linux/drivers/auxdisplay/panel.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Front panel driver for Linux
   4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   5 * Copyright (C) 2016-2017 Glider bvba
   6 *
   7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
   8 * connected to a parallel printer port.
   9 *
  10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  11 * serial module compatible with Samsung's KS0074. The pins may be connected in
  12 * any combination, everything is programmable.
  13 *
  14 * The keypad consists in a matrix of push buttons connecting input pins to
  15 * data output pins or to the ground. The combinations have to be hard-coded
  16 * in the driver, though several profiles exist and adding new ones is easy.
  17 *
  18 * Several profiles are provided for commonly found LCD+keypad modules on the
  19 * market, such as those found in Nexcom's appliances.
  20 *
  21 * FIXME:
  22 *      - the initialization/deinitialization process is very dirty and should
  23 *        be rewritten. It may even be buggy.
  24 *
  25 * TODO:
  26 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  27 *      - make the LCD a part of a virtual screen of Vx*Vy
  28 *      - make the inputs list smp-safe
  29 *      - change the keyboard to a double mapping : signals -> key_id -> values
  30 *        so that applications can change values without knowing signals
  31 *
  32 */
  33
  34#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  35
  36#include <linux/module.h>
  37
  38#include <linux/types.h>
  39#include <linux/errno.h>
  40#include <linux/signal.h>
  41#include <linux/sched.h>
  42#include <linux/spinlock.h>
  43#include <linux/interrupt.h>
  44#include <linux/miscdevice.h>
  45#include <linux/slab.h>
  46#include <linux/ioport.h>
  47#include <linux/fcntl.h>
  48#include <linux/init.h>
  49#include <linux/delay.h>
  50#include <linux/kernel.h>
  51#include <linux/ctype.h>
  52#include <linux/parport.h>
  53#include <linux/list.h>
  54
  55#include <linux/io.h>
  56#include <linux/uaccess.h>
  57
  58#include "charlcd.h"
  59
  60#define LCD_MAXBYTES            256     /* max burst write */
  61
  62#define KEYPAD_BUFFER           64
  63
  64/* poll the keyboard this every second */
  65#define INPUT_POLL_TIME         (HZ / 50)
  66/* a key starts to repeat after this times INPUT_POLL_TIME */
  67#define KEYPAD_REP_START        (10)
  68/* a key repeats this times INPUT_POLL_TIME */
  69#define KEYPAD_REP_DELAY        (2)
  70
  71/* converts an r_str() input to an active high, bits string : 000BAOSE */
  72#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  73
  74#define PNL_PBUSY               0x80    /* inverted input, active low */
  75#define PNL_PACK                0x40    /* direct input, active low */
  76#define PNL_POUTPA              0x20    /* direct input, active high */
  77#define PNL_PSELECD             0x10    /* direct input, active high */
  78#define PNL_PERRORP             0x08    /* direct input, active low */
  79
  80#define PNL_PBIDIR              0x20    /* bi-directional ports */
  81/* high to read data in or-ed with data out */
  82#define PNL_PINTEN              0x10
  83#define PNL_PSELECP             0x08    /* inverted output, active low */
  84#define PNL_PINITP              0x04    /* direct output, active low */
  85#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  86#define PNL_PSTROBE             0x01    /* inverted output */
  87
  88#define PNL_PD0                 0x01
  89#define PNL_PD1                 0x02
  90#define PNL_PD2                 0x04
  91#define PNL_PD3                 0x08
  92#define PNL_PD4                 0x10
  93#define PNL_PD5                 0x20
  94#define PNL_PD6                 0x40
  95#define PNL_PD7                 0x80
  96
  97#define PIN_NONE                0
  98#define PIN_STROBE              1
  99#define PIN_D0                  2
 100#define PIN_D1                  3
 101#define PIN_D2                  4
 102#define PIN_D3                  5
 103#define PIN_D4                  6
 104#define PIN_D5                  7
 105#define PIN_D6                  8
 106#define PIN_D7                  9
 107#define PIN_AUTOLF              14
 108#define PIN_INITP               16
 109#define PIN_SELECP              17
 110#define PIN_NOT_SET             127
 111
 112#define NOT_SET                 -1
 113
 114/* macros to simplify use of the parallel port */
 115#define r_ctr(x)        (parport_read_control((x)->port))
 116#define r_dtr(x)        (parport_read_data((x)->port))
 117#define r_str(x)        (parport_read_status((x)->port))
 118#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 119#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 120
 121/* this defines which bits are to be used and which ones to be ignored */
 122/* logical or of the output bits involved in the scan matrix */
 123static __u8 scan_mask_o;
 124/* logical or of the input bits involved in the scan matrix */
 125static __u8 scan_mask_i;
 126
 127enum input_type {
 128        INPUT_TYPE_STD,
 129        INPUT_TYPE_KBD,
 130};
 131
 132enum input_state {
 133        INPUT_ST_LOW,
 134        INPUT_ST_RISING,
 135        INPUT_ST_HIGH,
 136        INPUT_ST_FALLING,
 137};
 138
 139struct logical_input {
 140        struct list_head list;
 141        __u64 mask;
 142        __u64 value;
 143        enum input_type type;
 144        enum input_state state;
 145        __u8 rise_time, fall_time;
 146        __u8 rise_timer, fall_timer, high_timer;
 147
 148        union {
 149                struct {        /* valid when type == INPUT_TYPE_STD */
 150                        void (*press_fct)(int);
 151                        void (*release_fct)(int);
 152                        int press_data;
 153                        int release_data;
 154                } std;
 155                struct {        /* valid when type == INPUT_TYPE_KBD */
 156                        char press_str[sizeof(void *) + sizeof(int)] __nonstring;
 157                        char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
 158                        char release_str[sizeof(void *) + sizeof(int)] __nonstring;
 159                } kbd;
 160        } u;
 161};
 162
 163static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 164
 165/* physical contacts history
 166 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 167 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 168 * corresponds to the ground.
 169 * Within each group, bits are stored in the same order as read on the port :
 170 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 171 * So, each __u64 is represented like this :
 172 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 173 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 174 */
 175
 176/* what has just been read from the I/O ports */
 177static __u64 phys_read;
 178/* previous phys_read */
 179static __u64 phys_read_prev;
 180/* stabilized phys_read (phys_read|phys_read_prev) */
 181static __u64 phys_curr;
 182/* previous phys_curr */
 183static __u64 phys_prev;
 184/* 0 means that at least one logical signal needs be computed */
 185static char inputs_stable;
 186
 187/* these variables are specific to the keypad */
 188static struct {
 189        bool enabled;
 190} keypad;
 191
 192static char keypad_buffer[KEYPAD_BUFFER];
 193static int keypad_buflen;
 194static int keypad_start;
 195static char keypressed;
 196static wait_queue_head_t keypad_read_wait;
 197
 198/* lcd-specific variables */
 199static struct {
 200        bool enabled;
 201        bool initialized;
 202
 203        int charset;
 204        int proto;
 205
 206        /* TODO: use union here? */
 207        struct {
 208                int e;
 209                int rs;
 210                int rw;
 211                int cl;
 212                int da;
 213                int bl;
 214        } pins;
 215
 216        struct charlcd *charlcd;
 217} lcd;
 218
 219/* Needed only for init */
 220static int selected_lcd_type = NOT_SET;
 221
 222/*
 223 * Bit masks to convert LCD signals to parallel port outputs.
 224 * _d_ are values for data port, _c_ are for control port.
