linux/drivers/cpufreq/intel_pstate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * intel_pstate.c: Native P state management for Intel processors
   4 *
   5 * (C) Copyright 2012 Intel Corporation
   6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/module.h>
  14#include <linux/ktime.h>
  15#include <linux/hrtimer.h>
  16#include <linux/tick.h>
  17#include <linux/slab.h>
  18#include <linux/sched/cpufreq.h>
  19#include <linux/list.h>
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/sysfs.h>
  23#include <linux/types.h>
  24#include <linux/fs.h>
  25#include <linux/acpi.h>
  26#include <linux/vmalloc.h>
  27#include <linux/pm_qos.h>
  28#include <trace/events/power.h>
  29
  30#include <asm/div64.h>
  31#include <asm/msr.h>
  32#include <asm/cpu_device_id.h>
  33#include <asm/cpufeature.h>
  34#include <asm/intel-family.h>
  35
  36#define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
  37
  38#define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
  39#define INTEL_CPUFREQ_TRANSITION_DELAY          500
  40
  41#ifdef CONFIG_ACPI
  42#include <acpi/processor.h>
  43#include <acpi/cppc_acpi.h>
  44#endif
  45
  46#define FRAC_BITS 8
  47#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  48#define fp_toint(X) ((X) >> FRAC_BITS)
  49
  50#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
  51
  52#define EXT_BITS 6
  53#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  54#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  55#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  56
  57static inline int32_t mul_fp(int32_t x, int32_t y)
  58{
  59        return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  60}
  61
  62static inline int32_t div_fp(s64 x, s64 y)
  63{
  64        return div64_s64((int64_t)x << FRAC_BITS, y);
  65}
  66
  67static inline int ceiling_fp(int32_t x)
  68{
  69        int mask, ret;
  70
  71        ret = fp_toint(x);
  72        mask = (1 << FRAC_BITS) - 1;
  73        if (x & mask)
  74                ret += 1;
  75        return ret;
  76}
  77
  78static inline int32_t percent_fp(int percent)
  79{
  80        return div_fp(percent, 100);
  81}
  82
  83static inline u64 mul_ext_fp(u64 x, u64 y)
  84{
  85        return (x * y) >> EXT_FRAC_BITS;
  86}
  87
  88static inline u64 div_ext_fp(u64 x, u64 y)
  89{
  90        return div64_u64(x << EXT_FRAC_BITS, y);
  91}
  92
  93static inline int32_t percent_ext_fp(int percent)
  94{
  95        return div_ext_fp(percent, 100);
  96}
  97
  98/**
  99 * struct sample -      Store performance sample
 100 * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
 101 *                      performance during last sample period
 102 * @busy_scaled:        Scaled busy value which is used to calculate next
 103 *                      P state. This can be different than core_avg_perf
 104 *                      to account for cpu idle period
 105 * @aperf:              Difference of actual performance frequency clock count
 106 *                      read from APERF MSR between last and current sample
 107 * @mperf:              Difference of maximum performance frequency clock count
 108 *                      read from MPERF MSR between last and current sample
 109 * @tsc:                Difference of time stamp counter between last and
 110 *                      current sample
 111 * @time:               Current time from scheduler
 112 *
 113 * This structure is used in the cpudata structure to store performance sample
 114 * data for choosing next P State.
 115 */
 116struct sample {
 117        int32_t core_avg_perf;
 118        int32_t busy_scaled;
 119        u64 aperf;
 120        u64 mperf;
 121        u64 tsc;
 122        u64 time;
 123};
 124
 125/**
 126 * struct pstate_data - Store P state data
 127 * @current_pstate:     Current requested P state
 128 * @min_pstate:         Min P state possible for this platform
 129 * @max_pstate:         Max P state possible for this platform
 130 * @max_pstate_physical:This is physical Max P state for a processor
 131 *                      This can be higher than the max_pstate which can
 132 *                      be limited by platform thermal design power limits
 133 * @scaling:            Scaling factor to  convert frequency to cpufreq
 134 *                      frequency units
 135 * @turbo_pstate:       Max Turbo P state possible for this platform
 136 * @max_freq:           @max_pstate frequency in cpufreq units
 137 * @turbo_freq:         @turbo_pstate frequency in cpufreq units
 138 *
 139 * Stores the per cpu model P state limits and current P state.
 140 */
 141struct pstate_data {
 142        int     current_pstate;
 143        int     min_pstate;
 144        int     max_pstate;
 145        int     max_pstate_physical;
 146        int     scaling;
 147        int     turbo_pstate;
 148        unsigned int max_freq;
 149        unsigned int turbo_freq;
 150};
 151
 152/**
 153 * struct vid_data -    Stores voltage information data
 154 * @min:                VID data for this platform corresponding to
 155 *                      the lowest P state
 156 * @max:                VID data corresponding to the highest P State.
 157 * @turbo:              VID data for turbo P state
 158 * @ratio:              Ratio of (vid max - vid min) /
 159 *                      (max P state - Min P State)
 160 *
 161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 162 * This data is used in Atom platforms, where in addition to target P state,
 163 * the voltage data needs to be specified to select next P State.
 164 */
 165struct vid_data {
 166        int min;
 167        int max;
 168        int turbo;
 169        int32_t ratio;
 170};
 171
 172/**
 173 * struct global_params - Global parameters, mostly tunable via sysfs.
 174 * @no_turbo:           Whether or not to use turbo P-states.
 175 * @turbo_disabled:     Whether or not turbo P-states are available at all,
 176 *                      based on the MSR_IA32_MISC_ENABLE value and whether or
 177 *                      not the maximum reported turbo P-state is different from
 178 *                      the maximum reported non-turbo one.
 179 * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
 180 * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
 181 *                      P-state capacity.
 182 * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
 183 *                      P-state capacity.
 184 */
 185struct global_params {
 186        bool no_turbo;
 187        bool turbo_disabled;
 188        bool turbo_disabled_mf;
 189        int max_perf_pct;
 190        int min_perf_pct;
 191};
 192
 193/**
 194 * struct cpudata -     Per CPU instance data storage
 195 * @cpu:                CPU number for this instance data
 196 * @policy:             CPUFreq policy value
 197 * @update_util:        CPUFreq utility callback information
 198 * @update_util_set:    CPUFreq utility callback is set
 199 * @iowait_boost:       iowait-related boost fraction
 200 * @last_update:        Time of the last update.
 201 * @pstate:             Stores P state limits for this CPU
 202 * @vid:                Stores VID limits for this CPU
 203 * @last_sample_time:   Last Sample time
 204 * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
 205 *                      This shift is a multiplier to mperf delta to
 206 *                      calculate CPU busy.
 207 * @prev_aperf:         Last APERF value read from APERF MSR
 208 * @prev_mperf:         Last MPERF value read from MPERF MSR
 209 * @prev_tsc:           Last timestamp counter (TSC) value
 210 * @prev_cummulative_iowait: IO Wait time difference from last and
 211 *                      current sample
 212 * @sample:             Storage for storing last Sample data
 213 * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
 214 * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
 215 * @acpi_perf_data:     Stores ACPI perf information read from _PSS
 216 * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
 217 * @epp_powersave:      Last saved HWP energy performance preference
 218 *                      (EPP) or energy performance bias (EPB),
 219 *                      when policy switched to performance
 220 * @epp_policy:         Last saved policy used to set EPP/EPB
 221 * @epp_default:        Power on default HWP energy performance
 222 *                      preference/bias
 223 * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
 224 *                      operation
 225 * @hwp_req_cached:     Cached value of the last HWP Request MSR
 226 * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
 227 * @last_io_update:     Last time when IO wake flag was set
 228 * @sched_flags:        Store scheduler flags for possible cross CPU update
 229 * @hwp_boost_min:      Last HWP boosted min performance
 230 *
 231 * This structure stores per CPU instance data for all CPUs.
 232 */
 233struct cpudata {
 234        int cpu;
 235
 236        unsigned int policy;
 237        struct update_util_data update_util;
 238        bool   update_util_set;
 239
 240        struct pstate_data pstate;
 241        struct vid_data vid;
 242
 243        u64     last_update;
 244        u64     last_sample_time;
 245        u64     aperf_mperf_shift;
 246        u64     prev_aperf;
 247        u64     prev_mperf;
 248        u64     prev_tsc;
 249        u64     prev_cummulative_iowait;
 250        struct sample sample;
 251        int32_t min_perf_ratio;
 252        int32_t max_perf_ratio;
 253#ifdef CONFIG_ACPI
 254        struct acpi_processor_performance acpi_perf_data;
 255        bool valid_pss_table;
 256#endif
 257        unsigned int iowait_boost;
 258        s16 epp_powersave;
 259        s16 epp_policy;
 260        s16 epp_default;
 261        s16 epp_saved;
 262        u64 hwp_req_cached;
 263        u64 hwp_cap_cached;
 264        u64 last_io_update;
 265        unsigned int sched_flags;
 266        u32 hwp_boost_min;
 267};
 268
 269static struct cpudata **all_cpu_data;
 270
 271/**
 272 * struct pstate_funcs - Per CPU model specific callbacks
 273 * @get_max:            Callback to get maximum non turbo effective P state
 274 * @get_max_physical:   Callback to get maximum non turbo physical P state
 275 * @get_min:            Callback to get minimum P state
 276 * @get_turbo:          Callback to get turbo P state
 277 * @get_scaling:        Callback to get frequency scaling factor
 278 * @get_val:            Callback to convert P state to actual MSR write value
 279 * @get_vid:            Callback to get VID data for Atom platforms
 280 *
 281 * Core and Atom CPU models have different way to get P State limits. This
 282 * structure is used to store those callbacks.
