop;
 832        struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 833        union acpi_object *lpi_data;
 834        struct acpi_lpi_state *lpi_state;
 835
 836        status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 837        if (ACPI_FAILURE(status)) {
 838                ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 839                return -ENODEV;
 840        }
 841
 842        lpi_data = buffer.pointer;
 843
 844        /* There must be at least 4 elements = 3 elements + 1 package */
 845        if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 846            lpi_data->package.count < 4) {
 847                pr_debug("not enough elements in _LPI\n");
 848                ret = -ENODATA;
 849                goto end;
 850        }
 851
 852        pkg_count = lpi_data->package.elements[2].integer.value;
 853
 854        /* Validate number of power states. */
 855        if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 856                pr_debug("count given by _LPI is not valid\n");
 857                ret = -ENODATA;
 858                goto end;
 859        }
 860
 861        lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 862        if (!lpi_state) {
 863                ret = -ENOMEM;
 864                goto end;
 865        }
 866
 867        info->size = pkg_count;
 868        info->entries = lpi_state;
 869
 870        /* LPI States start at index 3 */
 871        for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 872                union acpi_object *element, *pkg_elem, *obj;
 873
 874                element = &lpi_data->package.elements[loop];
 875                if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 876                        continue;
 877
 878                pkg_elem = element->package.elements;
 879
 880                obj = pkg_elem + 6;
 881                if (obj->type == ACPI_TYPE_BUFFER) {
 882                        struct acpi_power_register *reg;
 883
 884                        reg = (struct acpi_power_register *)obj->buffer.pointer;
 885                        if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 886                            reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 887                                continue;
 888
 889                        lpi_state->address = reg->address;
 890                        lpi_state->entry_method =
 891                                reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 892                                ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 893                } else if (obj->type == ACPI_TYPE_INTEGER) {
 894                        lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 895                        lpi_state->address = obj->integer.value;
 896                } else {
 897                        continue;
 898                }
 899
 900                /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 901
 902                obj = pkg_elem + 9;
 903                if (obj->type == ACPI_TYPE_STRING)
 904                        strlcpy(lpi_state->desc, obj->string.pointer,
 905                                ACPI_CX_DESC_LEN);
 906
 907                lpi_state->index = state_idx;
 908                if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 909                        pr_debug("No min. residency found, assuming 10 us\n");
 910                        lpi_state->min_residency = 10;
 911                }
 912
 913                if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 914                        pr_debug("No wakeup residency found, assuming 10 us\n");
 915                        lpi_state->wake_latency = 10;
 916                }
 917
 918                if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 919                        lpi_state->flags = 0;
 920
 921                if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 922                        lpi_state->arch_flags = 0;
 923
 924                if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 925                        lpi_state->res_cnt_freq = 1;
 926
 927                if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 928                        lpi_state->enable_parent_state = 0;
 929        }
 930
 931        acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 932end:
 933        kfree(buffer.pointer);
 934        return ret;
 935}
 936
 937/*
 938 * flat_state_cnt - the number of composite LPI states after the process of flattening
 939 */
 940static int flat_state_cnt;
 941
 942/**
 943 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
 944 *
 945 * @local: local LPI state
 946 * @parent: parent LPI state
 947 * @result: composite LPI state
 948 */
 949static bool combine_lpi_states(struct acpi_lpi_state *local,
 950                               struct acpi_lpi_state *parent,
 951                               struct acpi_lpi_state *result)
 952{
 953        if (parent->entry_method == ACPI_CSTATE_INTEGER) {
 954                if (!parent->address) /* 0 means autopromotable */
 955                        return false;
