linux/drivers/crypto/atmel-sha.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL SHA1/SHA256 HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-sham.c drivers.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <linux/cryptohash.h>
  35#include <crypto/scatterwalk.h>
  36#include <crypto/algapi.h>
  37#include <crypto/sha.h>
  38#include <crypto/hash.h>
  39#include <crypto/internal/hash.h>
  40#include "atmel-sha-regs.h"
  41#include "atmel-authenc.h"
  42
  43#define ATMEL_SHA_PRIORITY      300
  44
  45/* SHA flags */
  46#define SHA_FLAGS_BUSY                  BIT(0)
  47#define SHA_FLAGS_FINAL                 BIT(1)
  48#define SHA_FLAGS_DMA_ACTIVE    BIT(2)
  49#define SHA_FLAGS_OUTPUT_READY  BIT(3)
  50#define SHA_FLAGS_INIT                  BIT(4)
  51#define SHA_FLAGS_CPU                   BIT(5)
  52#define SHA_FLAGS_DMA_READY             BIT(6)
  53#define SHA_FLAGS_DUMP_REG      BIT(7)
  54
  55/* bits[11:8] are reserved. */
  56
  57#define SHA_FLAGS_FINUP         BIT(16)
  58#define SHA_FLAGS_SG            BIT(17)
  59#define SHA_FLAGS_ERROR         BIT(23)
  60#define SHA_FLAGS_PAD           BIT(24)
  61#define SHA_FLAGS_RESTORE       BIT(25)
  62#define SHA_FLAGS_IDATAR0       BIT(26)
  63#define SHA_FLAGS_WAIT_DATARDY  BIT(27)
  64
  65#define SHA_OP_INIT     0
  66#define SHA_OP_UPDATE   1
  67#define SHA_OP_FINAL    2
  68#define SHA_OP_DIGEST   3
  69
  70#define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
  71
  72#define ATMEL_SHA_DMA_THRESHOLD         56
  73
  74struct atmel_sha_caps {
  75        bool    has_dma;
  76        bool    has_dualbuff;
  77        bool    has_sha224;
  78        bool    has_sha_384_512;
  79        bool    has_uihv;
  80        bool    has_hmac;
  81};
  82
  83struct atmel_sha_dev;
  84
  85/*
  86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  87 * tested by the ahash_prepare_alg() function.
  88 */
  89struct atmel_sha_reqctx {
  90        struct atmel_sha_dev    *dd;
  91        unsigned long   flags;
  92        unsigned long   op;
  93
  94        u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  95        u64     digcnt[2];
  96        size_t  bufcnt;
  97        size_t  buflen;
  98        dma_addr_t      dma_addr;
  99
 100        /* walk state */
 101        struct scatterlist      *sg;
 102        unsigned int    offset; /* offset in current sg */
 103        unsigned int    total;  /* total request */
 104
 105        size_t block_size;
 106        size_t hash_size;
 107
 108        u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 109};
 110
 111typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
 112
 113struct atmel_sha_ctx {
 114        struct atmel_sha_dev    *dd;
 115        atmel_sha_fn_t          start;
 116
 117        unsigned long           flags;
 118};
 119
 120#define ATMEL_SHA_QUEUE_LENGTH  50
 121
 122struct atmel_sha_dma {
 123        struct dma_chan                 *chan;
 124        struct dma_slave_config dma_conf;
 125        struct scatterlist      *sg;
 126        int                     nents;
 127        unsigned int            last_sg_length;
 128};
 129
 130struct atmel_sha_dev {
 131        struct list_head        list;
 132        unsigned long           phys_base;
 133        struct device           *dev;
 134        struct clk                      *iclk;
 135        int                                     irq;
 136        void __iomem            *io_base;
 137
 138        spinlock_t              lock;
 139        struct tasklet_struct   done_task;
 140        struct tasklet_struct   queue_task;
 141
 142        unsigned long           flags;
 143        struct crypto_queue     queue;
 144        struct ahash_request    *req;
 145        bool                    is_async;
 146        bool                    force_complete;
 147        atmel_sha_fn_t          resume;
 148        atmel_sha_fn_t          cpu_transfer_complete;
 149
 150        struct atmel_sha_dma    dma_lch_in;
 151
 152        struct atmel_sha_caps   caps;
 153
 154        struct scatterlist      tmp;
 155
 156        u32     hw_version;
 157};
 158
 159struct atmel_sha_drv {
 160        struct list_head        dev_list;
 161        spinlock_t              lock;
 162};
 163
 164static struct atmel_sha_drv atmel_sha = {
 165        .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 166        .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 167};
 168
 169#ifdef VERBOSE_DEBUG
 170static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
 171{
 172        switch (offset) {
 173        case SHA_CR:
 174                return "CR";
 175
 176        case SHA_MR:
 177                return "MR";
 178
 179        case SHA_IER:
 180                return "IER";
 181
 182        case SHA_IDR:
 183                return "IDR";
 184
 185        case SHA_IMR:
 186                return "IMR";
 187
 188        case SHA_ISR:
 189                return "ISR";
 190
 191        case SHA_MSR:
 192                return "MSR";
 193
 194        case SHA_BCR:
 195                return "BCR";
 196
 197        case SHA_REG_DIN(0):
 198        case SHA_REG_DIN(1):
 199        case SHA_REG_DIN(2):
 200        case SHA_REG_DIN(3):
 201        case SHA_REG_DIN(4):
 202        case SHA_REG_DIN(5):
 203        case SHA_REG_DIN(6):
 204        case SHA_REG_DIN(7):
 205        case SHA_REG_DIN(8):
 206        case SHA_REG_DIN(9):
 207        case SHA_REG_DIN(10):
 208        case SHA_REG_DIN(11):
 209        case SHA_REG_DIN(12):
 210        case SHA_REG_DIN(13):
 211        case SHA_REG_DIN(14):
 212        case SHA_REG_DIN(15):
 213                snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
 214                break;
 215
 216        case SHA_REG_DIGEST(0):
 217        case SHA_REG_DIGEST(1):
 218        case SHA_REG_DIGEST(2):
 219        case SHA_REG_DIGEST(3):
 220        case SHA_REG_DIGEST(4):
 221        case SHA_REG_DIGEST(5):
 222        case SHA_REG_DIGEST(6):
 223        case SHA_REG_DIGEST(7):
 224        case SHA_REG_DIGEST(8):
 225        case SHA_REG_DIGEST(9):
 226        case SHA_REG_DIGEST(10):
 227        case SHA_REG_DIGEST(11):
 228        case SHA_REG_DIGEST(12):
 229        case SHA_REG_DIGEST(13):
 230        case SHA_REG_DIGEST(14):
 231        case SHA_REG_DIGEST(15):
 232                if (wr)
 233                        snprintf(tmp, sz, "IDATAR[%u]",
 234                                 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
 235                else
 236                        snprintf(tmp, sz, "ODATAR[%u]",
 237                                 (offset - SHA_REG_DIGEST(0)) >> 2);
 238                break;
 239
 240        case SHA_HW_VERSION:
 241                return "HWVER";
 242
 243        default:
 244                snprintf(tmp, sz, "0x%02x", offset);
 245                break;
 246        }
 247
 248        return tmp;
 249}
 250
 251#endif /* VERBOSE_DEBUG */
 252
 253static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 254{
 255        u32 value = readl_relaxed(dd->io_base + offset);
 256
 257#ifdef VERBOSE_DEBUG
 258        if (dd->flags & SHA_FLAGS_DUMP_REG) {
 259                char tmp[16];
 260
 261                dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 262                         atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
 263        }
 264#endif /* VERBOSE_DEBUG */
 265
 266        return value;
 267}
 268
 269static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 270                                        u32 offset, u32 value)
 271{
 272#ifdef VERBOSE_DEBUG
 273        if (dd->flags & SHA_FLAGS_DUMP_REG) {
 274                char tmp[16];
 275
 276                dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 277                         atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
 278        }
 279#endif /* VERBOSE_DEBUG */
 280
 281        writel_relaxed(value, dd->io_base + offset);
 282}
 283
 284static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
 285{
 286        struct ahash_request *req = dd->req;
 287
 288        dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 289                       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
 290                       SHA_FLAGS_DUMP_REG);
 291
 292        clk_disable(dd->iclk);
 293
 294        if ((dd->is_async || dd->force_complete) && req->base.complete)
 295                req->base.complete(&req->base, err);
 296
 297        /* handle new request */
 298        tasklet_schedule(&dd->queue_task);
 299
 300        return err;
 301}
 302
 303static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 304{
 305        size_t count;
 306
 307        while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 308                count = min(ctx->sg->length - ctx->offset, ctx->total);
 309                count = min(count, ctx->buflen - ctx->bufcnt);
 310
 311                if (count <= 0) {
 312                        /*
 313                        * Check if count <= 0 because the buffer is full or
 314                        * because the sg length is 0. In the latest case,
 315                        * check if there is another sg in the list, a 0 length
 316                        * sg doesn't necessarily mean the end of the sg list.
 317                        */
 318                        if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 319                                ctx->sg = sg_next(ctx->sg);
 320                                continue;
 321                        } else {
 322                                break;
 323                        }
 324                }
 325
 326                scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 327                        ctx->offset, count, 0);
 328
 329                ctx->bufcnt += count;
 330                ctx->offset += count;
 331                ctx->total -= count;
 332
 333                if (ctx->offset == ctx->sg->length) {
 334                        ctx->sg = sg_next(ctx->sg);
 335                        if (ctx->sg)
 336                                ctx->offset = 0;
 337                        else
 338                                ctx->total = 0;
 339                }
 340        }
 341
 342        return 0;
 343}
 344
 345/*
 346 * The purpose of this padding is to ensure that the padded message is a
 347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 348 * The bit "1" is appended at the end of the message followed by
 349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 351 * is appended.