 283 */
 284struct pstate_funcs {
 285        int (*get_max)(void);
 286        int (*get_max_physical)(void);
 287        int (*get_min)(void);
 288        int (*get_turbo)(void);
 289        int (*get_scaling)(void);
 290        int (*get_aperf_mperf_shift)(void);
 291        u64 (*get_val)(struct cpudata*, int pstate);
 292        void (*get_vid)(struct cpudata *);
 293};
 294
 295static struct pstate_funcs pstate_funcs __read_mostly;
 296
 297static int hwp_active __read_mostly;
 298static int hwp_mode_bdw __read_mostly;
 299static bool per_cpu_limits __read_mostly;
 300static bool hwp_boost __read_mostly;
 301
 302static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 303
 304#ifdef CONFIG_ACPI
 305static bool acpi_ppc;
 306#endif
 307
 308static struct global_params global;
 309
 310static DEFINE_MUTEX(intel_pstate_driver_lock);
 311static DEFINE_MUTEX(intel_pstate_limits_lock);
 312
 313#ifdef CONFIG_ACPI
 314
 315static bool intel_pstate_acpi_pm_profile_server(void)
 316{
 317        if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 318            acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 319                return true;
 320
 321        return false;
 322}
 323
 324static bool intel_pstate_get_ppc_enable_status(void)
 325{
 326        if (intel_pstate_acpi_pm_profile_server())
 327                return true;
 328
 329        return acpi_ppc;
 330}
 331
 332#ifdef CONFIG_ACPI_CPPC_LIB
 333
 334/* The work item is needed to avoid CPU hotplug locking issues */
 335static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 336{
 337        sched_set_itmt_support();
 338}
 339
 340static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 341
 342static void intel_pstate_set_itmt_prio(int cpu)
 343{
 344        struct cppc_perf_caps cppc_perf;
 345        static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 346        int ret;
 347
 348        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 349        if (ret)
 350                return;
 351
 352        /*
 353         * The priorities can be set regardless of whether or not
 354         * sched_set_itmt_support(true) has been called and it is valid to
 355         * update them at any time after it has been called.
 356         */
 357        sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 358
 359        if (max_highest_perf <= min_highest_perf) {
 360                if (cppc_perf.highest_perf > max_highest_perf)
 361                        max_highest_perf = cppc_perf.highest_perf;
 362
 363                if (cppc_perf.highest_perf < min_highest_perf)
 364                        min_highest_perf = cppc_perf.highest_perf;
 365
 366                if (max_highest_perf > min_highest_perf) {
 367                        /*
 368                         * This code can be run during CPU online under the
 369                         * CPU hotplug locks, so sched_set_itmt_support()
 370                         * cannot be called from here.  Queue up a work item
 371                         * to invoke it.
 372                         */
 373                        schedule_work(&sched_itmt_work);
 374                }
 375        }
 376}
 377
 378static int intel_pstate_get_cppc_guranteed(int cpu)
 379{
 380        struct cppc_perf_caps cppc_perf;
 381        int ret;
 382
 383        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 384        if (ret)
 385                return ret;
 386
 387        if (cppc_perf.guaranteed_perf)
 388                return cppc_perf.guaranteed_perf;
 389
 390        return cppc_perf.nominal_perf;
 391}
 392
 393#else /* CONFIG_ACPI_CPPC_LIB */
 394static void intel_pstate_set_itmt_prio(int cpu)
 395{
 396}
 397#endif /* CONFIG_ACPI_CPPC_LIB */
 398
 399static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 400{
 401        struct cpudata *cpu;
 402        int ret;
 403        int i;
 404
 405        if (hwp_active) {
 406                intel_pstate_set_itmt_prio(policy->cpu);
 407                return;
 408        }
 409
 410        if (!intel_pstate_get_ppc_enable_status())
 411                return;
 412
 413        cpu = all_cpu_data[policy->cpu];
 414
 415        ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 416                                                  policy->cpu);
 417        if (ret)
 418                return;
 419
 420        /*
 421         * Check if the control value in _PSS is for PERF_CTL MSR, which should
 422         * guarantee that the states returned by it map to the states in our
 423         * list directly.
 424         */
 425        if (cpu->acpi_perf_data.control_register.space_id !=
 426                                                ACPI_ADR_SPACE_FIXED_HARDWARE)
 427                goto err;
 428
 429        /*
 430         * If there is only one entry _PSS, simply ignore _PSS and continue as
 431         * usual without taking _PSS into account
 432         */
 433        if (cpu->acpi_perf_data.state_count < 2)
 434                goto err;
 435
 436        pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 437        for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 438                pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 439                         (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 440                         (u32) cpu->acpi_perf_data.states[i].core_frequency,
 441                         (u32) cpu->acpi_perf_data.states[i].power,
 442                         (u32) cpu->acpi_perf_data.states[i].control);
 443        }
 444
 445        /*
 446         * The _PSS table doesn't contain whole turbo frequency range.
 447         * This just contains +1 MHZ above the max non turbo frequency,
 448         * with control value corresponding to max turbo ratio. But
 449         * when cpufreq set policy is called, it will call with this
 450         * max frequency, which will cause a reduced performance as
 451         * this driver uses real max turbo frequency as the max
 452         * frequency. So correct this frequency in _PSS table to
 453         * correct max turbo frequency based on the turbo state.
 454         * Also need to convert to MHz as _PSS freq is in MHz.
 455         */
 456        if (!global.turbo_disabled)
 457                cpu->acpi_perf_data.states[0].core_frequency =
 458                                        policy->cpuinfo.max_freq / 1000;
 459        cpu->valid_pss_table = true;
 460        pr_debug("_PPC limits will be enforced\n");
 461
 462        return;
 463
 464 err:
 465        cpu->valid_pss_table = false;
 466        acpi_processor_unregister_performance(policy->cpu);
 467}
 468
 469static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 470{
 471        struct cpudata *cpu;
 472
 473        cpu = all_cpu_data[policy->cpu];
 474        if (!cpu->valid_pss_table)
 475                return;
 476
 477        acpi_processor_unregister_performance(policy->cpu);
 478}
 479#else /* CONFIG_ACPI */
 480static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 481{
 482}
 483
 484static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 485{
 486}
 487
 488static inline bool intel_pstate_acpi_pm_profile_server(void)
 489{
 490        return false;
 491}
 492#endif /* CONFIG_ACPI */
 493
 494#ifndef CONFIG_ACPI_CPPC_LIB
 495static int intel_pstate_get_cppc_guranteed(int cpu)
 496{
 497        return -ENOTSUPP;
 498}
 499#endif /* CONFIG_ACPI_CPPC_LIB */
 500
 501static inline void update_turbo_state(void)
 502{
 503        u64 misc_en;
 504        struct cpudata *cpu;
 505
 506        cpu = all_cpu_data[0];
 507        rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 508        global.turbo_disabled =
 509                (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 510                 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 511}
 512
 513static int min_perf_pct_min(void)
 514{
 515        struct cpudata *cpu = all_cpu_data[0];
 516        int turbo_pstate = cpu->pstate.turbo_pstate;
 517
 518        return turbo_pstate ?
 519                (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 520}
 521
 522static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 523{
 524        u64 epb;
 525        int ret;
 526
 527        if (!boot_cpu_has(X86_FEATURE_EPB))
 528                return -ENXIO;
 529
 530        ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 531        if (ret)
 532                return (s16)ret;
 533
 534        return (s16)(epb & 0x0f);
 535}
 536
 537static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 538{
 539        s16 epp;
 540
 541        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 542                /*
 543                 * When hwp_req_data is 0, means that caller didn't read
 544                 * MSR_HWP_REQUEST, so need to read and get EPP.
 545                 */
 546                if (!hwp_req_data) {
 547                        epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 548                                            &hwp_req_data);
 549                        if (epp)
 550                                return epp;
 551                }
 552                epp = (hwp_req_data >> 24) & 0xff;
 553        } else {
 554                /* When there is no EPP present, HWP uses EPB settings */
 555                epp = intel_pstate_get_epb(cpu_data);
 556        }
 557
 558        return epp;
 559}
 560
 561static int intel_pstate_set_epb(int cpu, s16 pref)
 562{
 563        u64 epb;
 564        int ret;
 565
 566        if (!boot_cpu_has(X86_FEATURE_EPB))
 567                return -ENXIO;
 568
 569        ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 570        if (ret)
 571                return ret;
 572
 573        epb = (epb & ~0x0f) | pref;
 574        wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 575
 576        return 0;
 577}
 578
 579/*
 580 * EPP/EPB display strings corresponding to EPP index in the
 581 * energy_perf_strings[]
 582 *      index           String
 583 *-------------------------------------
 584 *      0               default
 585 *      1               performance
 586 *      2               balance_performance
 587 *      3               balance_power
 588 *      4               power
 589 */
 590static const char * const energy_perf_strings[] = {
 591        "default",
 592        "performance",
 593        "balance_performance",
 594        "balance_power",
 595        "power",
 596        NULL
 597};
 598static const unsigned int epp_values[] = {
 599        HWP_EPP_PERFORMANCE,
 600        HWP_EPP_BALANCE_PERFORMANCE,
 601        HWP_EPP_BALANCE_POWERSAVE,
 602        HWP_EPP_POWERSAVE
 603};
 604
 605static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 606{
 607        s16 epp;
 608        int index = -EINVAL;
 609
 610        epp = intel_pstate_get_epp(cpu_data, 0);
 611        if (epp < 0)
 612                return epp;
 613
 614        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 615                if (epp == HWP_EPP_PERFORMANCE)
 616                        return 1;
 617                if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
 618                        return 2;
 619                if (epp <= HWP_EPP_BALANCE_POWERSAVE)
 620                        return 3;
 621                else
 622                        return 4;
 623        } else if (boot_cpu_has(X86_FEATURE_EPB)) {
 624                /*
 625                 * Range:
 626                 *      0x00-0x03       :       Performance
 627                 *      0x04-0x07       :       Balance performance
 628                 *      0x08-0x0B       :       Balance power
 629                 *      0x0C-0x0F       :       Power
 630                 * The EPB is a 4 bit value, but our ranges restrict the
 631                 * value which can be set. Here only using top two bits
 632                 * effectively.