 956                result->address = local->address + parent->address;
 957        } else {
 958                result->address = parent->address;
 959        }
 960
 961        result->min_residency = max(local->min_residency, parent->min_residency);
 962        result->wake_latency = local->wake_latency + parent->wake_latency;
 963        result->enable_parent_state = parent->enable_parent_state;
 964        result->entry_method = local->entry_method;
 965
 966        result->flags = parent->flags;
 967        result->arch_flags = parent->arch_flags;
 968        result->index = parent->index;
 969
 970        strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
 971        strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
 972        strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
 973        return true;
 974}
 975
 976#define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
 977
 978static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
 979                                  struct acpi_lpi_state *t)
 980{
 981        curr_level->composite_states[curr_level->composite_states_size++] = t;
 982}
 983
 984static int flatten_lpi_states(struct acpi_processor *pr,
 985                              struct acpi_lpi_states_array *curr_level,
 986                              struct acpi_lpi_states_array *prev_level)
 987{
 988        int i, j, state_count = curr_level->size;
 989        struct acpi_lpi_state *p, *t = curr_level->entries;
 990
 991        curr_level->composite_states_size = 0;
 992        for (j = 0; j < state_count; j++, t++) {
 993                struct acpi_lpi_state *flpi;
 994
 995                if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
 996                        continue;
 997
 998                if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
 999                        pr_warn("Limiting number of LPI states to max (%d)\n",
1000                                ACPI_PROCESSOR_MAX_POWER);
1001                        pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1002                        break;
1003                }
1004
1005                flpi = &pr->power.lpi_states[flat_state_cnt];
1006
1007                if (!prev_level) { /* leaf/processor node */
1008                        memcpy(flpi, t, sizeof(*t));
1009                        stash_composite_state(curr_level, flpi);
1010                        flat_state_cnt++;
1011                        continue;
1012                }
1013
1014                for (i = 0; i < prev_level->composite_states_size; i++) {
1015                        p = prev_level->composite_states[i];
1016                        if (t->index <= p->enable_parent_state &&
1017                            combine_lpi_states(p, t, flpi)) {
1018                                stash_composite_state(curr_level, flpi);
1019                                flat_state_cnt++;
1020                                flpi++;
1021                        }
1022                }
1023        }
1024
1025        kfree(curr_level->entries);
1026        return 0;
1027}
1028
1029static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1030{
1031        int ret, i;
1032        acpi_status status;
1033        acpi_handle handle = pr->handle, pr_ahandle;
1034        struct acpi_device *d = NULL;
1035        struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1036
1037        if (!osc_pc_lpi_support_confirmed)
1038                return -EOPNOTSUPP;
1039
1040        if (!acpi_has_method(handle, "_LPI"))
1041                return -EINVAL;
1042
1043        flat_state_cnt = 0;
1044        prev = &info[0];
1045        curr = &info[1];
1046        handle = pr->handle;
1047        ret = acpi_processor_evaluate_lpi(handle, prev);
1048        if (ret)
1049                return ret;
1050        flatten_lpi_states(pr, prev, NULL);
1051
1052        status = acpi_get_parent(handle, &pr_ahandle);
1053        while (ACPI_SUCCESS(status)) {
1054                acpi_bus_get_device(pr_ahandle, &d);
1055                handle = pr_ahandle;
1056
1057                if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1058                        break;
1059
1060                /* can be optional ? */
1061                if (!acpi_has_method(handle, "_LPI"))
1062                        break;
1063
1064                ret = acpi_processor_evaluate_lpi(handle, curr);
1065                if (ret)
1066                        break;
1067
1068                /* flatten all the LPI states in this level of hierarchy */
1069                flatten_lpi_states(pr, curr, prev);
1070
1071                tmp = prev, prev = curr, curr = tmp;
1072
1073                status = acpi_get_parent(handle, &pr_ahandle);
1074        }
1075
1076        pr->power.count = flat_state_cnt;
1077        /* reset the index after flattening */
1078        for (i = 0; i < pr->power.count; i++)
1079                pr->power.lpi_states[i].index = i;
1080
1081        /* Tell driver that _LPI is supported. */
1082        pr->flags.has_lpi = 1;
1083        pr->flags.power = 1;
1084
1085        return 0;
1086}
1087