 352 *
 353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 354 *  - if message length < 56 bytes then padlen = 56 - message length
 355 *  - else padlen = 64 + 56 - message length
 356 *
 357 * For SHA384/SHA512, padlen is calculated as followed:
 358 *  - if message length < 112 bytes then padlen = 112 - message length
 359 *  - else padlen = 128 + 112 - message length
 360 */
 361static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 362{
 363        unsigned int index, padlen;
 364        __be64 bits[2];
 365        u64 size[2];
 366
 367        size[0] = ctx->digcnt[0];
 368        size[1] = ctx->digcnt[1];
 369
 370        size[0] += ctx->bufcnt;
 371        if (size[0] < ctx->bufcnt)
 372                size[1]++;
 373
 374        size[0] += length;
 375        if (size[0]  < length)
 376                size[1]++;
 377
 378        bits[1] = cpu_to_be64(size[0] << 3);
 379        bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 380
 381        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 382        case SHA_FLAGS_SHA384:
 383        case SHA_FLAGS_SHA512:
 384                index = ctx->bufcnt & 0x7f;
 385                padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 386                *(ctx->buffer + ctx->bufcnt) = 0x80;
 387                memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 388                memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 389                ctx->bufcnt += padlen + 16;
 390                ctx->flags |= SHA_FLAGS_PAD;
 391                break;
 392
 393        default:
 394                index = ctx->bufcnt & 0x3f;
 395                padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 396                *(ctx->buffer + ctx->bufcnt) = 0x80;
 397                memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 398                memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 399                ctx->bufcnt += padlen + 8;
 400                ctx->flags |= SHA_FLAGS_PAD;
 401                break;
 402        }
 403}
 404
 405static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
 406{
 407        struct atmel_sha_dev *dd = NULL;
 408        struct atmel_sha_dev *tmp;
 409
 410        spin_lock_bh(&atmel_sha.lock);
 411        if (!tctx->dd) {
 412                list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 413                        dd = tmp;
 414                        break;
 415                }
 416                tctx->dd = dd;
 417        } else {
 418                dd = tctx->dd;
 419        }
 420
 421        spin_unlock_bh(&atmel_sha.lock);
 422
 423        return dd;
 424}
 425
 426static int atmel_sha_init(struct ahash_request *req)
 427{
 428        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 429        struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 430        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 431        struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
 432
 433        ctx->dd = dd;
 434
 435        ctx->flags = 0;
 436
 437        dev_dbg(dd->dev, "init: digest size: %d\n",
 438                crypto_ahash_digestsize(tfm));
 439
 440        switch (crypto_ahash_digestsize(tfm)) {
 441        case SHA1_DIGEST_SIZE:
 442                ctx->flags |= SHA_FLAGS_SHA1;
 443                ctx->block_size = SHA1_BLOCK_SIZE;
 444                break;
 445        case SHA224_DIGEST_SIZE:
 446                ctx->flags |= SHA_FLAGS_SHA224;
 447                ctx->block_size = SHA224_BLOCK_SIZE;
 448                break;
 449        case SHA256_DIGEST_SIZE:
 450                ctx->flags |= SHA_FLAGS_SHA256;
 451                ctx->block_size = SHA256_BLOCK_SIZE;
 452                break;
 453        case SHA384_DIGEST_SIZE:
 454                ctx->flags |= SHA_FLAGS_SHA384;
 455                ctx->block_size = SHA384_BLOCK_SIZE;
 456                break;
 457        case SHA512_DIGEST_SIZE:
 458                ctx->flags |= SHA_FLAGS_SHA512;
 459                ctx->block_size = SHA512_BLOCK_SIZE;
 460                break;
 461        default:
 462                return -EINVAL;
 463                break;
 464        }
 465
 466        ctx->bufcnt = 0;
 467        ctx->digcnt[0] = 0;
 468        ctx->digcnt[1] = 0;
 469        ctx->buflen = SHA_BUFFER_LEN;
 470
 471        return 0;
 472}
 473
 474static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 475{
 476        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 477        u32 valmr = SHA_MR_MODE_AUTO;
 478        unsigned int i, hashsize = 0;
 479
 480        if (likely(dma)) {
 481                if (!dd->caps.has_dma)
 482                        atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 483                valmr = SHA_MR_MODE_PDC;
 484                if (dd->caps.has_dualbuff)
 485                        valmr |= SHA_MR_DUALBUFF;
 486        } else {
 487                atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 488        }
 489
 490        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 491        case SHA_FLAGS_SHA1:
 492                valmr |= SHA_MR_ALGO_SHA1;
 493                hashsize = SHA1_DIGEST_SIZE;
 494                break;
 495
 496        case SHA_FLAGS_SHA224:
 497                valmr |= SHA_MR_ALGO_SHA224;
 498                hashsize = SHA256_DIGEST_SIZE;
 499                break;
 500
 501        case SHA_FLAGS_SHA256:
 502                valmr |= SHA_MR_ALGO_SHA256;
 503                hashsize = SHA256_DIGEST_SIZE;
 504                break;
 505
 506        case SHA_FLAGS_SHA384:
 507                valmr |= SHA_MR_ALGO_SHA384;
 508                hashsize = SHA512_DIGEST_SIZE;
 509                break;
 510
 511        case SHA_FLAGS_SHA512:
 512                valmr |= SHA_MR_ALGO_SHA512;
 513                hashsize = SHA512_DIGEST_SIZE;
 514                break;
 515
 516        default:
 517                break;
 518        }
 519
 520        /* Setting CR_FIRST only for the first iteration */
 521        if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 522                atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 523        } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 524                const u32 *hash = (const u32 *)ctx->digest;
 525
 526                /*
 527                 * Restore the hardware context: update the User Initialize
 528                 * Hash Value (UIHV) with the value saved when the latest
 529                 * 'update' operation completed on this very same crypto
 530                 * request.
 531                 */
 532                ctx->flags &= ~SHA_FLAGS_RESTORE;
 533                atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 534                for (i = 0; i < hashsize / sizeof(u32); ++i)
 535                        atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 536                atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 537                valmr |= SHA_MR_UIHV;
 538        }
 539        /*
 540         * WARNING: If the UIHV feature is not available, the hardware CANNOT
 541         * process concurrent requests: the internal registers used to store
 542         * the hash/digest are still set to the partial digest output values
 543         * computed during the latest round.
 544         */
 545
 546        atmel_sha_write(dd, SHA_MR, valmr);
 547}
 548
 549static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
 550                                                atmel_sha_fn_t resume)
 551{
 552        u32 isr = atmel_sha_read(dd, SHA_ISR);
 553
 554        if (unlikely(isr & SHA_INT_DATARDY))
 555                return resume(dd);
 556
 557        dd->resume = resume;
 558        atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 559        return -EINPROGRESS;
 560}
 561
 562static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 563                              size_t length, int final)
 564{
 565        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 566        int count, len32;
 567        const u32 *buffer = (const u32 *)buf;
 568
 569        dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 570                ctx->digcnt[1], ctx->digcnt[0], length, final);
 571
 572        atmel_sha_write_ctrl(dd, 0);
 573
 574        /* should be non-zero before next lines to disable clocks later */
 575        ctx->digcnt[0] += length;
 576        if (ctx->digcnt[0] < length)
 577                ctx->digcnt[1]++;
 578
 579        if (final)
 580                dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 581
 582        len32 = DIV_ROUND_UP(length, sizeof(u32));
 583
 584        dd->flags |= SHA_FLAGS_CPU;
 585
 586        for (count = 0; count < len32; count++)
 587                atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 588
 589        return -EINPROGRESS;
 590}
 591
 592static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 593                size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 594{
 595        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 596        int len32;
 597
 598        dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 599                ctx->digcnt[1], ctx->digcnt[0], length1, final);
 600
 601        len32 = DIV_ROUND_UP(length1, sizeof(u32));
 602        atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 603        atmel_sha_write(dd, SHA_TPR, dma_addr1);
 604        atmel_sha_write(dd, SHA_TCR, len32);
 605
 606        len32 = DIV_ROUND_UP(length2, sizeof(u32));
 607        atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 608        atmel_sha_write(dd, SHA_TNCR, len32);
 609
 610        atmel_sha_write_ctrl(dd, 1);
 611
 612        /* should be non-zero before next lines to disable clocks later */
 613        ctx->digcnt[0] += length1;
 614        if (ctx->digcnt[0] < length1)
 615                ctx->digcnt[1]++;
 616
 617        if (final)
 618                dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 619
 620        dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 621
 622        /* Start DMA transfer */
 623        atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 624
 625        return -EINPROGRESS;
 626}
 627
 628static void atmel_sha_dma_callback(void *data)
 629{
 630        struct atmel_sha_dev *dd = data;
 631
 632        dd->is_async = true;
 633
 634        /* dma_lch_in - completed - wait DATRDY */
 635        atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 636}
 637
 638static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 639                size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 640{
 641        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 642        struct dma_async_tx_descriptor  *in_desc;
 643        struct scatterlist sg[2];
 644
 645        dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 646                ctx->digcnt[1], ctx->digcnt[0], length1, final);
 647
 648        dd->dma_lch_in.dma_conf.src_maxburst = 16;
 649        dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 650
 651        dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 652
 653        if (length2) {
 654                sg_init_table(sg, 2);
 655                sg_dma_address(&sg[0]) = dma_addr1;
 656                sg_dma_len(&sg[0]) = length1;
 657                sg_dma_address(&sg[1]) = dma_addr2;
 658                sg_dma_len(&sg[1]) = length2;
 659                in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 660                        DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 661        } else {
 662                sg_init_table(sg, 1);
 663                sg_dma_address(&sg[0]) = dma_addr1;
 664                sg_dma_len(&sg[0]) = length1;
 665                in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 666                        DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 667        }
 668        if (!in_desc)
 669                return atmel_sha_complete(dd, -EINVAL);
 670
 671        in_desc->callback = atmel_sha_dma_callback;
 672        in_desc->callback_param = dd;
 673
 674        atmel_sha_write_ctrl(dd, 1);
 675
 676        /* should be non-zero before next lines to disable clocks later */
 677        ctx->digcnt[0] += length1;
 678        if (ctx->digcnt[0] < length1)
 679                ctx->digcnt[1]++;
 680
 681        if (final)
 682                dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 683
 684        dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 685
 686        /* Start DMA transfer */
 687        dmaengine_submit(in_desc);
 688        dma_async_issue_pending(dd->dma_lch_in.chan);
 689
 690        return -EINPROGRESS;
 691}
 692
 693static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 694                size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 695{
 696        if (dd->caps.has_dma)
 697                return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 698                                dma_addr2, length2, final);
 699        else
 700                return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 701                                dma_addr2, length2, final);
 702}
 703
 704static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 705{
 706        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 707        int bufcnt;
 708
 709        atmel_sha_append_sg(ctx);
 710        atmel_sha_fill_padding(ctx, 0);
 711        bufcnt = ctx->bufcnt;
 712        ctx->bufcnt = 0;
 713
 714        return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 715}
 716
 717static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 718                                        struct atmel_sha_reqctx *ctx,
 719                                        size_t length, int final)
 720{
 721        ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 722                                ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 723        if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 724                dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