 633                 */
 634                index = (epp >> 2) + 1;
 635        }
 636
 637        return index;
 638}
 639
 640static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 641                                              int pref_index)
 642{
 643        int epp = -EINVAL;
 644        int ret;
 645
 646        if (!pref_index)
 647                epp = cpu_data->epp_default;
 648
 649        mutex_lock(&intel_pstate_limits_lock);
 650
 651        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 652                u64 value;
 653
 654                ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 655                if (ret)
 656                        goto return_pref;
 657
 658                value &= ~GENMASK_ULL(31, 24);
 659
 660                if (epp == -EINVAL)
 661                        epp = epp_values[pref_index - 1];
 662
 663                value |= (u64)epp << 24;
 664                ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 665        } else {
 666                if (epp == -EINVAL)
 667                        epp = (pref_index - 1) << 2;
 668                ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 669        }
 670return_pref:
 671        mutex_unlock(&intel_pstate_limits_lock);
 672
 673        return ret;
 674}
 675
 676static ssize_t show_energy_performance_available_preferences(
 677                                struct cpufreq_policy *policy, char *buf)
 678{
 679        int i = 0;
 680        int ret = 0;
 681
 682        while (energy_perf_strings[i] != NULL)
 683                ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 684
 685        ret += sprintf(&buf[ret], "\n");
 686
 687        return ret;
 688}
 689
 690cpufreq_freq_attr_ro(energy_performance_available_preferences);
 691
 692static ssize_t store_energy_performance_preference(
 693                struct cpufreq_policy *policy, const char *buf, size_t count)
 694{
 695        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 696        char str_preference[21];
 697        int ret;
 698
 699        ret = sscanf(buf, "%20s", str_preference);
 700        if (ret != 1)
 701                return -EINVAL;
 702
 703        ret = match_string(energy_perf_strings, -1, str_preference);
 704        if (ret < 0)
 705                return ret;
 706
 707        intel_pstate_set_energy_pref_index(cpu_data, ret);
 708        return count;
 709}
 710
 711static ssize_t show_energy_performance_preference(
 712                                struct cpufreq_policy *policy, char *buf)
 713{
 714        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 715        int preference;
 716
 717        preference = intel_pstate_get_energy_pref_index(cpu_data);
 718        if (preference < 0)
 719                return preference;
 720
 721        return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 722}
 723
 724cpufreq_freq_attr_rw(energy_performance_preference);
 725
 726static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
 727{
 728        struct cpudata *cpu;
 729        u64 cap;
 730        int ratio;
 731
 732        ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
 733        if (ratio <= 0) {
 734                rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
 735                ratio = HWP_GUARANTEED_PERF(cap);
 736        }
 737
 738        cpu = all_cpu_data[policy->cpu];
 739
 740        return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
 741}
 742
 743cpufreq_freq_attr_ro(base_frequency);
 744
 745static struct freq_attr *hwp_cpufreq_attrs[] = {
 746        &energy_performance_preference,
 747        &energy_performance_available_preferences,
 748        &base_frequency,
 749        NULL,
 750};
 751
 752static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 753                                     int *current_max)
 754{
 755        u64 cap;
 756
 757        rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 758        WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
 759        if (global.no_turbo)
 760                *current_max = HWP_GUARANTEED_PERF(cap);
 761        else
 762                *current_max = HWP_HIGHEST_PERF(cap);
 763
 764        *phy_max = HWP_HIGHEST_PERF(cap);
 765}
 766
 767static void intel_pstate_hwp_set(unsigned int cpu)
 768{
 769        struct cpudata *cpu_data = all_cpu_data[cpu];
 770        int max, min;
 771        u64 value;
 772        s16 epp;
 773
 774        max = cpu_data->max_perf_ratio;
 775        min = cpu_data->min_perf_ratio;
 776
 777        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 778                min = max;
 779
 780        rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 781
 782        value &= ~HWP_MIN_PERF(~0L);
 783        value |= HWP_MIN_PERF(min);
 784
 785        value &= ~HWP_MAX_PERF(~0L);
 786        value |= HWP_MAX_PERF(max);
 787
 788        if (cpu_data->epp_policy == cpu_data->policy)
 789                goto skip_epp;
 790
 791        cpu_data->epp_policy = cpu_data->policy;
 792
 793        if (cpu_data->epp_saved >= 0) {
 794                epp = cpu_data->epp_saved;
 795                cpu_data->epp_saved = -EINVAL;
 796                goto update_epp;
 797        }
 798
 799        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 800                epp = intel_pstate_get_epp(cpu_data, value);
 801                cpu_data->epp_powersave = epp;
 802                /* If EPP read was failed, then don't try to write */
 803                if (epp < 0)
 804                        goto skip_epp;
 805
 806                epp = 0;
 807        } else {
 808                /* skip setting EPP, when saved value is invalid */
 809                if (cpu_data->epp_powersave < 0)
 810                        goto skip_epp;
 811
 812                /*
 813                 * No need to restore EPP when it is not zero. This
 814                 * means:
 815                 *  - Policy is not changed
 816                 *  - user has manually changed
 817                 *  - Error reading EPB
 818                 */
 819                epp = intel_pstate_get_epp(cpu_data, value);
 820                if (epp)
 821                        goto skip_epp;
 822
 823                epp = cpu_data->epp_powersave;
 824        }
 825update_epp:
 826        if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
 827                value &= ~GENMASK_ULL(31, 24);
 828                value |= (u64)epp << 24;
 829        } else {
 830                intel_pstate_set_epb(cpu, epp);
 831        }
 832skip_epp:
 833        WRITE_ONCE(cpu_data->hwp_req_cached, value);
 834        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 835}
 836
 837static void intel_pstate_hwp_force_min_perf(int cpu)
 838{
 839        u64 value;
 840        int min_perf;
 841
 842        value = all_cpu_data[cpu]->hwp_req_cached;
 843        value &= ~GENMASK_ULL(31, 0);
 844        min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
 845
 846        /* Set hwp_max = hwp_min */
 847        value |= HWP_MAX_PERF(min_perf);
 848        value |= HWP_MIN_PERF(min_perf);
 849
 850        /* Set EPP to min */
 851        if (boot_cpu_has(X86_FEATURE_HWP_EPP))
 852                value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
 853
 854        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 855}
 856
 857static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 858{
 859        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 860
 861        if (!hwp_active)
 862                return 0;
 863
 864        cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 865
 866        return 0;
 867}
 868
 869static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 870
 871static int intel_pstate_resume(struct cpufreq_policy *policy)
 872{
 873        if (!hwp_active)
 874                return 0;
 875
 876        mutex_lock(&intel_pstate_limits_lock);
 877
 878        if (policy->cpu == 0)
 879                intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
 880
 881        all_cpu_data[policy->cpu]->epp_policy = 0;
 882        intel_pstate_hwp_set(policy->cpu);
 883
 884        mutex_unlock(&intel_pstate_limits_lock);
 885
 886        return 0;
 887}
 888
 889static void intel_pstate_update_policies(void)
 890{
 891        int cpu;
 892
 893        for_each_possible_cpu(cpu)
 894                cpufreq_update_policy(cpu);
 895}
 896
 897static void intel_pstate_update_max_freq(unsigned int cpu)
 898{
 899        struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
 900        struct cpudata *cpudata;
 901
 902        if (!policy)
 903                return;
 904
 905        cpudata = all_cpu_data[cpu];
 906        policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
 907                        cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
 908
 909        refresh_frequency_limits(policy);
 910
 911        cpufreq_cpu_release(policy);
 912}
 913
 914static void intel_pstate_update_limits(unsigned int cpu)
 915{
 916        mutex_lock(&intel_pstate_driver_lock);
 917
 918        update_turbo_state();
 919        /*
 920         * If turbo has been turned on or off globally, policy limits for
 921         * all CPUs need to be updated to reflect that.
 922         */
 923        if (global.turbo_disabled_mf != global.turbo_disabled) {
 924                global.turbo_disabled_mf = global.turbo_disabled;
 925                arch_set_max_freq_ratio(global.turbo_disabled);
 926                for_each_possible_cpu(cpu)
 927                        intel_pstate_update_max_freq(cpu);
 928        } else {
 929                cpufreq_update_policy(cpu);
 930        }
 931
 932        mutex_unlock(&intel_pstate_driver_lock);
 933}
 934
 935/************************** sysfs begin ************************/
 936#define show_one(file_name, object)                                     \
 937        static ssize_t show_##file_name                                 \
 938        (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
 939        {                                                               \
 940                return sprintf(buf, "%u\n", global.object);             \
 941        }
 942
 943static ssize_t intel_pstate_show_status(char *buf);
 944static int intel_pstate_update_status(const char *buf, size_t size);
 945
 946static ssize_t show_status(struct kobject *kobj,
 947                           struct kobj_attribute *attr, char *buf)
 948{
 949        ssize_t ret;
 950
 951        mutex_lock(&intel_pstate_driver_lock);
 952        ret = intel_pstate_show_status(buf);
 953        mutex_unlock(&intel_pstate_driver_lock);
 954
 955        return ret;
 956}
 957
 958static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
 959                            const char *buf, size_t count)
 960{
 961        char *p = memchr(buf, '\n', count);
 962        int ret;
 963
 964        mutex_lock(&intel_pstate_driver_lock);
 965        ret = intel_pstate_update_status(buf, p ? p - buf : count);
 966        mutex_unlock(&intel_pstate_driver_lock);
 967
 968        return ret < 0 ? ret : count;
 969}
 970
 971static ssize_t show_turbo_pct(struct kobject *kobj,
 972                                struct kobj_attribute *attr, char *buf)
 973{
 974        struct cpudata *cpu;
 975        int total, no_turbo, turbo_pct;
 976        uint32_t turbo_fp;
 977
 978        mutex_lock(&intel_pstate_driver_lock);
 979
 980        if (!intel_pstate_driver) {
 981                mutex_unlock(&intel_pstate_driver_lock);
 982                return -EAGAIN;
 983        }
 984
 985        cpu = all_cpu_data[0];
 986
 987        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 988        no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 989        turbo_fp = div_fp(no_turbo, total);
 990        turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 991
 992        mutex_unlock(&intel_pstate_driver_lock);
 993
 994        return sprintf(buf, "%u\n", turbo_pct);
 995}
 996
 997static ssize_t show_num_pstates(struct kobject *kobj,
 998                                struct kobj_attribute *attr, char *buf)
 999{
1000        struct cpudata *cpu;
1001        int total;
1002
1003        mutex_lock(&intel_pstate_driver_lock);
1004
1005        if (!intel_pstate_driver) {
1006                mutex_unlock(&intel_pstate_driver_lock);
1007                return -EAGAIN;
1008        }
1009
1010        cpu = all_cpu_data[0];
1011        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012
1013        mutex_unlock(&intel_pstate_driver_lock);
1014
1015        return sprintf(buf, "%u\n", total);
1016}
1017
1018static ssize_t show_no_turbo(struct kobject *kobj,
1019                             struct kobj_attribute *attr, char *buf)
1020{
1021        ssize_t ret;
1022
1023        mutex_lock(&intel_pstate_driver_lock);
