linux/drivers/clocksource/arm_global_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/clocksource/arm_global_timer.c
   4 *
   5 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
   6 * Author: Stuart Menefy <stuart.menefy@st.com>
   7 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
   8 */
   9
  10#include <linux/init.h>
  11#include <linux/interrupt.h>
  12#include <linux/clocksource.h>
  13#include <linux/clockchips.h>
  14#include <linux/cpu.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/err.h>
  18#include <linux/io.h>
  19#include <linux/of.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_address.h>
  22#include <linux/sched_clock.h>
  23
  24#include <asm/cputype.h>
  25
  26#define GT_COUNTER0     0x00
  27#define GT_COUNTER1     0x04
  28
  29#define GT_CONTROL      0x08
  30#define GT_CONTROL_TIMER_ENABLE         BIT(0)  /* this bit is NOT banked */
  31#define GT_CONTROL_COMP_ENABLE          BIT(1)  /* banked */
  32#define GT_CONTROL_IRQ_ENABLE           BIT(2)  /* banked */
  33#define GT_CONTROL_AUTO_INC             BIT(3)  /* banked */
  34
  35#define GT_INT_STATUS   0x0c
  36#define GT_INT_STATUS_EVENT_FLAG        BIT(0)
  37
  38#define GT_COMP0        0x10
  39#define GT_COMP1        0x14
  40#define GT_AUTO_INC     0x18
  41
  42/*
  43 * We are expecting to be clocked by the ARM peripheral clock.
  44 *
  45 * Note: it is assumed we are using a prescaler value of zero, so this is
  46 * the units for all operations.
  47 */
  48static void __iomem *gt_base;
  49static unsigned long gt_clk_rate;
  50static int gt_ppi;
  51static struct clock_event_device __percpu *gt_evt;
  52
  53/*
  54 * To get the value from the Global Timer Counter register proceed as follows:
  55 * 1. Read the upper 32-bit timer counter register
  56 * 2. Read the lower 32-bit timer counter register
  57 * 3. Read the upper 32-bit timer counter register again. If the value is
  58 *  different to the 32-bit upper value read previously, go back to step 2.
  59 *  Otherwise the 64-bit timer counter value is correct.
  60 */
  61static u64 notrace _gt_counter_read(void)
  62{
  63        u64 counter;
  64        u32 lower;
  65        u32 upper, old_upper;
  66
  67        upper = readl_relaxed(gt_base + GT_COUNTER1);
  68        do {
  69                old_upper = upper;
  70                lower = readl_relaxed(gt_base + GT_COUNTER0);
  71                upper = readl_relaxed(gt_base + GT_COUNTER1);
  72        } while (upper != old_upper);
  73
  74        counter = upper;
  75        counter <<= 32;
  76        counter |= lower;
  77        return counter;
  78}
  79
  80static u64 gt_counter_read(void)
  81{
  82        return _gt_counter_read();
  83}
  84
  85/**
  86 * To ensure that updates to comparator value register do not set the
  87 * Interrupt Status Register proceed as follows:
  88 * 1. Clear the Comp Enable bit in the Timer Control Register.
  89 * 2. Write the lower 32-bit Comparator Value Register.
  90 * 3. Write the upper 32-bit Comparator Value Register.
  91 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
  92 */
  93static void gt_compare_set(unsigned long delta, int periodic)
  94{
  95        u64 counter = gt_counter_read();
  96        unsigned long ctrl;
  97
  98        counter += delta;
  99        ctrl = GT_CONTROL_TIMER_ENABLE;
 100        writel_relaxed(ctrl, gt_base + GT_CONTROL);
 101        writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
 102        writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
 103
 104        if (periodic) {
 105                writel_relaxed(delta, gt_base + GT_AUTO_INC);
 106                ctrl |= GT_CONTROL_AUTO_INC;
 107        }
 108
 109        ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
 110        writel_relaxed(ctrl, gt_base + GT_CONTROL);
 111}
 112
 113static int gt_clockevent_shutdown(struct clock_event_device *evt)
 114{
 115        unsigned long ctrl;
 116
 117        ctrl = readl(gt_base + GT_CONTROL);
 118        ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
 119                  GT_CONTROL_AUTO_INC);
 120        writel(ctrl, gt_base + GT_CONTROL);
 121        return 0;
 122}
 123
 124static int gt_clockevent_set_periodic(struct clock_event_device *evt)
 125{
 126        gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
 127        return 0;
 128}
 129
 130static int gt_clockevent_set_next_event(unsigned long evt,
 131                                        struct clock_event_device *unused)
 132{
 133        gt_compare_set(evt, 0);
 134        return 0;
 135}
 136
 137static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
 138{
 139        struct clock_event_device *evt = dev_id;
 140
 141        if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
 142                                GT_INT_STATUS_EVENT_FLAG))
 143                return IRQ_NONE;
 144
 145        /**
 146         * ERRATA 740657( Global Timer can send 2 interrupts for
 147         * the same event in single-shot mode)
 148         * Workaround:
 149         *      Either disable single-shot mode.
 150         *      Or
 151         *      Modify the Interrupt Handler to avoid the
 152         *      offending sequence. This is achieved by clearing
 153         *      the Global Timer flag _after_ having incremented
 154         *      the Comparator register value to a higher value.