 725                                ctx->block_size);
 726                return atmel_sha_complete(dd, -EINVAL);
 727        }
 728
 729        ctx->flags &= ~SHA_FLAGS_SG;
 730
 731        /* next call does not fail... so no unmap in the case of error */
 732        return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 733}
 734
 735static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 736{
 737        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 738        unsigned int final;
 739        size_t count;
 740
 741        atmel_sha_append_sg(ctx);
 742
 743        final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 744
 745        dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
 746                 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 747
 748        if (final)
 749                atmel_sha_fill_padding(ctx, 0);
 750
 751        if (final || (ctx->bufcnt == ctx->buflen)) {
 752                count = ctx->bufcnt;
 753                ctx->bufcnt = 0;
 754                return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 755        }
 756
 757        return 0;
 758}
 759
 760static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 761{
 762        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 763        unsigned int length, final, tail;
 764        struct scatterlist *sg;
 765        unsigned int count;
 766
 767        if (!ctx->total)
 768                return 0;
 769
 770        if (ctx->bufcnt || ctx->offset)
 771                return atmel_sha_update_dma_slow(dd);
 772
 773        dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
 774                ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 775
 776        sg = ctx->sg;
 777
 778        if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 779                return atmel_sha_update_dma_slow(dd);
 780
 781        if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 782                /* size is not ctx->block_size aligned */
 783                return atmel_sha_update_dma_slow(dd);
 784
 785        length = min(ctx->total, sg->length);
 786
 787        if (sg_is_last(sg)) {
 788                if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 789                        /* not last sg must be ctx->block_size aligned */
 790                        tail = length & (ctx->block_size - 1);
 791                        length -= tail;
 792                }
 793        }
 794
 795        ctx->total -= length;
 796        ctx->offset = length; /* offset where to start slow */
 797
 798        final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 799
 800        /* Add padding */
 801        if (final) {
 802                tail = length & (ctx->block_size - 1);
 803                length -= tail;
 804                ctx->total += tail;
 805                ctx->offset = length; /* offset where to start slow */
 806
 807                sg = ctx->sg;
 808                atmel_sha_append_sg(ctx);
 809
 810                atmel_sha_fill_padding(ctx, length);
 811
 812                ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 813                        ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 814                if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 815                        dev_err(dd->dev, "dma %zu bytes error\n",
 816                                ctx->buflen + ctx->block_size);
 817                        return atmel_sha_complete(dd, -EINVAL);
 818                }
 819
 820                if (length == 0) {
 821                        ctx->flags &= ~SHA_FLAGS_SG;
 822                        count = ctx->bufcnt;
 823                        ctx->bufcnt = 0;
 824                        return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 825                                        0, final);
 826                } else {
 827                        ctx->sg = sg;
 828                        if (!dma_map_sg(dd->dev, ctx->sg, 1,
 829                                DMA_TO_DEVICE)) {
 830                                        dev_err(dd->dev, "dma_map_sg  error\n");
 831                                        return atmel_sha_complete(dd, -EINVAL);
 832                        }
 833
 834                        ctx->flags |= SHA_FLAGS_SG;
 835
 836                        count = ctx->bufcnt;
 837                        ctx->bufcnt = 0;
 838                        return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 839                                        length, ctx->dma_addr, count, final);
 840                }
 841        }
 842
 843        if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 844                dev_err(dd->dev, "dma_map_sg  error\n");
 845                return atmel_sha_complete(dd, -EINVAL);
 846        }
 847
 848        ctx->flags |= SHA_FLAGS_SG;
 849
 850        /* next call does not fail... so no unmap in the case of error */
 851        return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 852                                                                0, final);
 853}
 854
 855static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 856{
 857        struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 858
 859        if (ctx->flags & SHA_FLAGS_SG) {
 860                dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 861                if (ctx->sg->length == ctx->offset) {
 862                        ctx->sg = sg_next(ctx->sg);
 863                        if (ctx->sg)
 864                                ctx->offset = 0;
 865                }
 866                if (ctx->flags & SHA_FLAGS_PAD) {
 867                        dma_unmap_single(dd->dev, ctx->dma_addr,
 868                                ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 869                }
 870        } else {
 871                dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 872                                                ctx->block_size, DMA_TO_DEVICE);
 873        }
 874}
 875
 876static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 877{
 878        struct ahash_request *req = dd->req;
 879        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 880        int err;
 881
 882        dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 883                ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 884
 885        if (ctx->flags & SHA_FLAGS_CPU)
 886                err = atmel_sha_update_cpu(dd);
 887        else
 888                err = atmel_sha_update_dma_start(dd);
 889
 890        /* wait for dma completion before can take more data */
 891        dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 892                        err, ctx->digcnt[1], ctx->digcnt[0]);
 893
 894        return err;
 895}
 896
 897static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 898{
 899        struct ahash_request *req = dd->req;
 900        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 901        int err = 0;
 902        int count;
 903
 904        if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 905                atmel_sha_fill_padding(ctx, 0);
 906                count = ctx->bufcnt;
 907                ctx->bufcnt = 0;
 908                err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 909        }
 910        /* faster to handle last block with cpu */
 911        else {
 912                atmel_sha_fill_padding(ctx, 0);
 913                count = ctx->bufcnt;
 914                ctx->bufcnt = 0;
 915                err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 916        }
 917
 918        dev_dbg(dd->dev, "final_req: err: %d\n", err);
 919
 920        return err;
 921}
 922
 923static void atmel_sha_copy_hash(struct ahash_request *req)
 924{
 925        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 926        u32 *hash = (u32 *)ctx->digest;
 927        unsigned int i, hashsize;
 928
 929        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 930        case SHA_FLAGS_SHA1:
 931                hashsize = SHA1_DIGEST_SIZE;
 932                break;
 933
 934        case SHA_FLAGS_SHA224:
 935        case SHA_FLAGS_SHA256:
 936                hashsize = SHA256_DIGEST_SIZE;
 937                break;
 938
 939        case SHA_FLAGS_SHA384:
 940        case SHA_FLAGS_SHA512:
 941                hashsize = SHA512_DIGEST_SIZE;
 942                break;
 943
 944        default:
 945                /* Should not happen... */
 946                return;
 947        }
 948
 949        for (i = 0; i < hashsize / sizeof(u32); ++i)
 950                hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 951        ctx->flags |= SHA_FLAGS_RESTORE;
 952}
 953
 954static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 955{
 956        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 957
 958        if (!req->result)
 959                return;
 960
 961        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 962        default:
 963        case SHA_FLAGS_SHA1:
 964                memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 965                break;
 966
 967        case SHA_FLAGS_SHA224:
 968                memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 969                break;
 970
 971        case SHA_FLAGS_SHA256:
 972                memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 973                break;
 974
 975        case SHA_FLAGS_SHA384:
 976                memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 977                break;
 978
 979        case SHA_FLAGS_SHA512:
 980                memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 981                break;
 982        }
 983}
 984
 985static int atmel_sha_finish(struct ahash_request *req)
 986{
 987        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 988        struct atmel_sha_dev *dd = ctx->dd;
 989
 990        if (ctx->digcnt[0] || ctx->digcnt[1])
 991                atmel_sha_copy_ready_hash(req);
 992
 993        dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
 994                ctx->digcnt[0], ctx->bufcnt);
 995
 996        return 0;
 997}
 998
 999static void atmel_sha_finish_req(struct ahash_request *req, int err)
1000{
1001        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1002        struct atmel_sha_dev *dd = ctx->dd;
1003
1004        if (!err) {
1005                atmel_sha_copy_hash(req);
1006                if (SHA_FLAGS_FINAL & dd->flags)
1007                        err = atmel_sha_finish(req);
1008        } else {
1009                ctx->flags |= SHA_FLAGS_ERROR;
1010        }
1011
1012        /* atomic operation is not needed here */
1013        (void)atmel_sha_complete(dd, err);
1014}
1015
1016static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1017{
1018        int err;
1019
1020        err = clk_enable(dd->iclk);
1021        if (err)
1022                return err;
1023
1024        if (!(SHA_FLAGS_INIT & dd->flags)) {
1025                atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1026                dd->flags |= SHA_FLAGS_INIT;
1027        }
1028
1029        return 0;
1030}
1031
1032static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1033{
1034        return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1035}
1036
1037static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1038{
1039        int err;
1040
1041        err = atmel_sha_hw_init(dd);
1042        if (err)
1043                return err;
1044
1045        dd->hw_version = atmel_sha_get_version(dd);
1046
1047        dev_info(dd->dev,
1048                        "version: 0x%x\n", dd->hw_version);
1049
1050        clk_disable(dd->iclk);
1051
1052        return 0;
1053}
1054
1055static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1056                                  struct ahash_request *req)
1057{
1058        struct crypto_async_request *async_req, *backlog;
1059        struct atmel_sha_ctx *ctx;
1060        unsigned long flags;
1061        bool start_async;
1062        int err = 0, ret = 0;
1063
1064        spin_lock_irqsave(&dd->lock, flags);
1065        if (req)
1066                ret = ahash_enqueue_request(&dd->queue, req);
1067
1068        if (SHA_FLAGS_BUSY & dd->flags) {
1069                spin_unlock_irqrestore(&dd->lock, flags);
1070                return ret;
1071        }
1072
1073        backlog = crypto_get_backlog(&dd->queue);
1074        async_req = crypto_dequeue_request(&dd->queue);
1075        if (async_req)
1076                dd->flags |= SHA_FLAGS_BUSY;
1077
1078        spin_unlock_irqrestore(&dd->lock, flags);
1079
1080        if (!async_req)
1081                return ret;
1082
1083        if (backlog)
1084                backlog->complete(backlog, -EINPROGRESS);
1085
1086        ctx = crypto_tfm_ctx(async_req->tfm);
1087
1088        dd->req = ahash_request_cast(async_req);
1089        start_async = (dd->req != req);
1090        dd->is_async = start_async;
1091        dd->force_complete = false;
1092
1093        /* WARNING: ctx->start() MAY change dd->is_async. */
1094        err = ctx->start(dd);
1095        return (start_async) ? ret : err;
1096}
1097
1098static int atmel_sha_done(struct atmel_sha_dev *dd);
1099
1100static int atmel_sha_start(struct atmel_sha_dev *dd)
1101{
1102        struct ahash_request *req = dd->req;
1103        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1104        int err;
1105
1106        dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1107                                                ctx->op, req->nbytes);
1108
1109        err = atmel_sha_hw_init(dd);
1110        if (err)
1111                return atmel_sha_complete(dd, err);
1112
1113        /*
1114         * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1115         *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1116         *                its job later in the done_task.