 225 * [0] = signal OFF, [1] = signal ON, [2] = mask
 226 */
 227#define BIT_CLR         0
 228#define BIT_SET         1
 229#define BIT_MSK         2
 230#define BIT_STATES      3
 231/*
 232 * one entry for each bit on the LCD
 233 */
 234#define LCD_BIT_E       0
 235#define LCD_BIT_RS      1
 236#define LCD_BIT_RW      2
 237#define LCD_BIT_BL      3
 238#define LCD_BIT_CL      4
 239#define LCD_BIT_DA      5
 240#define LCD_BITS        6
 241
 242/*
 243 * each bit can be either connected to a DATA or CTRL port
 244 */
 245#define LCD_PORT_C      0
 246#define LCD_PORT_D      1
 247#define LCD_PORTS       2
 248
 249static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 250
 251/*
 252 * LCD protocols
 253 */
 254#define LCD_PROTO_PARALLEL      0
 255#define LCD_PROTO_SERIAL        1
 256#define LCD_PROTO_TI_DA8XX_LCD  2
 257
 258/*
 259 * LCD character sets
 260 */
 261#define LCD_CHARSET_NORMAL      0
 262#define LCD_CHARSET_KS0074      1
 263
 264/*
 265 * LCD types
 266 */
 267#define LCD_TYPE_NONE           0
 268#define LCD_TYPE_CUSTOM         1
 269#define LCD_TYPE_OLD            2
 270#define LCD_TYPE_KS0074         3
 271#define LCD_TYPE_HANTRONIX      4
 272#define LCD_TYPE_NEXCOM         5
 273
 274/*
 275 * keypad types
 276 */
 277#define KEYPAD_TYPE_NONE        0
 278#define KEYPAD_TYPE_OLD         1
 279#define KEYPAD_TYPE_NEW         2
 280#define KEYPAD_TYPE_NEXCOM      3
 281
 282/*
 283 * panel profiles
 284 */
 285#define PANEL_PROFILE_CUSTOM    0
 286#define PANEL_PROFILE_OLD       1
 287#define PANEL_PROFILE_NEW       2
 288#define PANEL_PROFILE_HANTRONIX 3
 289#define PANEL_PROFILE_NEXCOM    4
 290#define PANEL_PROFILE_LARGE     5
 291
 292/*
 293 * Construct custom config from the kernel's configuration
 294 */
 295#define DEFAULT_PARPORT         0
 296#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 297#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 298#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 299#define DEFAULT_LCD_HEIGHT      2
 300#define DEFAULT_LCD_WIDTH       40
 301#define DEFAULT_LCD_BWIDTH      40
 302#define DEFAULT_LCD_HWIDTH      64
 303#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 304#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 305
 306#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 307#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 308#define DEFAULT_LCD_PIN_RW      PIN_INITP
 309#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 310#define DEFAULT_LCD_PIN_SDA     PIN_D0
 311#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 312
 313#ifdef CONFIG_PANEL_PARPORT
 314#undef DEFAULT_PARPORT
 315#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 316#endif
 317
 318#ifdef CONFIG_PANEL_PROFILE
 319#undef DEFAULT_PROFILE
 320#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 321#endif
 322
 323#if DEFAULT_PROFILE == 0        /* custom */
 324#ifdef CONFIG_PANEL_KEYPAD
 325#undef DEFAULT_KEYPAD_TYPE
 326#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 327#endif
 328
 329#ifdef CONFIG_PANEL_LCD
 330#undef DEFAULT_LCD_TYPE
 331#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 332#endif
 333
 334#ifdef CONFIG_PANEL_LCD_HEIGHT
 335#undef DEFAULT_LCD_HEIGHT
 336#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 337#endif
 338
 339#ifdef CONFIG_PANEL_LCD_WIDTH
 340#undef DEFAULT_LCD_WIDTH
 341#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 342#endif
 343
 344#ifdef CONFIG_PANEL_LCD_BWIDTH
 345#undef DEFAULT_LCD_BWIDTH
 346#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 347#endif
 348
 349#ifdef CONFIG_PANEL_LCD_HWIDTH
 350#undef DEFAULT_LCD_HWIDTH
 351#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 352#endif
 353
 354#ifdef CONFIG_PANEL_LCD_CHARSET
 355#undef DEFAULT_LCD_CHARSET
 356#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 357#endif
 358
 359#ifdef CONFIG_PANEL_LCD_PROTO
 360#undef DEFAULT_LCD_PROTO
 361#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 362#endif
 363
 364#ifdef CONFIG_PANEL_LCD_PIN_E
 365#undef DEFAULT_LCD_PIN_E
 366#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 367#endif
 368
 369#ifdef CONFIG_PANEL_LCD_PIN_RS
 370#undef DEFAULT_LCD_PIN_RS
 371#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 372#endif
 373
 374#ifdef CONFIG_PANEL_LCD_PIN_RW
 375#undef DEFAULT_LCD_PIN_RW
 376#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 377#endif
 378
 379#ifdef CONFIG_PANEL_LCD_PIN_SCL
 380#undef DEFAULT_LCD_PIN_SCL
 381#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 382#endif
 383
 384#ifdef CONFIG_PANEL_LCD_PIN_SDA
 385#undef DEFAULT_LCD_PIN_SDA
 386#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 387#endif
 388
 389#ifdef CONFIG_PANEL_LCD_PIN_BL
 390#undef DEFAULT_LCD_PIN_BL
 391#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 392#endif
 393
 394#endif /* DEFAULT_PROFILE == 0 */
 395
 396/* global variables */
 397
 398/* Device single-open policy control */
 399static atomic_t keypad_available = ATOMIC_INIT(1);
 400
 401static struct pardevice *pprt;
 402
 403static int keypad_initialized;
 404
 405static DEFINE_SPINLOCK(pprt_lock);
 406static struct timer_list scan_timer;
 407
 408MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 409
 410static int parport = DEFAULT_PARPORT;
 411module_param(parport, int, 0000);
 412MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 413
 414static int profile = DEFAULT_PROFILE;
 415module_param(profile, int, 0000);
 416MODULE_PARM_DESC(profile,
 417                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 418                 "4=16x2 nexcom; default=40x2, old kp");
 419
 420static int keypad_type = NOT_SET;
 421module_param(keypad_type, int, 0000);
 422MODULE_PARM_DESC(keypad_type,
 423                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 424
 425static int lcd_type = NOT_SET;
 426module_param(lcd_type, int, 0000);
 427MODULE_PARM_DESC(lcd_type,
 428                 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 429
 430static int lcd_height = NOT_SET;
 431module_param(lcd_height, int, 0000);
 432MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 433
 434static int lcd_width = NOT_SET;
 435module_param(lcd_width, int, 0000);
 436MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 437
 438static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 439module_param(lcd_bwidth, int, 0000);
 440MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 441
 442static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 443module_param(lcd_hwidth, int, 0000);
 444MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 445
 446static int lcd_charset = NOT_SET;
 447module_param(lcd_charset, int, 0000);
 448MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 449
 450static int lcd_proto = NOT_SET;
 451module_param(lcd_proto, int, 0000);
 452MODULE_PARM_DESC(lcd_proto,
 453                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 454
 455/*
 456 * These are the parallel port pins the LCD control signals are connected to.
 457 * Set this to 0 if the signal is not used. Set it to its opposite value
 458 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 459 * pin has not been explicitly specified.
 460 *
 461 * WARNING! no check will be performed about collisions with keypad !