1088int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1089{
1090        return -ENODEV;
1091}
1092
1093int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1094{
1095        return -ENODEV;
1096}
1097
1098/**
1099 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1100 * @dev: the target CPU
1101 * @drv: cpuidle driver containing cpuidle state info
1102 * @index: index of target state
1103 *
1104 * Return: 0 for success or negative value for error
1105 */
1106static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1107                               struct cpuidle_driver *drv, int index)
1108{
1109        struct acpi_processor *pr;
1110        struct acpi_lpi_state *lpi;
1111
1112        pr = __this_cpu_read(processors);
1113
1114        if (unlikely(!pr))
1115                return -EINVAL;
1116
1117        lpi = &pr->power.lpi_states[index];
1118        if (lpi->entry_method == ACPI_CSTATE_FFH)
1119                return acpi_processor_ffh_lpi_enter(lpi);
1120
1121        return -EINVAL;
1122}
1123
1124static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1125{
1126        int i;
1127        struct acpi_lpi_state *lpi;
1128        struct cpuidle_state *state;
1129        struct cpuidle_driver *drv = &acpi_idle_driver;
1130
1131        if (!pr->flags.has_lpi)
1132                return -EOPNOTSUPP;
1133
1134        for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1135                lpi = &pr->power.lpi_states[i];
1136
1137                state = &drv->states[i];
1138                snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1139                strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1140                state->exit_latency = lpi->wake_latency;
1141                state->target_residency = lpi->min_residency;
1142                if (lpi->arch_flags)
1143                        state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1144                state->enter = acpi_idle_lpi_enter;
1145                drv->safe_state_index = i;
1146        }
1147
1148        drv->state_count = i;
1149
1150        return 0;
1151}
1152
1153/**
1154 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1155 * global state data i.e. idle routines
1156 *
1157 * @pr: the ACPI processor
1158 */
1159static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1160{
1161        int i;
1162        struct cpuidle_driver *drv = &acpi_idle_driver;
1163
1164        if (!pr->flags.power_setup_done || !pr->flags.power)
1165                return -EINVAL;
1166
1167        drv->safe_state_index = -1;
1168        for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1169                drv->states[i].name[0] = '\0';
1170                drv->states[i].desc[0] = '\0';
1171        }
1172
1173        if (pr->flags.has_lpi)
1174                return acpi_processor_setup_lpi_states(pr);
1175
1176        return acpi_processor_setup_cstates(pr);
1177}
1178
1179/**
1180 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1181 * device i.e. per-cpu data
1182 *
1183 * @pr: the ACPI processor
1184 * @dev : the cpuidle device
1185 */
1186static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1187                                            struct cpuidle_device *dev)
1188{
1189        if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1190                return -EINVAL;
1191
1192        dev->cpu = pr->id;
1193        if (pr->flags.has_lpi)
1194                return acpi_processor_ffh_lpi_probe(pr->id);
1195
1196        return acpi_processor_setup_cpuidle_cx(pr, dev);
1197}
1198
1199static int acpi_processor_get_power_info(struct acpi_processor *pr)
1200{
1201        int ret;
1202
1203        ret = acpi_processor_get_lpi_info(pr);
1204        if (ret)
1205                ret = acpi_processor_get_cstate_info(pr);
1206
1207        return ret;
1208}
1209
1210int acpi_processor_hotplug(struct acpi_processor *pr)
1211{
1212        int ret = 0;
1213        struct cpuidle_device *dev;
1214
1215        if (disabled_by_idle_boot_param())
1216                return 0;
1217
1218        if (!pr->flags.power_setup_done)
1219                return -ENODEV;
1220
1221        dev = per_cpu(acpi_cpuidle_device, pr->id);
1222        cpuidle_pause_and_lock();
1223        cpuidle_disable_device(dev);
1224        ret = acpi_processor_get_power_info(pr);
1225        if (!ret && pr->flags.power) {
1226                acpi_processor_setup_cpuidle_dev(pr, dev);
1227                ret = cpuidle_enable_device(dev);
1228        }
1229        cpuidle_resume_and_unlock();
1230
1231        return ret;
1232}
1233
1234int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1235{
1236        int cpu;
1237        struct acpi_processor *_pr;
1238        struct cpuidle_device *dev;
1239
1240        if (disabled_by_idle_boot_param())
1241                return 0;
1242
1243        if (!pr->flags.power_setup_done)
1244                return -ENODEV;
1245
1246        /*
1247         * FIXME:  Design the ACPI notification to make it once per
1248         * system instead of once per-cpu.  This condition is a hack
1249         * to make the code that updates C-States be called once.