1117         *                This is the main path.
1118         *
1119         * 0: the SHA driver can continue its job then release the hardware
1120         *    later, if needed, with atmel_sha_finish_req().
1121         *    This is the alternate path.
1122         *
1123         * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1124         *      been called, hence the hardware has been released.
1125         *      The SHA driver must stop its job without calling
1126         *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1127         *      called a second time.
1128         *
1129         * Please note that currently, atmel_sha_final_req() never returns 0.
1130         */
1131
1132        dd->resume = atmel_sha_done;
1133        if (ctx->op == SHA_OP_UPDATE) {
1134                err = atmel_sha_update_req(dd);
1135                if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1136                        /* no final() after finup() */
1137                        err = atmel_sha_final_req(dd);
1138        } else if (ctx->op == SHA_OP_FINAL) {
1139                err = atmel_sha_final_req(dd);
1140        }
1141
1142        if (!err)
1143                /* done_task will not finish it, so do it here */
1144                atmel_sha_finish_req(req, err);
1145
1146        dev_dbg(dd->dev, "exit, err: %d\n", err);
1147
1148        return err;
1149}
1150
1151static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1152{
1153        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1154        struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1155        struct atmel_sha_dev *dd = tctx->dd;
1156
1157        ctx->op = op;
1158
1159        return atmel_sha_handle_queue(dd, req);
1160}
1161
1162static int atmel_sha_update(struct ahash_request *req)
1163{
1164        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1165
1166        if (!req->nbytes)
1167                return 0;
1168
1169        ctx->total = req->nbytes;
1170        ctx->sg = req->src;
1171        ctx->offset = 0;
1172
1173        if (ctx->flags & SHA_FLAGS_FINUP) {
1174                if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1175                        /* faster to use CPU for short transfers */
1176                        ctx->flags |= SHA_FLAGS_CPU;
1177        } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1178                atmel_sha_append_sg(ctx);
1179                return 0;
1180        }
1181        return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1182}
1183
1184static int atmel_sha_final(struct ahash_request *req)
1185{
1186        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1187
1188        ctx->flags |= SHA_FLAGS_FINUP;
1189
1190        if (ctx->flags & SHA_FLAGS_ERROR)
1191                return 0; /* uncompleted hash is not needed */
1192
1193        if (ctx->flags & SHA_FLAGS_PAD)
1194                /* copy ready hash (+ finalize hmac) */
1195                return atmel_sha_finish(req);
1196
1197        return atmel_sha_enqueue(req, SHA_OP_FINAL);
1198}
1199
1200static int atmel_sha_finup(struct ahash_request *req)
1201{
1202        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1203        int err1, err2;
1204
1205        ctx->flags |= SHA_FLAGS_FINUP;
1206
1207        err1 = atmel_sha_update(req);
1208        if (err1 == -EINPROGRESS ||
1209            (err1 == -EBUSY && (ahash_request_flags(req) &
1210                                CRYPTO_TFM_REQ_MAY_BACKLOG)))
1211                return err1;
1212
1213        /*
1214         * final() has to be always called to cleanup resources
1215         * even if udpate() failed, except EINPROGRESS
1216         */
1217        err2 = atmel_sha_final(req);
1218
1219        return err1 ?: err2;
1220}
1221
1222static int atmel_sha_digest(struct ahash_request *req)
1223{
1224        return atmel_sha_init(req) ?: atmel_sha_finup(req);
1225}
1226
1227
1228static int atmel_sha_export(struct ahash_request *req, void *out)
1229{
1230        const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1231
1232        memcpy(out, ctx, sizeof(*ctx));
1233        return 0;
1234}
1235
1236static int atmel_sha_import(struct ahash_request *req, const void *in)
1237{
1238        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1239
1240        memcpy(ctx, in, sizeof(*ctx));
1241        return 0;
1242}
1243
1244static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1245{
1246        struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1247
1248        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1249                                 sizeof(struct atmel_sha_reqctx));
1250        ctx->start = atmel_sha_start;
1251
1252        return 0;
1253}
1254
1255static void atmel_sha_alg_init(struct ahash_alg *alg)
1256{
1257        alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1258        alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1259        alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1260        alg->halg.base.cra_module = THIS_MODULE;
1261        alg->halg.base.cra_init = atmel_sha_cra_init;
1262
1263        alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1264
1265        alg->init = atmel_sha_init;
1266        alg->update = atmel_sha_update;
1267        alg->final = atmel_sha_final;
1268        alg->finup = atmel_sha_finup;
1269        alg->digest = atmel_sha_digest;
1270        alg->export = atmel_sha_export;
1271        alg->import = atmel_sha_import;
1272}
1273
1274static struct ahash_alg sha_1_256_algs[] = {
1275{
1276        .halg.base.cra_name             = "sha1",
1277        .halg.base.cra_driver_name      = "atmel-sha1",
1278        .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
1279
1280        .halg.digestsize = SHA1_DIGEST_SIZE,
1281},
1282{
1283        .halg.base.cra_name             = "sha256",
1284        .halg.base.cra_driver_name      = "atmel-sha256",
1285        .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
1286
1287        .halg.digestsize = SHA256_DIGEST_SIZE,
1288},
1289};
1290
1291static struct ahash_alg sha_224_alg = {
1292        .halg.base.cra_name             = "sha224",
1293        .halg.base.cra_driver_name      = "atmel-sha224",
1294        .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
1295
1296        .halg.digestsize = SHA224_DIGEST_SIZE,
1297};
1298
1299static struct ahash_alg sha_384_512_algs[] = {
1300{
1301        .halg.base.cra_name             = "sha384",
1302        .halg.base.cra_driver_name      = "atmel-sha384",
1303        .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
1304        .halg.base.cra_alignmask        = 0x3,
1305
1306        .halg.digestsize = SHA384_DIGEST_SIZE,
1307},
1308{
1309        .halg.base.cra_name             = "sha512",
1310        .halg.base.cra_driver_name      = "atmel-sha512",
1311        .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
1312        .halg.base.cra_alignmask        = 0x3,
1313
1314        .halg.digestsize = SHA512_DIGEST_SIZE,
1315},
1316};
1317
1318static void atmel_sha_queue_task(unsigned long data)
1319{
1320        struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1321
1322        atmel_sha_handle_queue(dd, NULL);
1323}
1324
1325static int atmel_sha_done(struct atmel_sha_dev *dd)
1326{
1327        int err = 0;
1328
1329        if (SHA_FLAGS_CPU & dd->flags) {
1330                if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1331                        dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1332                        goto finish;
1333                }
1334        } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1335                if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1336                        dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1337                        atmel_sha_update_dma_stop(dd);
1338                }
1339                if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1340                        /* hash or semi-hash ready */
1341                        dd->flags &= ~(SHA_FLAGS_DMA_READY |
1342                                                SHA_FLAGS_OUTPUT_READY);
1343                        err = atmel_sha_update_dma_start(dd);
1344                        if (err != -EINPROGRESS)
1345                                goto finish;
1346                }
1347        }
1348        return err;
1349
1350finish:
1351        /* finish curent request */
1352        atmel_sha_finish_req(dd->req, err);
1353
1354        return err;
1355}
1356
1357static void atmel_sha_done_task(unsigned long data)
1358{
1359        struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1360
1361        dd->is_async = true;
1362        (void)dd->resume(dd);
1363}
1364
1365static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1366{
1367        struct atmel_sha_dev *sha_dd = dev_id;
1368        u32 reg;
1369
1370        reg = atmel_sha_read(sha_dd, SHA_ISR);
1371        if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1372                atmel_sha_write(sha_dd, SHA_IDR, reg);
1373                if (SHA_FLAGS_BUSY & sha_dd->flags) {
1374                        sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1375                        if (!(SHA_FLAGS_CPU & sha_dd->flags))
1376                                sha_dd->flags |= SHA_FLAGS_DMA_READY;
1377                        tasklet_schedule(&sha_dd->done_task);
1378                } else {
1379                        dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1380                }
1381                return IRQ_HANDLED;
1382        }
1383
1384        return IRQ_NONE;
1385}
1386
1387
1388/* DMA transfer functions */
1389
1390static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1391                                        struct scatterlist *sg,
1392                                        size_t len)
1393{
1394        struct atmel_sha_dma *dma = &dd->dma_lch_in;
1395        struct ahash_request *req = dd->req;
1396        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1397        size_t bs = ctx->block_size;
1398        int nents;
1399
1400        for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1401                if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1402                        return false;
1403
1404                /*
1405                 * This is the last sg, the only one that is allowed to
1406                 * have an unaligned length.