1024
1025        if (!intel_pstate_driver) {
1026                mutex_unlock(&intel_pstate_driver_lock);
1027                return -EAGAIN;
1028        }
1029
1030        update_turbo_state();
1031        if (global.turbo_disabled)
1032                ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033        else
1034                ret = sprintf(buf, "%u\n", global.no_turbo);
1035
1036        mutex_unlock(&intel_pstate_driver_lock);
1037
1038        return ret;
1039}
1040
1041static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042                              const char *buf, size_t count)
1043{
1044        unsigned int input;
1045        int ret;
1046
1047        ret = sscanf(buf, "%u", &input);
1048        if (ret != 1)
1049                return -EINVAL;
1050
1051        mutex_lock(&intel_pstate_driver_lock);
1052
1053        if (!intel_pstate_driver) {
1054                mutex_unlock(&intel_pstate_driver_lock);
1055                return -EAGAIN;
1056        }
1057
1058        mutex_lock(&intel_pstate_limits_lock);
1059
1060        update_turbo_state();
1061        if (global.turbo_disabled) {
1062                pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1063                mutex_unlock(&intel_pstate_limits_lock);
1064                mutex_unlock(&intel_pstate_driver_lock);
1065                return -EPERM;
1066        }
1067
1068        global.no_turbo = clamp_t(int, input, 0, 1);
1069
1070        if (global.no_turbo) {
1071                struct cpudata *cpu = all_cpu_data[0];
1072                int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1073
1074                /* Squash the global minimum into the permitted range. */
1075                if (global.min_perf_pct > pct)
1076                        global.min_perf_pct = pct;
1077        }
1078
1079        mutex_unlock(&intel_pstate_limits_lock);
1080
1081        intel_pstate_update_policies();
1082
1083        mutex_unlock(&intel_pstate_driver_lock);
1084
1085        return count;
1086}
1087
1088static struct cpufreq_driver intel_pstate;
1089
1090static void update_qos_request(enum freq_qos_req_type type)
1091{
1092        int max_state, turbo_max, freq, i, perf_pct;
1093        struct freq_qos_request *req;
1094        struct cpufreq_policy *policy;
1095
1096        for_each_possible_cpu(i) {
1097                struct cpudata *cpu = all_cpu_data[i];
1098
1099                policy = cpufreq_cpu_get(i);
1100                if (!policy)
1101                        continue;
1102
1103                req = policy->driver_data;
1104                cpufreq_cpu_put(policy);
1105
1106                if (!req)
1107                        continue;
1108
1109                if (hwp_active)
1110                        intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1111                else
1112                        turbo_max = cpu->pstate.turbo_pstate;
1113
1114                if (type == FREQ_QOS_MIN) {
1115                        perf_pct = global.min_perf_pct;
1116                } else {
1117                        req++;
1118                        perf_pct = global.max_perf_pct;
1119                }
1120
1121                freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1122                freq *= cpu->pstate.scaling;
1123
1124                if (freq_qos_update_request(req, freq) < 0)
1125                        pr_warn("Failed to update freq constraint: CPU%d\n", i);
1126        }
1127}
1128
1129static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1130                                  const char *buf, size_t count)
1131{
1132        unsigned int input;
1133        int ret;
1134
1135        ret = sscanf(buf, "%u", &input);
1136        if (ret != 1)
1137                return -EINVAL;
1138
1139        mutex_lock(&intel_pstate_driver_lock);
1140
1141        if (!intel_pstate_driver) {
1142                mutex_unlock(&intel_pstate_driver_lock);
1143                return -EAGAIN;
1144        }
1145
1146        mutex_lock(&intel_pstate_limits_lock);
1147
1148        global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1149
1150        mutex_unlock(&intel_pstate_limits_lock);
1151
1152        if (intel_pstate_driver == &intel_pstate)
1153                intel_pstate_update_policies();
1154        else
1155                update_qos_request(FREQ_QOS_MAX);
1156
1157        mutex_unlock(&intel_pstate_driver_lock);
1158
1159        return count;
1160}
1161
1162static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1163                                  const char *buf, size_t count)
1164{
1165        unsigned int input;
1166        int ret;
1167
1168        ret = sscanf(buf, "%u", &input);
1169        if (ret != 1)
1170                return -EINVAL;
1171
1172        mutex_lock(&intel_pstate_driver_lock);
1173
1174        if (!intel_pstate_driver) {
1175                mutex_unlock(&intel_pstate_driver_lock);
1176                return -EAGAIN;
1177        }
1178
1179        mutex_lock(&intel_pstate_limits_lock);
1180
1181        global.min_perf_pct = clamp_t(int, input,
1182                                      min_perf_pct_min(), global.max_perf_pct);
1183
1184        mutex_unlock(&intel_pstate_limits_lock);
1185
1186        if (intel_pstate_driver == &intel_pstate)
1187                intel_pstate_update_policies();
1188        else
1189                update_qos_request(FREQ_QOS_MIN);
1190
1191        mutex_unlock(&intel_pstate_driver_lock);
1192
1193        return count;
1194}
1195
1196static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1197                                struct kobj_attribute *attr, char *buf)
1198{
1199        return sprintf(buf, "%u\n", hwp_boost);
1200}
1201
1202static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1203                                       struct kobj_attribute *b,
1204                                       const char *buf, size_t count)
1205{
1206        unsigned int input;
1207        int ret;
1208
1209        ret = kstrtouint(buf, 10, &input);
1210        if (ret)
1211                return ret;
1212
1213        mutex_lock(&intel_pstate_driver_lock);
1214        hwp_boost = !!input;
1215        intel_pstate_update_policies();
1216        mutex_unlock(&intel_pstate_driver_lock);
1217
1218        return count;
1219}
1220
1221show_one(max_perf_pct, max_perf_pct);
1222show_one(min_perf_pct, min_perf_pct);
1223
1224define_one_global_rw(status);
1225define_one_global_rw(no_turbo);
1226define_one_global_rw(max_perf_pct);
1227define_one_global_rw(min_perf_pct);
1228define_one_global_ro(turbo_pct);
1229define_one_global_ro(num_pstates);
1230define_one_global_rw(hwp_dynamic_boost);
1231
1232static struct attribute *intel_pstate_attributes[] = {
1233        &status.attr,
1234        &no_turbo.attr,
1235        &turbo_pct.attr,
1236        &num_pstates.attr,
1237        NULL
1238};
1239
1240static const struct attribute_group intel_pstate_attr_group = {
1241        .attrs = intel_pstate_attributes,
1242};
1243
1244static void __init intel_pstate_sysfs_expose_params(void)
1245{
1246        struct kobject *intel_pstate_kobject;
1247        int rc;
1248
1249        intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1250                                                &cpu_subsys.dev_root->kobj);
1251        if (WARN_ON(!intel_pstate_kobject))
1252                return;
1253
1254        rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1255        if (WARN_ON(rc))
1256                return;
1257
1258        /*
1259         * If per cpu limits are enforced there are no global limits, so
1260         * return without creating max/min_perf_pct attributes
1261         */
1262        if (per_cpu_limits)
1263                return;
1264
1265        rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1266        WARN_ON(rc);
1267
1268        rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1269        WARN_ON(rc);
1270
1271        if (hwp_active) {
1272                rc = sysfs_create_file(intel_pstate_kobject,
1273                                       &hwp_dynamic_boost.attr);
1274                WARN_ON(rc);
1275        }
1276}
1277/************************** sysfs end ************************/
1278
1279static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1280{
1281        /* First disable HWP notification interrupt as we don't process them */
1282        if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1283                wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1284
1285        wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1286        cpudata->epp_policy = 0;
1287        if (cpudata->epp_default == -EINVAL)
1288                cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1289}
1290
1291#define MSR_IA32_POWER_CTL_BIT_EE       19
1292
1293/* Disable energy efficiency optimization */
1294static void intel_pstate_disable_ee(int cpu)
1295{
1296        u64 power_ctl;
1297        int ret;
1298
1299        ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1300        if (ret)
1301                return;
1302
1303        if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1304                pr_info("Disabling energy efficiency optimization\n");
1305                power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1306                wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1307        }
1308}
1309
1310static int atom_get_min_pstate(void)
1311{
1312        u64 value;
1313
1314        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1315        return (value >> 8) & 0x7F;
1316}
1317
1318static int atom_get_max_pstate(void)
1319{
1320        u64 value;
1321
1322        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1323        return (value >> 16) & 0x7F;
1324}
1325
1326static int atom_get_turbo_pstate(void)
1327{
1328        u64 value;
1329
1330        rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1331        return value & 0x7F;
1332}
1333
1334static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1335{
1336        u64 val;
1337        int32_t vid_fp;
1338        u32 vid;
1339
1340        val = (u64)pstate << 8;
1341        if (global.no_turbo && !global.turbo_disabled)
1342                val |= (u64)1 << 32;
1343
1344        vid_fp = cpudata->vid.min + mul_fp(
1345                int_tofp(pstate - cpudata->pstate.min_pstate),
1346                cpudata->vid.ratio);
1347
1348        vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1349        vid = ceiling_fp(vid_fp);
1350
1351        if (pstate > cpudata->pstate.max_pstate)
1352                vid = cpudata->vid.turbo;
1353
1354        return val | vid;
1355}
1356
1357static int silvermont_get_scaling(void)
1358{
1359        u64 value;
1360        int i;
1361        /* Defined in Table 35-6 from SDM (Sept 2015) */
1362        static int silvermont_freq_table[] = {
1363                83300, 100000, 133300, 116700, 80000};
1364
1365        rdmsrl(MSR_FSB_FREQ, value);
1366        i = value & 0x7;
1367        WARN_ON(i > 4);
1368
1369        return silvermont_freq_table[i];
1370}
1371
1372static int airmont_get_scaling(void)
1373{
1374        u64 value;
1375        int i;
1376        /* Defined in Table 35-10 from SDM (Sept 2015) */
1377        static int airmont_freq_table[] = {
1378                83300, 100000, 133300, 116700, 80000,
1379                93300, 90000, 88900, 87500};
1380
1381        rdmsrl(MSR_FSB_FREQ, value);
1382        i = value & 0xF;
1383        WARN_ON(i > 8);
1384
1385        return airmont_freq_table[i];
1386}
1387
1388static void atom_get_vid(struct cpudata *cpudata)
1389{
1390        u64 value;
1391
1392        rdmsrl(MSR_ATOM_CORE_VIDS, value);
1393        cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1394        cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1395        cpudata->vid.ratio = div_fp(
1396                cpudata->vid.max - cpudata->vid.min,
1397                int_tofp(cpudata->pstate.max_pstate -
1398                        cpudata->pstate.min_pstate));
1399
1400        rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1401        cpudata->vid.turbo = value & 0x7f;
1402}
1403
1404static int core_get_min_pstate(void)
1405{
1406        u64 value;
1407
1408        rdmsrl(MSR_PLATFORM_INFO, value);
1409        return (value >> 40) & 0xFF;
1410}
1411
1412static int core_get_max_pstate_physical(void)
1413{
1414        u64 value;
1415
1416        rdmsrl(MSR_PLATFORM_INFO, value);
1417        return (value >> 8) & 0xFF;
1418}
1419
1420static int core_get_tdp_ratio(u64 plat_info)
1421{
1422        /* Check how many TDP levels present */
1423        if (plat_info & 0x600000000) {
1424                u64 tdp_ctrl;
1425                u64 tdp_ratio;
1426                int tdp_msr;
1427                int err;
1428
1429                /* Get the TDP level (0, 1, 2) to get ratios */