 462 */
 463
 464static int lcd_e_pin  = PIN_NOT_SET;
 465module_param(lcd_e_pin, int, 0000);
 466MODULE_PARM_DESC(lcd_e_pin,
 467                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 468
 469static int lcd_rs_pin = PIN_NOT_SET;
 470module_param(lcd_rs_pin, int, 0000);
 471MODULE_PARM_DESC(lcd_rs_pin,
 472                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 473
 474static int lcd_rw_pin = PIN_NOT_SET;
 475module_param(lcd_rw_pin, int, 0000);
 476MODULE_PARM_DESC(lcd_rw_pin,
 477                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 478
 479static int lcd_cl_pin = PIN_NOT_SET;
 480module_param(lcd_cl_pin, int, 0000);
 481MODULE_PARM_DESC(lcd_cl_pin,
 482                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 483
 484static int lcd_da_pin = PIN_NOT_SET;
 485module_param(lcd_da_pin, int, 0000);
 486MODULE_PARM_DESC(lcd_da_pin,
 487                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 488
 489static int lcd_bl_pin = PIN_NOT_SET;
 490module_param(lcd_bl_pin, int, 0000);
 491MODULE_PARM_DESC(lcd_bl_pin,
 492                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 493
 494/* Deprecated module parameters - consider not using them anymore */
 495
 496static int lcd_enabled = NOT_SET;
 497module_param(lcd_enabled, int, 0000);
 498MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 499
 500static int keypad_enabled = NOT_SET;
 501module_param(keypad_enabled, int, 0000);
 502MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 503
 504/* for some LCD drivers (ks0074) we need a charset conversion table. */
 505static const unsigned char lcd_char_conv_ks0074[256] = {
 506        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 507        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 508        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 509        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 510        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 511        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 512        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 513        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 514        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 515        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 516        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 517        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 518        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 519        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 520        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 521        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 522        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 523        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 524        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 525        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 526        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 527        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 528        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 529        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 530        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 531        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 532        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 533        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 534        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 535        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 536        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 537        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 538        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 539};
 540
 541static const char old_keypad_profile[][4][9] = {
 542        {"S0", "Left\n", "Left\n", ""},
 543        {"S1", "Down\n", "Down\n", ""},
 544        {"S2", "Up\n", "Up\n", ""},
 545        {"S3", "Right\n", "Right\n", ""},
 546        {"S4", "Esc\n", "Esc\n", ""},
 547        {"S5", "Ret\n", "Ret\n", ""},
 548        {"", "", "", ""}
 549};
 550
 551/* signals, press, repeat, release */
 552static const char new_keypad_profile[][4][9] = {
 553        {"S0", "Left\n", "Left\n", ""},
 554        {"S1", "Down\n", "Down\n", ""},
 555        {"S2", "Up\n", "Up\n", ""},
 556        {"S3", "Right\n", "Right\n", ""},
 557        {"S4s5", "", "Esc\n", "Esc\n"},
 558        {"s4S5", "", "Ret\n", "Ret\n"},
 559        {"S4S5", "Help\n", "", ""},
 560        /* add new signals above this line */
 561        {"", "", "", ""}
 562};
 563
 564/* signals, press, repeat, release */
 565static const char nexcom_keypad_profile[][4][9] = {
 566        {"a-p-e-", "Down\n", "Down\n", ""},
 567        {"a-p-E-", "Ret\n", "Ret\n", ""},
 568        {"a-P-E-", "Esc\n", "Esc\n", ""},
 569        {"a-P-e-", "Up\n", "Up\n", ""},
 570        /* add new signals above this line */
 571        {"", "", "", ""}
 572};
 573
 574static const char (*keypad_profile)[4][9] = old_keypad_profile;
 575
 576static DECLARE_BITMAP(bits, LCD_BITS);
 577
 578static void lcd_get_bits(unsigned int port, int *val)
 579{
 580        unsigned int bit, state;
 581
 582        for (bit = 0; bit < LCD_BITS; bit++) {
 583                state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
 584                *val &= lcd_bits[port][bit][BIT_MSK];
 585                *val |= lcd_bits[port][bit][state];
 586        }
 587}
 588
 589/* sets data port bits according to current signals values */
 590static int set_data_bits(void)
 591{
 592        int val;
 593
 594        val = r_dtr(pprt);
 595        lcd_get_bits(LCD_PORT_D, &val);
 596        w_dtr(pprt, val);
 597        return val;
 598}
 599
 600/* sets ctrl port bits according to current signals values */
 601static int set_ctrl_bits(void)
 602{
 603        int val;
 604
 605        val = r_ctr(pprt);
 606        lcd_get_bits(LCD_PORT_C, &val);
 607        w_ctr(pprt, val);
 608        return val;
 609}
 610
 611/* sets ctrl & data port bits according to current signals values */
 612static void panel_set_bits(void)
 613{
 614        set_data_bits();
 615        set_ctrl_bits();
 616}
 617
 618/*
 619 * Converts a parallel port pin (from -25 to 25) to data and control ports
 620 * masks, and data and control port bits. The signal will be considered
 621 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 622 *
 623 * Result will be used this way :
 624 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 625 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 626 */
 627static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 628{
 629        int d_bit, c_bit, inv;
 630
 631        d_val[0] = 0;
 632        c_val[0] = 0;
 633        d_val[1] = 0;
 634        c_val[1] = 0;
 635        d_val[2] = 0xFF;
 636        c_val[2] = 0xFF;
 637
 638        if (pin == 0)
 639                return;
 640
 641        inv = (pin < 0);
 642        if (inv)
 643                pin = -pin;
 644
 645        d_bit = 0;
 646        c_bit = 0;
 647
 648        switch (pin) {
 649        case PIN_STROBE:        /* strobe, inverted */
 650                c_bit = PNL_PSTROBE;
 651                inv = !inv;
 652                break;
 653        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 654                d_bit = 1 << (pin - 2);
 655                break;
 656        case PIN_AUTOLF:        /* autofeed, inverted */
 657                c_bit = PNL_PAUTOLF;
 658                inv = !inv;
 659                break;
 660        case PIN_INITP:         /* init, direct */
 661                c_bit = PNL_PINITP;
 662                break;
 663        case PIN_SELECP:        /* select_in, inverted */
 664                c_bit = PNL_PSELECP;
 665                inv = !inv;
 666                break;
 667        default:                /* unknown pin, ignore */
 668                break;
 669        }
 670
 671        if (c_bit) {
 672                c_val[2] &= ~c_bit;
 673                c_val[!inv] = c_bit;
 674        } else if (d_bit) {
 675                d_val[2] &= ~d_bit;
 676                d_val[!inv] = d_bit;
 677        }
 678}
 679
 680/*
 681 * send a serial byte to the LCD panel. The caller is responsible for locking
 682 * if needed.
 683 */
 684static void lcd_send_serial(int byte)
 685{
 686        int bit;
 687
 688        /*
 689         * the data bit is set on D0, and the clock on STROBE.
 690         * LCD reads D0 on STROBE's rising edge.