1407                 */
1408                if (len <= sg->length) {
1409                        dma->nents = nents + 1;
1410                        dma->last_sg_length = sg->length;
1411                        sg->length = ALIGN(len, sizeof(u32));
1412                        return true;
1413                }
1414
1415                /* All other sg lengths MUST be aligned to the block size. */
1416                if (!IS_ALIGNED(sg->length, bs))
1417                        return false;
1418
1419                len -= sg->length;
1420        }
1421
1422        return false;
1423}
1424
1425static void atmel_sha_dma_callback2(void *data)
1426{
1427        struct atmel_sha_dev *dd = data;
1428        struct atmel_sha_dma *dma = &dd->dma_lch_in;
1429        struct scatterlist *sg;
1430        int nents;
1431
1432        dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1433
1434        sg = dma->sg;
1435        for (nents = 0; nents < dma->nents - 1; ++nents)
1436                sg = sg_next(sg);
1437        sg->length = dma->last_sg_length;
1438
1439        dd->is_async = true;
1440        (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1441}
1442
1443static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1444                               struct scatterlist *src,
1445                               size_t len,
1446                               atmel_sha_fn_t resume)
1447{
1448        struct atmel_sha_dma *dma = &dd->dma_lch_in;
1449        struct dma_slave_config *config = &dma->dma_conf;
1450        struct dma_chan *chan = dma->chan;
1451        struct dma_async_tx_descriptor *desc;
1452        dma_cookie_t cookie;
1453        unsigned int sg_len;
1454        int err;
1455
1456        dd->resume = resume;
1457
1458        /*
1459         * dma->nents has already been initialized by
1460         * atmel_sha_dma_check_aligned().
1461         */
1462        dma->sg = src;
1463        sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1464        if (!sg_len) {
1465                err = -ENOMEM;
1466                goto exit;
1467        }
1468
1469        config->src_maxburst = 16;
1470        config->dst_maxburst = 16;
1471        err = dmaengine_slave_config(chan, config);
1472        if (err)
1473                goto unmap_sg;
1474
1475        desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1476                                       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1477        if (!desc) {
1478                err = -ENOMEM;
1479                goto unmap_sg;
1480        }
1481
1482        desc->callback = atmel_sha_dma_callback2;
1483        desc->callback_param = dd;
1484        cookie = dmaengine_submit(desc);
1485        err = dma_submit_error(cookie);
1486        if (err)
1487                goto unmap_sg;
1488
1489        dma_async_issue_pending(chan);
1490
1491        return -EINPROGRESS;
1492
1493unmap_sg:
1494        dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1495exit:
1496        return atmel_sha_complete(dd, err);
1497}
1498
1499
1500/* CPU transfer functions */
1501
1502static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1503{
1504        struct ahash_request *req = dd->req;
1505        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1506        const u32 *words = (const u32 *)ctx->buffer;
1507        size_t i, num_words;
1508        u32 isr, din, din_inc;
1509
1510        din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1511        for (;;) {
1512                /* Write data into the Input Data Registers. */
1513                num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1514                for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1515                        atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1516
1517                ctx->offset += ctx->bufcnt;
1518                ctx->total -= ctx->bufcnt;
1519
1520                if (!ctx->total)
1521                        break;
1522
1523                /*
1524                 * Prepare next block:
1525                 * Fill ctx->buffer now with the next data to be written into
1526                 * IDATARx: it gives time for the SHA hardware to process
1527                 * the current data so the SHA_INT_DATARDY flag might be set
1528                 * in SHA_ISR when polling this register at the beginning of
1529                 * the next loop.
1530                 */
1531                ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1532                scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1533                                         ctx->offset, ctx->bufcnt, 0);
1534
1535                /* Wait for hardware to be ready again. */
1536                isr = atmel_sha_read(dd, SHA_ISR);
1537                if (!(isr & SHA_INT_DATARDY)) {
1538                        /* Not ready yet. */
1539                        dd->resume = atmel_sha_cpu_transfer;
1540                        atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1541                        return -EINPROGRESS;
1542                }
1543        }
1544
1545        if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1546                return dd->cpu_transfer_complete(dd);
1547
1548        return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1549}
1550
1551static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1552                               struct scatterlist *sg,
1553                               unsigned int len,
1554                               bool idatar0_only,
1555                               bool wait_data_ready,
1556                               atmel_sha_fn_t resume)
1557{
1558        struct ahash_request *req = dd->req;
1559        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1560
1561        if (!len)
1562                return resume(dd);
1563
1564        ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1565
1566        if (idatar0_only)
1567                ctx->flags |= SHA_FLAGS_IDATAR0;
1568
1569        if (wait_data_ready)
1570                ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1571
1572        ctx->sg = sg;
1573        ctx->total = len;
1574        ctx->offset = 0;
1575
1576        /* Prepare the first block to be written. */
1577        ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1578        scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1579                                 ctx->offset, ctx->bufcnt, 0);
1580
1581        dd->cpu_transfer_complete = resume;
1582        return atmel_sha_cpu_transfer(dd);
1583}
1584
1585static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1586                              const void *data, unsigned int datalen,
1587                              bool auto_padding,
1588                              atmel_sha_fn_t resume)
1589{
1590        struct ahash_request *req = dd->req;
1591        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1592        u32 msglen = (auto_padding) ? datalen : 0;
1593        u32 mr = SHA_MR_MODE_AUTO;
1594
1595        if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1596                return atmel_sha_complete(dd, -EINVAL);
1597
1598        mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1599        atmel_sha_write(dd, SHA_MR, mr);
1600        atmel_sha_write(dd, SHA_MSR, msglen);
1601        atmel_sha_write(dd, SHA_BCR, msglen);
1602        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1603
1604        sg_init_one(&dd->tmp, data, datalen);
1605        return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1606}
1607
1608
1609/* hmac functions */
1610
1611struct atmel_sha_hmac_key {
1612        bool                    valid;
1613        unsigned int            keylen;
1614        u8                      buffer[SHA512_BLOCK_SIZE];
1615        u8                      *keydup;
1616};
1617
1618static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1619{
1620        memset(hkey, 0, sizeof(*hkey));
1621}
1622
1623static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1624{
1625        kfree(hkey->keydup);
1626        memset(hkey, 0, sizeof(*hkey));
1627}
1628
1629static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1630                                         const u8 *key,
1631                                         unsigned int keylen)
1632{
1633        atmel_sha_hmac_key_release(hkey);
1634
1635        if (keylen > sizeof(hkey->buffer)) {
1636                hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1637                if (!hkey->keydup)
1638                        return -ENOMEM;
1639
1640        } else {
1641                memcpy(hkey->buffer, key, keylen);
1642        }
1643
1644        hkey->valid = true;
1645        hkey->keylen = keylen;
1646        return 0;
1647}
1648
1649static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1650                                          const u8 **key,
1651                                          unsigned int *keylen)
1652{
1653        if (!hkey->valid)
1654                return false;
1655
1656        *keylen = hkey->keylen;
1657        *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1658        return true;
1659}
1660
1661
1662struct atmel_sha_hmac_ctx {
1663        struct atmel_sha_ctx    base;
1664
1665        struct atmel_sha_hmac_key       hkey;
1666        u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667        u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1668        atmel_sha_fn_t          resume;
1669};
1670
1671static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1672                                atmel_sha_fn_t resume);
1673static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1674                                      const u8 *key, unsigned int keylen);
1675static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1676static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1677static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1678static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1679
1680static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1681static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1682static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1683static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1684
1685static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1686                                atmel_sha_fn_t resume)
1687{
1688        struct ahash_request *req = dd->req;
1689        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1690        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1691        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1692        unsigned int keylen;
1693        const u8 *key;
1694        size_t bs;
1695
1696        hmac->resume = resume;
1697        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1698        case SHA_FLAGS_SHA1:
1699                ctx->block_size = SHA1_BLOCK_SIZE;
1700                ctx->hash_size = SHA1_DIGEST_SIZE;
1701                break;
1702
1703        case SHA_FLAGS_SHA224:
1704                ctx->block_size = SHA224_BLOCK_SIZE;
1705                ctx->hash_size = SHA256_DIGEST_SIZE;
1706                break;
1707
1708        case SHA_FLAGS_SHA256:
1709                ctx->block_size = SHA256_BLOCK_SIZE;
1710                ctx->hash_size = SHA256_DIGEST_SIZE;
1711                break;
1712
1713        case SHA_FLAGS_SHA384:
1714                ctx->block_size = SHA384_BLOCK_SIZE;
1715                ctx->hash_size = SHA512_DIGEST_SIZE;
1716                break;
1717
1718        case SHA_FLAGS_SHA512:
1719                ctx->block_size = SHA512_BLOCK_SIZE;