1430                err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1431                if (err)
1432                        return err;
1433
1434                /* TDP MSR are continuous starting at 0x648 */
1435                tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1436                err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1437                if (err)
1438                        return err;
1439
1440                /* For level 1 and 2, bits[23:16] contain the ratio */
1441                if (tdp_ctrl & 0x03)
1442                        tdp_ratio >>= 16;
1443
1444                tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1445                pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1446
1447                return (int)tdp_ratio;
1448        }
1449
1450        return -ENXIO;
1451}
1452
1453static int core_get_max_pstate(void)
1454{
1455        u64 tar;
1456        u64 plat_info;
1457        int max_pstate;
1458        int tdp_ratio;
1459        int err;
1460
1461        rdmsrl(MSR_PLATFORM_INFO, plat_info);
1462        max_pstate = (plat_info >> 8) & 0xFF;
1463
1464        tdp_ratio = core_get_tdp_ratio(plat_info);
1465        if (tdp_ratio <= 0)
1466                return max_pstate;
1467
1468        if (hwp_active) {
1469                /* Turbo activation ratio is not used on HWP platforms */
1470                return tdp_ratio;
1471        }
1472
1473        err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1474        if (!err) {
1475                int tar_levels;
1476
1477                /* Do some sanity checking for safety */
1478                tar_levels = tar & 0xff;
1479                if (tdp_ratio - 1 == tar_levels) {
1480                        max_pstate = tar_levels;
1481                        pr_debug("max_pstate=TAC %x\n", max_pstate);
1482                }
1483        }
1484
1485        return max_pstate;
1486}
1487
1488static int core_get_turbo_pstate(void)
1489{
1490        u64 value;
1491        int nont, ret;
1492
1493        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1494        nont = core_get_max_pstate();
1495        ret = (value) & 255;
1496        if (ret <= nont)
1497                ret = nont;
1498        return ret;
1499}
1500
1501static inline int core_get_scaling(void)
1502{
1503        return 100000;
1504}
1505
1506static u64 core_get_val(struct cpudata *cpudata, int pstate)
1507{
1508        u64 val;
1509
1510        val = (u64)pstate << 8;
1511        if (global.no_turbo && !global.turbo_disabled)
1512                val |= (u64)1 << 32;
1513
1514        return val;
1515}
1516
1517static int knl_get_aperf_mperf_shift(void)
1518{
1519        return 10;
1520}
1521
1522static int knl_get_turbo_pstate(void)
1523{
1524        u64 value;
1525        int nont, ret;
1526
1527        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1528        nont = core_get_max_pstate();
1529        ret = (((value) >> 8) & 0xFF);
1530        if (ret <= nont)
1531                ret = nont;
1532        return ret;
1533}
1534
1535static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1536{
1537        trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1538        cpu->pstate.current_pstate = pstate;
1539        /*
1540         * Generally, there is no guarantee that this code will always run on
1541         * the CPU being updated, so force the register update to run on the
1542         * right CPU.
1543         */
1544        wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1545                      pstate_funcs.get_val(cpu, pstate));
1546}
1547
1548static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1549{
1550        intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1551}
1552
1553static void intel_pstate_max_within_limits(struct cpudata *cpu)
1554{
1555        int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1556
1557        update_turbo_state();
1558        intel_pstate_set_pstate(cpu, pstate);
1559}
1560
1561static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1562{
1563        cpu->pstate.min_pstate = pstate_funcs.get_min();
1564        cpu->pstate.max_pstate = pstate_funcs.get_max();
1565        cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1566        cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1567        cpu->pstate.scaling = pstate_funcs.get_scaling();
1568        cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1569
1570        if (hwp_active && !hwp_mode_bdw) {
1571                unsigned int phy_max, current_max;
1572
1573                intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1574                cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1575        } else {
1576                cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1577        }
1578
1579        if (pstate_funcs.get_aperf_mperf_shift)
1580                cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1581
1582        if (pstate_funcs.get_vid)
1583                pstate_funcs.get_vid(cpu);
1584
1585        intel_pstate_set_min_pstate(cpu);
1586}
1587
1588/*
1589 * Long hold time will keep high perf limits for long time,
1590 * which negatively impacts perf/watt for some workloads,
1591 * like specpower. 3ms is based on experiements on some
1592 * workoads.
1593 */
1594static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1595
1596static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1597{
1598        u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1599        u32 max_limit = (hwp_req & 0xff00) >> 8;
1600        u32 min_limit = (hwp_req & 0xff);
1601        u32 boost_level1;
1602
1603        /*
1604         * Cases to consider (User changes via sysfs or boot time):
1605         * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1606         *      No boost, return.
1607         * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1608         *     Should result in one level boost only for P0.
1609         * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1610         *     Should result in two level boost:
1611         *         (min + p1)/2 and P1.
1612         * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1613         *     Should result in three level boost:
1614         *        (min + p1)/2, P1 and P0.
1615         */
1616
1617        /* If max and min are equal or already at max, nothing to boost */
1618        if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1619                return;
1620
1621        if (!cpu->hwp_boost_min)
1622                cpu->hwp_boost_min = min_limit;
1623
1624        /* level at half way mark between min and guranteed */
1625        boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1626
1627        if (cpu->hwp_boost_min < boost_level1)
1628                cpu->hwp_boost_min = boost_level1;
1629        else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1630                cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1631        else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1632                 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1633                cpu->hwp_boost_min = max_limit;
1634        else
1635                return;
1636
1637        hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1638        wrmsrl(MSR_HWP_REQUEST, hwp_req);
1639        cpu->last_update = cpu->sample.time;
1640}
1641
1642static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1643{
1644        if (cpu->hwp_boost_min) {
1645                bool expired;
1646
1647                /* Check if we are idle for hold time to boost down */
1648                expired = time_after64(cpu->sample.time, cpu->last_update +
1649                                       hwp_boost_hold_time_ns);
1650                if (expired) {
1651                        wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1652                        cpu->hwp_boost_min = 0;
1653                }
1654        }
1655        cpu->last_update = cpu->sample.time;
1656}
1657
1658static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1659                                                      u64 time)
1660{
1661        cpu->sample.time = time;
1662
1663        if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1664                bool do_io = false;
1665
1666                cpu->sched_flags = 0;
1667                /*
1668                 * Set iowait_boost flag and update time. Since IO WAIT flag
1669                 * is set all the time, we can't just conclude that there is
1670                 * some IO bound activity is scheduled on this CPU with just
1671                 * one occurrence. If we receive at least two in two
1672                 * consecutive ticks, then we treat as boost candidate.
1673                 */
1674                if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1675                        do_io = true;
1676
1677                cpu->last_io_update = time;
1678
1679                if (do_io)
1680                        intel_pstate_hwp_boost_up(cpu);
1681
1682        } else {
1683                intel_pstate_hwp_boost_down(cpu);
1684        }
1685}
1686
1687static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1688                                                u64 time, unsigned int flags)
1689{
1690        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1691
1692        cpu->sched_flags |= flags;
1693
1694        if (smp_processor_id() == cpu->cpu)
1695                intel_pstate_update_util_hwp_local(cpu, time);
1696}
1697
1698static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1699{
1700        struct sample *sample = &cpu->sample;
1701
1702        sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1703}
1704
1705static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1706{
1707        u64 aperf, mperf;
1708        unsigned long flags;
1709        u64 tsc;
1710
1711        local_irq_save(flags);
1712        rdmsrl(MSR_IA32_APERF, aperf);
1713        rdmsrl(MSR_IA32_MPERF, mperf);
1714        tsc = rdtsc();
1715        if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1716                local_irq_restore(flags);
1717                return false;
1718        }
1719        local_irq_restore(flags);
1720
1721        cpu->last_sample_time = cpu->sample.time;
1722        cpu->sample.time = time;
1723        cpu->sample.aperf = aperf;
1724        cpu->sample.mperf = mperf;
1725        cpu->sample.tsc =  tsc;
1726        cpu->sample.aperf -= cpu->prev_aperf;
1727        cpu->sample.mperf -= cpu->prev_mperf;
1728        cpu->sample.tsc -= cpu->prev_tsc;
1729
1730        cpu->prev_aperf = aperf;
1731        cpu->prev_mperf = mperf;
1732        cpu->prev_tsc = tsc;
1733        /*
1734         * First time this function is invoked in a given cycle, all of the
1735         * previous sample data fields are equal to zero or stale and they must
1736         * be populated with meaningful numbers for things to work, so assume
1737         * that sample.time will always be reset before setting the utilization
1738         * update hook and make the caller skip the sample then.
1739         */
1740        if (cpu->last_sample_time) {
1741                intel_pstate_calc_avg_perf(cpu);
1742                return true;
1743        }
1744        return false;
1745}
1746
1747static inline int32_t get_avg_frequency(struct cpudata *cpu)
1748{
1749        return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1750}
1751
1752static inline int32_t get_avg_pstate(struct cpudata *cpu)
1753{
1754        return mul_ext_fp(cpu->pstate.max_pstate_physical,
1755                          cpu->sample.core_avg_perf);
1756}
1757
1758static inline int32_t get_target_pstate(struct cpudata *cpu)
1759{
1760        struct sample *sample = &cpu->sample;
1761        int32_t busy_frac;
1762        int target, avg_pstate;
1763
1764        busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1765                           sample->tsc);
1766
1767        if (busy_frac < cpu->iowait_boost)
1768                busy_frac = cpu->iowait_boost;
1769
1770        sample->busy_scaled = busy_frac * 100;
1771
1772        target = global.no_turbo || global.turbo_disabled ?
1773                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1774        target += target >> 2;
1775        target = mul_fp(target, busy_frac);
1776        if (target < cpu->pstate.min_pstate)
1777                target = cpu->pstate.min_pstate;
1778
1779        /*
1780         * If the average P-state during the previous cycle was higher than the
1781         * current target, add 50% of the difference to the target to reduce
1782         * possible performance oscillations and offset possible performance
1783         * loss related to moving the workload from one CPU to another within
1784         * a package/module.