 691         */
 692        for (bit = 0; bit < 8; bit++) {
 693                clear_bit(LCD_BIT_CL, bits);    /* CLK low */
 694                panel_set_bits();
 695                if (byte & 1) {
 696                        set_bit(LCD_BIT_DA, bits);
 697                } else {
 698                        clear_bit(LCD_BIT_DA, bits);
 699                }
 700
 701                panel_set_bits();
 702                udelay(2);  /* maintain the data during 2 us before CLK up */
 703                set_bit(LCD_BIT_CL, bits);      /* CLK high */
 704                panel_set_bits();
 705                udelay(1);  /* maintain the strobe during 1 us */
 706                byte >>= 1;
 707        }
 708}
 709
 710/* turn the backlight on or off */
 711static void lcd_backlight(struct charlcd *charlcd, int on)
 712{
 713        if (lcd.pins.bl == PIN_NONE)
 714                return;
 715
 716        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 717        spin_lock_irq(&pprt_lock);
 718        if (on)
 719                set_bit(LCD_BIT_BL, bits);
 720        else
 721                clear_bit(LCD_BIT_BL, bits);
 722        panel_set_bits();
 723        spin_unlock_irq(&pprt_lock);
 724}
 725
 726/* send a command to the LCD panel in serial mode */
 727static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
 728{
 729        spin_lock_irq(&pprt_lock);
 730        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 731        lcd_send_serial(cmd & 0x0F);
 732        lcd_send_serial((cmd >> 4) & 0x0F);
 733        udelay(40);             /* the shortest command takes at least 40 us */
 734        spin_unlock_irq(&pprt_lock);
 735}
 736
 737/* send data to the LCD panel in serial mode */
 738static void lcd_write_data_s(struct charlcd *charlcd, int data)
 739{
 740        spin_lock_irq(&pprt_lock);
 741        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 742        lcd_send_serial(data & 0x0F);
 743        lcd_send_serial((data >> 4) & 0x0F);
 744        udelay(40);             /* the shortest data takes at least 40 us */
 745        spin_unlock_irq(&pprt_lock);
 746}
 747
 748/* send a command to the LCD panel in 8 bits parallel mode */
 749static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
 750{
 751        spin_lock_irq(&pprt_lock);
 752        /* present the data to the data port */
 753        w_dtr(pprt, cmd);
 754        udelay(20);     /* maintain the data during 20 us before the strobe */
 755
 756        set_bit(LCD_BIT_E, bits);
 757        clear_bit(LCD_BIT_RS, bits);
 758        clear_bit(LCD_BIT_RW, bits);
 759        set_ctrl_bits();
 760
 761        udelay(40);     /* maintain the strobe during 40 us */
 762
 763        clear_bit(LCD_BIT_E, bits);
 764        set_ctrl_bits();
 765
 766        udelay(120);    /* the shortest command takes at least 120 us */
 767        spin_unlock_irq(&pprt_lock);
 768}
 769
 770/* send data to the LCD panel in 8 bits parallel mode */
 771static void lcd_write_data_p8(struct charlcd *charlcd, int data)
 772{
 773        spin_lock_irq(&pprt_lock);
 774        /* present the data to the data port */
 775        w_dtr(pprt, data);
 776        udelay(20);     /* maintain the data during 20 us before the strobe */
 777
 778        set_bit(LCD_BIT_E, bits);
 779        set_bit(LCD_BIT_RS, bits);
 780        clear_bit(LCD_BIT_RW, bits);
 781        set_ctrl_bits();
 782
 783        udelay(40);     /* maintain the strobe during 40 us */
 784
 785        clear_bit(LCD_BIT_E, bits);
 786        set_ctrl_bits();
 787
 788        udelay(45);     /* the shortest data takes at least 45 us */
 789        spin_unlock_irq(&pprt_lock);
 790}
 791
 792/* send a command to the TI LCD panel */
 793static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
 794{
 795        spin_lock_irq(&pprt_lock);
 796        /* present the data to the control port */
 797        w_ctr(pprt, cmd);
 798        udelay(60);
 799        spin_unlock_irq(&pprt_lock);
 800}
 801
 802/* send data to the TI LCD panel */
 803static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
 804{
 805        spin_lock_irq(&pprt_lock);
 806        /* present the data to the data port */
 807        w_dtr(pprt, data);
 808        udelay(60);
 809        spin_unlock_irq(&pprt_lock);
 810}
 811
 812/* fills the display with spaces and resets X/Y */
 813static void lcd_clear_fast_s(struct charlcd *charlcd)
 814{
 815        int pos;
 816
 817        spin_lock_irq(&pprt_lock);
 818        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 819                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 820                lcd_send_serial(' ' & 0x0F);
 821                lcd_send_serial((' ' >> 4) & 0x0F);
 822                /* the shortest data takes at least 40 us */
 823                udelay(40);
 824        }
 825        spin_unlock_irq(&pprt_lock);
 826}
 827
 828/* fills the display with spaces and resets X/Y */
 829static void lcd_clear_fast_p8(struct charlcd *charlcd)
 830{
 831        int pos;
 832
 833        spin_lock_irq(&pprt_lock);
 834        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 835                /* present the data to the data port */
 836                w_dtr(pprt, ' ');
 837
 838                /* maintain the data during 20 us before the strobe */
 839                udelay(20);
 840
 841                set_bit(LCD_BIT_E, bits);
 842                set_bit(LCD_BIT_RS, bits);
 843                clear_bit(LCD_BIT_RW, bits);
 844                set_ctrl_bits();
 845
 846                /* maintain the strobe during 40 us */
 847                udelay(40);
 848
 849                clear_bit(LCD_BIT_E, bits);
 850                set_ctrl_bits();
 851
 852                /* the shortest data takes at least 45 us */
 853                udelay(45);
 854        }
 855        spin_unlock_irq(&pprt_lock);
 856}
 857
 858/* fills the display with spaces and resets X/Y */
 859static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
 860{
 861        int pos;
 862
 863        spin_lock_irq(&pprt_lock);
 864        for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
 865                /* present the data to the data port */
 866                w_dtr(pprt, ' ');
 867                udelay(60);
 868        }
 869
 870        spin_unlock_irq(&pprt_lock);
 871}
 872
 873static const struct charlcd_ops charlcd_serial_ops = {
 874        .write_cmd      = lcd_write_cmd_s,
 875        .write_data     = lcd_write_data_s,
 876        .clear_fast     = lcd_clear_fast_s,
 877        .backlight      = lcd_backlight,
 878};
 879
 880static const struct charlcd_ops charlcd_parallel_ops = {
 881        .write_cmd      = lcd_write_cmd_p8,
 882        .write_data     = lcd_write_data_p8,
 883        .clear_fast     = lcd_clear_fast_p8,
 884        .backlight      = lcd_backlight,
 885};
 886
 887static const struct charlcd_ops charlcd_tilcd_ops = {
 888        .write_cmd      = lcd_write_cmd_tilcd,
 889        .write_data     = lcd_write_data_tilcd,
 890        .clear_fast     = lcd_clear_fast_tilcd,
 891        .backlight      = lcd_backlight,
 892};
 893
 894/* initialize the LCD driver */
 895static void lcd_init(void)
 896{
 897        struct charlcd *charlcd;
 898
 899        charlcd = charlcd_alloc(0);
 900        if (!charlcd)
 901                return;
 902
 903        /*
 904         * Init lcd struct with load-time values to preserve exact
 905         * current functionality (at least for now).