1720                ctx->hash_size = SHA512_DIGEST_SIZE;
1721                break;
1722
1723        default:
1724                return atmel_sha_complete(dd, -EINVAL);
1725        }
1726        bs = ctx->block_size;
1727
1728        if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1729                return resume(dd);
1730
1731        /* Compute K' from K. */
1732        if (unlikely(keylen > bs))
1733                return atmel_sha_hmac_prehash_key(dd, key, keylen);
1734
1735        /* Prepare ipad. */
1736        memcpy((u8 *)hmac->ipad, key, keylen);
1737        memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1738        return atmel_sha_hmac_compute_ipad_hash(dd);
1739}
1740
1741static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742                                      const u8 *key, unsigned int keylen)
1743{
1744        return atmel_sha_cpu_hash(dd, key, keylen, true,
1745                                  atmel_sha_hmac_prehash_key_done);
1746}
1747
1748static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1749{
1750        struct ahash_request *req = dd->req;
1751        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1752        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1753        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1754        size_t ds = crypto_ahash_digestsize(tfm);
1755        size_t bs = ctx->block_size;
1756        size_t i, num_words = ds / sizeof(u32);
1757
1758        /* Prepare ipad. */
1759        for (i = 0; i < num_words; ++i)
1760                hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1761        memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1762        return atmel_sha_hmac_compute_ipad_hash(dd);
1763}
1764
1765static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1766{
1767        struct ahash_request *req = dd->req;
1768        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1769        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1770        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1771        size_t bs = ctx->block_size;
1772        size_t i, num_words = bs / sizeof(u32);
1773
1774        memcpy(hmac->opad, hmac->ipad, bs);
1775        for (i = 0; i < num_words; ++i) {
1776                hmac->ipad[i] ^= 0x36363636;
1777                hmac->opad[i] ^= 0x5c5c5c5c;
1778        }
1779
1780        return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1781                                  atmel_sha_hmac_compute_opad_hash);
1782}
1783
1784static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1785{
1786        struct ahash_request *req = dd->req;
1787        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1788        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1789        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1790        size_t bs = ctx->block_size;
1791        size_t hs = ctx->hash_size;
1792        size_t i, num_words = hs / sizeof(u32);
1793
1794        for (i = 0; i < num_words; ++i)
1795                hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1796        return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1797                                  atmel_sha_hmac_setup_done);
1798}
1799
1800static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1801{
1802        struct ahash_request *req = dd->req;
1803        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1804        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1805        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1806        size_t hs = ctx->hash_size;
1807        size_t i, num_words = hs / sizeof(u32);
1808
1809        for (i = 0; i < num_words; ++i)
1810                hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1811        atmel_sha_hmac_key_release(&hmac->hkey);
1812        return hmac->resume(dd);
1813}
1814
1815static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1816{
1817        struct ahash_request *req = dd->req;
1818        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819        int err;
1820
1821        err = atmel_sha_hw_init(dd);
1822        if (err)
1823                return atmel_sha_complete(dd, err);
1824
1825        switch (ctx->op) {
1826        case SHA_OP_INIT:
1827                err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1828                break;
1829
1830        case SHA_OP_UPDATE:
1831                dd->resume = atmel_sha_done;
1832                err = atmel_sha_update_req(dd);
1833                break;
1834
1835        case SHA_OP_FINAL:
1836                dd->resume = atmel_sha_hmac_final;
1837                err = atmel_sha_final_req(dd);
1838                break;
1839
1840        case SHA_OP_DIGEST:
1841                err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1842                break;
1843
1844        default:
1845                return atmel_sha_complete(dd, -EINVAL);
1846        }
1847
1848        return err;
1849}
1850
1851static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1852                                 unsigned int keylen)
1853{
1854        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1855
1856        return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1857}
1858
1859static int atmel_sha_hmac_init(struct ahash_request *req)
1860{
1861        int err;
1862
1863        err = atmel_sha_init(req);
1864        if (err)
1865                return err;
1866
1867        return atmel_sha_enqueue(req, SHA_OP_INIT);
1868}
1869
1870static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1871{
1872        struct ahash_request *req = dd->req;
1873        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1875        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1876        size_t bs = ctx->block_size;
1877        size_t hs = ctx->hash_size;
1878
1879        ctx->bufcnt = 0;
1880        ctx->digcnt[0] = bs;
1881        ctx->digcnt[1] = 0;
1882        ctx->flags |= SHA_FLAGS_RESTORE;
1883        memcpy(ctx->digest, hmac->ipad, hs);
1884        return atmel_sha_complete(dd, 0);
1885}
1886
1887static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1888{
1889        struct ahash_request *req = dd->req;
1890        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1891        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1892        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1893        u32 *digest = (u32 *)ctx->digest;
1894        size_t ds = crypto_ahash_digestsize(tfm);
1895        size_t bs = ctx->block_size;
1896        size_t hs = ctx->hash_size;
1897        size_t i, num_words;
1898        u32 mr;
1899
1900        /* Save d = SHA((K' + ipad) | msg). */
1901        num_words = ds / sizeof(u32);
1902        for (i = 0; i < num_words; ++i)
1903                digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1904
1905        /* Restore context to finish computing SHA((K' + opad) | d). */
1906        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1907        num_words = hs / sizeof(u32);
1908        for (i = 0; i < num_words; ++i)
1909                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1910
1911        mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1912        mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1913        atmel_sha_write(dd, SHA_MR, mr);
1914        atmel_sha_write(dd, SHA_MSR, bs + ds);
1915        atmel_sha_write(dd, SHA_BCR, ds);
1916        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1917
1918        sg_init_one(&dd->tmp, digest, ds);
1919        return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1920                                   atmel_sha_hmac_final_done);
1921}
1922
1923static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1924{
1925        /*
1926         * req->result might not be sizeof(u32) aligned, so copy the
1927         * digest into ctx->digest[] before memcpy() the data into
1928         * req->result.
1929         */
1930        atmel_sha_copy_hash(dd->req);
1931        atmel_sha_copy_ready_hash(dd->req);
1932        return atmel_sha_complete(dd, 0);
1933}
1934
1935static int atmel_sha_hmac_digest(struct ahash_request *req)
1936{
1937        int err;
1938
1939        err = atmel_sha_init(req);
1940        if (err)
1941                return err;
1942
1943        return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1944}
1945
1946static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1947{
1948        struct ahash_request *req = dd->req;
1949        struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1950        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1951        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1952        size_t hs = ctx->hash_size;
1953        size_t i, num_words = hs / sizeof(u32);
1954        bool use_dma = false;
1955        u32 mr;
1956
1957        /* Special case for empty message. */
1958        if (!req->nbytes)
1959                return atmel_sha_complete(dd, -EINVAL); // TODO:
1960
1961        /* Check DMA threshold and alignment. */
1962        if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1963            atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1964                use_dma = true;
1965
1966        /* Write both initial hash values to compute a HMAC. */
1967        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1968        for (i = 0; i < num_words; ++i)
1969                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1970
1971        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1972        for (i = 0; i < num_words; ++i)
1973                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1974
1975        /* Write the Mode, Message Size, Bytes Count then Control Registers. */
1976        mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1977        mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1978        if (use_dma)
1979                mr |= SHA_MR_MODE_IDATAR0;
1980        else
1981                mr |= SHA_MR_MODE_AUTO;
1982        atmel_sha_write(dd, SHA_MR, mr);
1983
1984        atmel_sha_write(dd, SHA_MSR, req->nbytes);
1985        atmel_sha_write(dd, SHA_BCR, req->nbytes);
1986
1987        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1988
1989        /* Process data. */
1990        if (use_dma)
1991                return atmel_sha_dma_start(dd, req->src, req->nbytes,
1992                                           atmel_sha_hmac_final_done);
1993
1994        return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1995                                   atmel_sha_hmac_final_done);
1996}
1997
1998static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1999{
2000        struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2001
2002        crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2003                                 sizeof(struct atmel_sha_reqctx));
2004        hmac->base.start = atmel_sha_hmac_start;
2005        atmel_sha_hmac_key_init(&hmac->hkey);
2006
2007        return 0;
2008}
2009
2010static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2011{
2012        struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2013
2014        atmel_sha_hmac_key_release(&hmac->hkey);
2015}
2016
2017static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2018{
2019        alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2020        alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2021        alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2022        alg->halg.base.cra_module = THIS_MODULE;
2023        alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2024        alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2025