1785         */
1786        avg_pstate = get_avg_pstate(cpu);
1787        if (avg_pstate > target)
1788                target += (avg_pstate - target) >> 1;
1789
1790        return target;
1791}
1792
1793static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1794{
1795        int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1796        int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1797
1798        return clamp_t(int, pstate, min_pstate, max_pstate);
1799}
1800
1801static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1802{
1803        if (pstate == cpu->pstate.current_pstate)
1804                return;
1805
1806        cpu->pstate.current_pstate = pstate;
1807        wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1808}
1809
1810static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1811{
1812        int from = cpu->pstate.current_pstate;
1813        struct sample *sample;
1814        int target_pstate;
1815
1816        update_turbo_state();
1817
1818        target_pstate = get_target_pstate(cpu);
1819        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1820        trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1821        intel_pstate_update_pstate(cpu, target_pstate);
1822
1823        sample = &cpu->sample;
1824        trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1825                fp_toint(sample->busy_scaled),
1826                from,
1827                cpu->pstate.current_pstate,
1828                sample->mperf,
1829                sample->aperf,
1830                sample->tsc,
1831                get_avg_frequency(cpu),
1832                fp_toint(cpu->iowait_boost * 100));
1833}
1834
1835static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1836                                     unsigned int flags)
1837{
1838        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1839        u64 delta_ns;
1840
1841        /* Don't allow remote callbacks */
1842        if (smp_processor_id() != cpu->cpu)
1843                return;
1844
1845        delta_ns = time - cpu->last_update;
1846        if (flags & SCHED_CPUFREQ_IOWAIT) {
1847                /* Start over if the CPU may have been idle. */
1848                if (delta_ns > TICK_NSEC) {
1849                        cpu->iowait_boost = ONE_EIGHTH_FP;
1850                } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1851                        cpu->iowait_boost <<= 1;
1852                        if (cpu->iowait_boost > int_tofp(1))
1853                                cpu->iowait_boost = int_tofp(1);
1854                } else {
1855                        cpu->iowait_boost = ONE_EIGHTH_FP;
1856                }
1857        } else if (cpu->iowait_boost) {
1858                /* Clear iowait_boost if the CPU may have been idle. */
1859                if (delta_ns > TICK_NSEC)
1860                        cpu->iowait_boost = 0;
1861                else
1862                        cpu->iowait_boost >>= 1;
1863        }
1864        cpu->last_update = time;
1865        delta_ns = time - cpu->sample.time;
1866        if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1867                return;
1868
1869        if (intel_pstate_sample(cpu, time))
1870                intel_pstate_adjust_pstate(cpu);
1871}
1872
1873static struct pstate_funcs core_funcs = {
1874        .get_max = core_get_max_pstate,
1875        .get_max_physical = core_get_max_pstate_physical,
1876        .get_min = core_get_min_pstate,
1877        .get_turbo = core_get_turbo_pstate,
1878        .get_scaling = core_get_scaling,
1879        .get_val = core_get_val,
1880};
1881
1882static const struct pstate_funcs silvermont_funcs = {
1883        .get_max = atom_get_max_pstate,
1884        .get_max_physical = atom_get_max_pstate,
1885        .get_min = atom_get_min_pstate,
1886        .get_turbo = atom_get_turbo_pstate,
1887        .get_val = atom_get_val,
1888        .get_scaling = silvermont_get_scaling,
1889        .get_vid = atom_get_vid,
1890};
1891
1892static const struct pstate_funcs airmont_funcs = {
1893        .get_max = atom_get_max_pstate,
1894        .get_max_physical = atom_get_max_pstate,
1895        .get_min = atom_get_min_pstate,
1896        .get_turbo = atom_get_turbo_pstate,
1897        .get_val = atom_get_val,
1898        .get_scaling = airmont_get_scaling,
1899        .get_vid = atom_get_vid,
1900};
1901
1902static const struct pstate_funcs knl_funcs = {
1903        .get_max = core_get_max_pstate,
1904        .get_max_physical = core_get_max_pstate_physical,
1905        .get_min = core_get_min_pstate,
1906        .get_turbo = knl_get_turbo_pstate,
1907        .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1908        .get_scaling = core_get_scaling,
1909        .get_val = core_get_val,
1910};
1911
1912#define X86_MATCH(model, policy)                                         \
1913        X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
1914                                           X86_FEATURE_APERFMPERF, &policy)
1915
1916static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1917        X86_MATCH(SANDYBRIDGE,          core_funcs),
1918        X86_MATCH(SANDYBRIDGE_X,        core_funcs),
1919        X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
1920        X86_MATCH(IVYBRIDGE,            core_funcs),
1921        X86_MATCH(HASWELL,              core_funcs),
1922        X86_MATCH(BROADWELL,            core_funcs),
1923        X86_MATCH(IVYBRIDGE_X,          core_funcs),
1924        X86_MATCH(HASWELL_X,            core_funcs),
1925        X86_MATCH(HASWELL_L,            core_funcs),
1926        X86_MATCH(HASWELL_G,            core_funcs),
1927        X86_MATCH(BROADWELL_G,          core_funcs),
1928        X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
1929        X86_MATCH(SKYLAKE_L,            core_funcs),
1930        X86_MATCH(BROADWELL_X,          core_funcs),
1931        X86_MATCH(SKYLAKE,              core_funcs),
1932        X86_MATCH(BROADWELL_D,          core_funcs),
1933        X86_MATCH(XEON_PHI_KNL,         knl_funcs),
1934        X86_MATCH(XEON_PHI_KNM,         knl_funcs),
1935        X86_MATCH(ATOM_GOLDMONT,        core_funcs),
1936        X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
1937        X86_MATCH(SKYLAKE_X,            core_funcs),
1938        {}
1939};
1940MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1941
1942static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1943        X86_MATCH(BROADWELL_D,          core_funcs),
1944        X86_MATCH(BROADWELL_X,          core_funcs),
1945        X86_MATCH(SKYLAKE_X,            core_funcs),
1946        {}
1947};
1948
1949static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1950        X86_MATCH(KABYLAKE,             core_funcs),
1951        {}
1952};
1953
1954static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1955        X86_MATCH(SKYLAKE_X,            core_funcs),
1956        X86_MATCH(SKYLAKE,              core_funcs),
1957        {}
1958};
1959
1960static int intel_pstate_init_cpu(unsigned int cpunum)
1961{
1962        struct cpudata *cpu;
1963
1964        cpu = all_cpu_data[cpunum];
1965
1966        if (!cpu) {
1967                cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1968                if (!cpu)
1969                        return -ENOMEM;
1970
1971                all_cpu_data[cpunum] = cpu;
1972
1973                cpu->epp_default = -EINVAL;
1974                cpu->epp_powersave = -EINVAL;
1975                cpu->epp_saved = -EINVAL;
1976        }
1977
1978        cpu = all_cpu_data[cpunum];
1979
1980        cpu->cpu = cpunum;
1981
1982        if (hwp_active) {
1983                const struct x86_cpu_id *id;
1984
1985                id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1986                if (id)
1987                        intel_pstate_disable_ee(cpunum);
1988
1989                intel_pstate_hwp_enable(cpu);
1990
1991                id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1992                if (id && intel_pstate_acpi_pm_profile_server())
1993                        hwp_boost = true;
1994        }
1995
1996        intel_pstate_get_cpu_pstates(cpu);
1997
1998        pr_debug("controlling: cpu %d\n", cpunum);
1999
2000        return 0;
2001}
2002
2003static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2004{
2005        struct cpudata *cpu = all_cpu_data[cpu_num];
2006
2007        if (hwp_active && !hwp_boost)
2008                return;
2009
2010        if (cpu->update_util_set)
2011                return;
2012
2013        /* Prevent intel_pstate_update_util() from using stale data. */
2014        cpu->sample.time = 0;
2015        cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2016                                     (hwp_active ?
2017                                      intel_pstate_update_util_hwp :
2018                                      intel_pstate_update_util));
2019        cpu->update_util_set = true;
2020}
2021
2022static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2023{
2024        struct cpudata *cpu_data = all_cpu_data[cpu];
2025
2026        if (!cpu_data->update_util_set)
2027                return;
2028
2029        cpufreq_remove_update_util_hook(cpu);
2030        cpu_data->update_util_set = false;
2031        synchronize_rcu();
2032}
2033
2034static int intel_pstate_get_max_freq(struct cpudata *cpu)
2035{
2036        return global.turbo_disabled || global.no_turbo ?
2037                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2038}
2039
2040static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2041                                            unsigned int policy_min,
2042                                            unsigned int policy_max)
2043{
2044        int max_freq = intel_pstate_get_max_freq(cpu);
2045        int32_t max_policy_perf, min_policy_perf;
2046        int max_state, turbo_max;
2047
2048        /*
2049         * HWP needs some special consideration, because on BDX the
2050         * HWP_REQUEST uses abstract value to represent performance
2051         * rather than pure ratios.
2052         */
2053        if (hwp_active) {
2054                intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2055        } else {
2056                max_state = global.no_turbo || global.turbo_disabled ?
2057                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2058                turbo_max = cpu->pstate.turbo_pstate;
2059        }
2060
2061        max_policy_perf = max_state * policy_max / max_freq;
2062        if (policy_max == policy_min) {
2063                min_policy_perf = max_policy_perf;
2064        } else {
2065                min_policy_perf = max_state * policy_min / max_freq;
2066                min_policy_perf = clamp_t(int32_t, min_policy_perf,
2067                                          0, max_policy_perf);
2068        }
2069
2070        pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2071                 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2072
2073        /* Normalize user input to [min_perf, max_perf] */
2074        if (per_cpu_limits) {
2075                cpu->min_perf_ratio = min_policy_perf;
2076                cpu->max_perf_ratio = max_policy_perf;
2077        } else {
2078                int32_t global_min, global_max;
2079
2080                /* Global limits are in percent of the maximum turbo P-state. */
2081                global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2082                global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2083                global_min = clamp_t(int32_t, global_min, 0, global_max);
2084
2085                pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2086                         global_min, global_max);
2087
2088                cpu->min_perf_ratio = max(min_policy_perf, global_min);
2089                cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2090                cpu->max_perf_ratio = min(max_policy_perf, global_max);
2091                cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2092
2093                /* Make sure min_perf <= max_perf */
2094                cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2095                                          cpu->max_perf_ratio);
2096
2097        }
2098        pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2099                 cpu->max_perf_ratio,
2100                 cpu->min_perf_ratio);
2101}
2102
2103static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2104{
2105        struct cpudata *cpu;
2106
2107        if (!policy->cpuinfo.max_freq)
2108                return -ENODEV;
2109
2110        pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2111                 policy->cpuinfo.max_freq, policy->max);
2112
2113        cpu = all_cpu_data[policy->cpu];
2114        cpu->policy = policy->policy;
2115
2116        mutex_lock(&intel_pstate_limits_lock);
2117
2118        intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2119
2120        if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2121                /*
2122                 * NOHZ_FULL CPUs need this as the governor callback may not
2123                 * be invoked on them.