 155         */
 156        if (clockevent_state_oneshot(evt))
 157                gt_compare_set(ULONG_MAX, 0);
 158
 159        writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
 160        evt->event_handler(evt);
 161
 162        return IRQ_HANDLED;
 163}
 164
 165static int gt_starting_cpu(unsigned int cpu)
 166{
 167        struct clock_event_device *clk = this_cpu_ptr(gt_evt);
 168
 169        clk->name = "arm_global_timer";
 170        clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
 171                CLOCK_EVT_FEAT_PERCPU;
 172        clk->set_state_shutdown = gt_clockevent_shutdown;
 173        clk->set_state_periodic = gt_clockevent_set_periodic;
 174        clk->set_state_oneshot = gt_clockevent_shutdown;
 175        clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
 176        clk->set_next_event = gt_clockevent_set_next_event;
 177        clk->cpumask = cpumask_of(cpu);
 178        clk->rating = 300;
 179        clk->irq = gt_ppi;
 180        clockevents_config_and_register(clk, gt_clk_rate,
 181                                        1, 0xffffffff);
 182        enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
 183        return 0;
 184}
 185
 186static int gt_dying_cpu(unsigned int cpu)
 187{
 188        struct clock_event_device *clk = this_cpu_ptr(gt_evt);
 189
 190        gt_clockevent_shutdown(clk);
 191        disable_percpu_irq(clk->irq);
 192        return 0;
 193}
 194
 195static u64 gt_clocksource_read(struct clocksource *cs)
 196{
 197        return gt_counter_read();
 198}
 199
 200static void gt_resume(struct clocksource *cs)
 201{
 202        unsigned long ctrl;
 203
 204        ctrl = readl(gt_base + GT_CONTROL);
 205        if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
 206                /* re-enable timer on resume */
 207                writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
 208}
 209
 210static struct clocksource gt_clocksource = {
 211        .name   = "arm_global_timer",
 212        .rating = 300,
 213        .read   = gt_clocksource_read,
 214        .mask   = CLOCKSOURCE_MASK(64),
 215        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 216        .resume = gt_resume,
 217};
 218
 219#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
 220static u64 notrace gt_sched_clock_read(void)
 221{
 222        return _gt_counter_read();
 223}
 224#endif
 225
 226static unsigned long gt_read_long(void)
 227{
 228        return readl_relaxed(gt_base + GT_COUNTER0);
 229}
 230
 231static struct delay_timer gt_delay_timer = {
 232        .read_current_timer = gt_read_long,
 233};
 234
 235static void __init gt_delay_timer_init(void)
 236{
 237        gt_delay_timer.freq = gt_clk_rate;
 238        register_current_timer_delay(&gt_delay_timer);
 239}
 240
 241static int __init gt_clocksource_init(void)
 242{
 243        writel(0, gt_base + GT_CONTROL);
 244        writel(0, gt_base + GT_COUNTER0);
 245        writel(0, gt_base + GT_COUNTER1);
 246        /* enables timer on all the cores */
 247        writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
 248
 249#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
 250        sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
 251#endif
 252        return clocksource_register_hz(&gt_clocksource, gt_clk_rate);
 253}
 254
 255static int __init global_timer_of_register(struct device_node *np)
 256{
 257        struct clk *gt_clk;
 258        int err = 0;
 259
 260        /*
 261         * In A9 r2p0 the comparators for each processor with the global timer
 262         * fire when the timer value is greater than or equal to. In previous
 263         * revisions the comparators fired when the timer value was equal to.
 264         */
 265        if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
 266            && (read_cpuid_id() & 0xf0000f) < 0x200000) {
 267                pr_warn("global-timer: non support for this cpu version.\n");
 268                return -ENOSYS;
 269        }
 270
 271        gt_ppi = irq_of_parse_and_map(np, 0);
 272        if (!gt_ppi) {
 273                pr_warn("global-timer: unable to parse irq\n");
 274                return -EINVAL;
 275        }
 276
 277        gt_base = of_iomap(np, 0);
 278        if (!gt_base) {
 279                pr_warn("global-timer: invalid base address\n");
 280                return -ENXIO;
 281        }
 282
 283        gt_clk = of_clk_get(np, 0);
 284        if (!IS_ERR(gt_clk)) {
 285                err = clk_prepare_enable(gt_clk);
 286                if (err)
 287                        goto out_unmap;
 288        } else {
 289                pr_warn("global-timer: clk not found\n");
 290                err = -EINVAL;
 291                goto out_unmap;
 292        }
 293
 294        gt_clk_rate = clk_get_rate(gt_clk);
 295        gt_evt = alloc_percpu(struct clock_event_device);
 296        if (!gt_evt) {
 297                pr_warn("global-timer: can't allocate memory\n");
 298                err = -ENOMEM;
 299                goto out_clk;
 300        }
 301
 302        err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
 303                                 "gt", gt_evt);
 304        if (err) {
 305                pr_warn("global-timer: can't register interrupt %d (%d)\n",
 306                        gt_ppi, err);
 307                goto out_free;
 308        }
 309
 310        /* Register and immediately configure the timer on the boot CPU */
 311        err = gt_clocksource_init();
 312        if (err)
 313                goto out_irq;
 314        
 315        err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
 316                                "clockevents/arm/global_timer:starting",
 317                                gt_starting_cpu, gt_dying_cpu);
 318        if (err)
 319                goto out_irq;
 320
 321        gt_delay_timer_init();
 322
 323        return 0;
 324
 325out_irq:
 326        free_percpu_irq(gt_ppi, gt_evt);
 327out_free:
 328        free_percpu(gt_evt);
 329out_clk:
 330        clk_disable_unprepare(gt_clk);
 331out_unmap:
 332        iounmap(gt_base);
 333        WARN(err, "ARM Global timer register failed (%d)\n", err);
 334
 335        return err;
 336}
 337
 338/* Only tested on r2p2 and r3p0  */
 339TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
 340                        global_timer_of_register);
 341