 906         */
 907        charlcd->height = lcd_height;
 908        charlcd->width = lcd_width;
 909        charlcd->bwidth = lcd_bwidth;
 910        charlcd->hwidth = lcd_hwidth;
 911
 912        switch (selected_lcd_type) {
 913        case LCD_TYPE_OLD:
 914                /* parallel mode, 8 bits */
 915                lcd.proto = LCD_PROTO_PARALLEL;
 916                lcd.charset = LCD_CHARSET_NORMAL;
 917                lcd.pins.e = PIN_STROBE;
 918                lcd.pins.rs = PIN_AUTOLF;
 919
 920                charlcd->width = 40;
 921                charlcd->bwidth = 40;
 922                charlcd->hwidth = 64;
 923                charlcd->height = 2;
 924                break;
 925        case LCD_TYPE_KS0074:
 926                /* serial mode, ks0074 */
 927                lcd.proto = LCD_PROTO_SERIAL;
 928                lcd.charset = LCD_CHARSET_KS0074;
 929                lcd.pins.bl = PIN_AUTOLF;
 930                lcd.pins.cl = PIN_STROBE;
 931                lcd.pins.da = PIN_D0;
 932
 933                charlcd->width = 16;
 934                charlcd->bwidth = 40;
 935                charlcd->hwidth = 16;
 936                charlcd->height = 2;
 937                break;
 938        case LCD_TYPE_NEXCOM:
 939                /* parallel mode, 8 bits, generic */
 940                lcd.proto = LCD_PROTO_PARALLEL;
 941                lcd.charset = LCD_CHARSET_NORMAL;
 942                lcd.pins.e = PIN_AUTOLF;
 943                lcd.pins.rs = PIN_SELECP;
 944                lcd.pins.rw = PIN_INITP;
 945
 946                charlcd->width = 16;
 947                charlcd->bwidth = 40;
 948                charlcd->hwidth = 64;
 949                charlcd->height = 2;
 950                break;
 951        case LCD_TYPE_CUSTOM:
 952                /* customer-defined */
 953                lcd.proto = DEFAULT_LCD_PROTO;
 954                lcd.charset = DEFAULT_LCD_CHARSET;
 955                /* default geometry will be set later */
 956                break;
 957        case LCD_TYPE_HANTRONIX:
 958                /* parallel mode, 8 bits, hantronix-like */
 959        default:
 960                lcd.proto = LCD_PROTO_PARALLEL;
 961                lcd.charset = LCD_CHARSET_NORMAL;
 962                lcd.pins.e = PIN_STROBE;
 963                lcd.pins.rs = PIN_SELECP;
 964
 965                charlcd->width = 16;
 966                charlcd->bwidth = 40;
 967                charlcd->hwidth = 64;
 968                charlcd->height = 2;
 969                break;
 970        }
 971
 972        /* Overwrite with module params set on loading */
 973        if (lcd_height != NOT_SET)
 974                charlcd->height = lcd_height;
 975        if (lcd_width != NOT_SET)
 976                charlcd->width = lcd_width;
 977        if (lcd_bwidth != NOT_SET)
 978                charlcd->bwidth = lcd_bwidth;
 979        if (lcd_hwidth != NOT_SET)
 980                charlcd->hwidth = lcd_hwidth;
 981        if (lcd_charset != NOT_SET)
 982                lcd.charset = lcd_charset;
 983        if (lcd_proto != NOT_SET)
 984                lcd.proto = lcd_proto;
 985        if (lcd_e_pin != PIN_NOT_SET)
 986                lcd.pins.e = lcd_e_pin;
 987        if (lcd_rs_pin != PIN_NOT_SET)
 988                lcd.pins.rs = lcd_rs_pin;
 989        if (lcd_rw_pin != PIN_NOT_SET)
 990                lcd.pins.rw = lcd_rw_pin;
 991        if (lcd_cl_pin != PIN_NOT_SET)
 992                lcd.pins.cl = lcd_cl_pin;
 993        if (lcd_da_pin != PIN_NOT_SET)
 994                lcd.pins.da = lcd_da_pin;
 995        if (lcd_bl_pin != PIN_NOT_SET)
 996                lcd.pins.bl = lcd_bl_pin;
 997
 998        /* this is used to catch wrong and default values */
 999        if (charlcd->width <= 0)
1000                charlcd->width = DEFAULT_LCD_WIDTH;
1001        if (charlcd->bwidth <= 0)
1002                charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1003        if (charlcd->hwidth <= 0)
1004                charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1005        if (charlcd->height <= 0)
1006                charlcd->height = DEFAULT_LCD_HEIGHT;
1007
1008        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1009                charlcd->ops = &charlcd_serial_ops;
1010
1011                if (lcd.pins.cl == PIN_NOT_SET)
1012                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1013                if (lcd.pins.da == PIN_NOT_SET)
1014                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1015
1016        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1017                charlcd->ops = &charlcd_parallel_ops;
1018
1019                if (lcd.pins.e == PIN_NOT_SET)
1020                        lcd.pins.e = DEFAULT_LCD_PIN_E;
1021                if (lcd.pins.rs == PIN_NOT_SET)
1022                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1023                if (lcd.pins.rw == PIN_NOT_SET)
1024                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1025        } else {
1026                charlcd->ops = &charlcd_tilcd_ops;
1027        }
1028
1029        if (lcd.pins.bl == PIN_NOT_SET)
1030                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1031
1032        if (lcd.pins.e == PIN_NOT_SET)
1033                lcd.pins.e = PIN_NONE;
1034        if (lcd.pins.rs == PIN_NOT_SET)
1035                lcd.pins.rs = PIN_NONE;
1036        if (lcd.pins.rw == PIN_NOT_SET)
1037                lcd.pins.rw = PIN_NONE;
1038        if (lcd.pins.bl == PIN_NOT_SET)
1039                lcd.pins.bl = PIN_NONE;
1040        if (lcd.pins.cl == PIN_NOT_SET)
1041                lcd.pins.cl = PIN_NONE;
1042        if (lcd.pins.da == PIN_NOT_SET)
1043                lcd.pins.da = PIN_NONE;
1044
1045        if (lcd.charset == NOT_SET)
1046                lcd.charset = DEFAULT_LCD_CHARSET;
1047
1048        if (lcd.charset == LCD_CHARSET_KS0074)
1049                charlcd->char_conv = lcd_char_conv_ks0074;
1050        else
1051                charlcd->char_conv = NULL;
1052
1053        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1054                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1055        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1056                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1057        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1058                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1059        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1060                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1061        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1062                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1063        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1064                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1065
1066        lcd.charlcd = charlcd;
1067        lcd.initialized = true;
1068}
1069
1070/*
1071 * These are the file operation function for user access to /dev/keypad
1072 */
1073
1074static ssize_t keypad_read(struct file *file,
1075                           char __user *buf, size_t count, loff_t *ppos)
1076{
1077        unsigned i = *ppos;
1078        char __user *tmp = buf;
1079
1080        if (keypad_buflen == 0) {
1081                if (file->f_flags & O_NONBLOCK)
1082                        return -EAGAIN;
1083
1084                if (wait_event_interruptible(keypad_read_wait,
1085                                             keypad_buflen != 0))
1086                        return -EINTR;
1087        }
1088
1089        for (; count-- > 0 && (keypad_buflen > 0);
1090             ++i, ++tmp, --keypad_buflen) {
1091                put_user(keypad_buffer[keypad_start], tmp);
1092                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1093        }
1094        *ppos = i;
1095
1096        return tmp - buf;
1097}
1098
1099static int keypad_open(struct inode *inode, struct file *file)
1100{
1101        int ret;
1102
1103        ret = -EBUSY;
1104        if (!atomic_dec_and_test(&keypad_available))
1105                goto fail;      /* open only once at a time */
1106
1107        ret = -EPERM;
1108        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1109                goto fail;
1110
1111        keypad_buflen = 0;      /* flush the buffer on opening */
1112        return 0;
1113 fail:
1114        atomic_inc(&keypad_available);
1115        return ret;
1116}
1117
1118static int keypad_release(struct inode *inode, struct file *file)
1119{
1120        atomic_inc(&keypad_available);
1121        return 0;
1122}
1123
1124static const struct file_operations keypad_fops = {
1125        .read    = keypad_read,         /* read */
1126        .open    = keypad_open,         /* open */
1127        .release = keypad_release,      /* close */
1128        .llseek  = default_llseek,
1129};
1130
1131static struct miscdevice keypad_dev = {
1132        .minor  = KEYPAD_MINOR,
1133        .name   = "keypad",
1134        .fops   = &keypad_fops,
1135};
1136
1137static void keypad_send_key(const char *string, int max_len)
1138{
1139        /* send the key to the device only if a process is attached to it. */
1140        if (!atomic_read(&keypad_available)) {
1141                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1142                        keypad_buffer[(keypad_start + keypad_buflen++) %
1143                                      KEYPAD_BUFFER] = *string++;
1144                }
1145                wake_up_interruptible(&keypad_read_wait);
1146        }
1147}
1148
1149/* this function scans all the bits involving at least one logical signal,
1150 * and puts the results in the bitfield "phys_read" (one bit per established
1151 * contact), and sets "phys_read_prev" to "phys_read".