2124                 */
2125                intel_pstate_clear_update_util_hook(policy->cpu);
2126                intel_pstate_max_within_limits(cpu);
2127        } else {
2128                intel_pstate_set_update_util_hook(policy->cpu);
2129        }
2130
2131        if (hwp_active) {
2132                /*
2133                 * When hwp_boost was active before and dynamically it
2134                 * was turned off, in that case we need to clear the
2135                 * update util hook.
2136                 */
2137                if (!hwp_boost)
2138                        intel_pstate_clear_update_util_hook(policy->cpu);
2139                intel_pstate_hwp_set(policy->cpu);
2140        }
2141
2142        mutex_unlock(&intel_pstate_limits_lock);
2143
2144        return 0;
2145}
2146
2147static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2148                                           struct cpufreq_policy_data *policy)
2149{
2150        if (!hwp_active &&
2151            cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2152            policy->max < policy->cpuinfo.max_freq &&
2153            policy->max > cpu->pstate.max_freq) {
2154                pr_debug("policy->max > max non turbo frequency\n");
2155                policy->max = policy->cpuinfo.max_freq;
2156        }
2157}
2158
2159static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2160                                           struct cpufreq_policy_data *policy)
2161{
2162        update_turbo_state();
2163        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2164                                     intel_pstate_get_max_freq(cpu));
2165
2166        intel_pstate_adjust_policy_max(cpu, policy);
2167}
2168
2169static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2170{
2171        intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2172
2173        return 0;
2174}
2175
2176static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2177{
2178        intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2179}
2180
2181static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2182{
2183        pr_debug("CPU %d exiting\n", policy->cpu);
2184
2185        intel_pstate_clear_update_util_hook(policy->cpu);
2186        if (hwp_active) {
2187                intel_pstate_hwp_save_state(policy);
2188                intel_pstate_hwp_force_min_perf(policy->cpu);
2189        } else {
2190                intel_cpufreq_stop_cpu(policy);
2191        }
2192}
2193
2194static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2195{
2196        intel_pstate_exit_perf_limits(policy);
2197
2198        policy->fast_switch_possible = false;
2199
2200        return 0;
2201}
2202
2203static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2204{
2205        struct cpudata *cpu;
2206        int rc;
2207
2208        rc = intel_pstate_init_cpu(policy->cpu);
2209        if (rc)
2210                return rc;
2211
2212        cpu = all_cpu_data[policy->cpu];
2213
2214        cpu->max_perf_ratio = 0xFF;
2215        cpu->min_perf_ratio = 0;
2216
2217        policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2218        policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2219
2220        /* cpuinfo and default policy values */
2221        policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2222        update_turbo_state();
2223        global.turbo_disabled_mf = global.turbo_disabled;
2224        policy->cpuinfo.max_freq = global.turbo_disabled ?
2225                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2226        policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2227
2228        if (hwp_active) {
2229                unsigned int max_freq;
2230
2231                max_freq = global.turbo_disabled ?
2232                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2233                if (max_freq < policy->cpuinfo.max_freq)
2234                        policy->cpuinfo.max_freq = max_freq;
2235        }
2236
2237        intel_pstate_init_acpi_perf_limits(policy);
2238
2239        policy->fast_switch_possible = true;
2240
2241        return 0;
2242}
2243
2244static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2245{
2246        int ret = __intel_pstate_cpu_init(policy);
2247
2248        if (ret)
2249                return ret;
2250
2251        /*
2252         * Set the policy to powersave to provide a valid fallback value in case
2253         * the default cpufreq governor is neither powersave nor performance.
2254         */
2255        policy->policy = CPUFREQ_POLICY_POWERSAVE;
2256
2257        return 0;
2258}
2259
2260static struct cpufreq_driver intel_pstate = {
2261        .flags          = CPUFREQ_CONST_LOOPS,
2262        .verify         = intel_pstate_verify_policy,
2263        .setpolicy      = intel_pstate_set_policy,
2264        .suspend        = intel_pstate_hwp_save_state,
2265        .resume         = intel_pstate_resume,
2266        .init           = intel_pstate_cpu_init,
2267        .exit           = intel_pstate_cpu_exit,
2268        .stop_cpu       = intel_pstate_stop_cpu,
2269        .update_limits  = intel_pstate_update_limits,
2270        .name           = "intel_pstate",
2271};
2272
2273static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2274{
2275        struct cpudata *cpu = all_cpu_data[policy->cpu];
2276
2277        intel_pstate_verify_cpu_policy(cpu, policy);
2278        intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2279
2280        return 0;
2281}
2282
2283/* Use of trace in passive mode:
2284 *
2285 * In passive mode the trace core_busy field (also known as the
2286 * performance field, and lablelled as such on the graphs; also known as
2287 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2288 * driver call was via the normal or fast switch path. Various graphs
2289 * output from the intel_pstate_tracer.py utility that include core_busy
2290 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2291 * so we use 10 to indicate the the normal path through the driver, and
2292 * 90 to indicate the fast switch path through the driver.
2293 * The scaled_busy field is not used, and is set to 0.
2294 */
2295
2296#define INTEL_PSTATE_TRACE_TARGET 10
2297#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2298
2299static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2300{
2301        struct sample *sample;
2302
2303        if (!trace_pstate_sample_enabled())
2304                return;
2305
2306        if (!intel_pstate_sample(cpu, ktime_get()))
2307                return;
2308
2309        sample = &cpu->sample;
2310        trace_pstate_sample(trace_type,
2311                0,
2312                old_pstate,
2313                cpu->pstate.current_pstate,
2314                sample->mperf,
2315                sample->aperf,
2316                sample->tsc,
2317                get_avg_frequency(cpu),
2318                fp_toint(cpu->iowait_boost * 100));
2319}
2320
2321static int intel_cpufreq_target(struct cpufreq_policy *policy,
2322                                unsigned int target_freq,
2323                                unsigned int relation)
2324{
2325        struct cpudata *cpu = all_cpu_data[policy->cpu];
2326        struct cpufreq_freqs freqs;
2327        int target_pstate, old_pstate;
2328
2329        update_turbo_state();
2330
2331        freqs.old = policy->cur;
2332        freqs.new = target_freq;
2333
2334        cpufreq_freq_transition_begin(policy, &freqs);
2335        switch (relation) {
2336        case CPUFREQ_RELATION_L:
2337                target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2338                break;
2339        case CPUFREQ_RELATION_H:
2340                target_pstate = freqs.new / cpu->pstate.scaling;
2341                break;
2342        default:
2343                target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2344                break;
2345        }
2346        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2347        old_pstate = cpu->pstate.current_pstate;
2348        if (target_pstate != cpu->pstate.current_pstate) {
2349                cpu->pstate.current_pstate = target_pstate;
2350                wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2351                              pstate_funcs.get_val(cpu, target_pstate));
2352        }
2353        freqs.new = target_pstate * cpu->pstate.scaling;
2354        intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2355        cpufreq_freq_transition_end(policy, &freqs, false);
2356
2357        return 0;
2358}
2359
2360static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2361                                              unsigned int target_freq)
2362{
2363        struct cpudata *cpu = all_cpu_data[policy->cpu];
2364        int target_pstate, old_pstate;
2365
2366        update_turbo_state();
2367
2368        target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2369        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2370        old_pstate = cpu->pstate.current_pstate;
2371        intel_pstate_update_pstate(cpu, target_pstate);
2372        intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2373        return target_pstate * cpu->pstate.scaling;
2374}
2375
2376static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2377{
2378        int max_state, turbo_max, min_freq, max_freq, ret;
2379        struct freq_qos_request *req;
2380        struct cpudata *cpu;
2381        struct device *dev;
2382
2383        dev = get_cpu_device(policy->cpu);
2384        if (!dev)
2385                return -ENODEV;
2386
2387        ret = __intel_pstate_cpu_init(policy);
2388        if (ret)
2389                return ret;
2390
2391        policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2392        policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2393        /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2394        policy->cur = policy->cpuinfo.min_freq;
2395
2396        req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2397        if (!req) {
2398                ret = -ENOMEM;
2399                goto pstate_exit;
2400        }
2401
2402        cpu = all_cpu_data[policy->cpu];
2403
2404        if (hwp_active)
2405                intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2406        else
2407                turbo_max = cpu->pstate.turbo_pstate;
2408
2409        min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2410        min_freq *= cpu->pstate.scaling;
2411        max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2412        max_freq *= cpu->pstate.scaling;
2413
2414        ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2415                                   min_freq);
2416        if (ret < 0) {
2417                dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2418                goto free_req;
2419        }
2420
2421        ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2422                                   max_freq);
2423        if (ret < 0) {
2424                dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2425                goto remove_min_req;
2426        }
2427
2428        policy->driver_data = req;
2429
2430        return 0;
2431
2432remove_min_req:
2433        freq_qos_remove_request(req);
2434free_req:
2435        kfree(req);
2436pstate_exit:
2437        intel_pstate_exit_perf_limits(policy);
2438
2439        return ret;
2440}
2441
2442static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2443{
2444        struct freq_qos_request *req;
2445
2446        req = policy->driver_data;
2447
2448        freq_qos_remove_request(req + 1);
2449        freq_qos_remove_request(req);
2450        kfree(req);
2451
2452        return intel_pstate_cpu_exit(policy);
2453}
2454
2455static struct cpufreq_driver intel_cpufreq = {
2456        .flags          = CPUFREQ_CONST_LOOPS,
2457        .verify         = intel_cpufreq_verify_policy,
2458        .target         = intel_cpufreq_target,
2459        .fast_switch    = intel_cpufreq_fast_switch,
2460        .init           = intel_cpufreq_cpu_init,
2461        .exit           = intel_cpufreq_cpu_exit,
2462        .stop_cpu       = intel_cpufreq_stop_cpu,
2463        .update_limits  = intel_pstate_update_limits,
2464        .name           = "intel_cpufreq",
2465};
2466
2467static struct cpufreq_driver *default_driver = &intel_pstate;
2468
2469static void intel_pstate_driver_cleanup(void)
2470{
2471        unsigned int cpu;
2472
2473        get_online_cpus();
2474        for_each_online_cpu(cpu) {
2475                if (all_cpu_data[cpu]) {
2476                        if (intel_pstate_driver == &intel_pstate)
2477                                intel_pstate_clear_update_util_hook(cpu);
2478
2479                        kfree(all_cpu_data[cpu]);
2480                        all_cpu_data[cpu] = NULL;
2481                }
2482        }
2483        put_online_cpus();
2484        intel_pstate_driver = NULL;
2485}
2486
2487static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2488{
2489        int ret;
2490
2491        memset(&global, 0, sizeof(global));
2492        global.max_perf_pct = 100;
2493
2494        intel_pstate_driver = driver;
2495        ret = cpufreq_register_driver(intel_pstate_driver);
2496        if (ret) {
2497                intel_pstate_driver_cleanup();
2498                return ret;
2499        }
2500
2501        global.min_perf_pct = min_perf_pct_min();
2502
2503        return 0;
2504}
2505
2506static int intel_pstate_unregister_driver(void)
2507{
2508        if (hwp_active)
2509                return -EBUSY;
2510
2511        cpufreq_unregister_driver(intel_pstate_driver);
2512        intel_pstate_driver_cleanup();
2513
2514        return 0;
2515}
2516
2517static ssize_t intel_pstate_show_status(char *buf)
2518{
2519        if (!intel_pstate_driver)
2520                return sprintf(buf, "off\n");
2521
2522        return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2523                                        "active" : "passive");
2524}
2525
2526static int intel_pstate_update_status(const char *buf, size_t size)
2527{
2528        int ret;
2529
2530        if (size == 3 && !strncmp(buf, "off", size))
2531                return intel_pstate_driver ?