1250         */
1251
1252        if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1253
1254                /* Protect against cpu-hotplug */
1255                get_online_cpus();
1256                cpuidle_pause_and_lock();
1257
1258                /* Disable all cpuidle devices */
1259                for_each_online_cpu(cpu) {
1260                        _pr = per_cpu(processors, cpu);
1261                        if (!_pr || !_pr->flags.power_setup_done)
1262                                continue;
1263                        dev = per_cpu(acpi_cpuidle_device, cpu);
1264                        cpuidle_disable_device(dev);
1265                }
1266
1267                /* Populate Updated C-state information */
1268                acpi_processor_get_power_info(pr);
1269                acpi_processor_setup_cpuidle_states(pr);
1270
1271                /* Enable all cpuidle devices */
1272                for_each_online_cpu(cpu) {
1273                        _pr = per_cpu(processors, cpu);
1274                        if (!_pr || !_pr->flags.power_setup_done)
1275                                continue;
1276                        acpi_processor_get_power_info(_pr);
1277                        if (_pr->flags.power) {
1278                                dev = per_cpu(acpi_cpuidle_device, cpu);
1279                                acpi_processor_setup_cpuidle_dev(_pr, dev);
1280                                cpuidle_enable_device(dev);
1281                        }
1282                }
1283                cpuidle_resume_and_unlock();
1284                put_online_cpus();
1285        }
1286
1287        return 0;
1288}
1289
1290static int acpi_processor_registered;
1291
1292int acpi_processor_power_init(struct acpi_processor *pr)
1293{
1294        int retval;
1295        struct cpuidle_device *dev;
1296
1297        if (disabled_by_idle_boot_param())
1298                return 0;
1299
1300        acpi_processor_cstate_first_run_checks();
1301
1302        if (!acpi_processor_get_power_info(pr))
1303                pr->flags.power_setup_done = 1;
1304
1305        /*
1306         * Install the idle handler if processor power management is supported.
1307         * Note that we use previously set idle handler will be used on
1308         * platforms that only support C1.
1309         */
1310        if (pr->flags.power) {
1311                /* Register acpi_idle_driver if not already registered */
1312                if (!acpi_processor_registered) {
1313                        acpi_processor_setup_cpuidle_states(pr);
1314                        retval = cpuidle_register_driver(&acpi_idle_driver);
1315                        if (retval)
1316                                return retval;
1317                        pr_debug("%s registered with cpuidle\n",
1318                                 acpi_idle_driver.name);
1319                }
1320
1321                dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1322                if (!dev)
1323                        return -ENOMEM;
1324                per_cpu(acpi_cpuidle_device, pr->id) = dev;
1325
1326                acpi_processor_setup_cpuidle_dev(pr, dev);
1327
1328                /* Register per-cpu cpuidle_device. Cpuidle driver
1329                 * must already be registered before registering device
1330                 */
1331                retval = cpuidle_register_device(dev);
1332                if (retval) {
1333                        if (acpi_processor_registered == 0)
1334                                cpuidle_unregister_driver(&acpi_idle_driver);
1335                        return retval;
1336                }
1337                acpi_processor_registered++;
1338        }
1339        return 0;
1340}
1341
1342int acpi_processor_power_exit(struct acpi_processor *pr)
1343{
1344        struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1345
1346        if (disabled_by_idle_boot_param())
1347                return 0;
1348
1349        if (pr->flags.power) {
1350                cpuidle_unregister_device(dev);
1351                acpi_processor_registered--;
1352                if (acpi_processor_registered == 0)
1353                        cpuidle_unregister_driver(&acpi_idle_driver);
1354        }
1355
1356        pr->flags.power_setup_done = 0;
1357        return 0;
1358}
1359