1152 *
1153 * Note: to debounce input signals, we will only consider as switched a signal
1154 * which is stable across 2 measures. Signals which are different between two
1155 * reads will be kept as they previously were in their logical form (phys_prev).
1156 * A signal which has just switched will have a 1 in
1157 * (phys_read ^ phys_read_prev).
1158 */
1159static void phys_scan_contacts(void)
1160{
1161        int bit, bitval;
1162        char oldval;
1163        char bitmask;
1164        char gndmask;
1165
1166        phys_prev = phys_curr;
1167        phys_read_prev = phys_read;
1168        phys_read = 0;          /* flush all signals */
1169
1170        /* keep track of old value, with all outputs disabled */
1171        oldval = r_dtr(pprt) | scan_mask_o;
1172        /* activate all keyboard outputs (active low) */
1173        w_dtr(pprt, oldval & ~scan_mask_o);
1174
1175        /* will have a 1 for each bit set to gnd */
1176        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1177        /* disable all matrix signals */
1178        w_dtr(pprt, oldval);
1179
1180        /* now that all outputs are cleared, the only active input bits are
1181         * directly connected to the ground
1182         */
1183
1184        /* 1 for each grounded input */
1185        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1186
1187        /* grounded inputs are signals 40-44 */
1188        phys_read |= (__u64)gndmask << 40;
1189
1190        if (bitmask != gndmask) {
1191                /*
1192                 * since clearing the outputs changed some inputs, we know
1193                 * that some input signals are currently tied to some outputs.
1194                 * So we'll scan them.
1195                 */
1196                for (bit = 0; bit < 8; bit++) {
1197                        bitval = BIT(bit);
1198
1199                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1200                                continue;
1201
1202                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1203                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1204                        phys_read |= (__u64)bitmask << (5 * bit);
1205                }
1206                w_dtr(pprt, oldval);    /* disable all outputs */
1207        }
1208        /*
1209         * this is easy: use old bits when they are flapping,
1210         * use new ones when stable
1211         */
1212        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1213                    (phys_read & ~(phys_read ^ phys_read_prev));
1214}
1215
1216static inline int input_state_high(struct logical_input *input)
1217{
1218#if 0
1219        /* FIXME:
1220         * this is an invalid test. It tries to catch
1221         * transitions from single-key to multiple-key, but
1222         * doesn't take into account the contacts polarity.
1223         * The only solution to the problem is to parse keys
1224         * from the most complex to the simplest combinations,
1225         * and mark them as 'caught' once a combination
1226         * matches, then unmatch it for all other ones.
1227         */
1228
1229        /* try to catch dangerous transitions cases :
1230         * someone adds a bit, so this signal was a false
1231         * positive resulting from a transition. We should
1232         * invalidate the signal immediately and not call the
1233         * release function.
1234         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1235         */
1236        if (((phys_prev & input->mask) == input->value) &&
1237            ((phys_curr & input->mask) >  input->value)) {
1238                input->state = INPUT_ST_LOW; /* invalidate */
1239                return 1;
1240        }
1241#endif
1242
1243        if ((phys_curr & input->mask) == input->value) {
1244                if ((input->type == INPUT_TYPE_STD) &&
1245                    (input->high_timer == 0)) {
1246                        input->high_timer++;
1247                        if (input->u.std.press_fct)
1248                                input->u.std.press_fct(input->u.std.press_data);
1249                } else if (input->type == INPUT_TYPE_KBD) {
1250                        /* will turn on the light */
1251                        keypressed = 1;
1252
1253                        if (input->high_timer == 0) {
1254                                char *press_str = input->u.kbd.press_str;
1255
1256                                if (press_str[0]) {
1257                                        int s = sizeof(input->u.kbd.press_str);
1258
1259                                        keypad_send_key(press_str, s);
1260                                }
1261                        }
1262
1263                        if (input->u.kbd.repeat_str[0]) {
1264                                char *repeat_str = input->u.kbd.repeat_str;
1265
1266                                if (input->high_timer >= KEYPAD_REP_START) {
1267                                        int s = sizeof(input->u.kbd.repeat_str);
1268
1269                                        input->high_timer -= KEYPAD_REP_DELAY;
1270                                        keypad_send_key(repeat_str, s);
1271                                }
1272                                /* we will need to come back here soon */
1273                                inputs_stable = 0;
1274                        }
1275
1276                        if (input->high_timer < 255)
1277                                input->high_timer++;
1278                }
1279                return 1;
1280        }
1281
1282        /* else signal falling down. Let's fall through. */
1283        input->state = INPUT_ST_FALLING;
1284        input->fall_timer = 0;
1285
1286        return 0;
1287}
1288
1289static inline void input_state_falling(struct logical_input *input)
1290{
1291#if 0
1292        /* FIXME !!! same comment as in input_state_high */
1293        if (((phys_prev & input->mask) == input->value) &&
1294            ((phys_curr & input->mask) >  input->value)) {
1295                input->state = INPUT_ST_LOW;    /* invalidate */
1296                return;
1297        }
1298#endif
1299
1300        if ((phys_curr & input->mask) == input->value) {
1301                if (input->type == INPUT_TYPE_KBD) {
1302                        /* will turn on the light */
1303                        keypressed = 1;
1304
1305                        if (input->u.kbd.repeat_str[0]) {
1306                                char *repeat_str = input->u.kbd.repeat_str;
1307
1308                                if (input->high_timer >= KEYPAD_REP_START) {
1309                                        int s = sizeof(input->u.kbd.repeat_str);
1310
1311                                        input->high_timer -= KEYPAD_REP_DELAY;
1312                                        keypad_send_key(repeat_str, s);
1313                                }
1314                                /* we will need to come back here soon */
1315                                inputs_stable = 0;
1316                        }
1317
1318                        if (input->high_timer < 255)
1319                                input->high_timer++;
1320                }
1321                input->state = INPUT_ST_HIGH;
1322        } else if (input->fall_timer >= input->fall_time) {
1323                /* call release event */
1324                if (input->type == INPUT_TYPE_STD) {
1325                        void (*release_fct)(int) = input->u.std.release_fct;
1326
1327                        if (release_fct)
1328                                release_fct(input->u.std.release_data);
1329                } else if (input->type == INPUT_TYPE_KBD) {
1330                        char *release_str = input->u.kbd.release_str;
1331
1332                        if (release_str[0]) {
1333                                int s = sizeof(input->u.kbd.release_str);
1334
1335                                keypad_send_key(release_str, s);
1336                        }
1337                }
1338
1339                input->state = INPUT_ST_LOW;
1340        } else {
1341                input->fall_timer++;
1342                inputs_stable = 0;
1343        }
1344}
1345
1346static void panel_process_inputs(void)
1347{
1348        struct logical_input *input;
1349
1350        keypressed = 0;
1351        inputs_stable = 1;
1352        list_for_each_entry(input, &logical_inputs, list) {
1353                switch (input->state) {
1354                case INPUT_ST_LOW:
1355                        if ((phys_curr & input->mask) != input->value)
1356                                break;
1357                        /* if all needed ones were already set previously,
1358                         * this means that this logical signal has been
1359                         * activated by the releasing of another combined
1360                         * signal, so we don't want to match.