2532                        intel_pstate_unregister_driver() : -EINVAL;
2533
2534        if (size == 6 && !strncmp(buf, "active", size)) {
2535                if (intel_pstate_driver) {
2536                        if (intel_pstate_driver == &intel_pstate)
2537                                return 0;
2538
2539                        ret = intel_pstate_unregister_driver();
2540                        if (ret)
2541                                return ret;
2542                }
2543
2544                return intel_pstate_register_driver(&intel_pstate);
2545        }
2546
2547        if (size == 7 && !strncmp(buf, "passive", size)) {
2548                if (intel_pstate_driver) {
2549                        if (intel_pstate_driver == &intel_cpufreq)
2550                                return 0;
2551
2552                        ret = intel_pstate_unregister_driver();
2553                        if (ret)
2554                                return ret;
2555                }
2556
2557                return intel_pstate_register_driver(&intel_cpufreq);
2558        }
2559
2560        return -EINVAL;
2561}
2562
2563static int no_load __initdata;
2564static int no_hwp __initdata;
2565static int hwp_only __initdata;
2566static unsigned int force_load __initdata;
2567
2568static int __init intel_pstate_msrs_not_valid(void)
2569{
2570        if (!pstate_funcs.get_max() ||
2571            !pstate_funcs.get_min() ||
2572            !pstate_funcs.get_turbo())
2573                return -ENODEV;
2574
2575        return 0;
2576}
2577
2578static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2579{
2580        pstate_funcs.get_max   = funcs->get_max;
2581        pstate_funcs.get_max_physical = funcs->get_max_physical;
2582        pstate_funcs.get_min   = funcs->get_min;
2583        pstate_funcs.get_turbo = funcs->get_turbo;
2584        pstate_funcs.get_scaling = funcs->get_scaling;
2585        pstate_funcs.get_val   = funcs->get_val;
2586        pstate_funcs.get_vid   = funcs->get_vid;
2587        pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2588}
2589
2590#ifdef CONFIG_ACPI
2591
2592static bool __init intel_pstate_no_acpi_pss(void)
2593{
2594        int i;
2595
2596        for_each_possible_cpu(i) {
2597                acpi_status status;
2598                union acpi_object *pss;
2599                struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2600                struct acpi_processor *pr = per_cpu(processors, i);
2601
2602                if (!pr)
2603                        continue;
2604
2605                status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2606                if (ACPI_FAILURE(status))
2607                        continue;
2608
2609                pss = buffer.pointer;
2610                if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2611                        kfree(pss);
2612                        return false;
2613                }
2614
2615                kfree(pss);
2616        }
2617
2618        pr_debug("ACPI _PSS not found\n");
2619        return true;
2620}
2621
2622static bool __init intel_pstate_no_acpi_pcch(void)
2623{
2624        acpi_status status;
2625        acpi_handle handle;
2626
2627        status = acpi_get_handle(NULL, "\\_SB", &handle);
2628        if (ACPI_FAILURE(status))
2629                goto not_found;
2630
2631        if (acpi_has_method(handle, "PCCH"))
2632                return false;
2633
2634not_found:
2635        pr_debug("ACPI PCCH not found\n");
2636        return true;
2637}
2638
2639static bool __init intel_pstate_has_acpi_ppc(void)
2640{
2641        int i;
2642
2643        for_each_possible_cpu(i) {
2644                struct acpi_processor *pr = per_cpu(processors, i);
2645
2646                if (!pr)
2647                        continue;
2648                if (acpi_has_method(pr->handle, "_PPC"))
2649                        return true;
2650        }
2651        pr_debug("ACPI _PPC not found\n");
2652        return false;
2653}
2654
2655enum {
2656        PSS,
2657        PPC,
2658};
2659
2660/* Hardware vendor-specific info that has its own power management modes */
2661static struct acpi_platform_list plat_info[] __initdata = {
2662        {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2663        {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2664        {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2665        {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2666        {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2667        {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2668        {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2669        {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2670        {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2671        {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2672        {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2673        {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2674        {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2675        {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2676        {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2677        { } /* End */
2678};
2679
2680static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2681{
2682        const struct x86_cpu_id *id;
2683        u64 misc_pwr;
2684        int idx;
2685
2686        id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2687        if (id) {
2688                rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2689                if (misc_pwr & (1 << 8)) {
2690                        pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2691                        return true;
2692                }
2693        }
2694
2695        idx = acpi_match_platform_list(plat_info);
2696        if (idx < 0)
2697                return false;
2698
2699        switch (plat_info[idx].data) {
2700        case PSS:
2701                if (!intel_pstate_no_acpi_pss())
2702                        return false;
2703
2704                return intel_pstate_no_acpi_pcch();
2705        case PPC:
2706                return intel_pstate_has_acpi_ppc() && !force_load;
2707        }
2708
2709        return false;
2710}
2711
2712static void intel_pstate_request_control_from_smm(void)
2713{
2714        /*
2715         * It may be unsafe to request P-states control from SMM if _PPC support
2716         * has not been enabled.
2717         */
2718        if (acpi_ppc)
2719                acpi_processor_pstate_control();
2720}
2721#else /* CONFIG_ACPI not enabled */
2722static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2723static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2724static inline void intel_pstate_request_control_from_smm(void) {}
2725#endif /* CONFIG_ACPI */
2726
2727#define INTEL_PSTATE_HWP_BROADWELL      0x01
2728
2729#define X86_MATCH_HWP(model, hwp_mode)                                  \
2730        X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2731                                           X86_FEATURE_HWP, hwp_mode)
2732
2733static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2734        X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
2735        X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
2736        X86_MATCH_HWP(ANY,              0),
2737        {}
2738};
2739
2740static int __init intel_pstate_init(void)
2741{
2742        const struct x86_cpu_id *id;
2743        int rc;
2744
2745        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2746                return -ENODEV;
2747
2748        if (no_load)
2749                return -ENODEV;
2750
2751        id = x86_match_cpu(hwp_support_ids);
2752        if (id) {
2753                copy_cpu_funcs(&core_funcs);
2754                if (!no_hwp) {
2755                        hwp_active++;
2756                        hwp_mode_bdw = id->driver_data;
2757                        intel_pstate.attr = hwp_cpufreq_attrs;
2758                        goto hwp_cpu_matched;
2759                }
2760        } else {
2761                id = x86_match_cpu(intel_pstate_cpu_ids);
2762                if (!id) {
2763                        pr_info("CPU model not supported\n");
2764                        return -ENODEV;
2765                }
2766
2767                copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2768        }
2769
2770        if (intel_pstate_msrs_not_valid()) {
2771                pr_info("Invalid MSRs\n");
2772                return -ENODEV;
2773        }
2774
2775hwp_cpu_matched:
2776        /*
2777         * The Intel pstate driver will be ignored if the platform
2778         * firmware has its own power management modes.
2779         */
2780        if (intel_pstate_platform_pwr_mgmt_exists()) {
2781                pr_info("P-states controlled by the platform\n");
2782                return -ENODEV;
2783        }
2784
2785        if (!hwp_active && hwp_only)
2786                return -ENOTSUPP;
2787
2788        pr_info("Intel P-state driver initializing\n");
2789
2790        all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2791        if (!all_cpu_data)
2792                return -ENOMEM;
2793
2794        intel_pstate_request_control_from_smm();
2795
2796        intel_pstate_sysfs_expose_params();
2797
2798        mutex_lock(&intel_pstate_driver_lock);
2799        rc = intel_pstate_register_driver(default_driver);
2800        mutex_unlock(&intel_pstate_driver_lock);
2801        if (rc)
2802                return rc;
2803
2804        if (hwp_active)
2805                pr_info("HWP enabled\n");
2806
2807        return 0;
2808}
2809device_initcall(intel_pstate_init);
2810
2811static int __init intel_pstate_setup(char *str)
2812{
2813        if (!str)
2814                return -EINVAL;
2815
2816        if (!strcmp(str, "disable")) {
2817                no_load = 1;
2818        } else if (!strcmp(str, "passive")) {
2819                pr_info("Passive mode enabled\n");
2820                default_driver = &intel_cpufreq;
2821                no_hwp = 1;
2822        }
2823        if (!strcmp(str, "no_hwp")) {
2824                pr_info("HWP disabled\n");
2825                no_hwp = 1;
2826        }
2827        if (!strcmp(str, "force"))
2828                force_load = 1;
2829        if (!strcmp(str, "hwp_only"))
2830                hwp_only = 1;
2831        if (!strcmp(str, "per_cpu_perf_limits"))
2832                per_cpu_limits = true;
2833
2834#ifdef CONFIG_ACPI
2835        if (!strcmp(str, "support_acpi_ppc"))
2836                acpi_ppc = true;
2837#endif
2838
2839        return 0;
2840}
2841early_param("intel_pstate", intel_pstate_setup);
2842
2843MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2844MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2845MODULE_LICENSE("GPL");
2846