1361                         * eg: AB -(release B)-> A -(release A)-> 0 :
1362                         *     don't match A.
1363                         */
1364                        if ((phys_prev & input->mask) == input->value)
1365                                break;
1366                        input->rise_timer = 0;
1367                        input->state = INPUT_ST_RISING;
1368                        /* fall through */
1369                case INPUT_ST_RISING:
1370                        if ((phys_curr & input->mask) != input->value) {
1371                                input->state = INPUT_ST_LOW;
1372                                break;
1373                        }
1374                        if (input->rise_timer < input->rise_time) {
1375                                inputs_stable = 0;
1376                                input->rise_timer++;
1377                                break;
1378                        }
1379                        input->high_timer = 0;
1380                        input->state = INPUT_ST_HIGH;
1381                        /* fall through */
1382                case INPUT_ST_HIGH:
1383                        if (input_state_high(input))
1384                                break;
1385                        /* fall through */
1386                case INPUT_ST_FALLING:
1387                        input_state_falling(input);
1388                }
1389        }
1390}
1391
1392static void panel_scan_timer(struct timer_list *unused)
1393{
1394        if (keypad.enabled && keypad_initialized) {
1395                if (spin_trylock_irq(&pprt_lock)) {
1396                        phys_scan_contacts();
1397
1398                        /* no need for the parport anymore */
1399                        spin_unlock_irq(&pprt_lock);
1400                }
1401
1402                if (!inputs_stable || phys_curr != phys_prev)
1403                        panel_process_inputs();
1404        }
1405
1406        if (keypressed && lcd.enabled && lcd.initialized)
1407                charlcd_poke(lcd.charlcd);
1408
1409        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1410}
1411
1412static void init_scan_timer(void)
1413{
1414        if (scan_timer.function)
1415                return;         /* already started */
1416
1417        timer_setup(&scan_timer, panel_scan_timer, 0);
1418        scan_timer.expires = jiffies + INPUT_POLL_TIME;
1419        add_timer(&scan_timer);
1420}
1421
1422/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1423 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1424 * corresponding to out and in bits respectively.
1425 * returns 1 if ok, 0 if error (in which case, nothing is written).
1426 */
1427static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1428                          u8 *imask, u8 *omask)
1429{
1430        const char sigtab[] = "EeSsPpAaBb";
1431        u8 im, om;
1432        __u64 m, v;
1433
1434        om = 0;
1435        im = 0;
1436        m = 0ULL;
1437        v = 0ULL;
1438        while (*name) {
1439                int in, out, bit, neg;
1440                const char *idx;
1441
1442                idx = strchr(sigtab, *name);
1443                if (!idx)
1444                        return 0;       /* input name not found */
1445
1446                in = idx - sigtab;
1447                neg = (in & 1); /* odd (lower) names are negated */
1448                in >>= 1;
1449                im |= BIT(in);
1450
1451                name++;
1452                if (*name >= '0' && *name <= '7') {
1453                        out = *name - '0';
1454                        om |= BIT(out);
1455                } else if (*name == '-') {
1456                        out = 8;
1457                } else {
1458                        return 0;       /* unknown bit name */
1459                }
1460
1461                bit = (out * 5) + in;
1462
1463                m |= 1ULL << bit;
1464                if (!neg)
1465                        v |= 1ULL << bit;
1466                name++;
1467        }
1468        *mask = m;
1469        *value = v;
1470        if (imask)
1471                *imask |= im;
1472        if (omask)
1473                *omask |= om;
1474        return 1;
1475}
1476
1477/* tries to bind a key to the signal name <name>. The key will send the
1478 * strings <press>, <repeat>, <release> for these respective events.
1479 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1480 */
1481static struct logical_input *panel_bind_key(const char *name, const char *press,
1482                                            const char *repeat,
1483                                            const char *release)
1484{
1485        struct logical_input *key;
1486
1487        key = kzalloc(sizeof(*key), GFP_KERNEL);
1488        if (!key)
1489                return NULL;
1490
1491        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1492                             &scan_mask_o)) {
1493                kfree(key);
1494                return NULL;
1495        }
1496
1497        key->type = INPUT_TYPE_KBD;
1498        key->state = INPUT_ST_LOW;
1499        key->rise_time = 1;
1500        key->fall_time = 1;
1501
1502        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1503        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1504        strncpy(key->u.kbd.release_str, release,
1505                sizeof(key->u.kbd.release_str));
1506        list_add(&key->list, &logical_inputs);
1507        return key;
1508}
1509
1510#if 0
1511/* tries to bind a callback function to the signal name <name>. The function
1512 * <press_fct> will be called with the <press_data> arg when the signal is
1513 * activated, and so on for <release_fct>/<release_data>
1514 * Returns the pointer to the new signal if ok, NULL if the signal could not
1515 * be bound.
1516 */
1517static struct logical_input *panel_bind_callback(char *name,
1518                                                 void (*press_fct)(int),
1519                                                 int press_data,
1520                                                 void (*release_fct)(int),
1521                                                 int release_data)
1522{
1523        struct logical_input *callback;
1524
1525        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1526        if (!callback)
1527                return NULL;
1528
1529        memset(callback, 0, sizeof(struct logical_input));
1530        if (!input_name2mask(name, &callback->mask, &callback->value,
1531                             &scan_mask_i, &scan_mask_o))
1532                return NULL;
1533
1534        callback->type = INPUT_TYPE_STD;
1535        callback->state = INPUT_ST_LOW;
1536        callback->rise_time = 1;
1537        callback->fall_time = 1;
1538        callback->u.std.press_fct = press_fct;
1539        callback->u.std.press_data = press_data;
1540        callback->u.std.release_fct = release_fct;
1541        callback->u.std.release_data = release_data;
1542        list_add(&callback->list, &logical_inputs);
1543        return callback;
1544}
1545#endif
1546
1547static void keypad_init(void)
1548{
1549        int keynum;
1550
1551        init_waitqueue_head(&keypad_read_wait);
1552        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
1553
1554        /* Let's create all known keys */
1555
1556        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1557                panel_bind_key(keypad_profile[keynum][0],
1558                               keypad_profile[keynum][1],
1559                               keypad_profile[keynum][2],
1560                               keypad_profile[keynum][3]);
1561        }
1562
1563        init_scan_timer();
1564        keypad_initialized = 1;
1565}
1566
1567/**************************************************/
1568/* device initialization                          */
1569/**************************************************/
1570
1571static void panel_attach(struct parport *port)
1572{
1573        struct pardev_cb panel_cb;
1574
1575        if (port->number != parport)
1576                return;
1577
1578        if (pprt) {
1579                pr_err("%s: port->number=%d parport=%d, already registered!\n",
1580                       __func__, port->number, parport);
1581                return;
1582        }
1583
1584        memset(&panel_cb, 0, sizeof(panel_cb));
1585        panel_cb.private = &pprt;
1586        /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1587
1588        pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1589        if (!pprt) {
1590                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1591                       __func__, port->number, parport);
1592                return;
1593        }
1594
1595        if (parport_claim(pprt)) {
1596                pr_err("could not claim access to parport%d. Aborting.\n",
1597                       parport);
1598                goto err_unreg_device;
1599        }
1600
1601        /* must init LCD first, just in case an IRQ from the keypad is
1602         * generated at keypad init
1603         */
1604        if (lcd.enabled) {
1605                lcd_init();
1606                if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1607                        goto err_unreg_device;
1608        }
1609
1610        if (keypad.enabled) {
1611                keypad_init();
1612                if (misc_register(&keypad_dev))
1613                        goto err_lcd_unreg;
1614        }
1615        return;
1616
1617err_lcd_unreg:
1618        if (scan_timer.function)
1619                del_timer_sync(&scan_timer);
1620        if (lcd.enabled)
1621                charlcd_unregister(lcd.charlcd);
1622err_unreg_device:
1623        charlcd_free(lcd.charlcd);
1624        lcd.charlcd = NULL;
1625        parport_unregister_device(pprt);
1626        pprt = NULL;
1627}
1628
1629static void panel_detach(struct parport *port)
1630{
1631        if (port->number != parport)
1632                return;
1633
1634        if (!pprt) {
1635                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1636                       __func__, port->number, parport);
1637                return;
1638        }
1639        if (scan_timer.function)
1640                del_timer_sync(&scan_timer);
1641
1642        if (keypad.enabled) {
1643                misc_deregister(&keypad_dev);
1644                keypad_initialized = 0;
1645        }
1646
1647        if (lcd.enabled) {
1648                charlcd_unregister(lcd.charlcd);
1649                lcd.initialized = false;
1650                charlcd_free(lcd.charlcd);
1651                lcd.charlcd = NULL;
1652        }
1653
1654        /* TODO: free all input signals */
1655        parport_release(pprt);
1656        parport_unregister_device(pprt);
1657        pprt = NULL;
1658}
1659
1660static struct parport_driver panel_driver = {
1661        .name = "panel",
1662        .match_port = panel_attach,
1663        .detach = panel_detach,
1664        .devmodel = true,
1665};
1666
1667/* init function */
1668static int __init panel_init_module(void)
1669{
1670        int selected_keypad_type = NOT_SET, err;
1671
1672        /* take care of an eventual profile */
1673        switch (profile) {
1674        case PANEL_PROFILE_CUSTOM:
1675                /* custom profile */
1676                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1677                selected_lcd_type = DEFAULT_LCD_TYPE;
1678                break;
1679        case PANEL_PROFILE_OLD:
1680                /* 8 bits, 2*16, old keypad */
1681                selected_keypad_type = KEYPAD_TYPE_OLD;
1682                selected_lcd_type = LCD_TYPE_OLD;
1683
1684                /* TODO: This two are a little hacky, sort it out later */
1685                if (lcd_width == NOT_SET)
1686                        lcd_width = 16;
1687                if (lcd_hwidth == NOT_SET)
1688                        lcd_hwidth = 16;
1689                break;
1690        case PANEL_PROFILE_NEW:
1691                /* serial, 2*16, new keypad */
1692                selected_keypad_type = KEYPAD_TYPE_NEW;
1693                selected_lcd_type = LCD_TYPE_KS0074;
1694                break;
1695        case PANEL_PROFILE_HANTRONIX:
1696                /* 8 bits, 2*16 hantronix-like, no keypad */
1697                selected_keypad_type = KEYPAD_TYPE_NONE;
1698                selected_lcd_type = LCD_TYPE_HANTRONIX;
1699                break;
1700        case PANEL_PROFILE_NEXCOM:
1701                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1702                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1703                selected_lcd_type = LCD_TYPE_NEXCOM;
1704                break;
1705        case PANEL_PROFILE_LARGE:
1706                /* 8 bits, 2*40, old keypad */
1707                selected_keypad_type = KEYPAD_TYPE_OLD;
1708                selected_lcd_type = LCD_TYPE_OLD;
1709                break;
1710        }
1711
1712        /*
1713         * Overwrite selection with module param values (both keypad and lcd),
1714         * where the deprecated params have lower prio.
1715         */
1716        if (keypad_enabled != NOT_SET)
1717                selected_keypad_type = keypad_enabled;
1718        if (keypad_type != NOT_SET)
1719                selected_keypad_type = keypad_type;
1720
1721        keypad.enabled = (selected_keypad_type > 0);
1722
1723        if (lcd_enabled != NOT_SET)
1724                selected_lcd_type = lcd_enabled;
1725        if (lcd_type != NOT_SET)
1726                selected_lcd_type = lcd_type;
1727
1728        lcd.enabled = (selected_lcd_type > 0);
1729
1730        if (lcd.enabled) {
1731                /*
1732                 * Init lcd struct with load-time values to preserve exact
1733                 * current functionality (at least for now).
1734                 */
1735                lcd.charset = lcd_charset;
1736                lcd.proto = lcd_proto;
1737                lcd.pins.e = lcd_e_pin;
1738                lcd.pins.rs = lcd_rs_pin;
1739                lcd.pins.rw = lcd_rw_pin;
1740                lcd.pins.cl = lcd_cl_pin;
1741                lcd.pins.da = lcd_da_pin;
1742                lcd.pins.bl = lcd_bl_pin;
1743        }
1744
1745        switch (selected_keypad_type) {
1746        case KEYPAD_TYPE_OLD:
1747                keypad_profile = old_keypad_profile;
1748                break;
1749        case KEYPAD_TYPE_NEW:
1750                keypad_profile = new_keypad_profile;
1751                break;
1752        case KEYPAD_TYPE_NEXCOM:
1753                keypad_profile = nexcom_keypad_profile;
1754                break;
1755        default:
1756                keypad_profile = NULL;
1757                break;
1758        }
1759
1760        if (!lcd.enabled && !keypad.enabled) {
1761                /* no device enabled, let's exit */
1762                pr_err("panel driver disabled.\n");
1763                return -ENODEV;
1764        }
1765
1766        err = parport_register_driver(&panel_driver);
1767        if (err) {
1768                pr_err("could not register with parport. Aborting.\n");
1769                return err;
1770        }
1771
1772        if (pprt)
1773                pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1774                        parport, pprt->port->base);
1775        else
1776                pr_info("panel driver not yet registered\n");
1777        return 0;
1778}
1779
1780static void __exit panel_cleanup_module(void)
1781{
1782        parport_unregister_driver(&panel_driver);
1783}
1784
1785module_init(panel_init_module);
1786module_exit(panel_cleanup_module);
1787MODULE_AUTHOR("Willy Tarreau");
1788MODULE_LICENSE("GPL");
1789
1790/*
1791 * Local variables:
1792 *  c-indent-level: 4
1793 *  tab-width: 8
1794 * End:
1795 */
1796