2026        alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2027
2028        alg->init = atmel_sha_hmac_init;
2029        alg->update = atmel_sha_update;
2030        alg->final = atmel_sha_final;
2031        alg->digest = atmel_sha_hmac_digest;
2032        alg->setkey = atmel_sha_hmac_setkey;
2033        alg->export = atmel_sha_export;
2034        alg->import = atmel_sha_import;
2035}
2036
2037static struct ahash_alg sha_hmac_algs[] = {
2038{
2039        .halg.base.cra_name             = "hmac(sha1)",
2040        .halg.base.cra_driver_name      = "atmel-hmac-sha1",
2041        .halg.base.cra_blocksize        = SHA1_BLOCK_SIZE,
2042
2043        .halg.digestsize = SHA1_DIGEST_SIZE,
2044},
2045{
2046        .halg.base.cra_name             = "hmac(sha224)",
2047        .halg.base.cra_driver_name      = "atmel-hmac-sha224",
2048        .halg.base.cra_blocksize        = SHA224_BLOCK_SIZE,
2049
2050        .halg.digestsize = SHA224_DIGEST_SIZE,
2051},
2052{
2053        .halg.base.cra_name             = "hmac(sha256)",
2054        .halg.base.cra_driver_name      = "atmel-hmac-sha256",
2055        .halg.base.cra_blocksize        = SHA256_BLOCK_SIZE,
2056
2057        .halg.digestsize = SHA256_DIGEST_SIZE,
2058},
2059{
2060        .halg.base.cra_name             = "hmac(sha384)",
2061        .halg.base.cra_driver_name      = "atmel-hmac-sha384",
2062        .halg.base.cra_blocksize        = SHA384_BLOCK_SIZE,
2063
2064        .halg.digestsize = SHA384_DIGEST_SIZE,
2065},
2066{
2067        .halg.base.cra_name             = "hmac(sha512)",
2068        .halg.base.cra_driver_name      = "atmel-hmac-sha512",
2069        .halg.base.cra_blocksize        = SHA512_BLOCK_SIZE,
2070
2071        .halg.digestsize = SHA512_DIGEST_SIZE,
2072},
2073};
2074
2075#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2076/* authenc functions */
2077
2078static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2079static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2080static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2081
2082
2083struct atmel_sha_authenc_ctx {
2084        struct crypto_ahash     *tfm;
2085};
2086
2087struct atmel_sha_authenc_reqctx {
2088        struct atmel_sha_reqctx base;
2089
2090        atmel_aes_authenc_fn_t  cb;
2091        struct atmel_aes_dev    *aes_dev;
2092
2093        /* _init() parameters. */
2094        struct scatterlist      *assoc;
2095        u32                     assoclen;
2096        u32                     textlen;
2097
2098        /* _final() parameters. */
2099        u32                     *digest;
2100        unsigned int            digestlen;
2101};
2102
2103static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2104                                       int err)
2105{
2106        struct ahash_request *req = areq->data;
2107        struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2108
2109        authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2110}
2111
2112static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2113{
2114        struct ahash_request *req = dd->req;
2115        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2116        int err;
2117
2118        /*
2119         * Force atmel_sha_complete() to call req->base.complete(), ie
2120         * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2121         */
2122        dd->force_complete = true;
2123
2124        err = atmel_sha_hw_init(dd);
2125        return authctx->cb(authctx->aes_dev, err, dd->is_async);
2126}
2127
2128bool atmel_sha_authenc_is_ready(void)
2129{
2130        struct atmel_sha_ctx dummy;
2131
2132        dummy.dd = NULL;
2133        return (atmel_sha_find_dev(&dummy) != NULL);
2134}
2135EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2136
2137unsigned int atmel_sha_authenc_get_reqsize(void)
2138{
2139        return sizeof(struct atmel_sha_authenc_reqctx);
2140}
2141EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2142
2143struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2144{
2145        struct atmel_sha_authenc_ctx *auth;
2146        struct crypto_ahash *tfm;
2147        struct atmel_sha_ctx *tctx;
2148        const char *name;
2149        int err = -EINVAL;
2150
2151        switch (mode & SHA_FLAGS_MODE_MASK) {
2152        case SHA_FLAGS_HMAC_SHA1:
2153                name = "atmel-hmac-sha1";
2154                break;
2155
2156        case SHA_FLAGS_HMAC_SHA224:
2157                name = "atmel-hmac-sha224";
2158                break;
2159
2160        case SHA_FLAGS_HMAC_SHA256:
2161                name = "atmel-hmac-sha256";
2162                break;
2163
2164        case SHA_FLAGS_HMAC_SHA384:
2165                name = "atmel-hmac-sha384";
2166                break;
2167
2168        case SHA_FLAGS_HMAC_SHA512:
2169                name = "atmel-hmac-sha512";
2170                break;
2171
2172        default:
2173                goto error;
2174        }
2175
2176        tfm = crypto_alloc_ahash(name, 0, 0);
2177        if (IS_ERR(tfm)) {
2178                err = PTR_ERR(tfm);
2179                goto error;
2180        }
2181        tctx = crypto_ahash_ctx(tfm);
2182        tctx->start = atmel_sha_authenc_start;
2183        tctx->flags = mode;
2184
2185        auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2186        if (!auth) {
2187                err = -ENOMEM;
2188                goto err_free_ahash;
2189        }
2190        auth->tfm = tfm;
2191
2192        return auth;
2193
2194err_free_ahash:
2195        crypto_free_ahash(tfm);
2196error:
2197        return ERR_PTR(err);
2198}
2199EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2200
2201void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2202{
2203        if (auth)
2204                crypto_free_ahash(auth->tfm);
2205        kfree(auth);
2206}
2207EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2208
2209int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2210                             const u8 *key, unsigned int keylen, u32 flags)
2211{
2212        struct crypto_ahash *tfm = auth->tfm;
2213
2214        crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2215        crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2216        return crypto_ahash_setkey(tfm, key, keylen);
2217}
2218EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2219
2220int atmel_sha_authenc_schedule(struct ahash_request *req,
2221                               struct atmel_sha_authenc_ctx *auth,
2222                               atmel_aes_authenc_fn_t cb,
2223                               struct atmel_aes_dev *aes_dev)
2224{
2225        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2226        struct atmel_sha_reqctx *ctx = &authctx->base;
2227        struct crypto_ahash *tfm = auth->tfm;
2228        struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2229        struct atmel_sha_dev *dd;
2230
2231        /* Reset request context (MUST be done first). */
2232        memset(authctx, 0, sizeof(*authctx));
2233
2234        /* Get SHA device. */
2235        dd = atmel_sha_find_dev(tctx);
2236        if (!dd)
2237                return cb(aes_dev, -ENODEV, false);
2238
2239        /* Init request context. */
2240        ctx->dd = dd;
2241        ctx->buflen = SHA_BUFFER_LEN;
2242        authctx->cb = cb;
2243        authctx->aes_dev = aes_dev;
2244        ahash_request_set_tfm(req, tfm);
2245        ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2246
2247        return atmel_sha_handle_queue(dd, req);
2248}
2249EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2250
2251int atmel_sha_authenc_init(struct ahash_request *req,
2252                           struct scatterlist *assoc, unsigned int assoclen,
2253                           unsigned int textlen,
2254                           atmel_aes_authenc_fn_t cb,
2255                           struct atmel_aes_dev *aes_dev)
2256{
2257        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2258        struct atmel_sha_reqctx *ctx = &authctx->base;
2259        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2260        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2261        struct atmel_sha_dev *dd = ctx->dd;
2262
2263        if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2264                return atmel_sha_complete(dd, -EINVAL);
2265
2266        authctx->cb = cb;
2267        authctx->aes_dev = aes_dev;
2268        authctx->assoc = assoc;
2269        authctx->assoclen = assoclen;
2270        authctx->textlen = textlen;
2271
2272        ctx->flags = hmac->base.flags;
2273        return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2274}
2275EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2276
2277static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2278{
2279        struct ahash_request *req = dd->req;
2280        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2281        struct atmel_sha_reqctx *ctx = &authctx->base;
2282        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2283        struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2284        size_t hs = ctx->hash_size;
2285        size_t i, num_words = hs / sizeof(u32);
2286        u32 mr, msg_size;
2287
2288        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2289        for (i = 0; i < num_words; ++i)
2290                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2291
2292        atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2293        for (i = 0; i < num_words; ++i)
2294                atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2295
2296        mr = (SHA_MR_MODE_IDATAR0 |
2297              SHA_MR_HMAC |
2298              SHA_MR_DUALBUFF);
2299        mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2300        atmel_sha_write(dd, SHA_MR, mr);
2301
2302        msg_size = authctx->assoclen + authctx->textlen;
2303        atmel_sha_write(dd, SHA_MSR, msg_size);
2304        atmel_sha_write(dd, SHA_BCR, msg_size);
2305
2306        atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2307
2308        /* Process assoc data. */
2309        return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2310                                   true, false,
2311                                   atmel_sha_authenc_init_done);
2312}
2313
2314static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2315{
2316        struct ahash_request *req = dd->req;
2317        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2318
2319        return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2320}
2321
2322int atmel_sha_authenc_final(struct ahash_request *req,
2323                            u32 *digest, unsigned int digestlen,
2324                            atmel_aes_authenc_fn_t cb,
2325                            struct atmel_aes_dev *aes_dev)
2326{
2327        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2328        struct atmel_sha_reqctx *ctx = &authctx->base;
2329        struct atmel_sha_dev *dd = ctx->dd;
2330
2331        switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2332        case SHA_FLAGS_SHA1:
2333                authctx->digestlen = SHA1_DIGEST_SIZE;
2334                break;
2335
2336        case SHA_FLAGS_SHA224:
2337                authctx->digestlen = SHA224_DIGEST_SIZE;
2338                break;
2339
2340        case SHA_FLAGS_SHA256:
2341                authctx->digestlen = SHA256_DIGEST_SIZE;
2342                break;
2343
2344        case SHA_FLAGS_SHA384:
2345                authctx->digestlen = SHA384_DIGEST_SIZE;
2346                break;
2347
2348        case SHA_FLAGS_SHA512:
2349                authctx->digestlen = SHA512_DIGEST_SIZE;
2350                break;
2351
2352        default:
2353                return atmel_sha_complete(dd, -EINVAL);
2354        }
2355        if (authctx->digestlen > digestlen)
2356                authctx->digestlen = digestlen;
2357
2358        authctx->cb = cb;
2359        authctx->aes_dev = aes_dev;
2360        authctx->digest = digest;
2361        return atmel_sha_wait_for_data_ready(dd,
2362                                             atmel_sha_authenc_final_done);
2363}
2364EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2365
2366static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2367{
2368        struct ahash_request *req = dd->req;
2369        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2370        size_t i, num_words = authctx->digestlen / sizeof(u32);
2371
2372        for (i = 0; i < num_words; ++i)
2373                authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2374
2375        return atmel_sha_complete(dd, 0);
2376}
2377
2378void atmel_sha_authenc_abort(struct ahash_request *req)
2379{
2380        struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2381        struct atmel_sha_reqctx *ctx = &authctx->base;
2382        struct atmel_sha_dev *dd = ctx->dd;
2383
2384        /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2385        dd->is_async = false;
2386        dd->force_complete = false;
2387        (void)atmel_sha_complete(dd, 0);
2388}
2389EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2390
2391#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2392
2393
2394static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2395{
2396        int i;
2397
2398        if (dd->caps.has_hmac)
2399                for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2400                        crypto_unregister_ahash(&sha_hmac_algs[i]);
2401
2402        for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2403                crypto_unregister_ahash(&sha_1_256_algs[i]);
2404
2405        if (dd->caps.has_sha224)
2406                crypto_unregister_ahash(&sha_224_alg);
2407
2408        if (dd->caps.has_sha_384_512) {
2409                for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2410                        crypto_unregister_ahash(&sha_384_512_algs[i]);
2411        }
2412}
2413
2414static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2415{
2416        int err, i, j;
2417
2418        for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2419                atmel_sha_alg_init(&sha_1_256_algs[i]);
2420
2421                err = crypto_register_ahash(&sha_1_256_algs[i]);
2422                if (err)
2423                        goto err_sha_1_256_algs;
2424        }
2425
2426        if (dd->caps.has_sha224) {
2427                atmel_sha_alg_init(&sha_224_alg);
2428
2429                err = crypto_register_ahash(&sha_224_alg);
2430                if (err)
2431                        goto err_sha_224_algs;
2432        }
2433
2434        if (dd->caps.has_sha_384_512) {
2435                for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2436                        atmel_sha_alg_init(&sha_384_512_algs[i]);
2437
2438                        err = crypto_register_ahash(&sha_384_512_algs[i]);
2439                        if (err)
2440                                goto err_sha_384_512_algs;
2441                }
2442        }
2443
2444        if (dd->caps.has_hmac) {
2445                for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2446                        atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2447
2448                        err = crypto_register_ahash(&sha_hmac_algs[i]);
2449                        if (err)
2450                                goto err_sha_hmac_algs;
2451                }
2452        }
2453
2454        return 0;
2455
2456        /*i = ARRAY_SIZE(sha_hmac_algs);*/
2457err_sha_hmac_algs:
2458        for (j = 0; j < i; j++)
2459                crypto_unregister_ahash(&sha_hmac_algs[j]);
2460        i = ARRAY_SIZE(sha_384_512_algs);
2461err_sha_384_512_algs:
2462        for (j = 0; j < i; j++)
2463                crypto_unregister_ahash(&sha_384_512_algs[j]);
2464        crypto_unregister_ahash(&sha_224_alg);
2465err_sha_224_algs:
2466        i = ARRAY_SIZE(sha_1_256_algs);
2467err_sha_1_256_algs:
2468        for (j = 0; j < i; j++)
2469                crypto_unregister_ahash(&sha_1_256_algs[j]);
2470
2471        return err;
2472}
2473
2474static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2475{
2476        dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2477        if (IS_ERR(dd->dma_lch_in.chan)) {
2478                dev_err(dd->dev, "DMA channel is not available\n");
2479                return PTR_ERR(dd->dma_lch_in.chan);
2480        }
2481
2482        dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2483                SHA_REG_DIN(0);
2484        dd->dma_lch_in.dma_conf.src_maxburst = 1;
2485        dd->dma_lch_in.dma_conf.src_addr_width =
2486                DMA_SLAVE_BUSWIDTH_4_BYTES;
2487        dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2488        dd->dma_lch_in.dma_conf.dst_addr_width =
2489                DMA_SLAVE_BUSWIDTH_4_BYTES;
2490        dd->dma_lch_in.dma_conf.device_fc = false;
2491
2492        return 0;
2493}
2494
2495static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2496{
2497        dma_release_channel(dd->dma_lch_in.chan);
2498}
2499
2500static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2501{
2502
2503        dd->caps.has_dma = 0;
2504        dd->caps.has_dualbuff = 0;
2505        dd->caps.has_sha224 = 0;
2506        dd->caps.has_sha_384_512 = 0;
2507        dd->caps.has_uihv = 0;
2508        dd->caps.has_hmac = 0;
2509
2510        /* keep only major version number */
2511        switch (dd->hw_version & 0xff0) {
2512        case 0x510:
2513                dd->caps.has_dma = 1;
2514                dd->caps.has_dualbuff = 1;
2515                dd->caps.has_sha224 = 1;
2516                dd->caps.has_sha_384_512 = 1;
2517                dd->caps.has_uihv = 1;
2518                dd->caps.has_hmac = 1;
2519                break;
2520        case 0x420:
2521                dd->caps.has_dma = 1;
2522                dd->caps.has_dualbuff = 1;
2523                dd->caps.has_sha224 = 1;
2524                dd->caps.has_sha_384_512 = 1;
2525                dd->caps.has_uihv = 1;
2526                break;
2527        case 0x410:
2528                dd->caps.has_dma = 1;
2529                dd->caps.has_dualbuff = 1;
2530                dd->caps.has_sha224 = 1;
2531                dd->caps.has_sha_384_512 = 1;
2532                break;
2533        case 0x400:
2534                dd->caps.has_dma = 1;
2535                dd->caps.has_dualbuff = 1;
2536                dd->caps.has_sha224 = 1;
2537                break;
2538        case 0x320:
2539                break;
2540        default:
2541                dev_warn(dd->dev,
2542                                "Unmanaged sha version, set minimum capabilities\n");
2543                break;
2544        }
2545}
2546
2547#if defined(CONFIG_OF)
2548static const struct of_device_id atmel_sha_dt_ids[] = {
2549        { .compatible = "atmel,at91sam9g46-sha" },
2550        { /* sentinel */ }
2551};
2552
2553MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2554#endif
2555
2556static int atmel_sha_probe(struct platform_device *pdev)
2557{
2558        struct atmel_sha_dev *sha_dd;
2559        struct device *dev = &pdev->dev;
2560        struct resource *sha_res;
2561        int err;
2562
2563        sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2564        if (!sha_dd)
2565                return -ENOMEM;
2566
2567        sha_dd->dev = dev;
2568
2569        platform_set_drvdata(pdev, sha_dd);
2570
2571        INIT_LIST_HEAD(&sha_dd->list);
2572        spin_lock_init(&sha_dd->lock);
2573
2574        tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2575                                        (unsigned long)sha_dd);
2576        tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2577                                        (unsigned long)sha_dd);
2578
2579        crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2580
2581        /* Get the base address */
2582        sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583        if (!sha_res) {
2584                dev_err(dev, "no MEM resource info\n");
2585                err = -ENODEV;
2586                goto err_tasklet_kill;
2587        }
2588        sha_dd->phys_base = sha_res->start;
2589
2590        /* Get the IRQ */
2591        sha_dd->irq = platform_get_irq(pdev,  0);
2592        if (sha_dd->irq < 0) {
2593                err = sha_dd->irq;
2594                goto err_tasklet_kill;
2595        }
2596
2597        err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2598                               IRQF_SHARED, "atmel-sha", sha_dd);
2599        if (err) {
2600                dev_err(dev, "unable to request sha irq.\n");
2601                goto err_tasklet_kill;
2602        }
2603
2604        /* Initializing the clock */
2605        sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2606        if (IS_ERR(sha_dd->iclk)) {
2607                dev_err(dev, "clock initialization failed.\n");
2608                err = PTR_ERR(sha_dd->iclk);
2609                goto err_tasklet_kill;
2610        }
2611
2612        sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2613        if (IS_ERR(sha_dd->io_base)) {
2614                dev_err(dev, "can't ioremap\n");
2615                err = PTR_ERR(sha_dd->io_base);
2616                goto err_tasklet_kill;
2617        }
2618
2619        err = clk_prepare(sha_dd->iclk);
2620        if (err)
2621                goto err_tasklet_kill;
2622
2623        err = atmel_sha_hw_version_init(sha_dd);
2624        if (err)
2625                goto err_iclk_unprepare;
2626
2627        atmel_sha_get_cap(sha_dd);
2628
2629        if (sha_dd->caps.has_dma) {
2630                err = atmel_sha_dma_init(sha_dd);
2631                if (err)
2632                        goto err_iclk_unprepare;
2633
2634                dev_info(dev, "using %s for DMA transfers\n",
2635                                dma_chan_name(sha_dd->dma_lch_in.chan));
2636        }
2637
2638        spin_lock(&atmel_sha.lock);
2639        list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2640        spin_unlock(&atmel_sha.lock);
2641
2642        err = atmel_sha_register_algs(sha_dd);
2643        if (err)
2644                goto err_algs;
2645
2646        dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2647                        sha_dd->caps.has_sha224 ? "/SHA224" : "",
2648                        sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2649
2650        return 0;
2651
2652err_algs:
2653        spin_lock(&atmel_sha.lock);
2654        list_del(&sha_dd->list);
2655        spin_unlock(&atmel_sha.lock);
2656        if (sha_dd->caps.has_dma)
2657                atmel_sha_dma_cleanup(sha_dd);
2658err_iclk_unprepare:
2659        clk_unprepare(sha_dd->iclk);
2660err_tasklet_kill:
2661        tasklet_kill(&sha_dd->queue_task);
2662        tasklet_kill(&sha_dd->done_task);
2663
2664        return err;
2665}
2666
2667static int atmel_sha_remove(struct platform_device *pdev)
2668{
2669        struct atmel_sha_dev *sha_dd;
2670
2671        sha_dd = platform_get_drvdata(pdev);
2672        if (!sha_dd)
2673                return -ENODEV;
2674        spin_lock(&atmel_sha.lock);
2675        list_del(&sha_dd->list);
2676        spin_unlock(&atmel_sha.lock);
2677
2678        atmel_sha_unregister_algs(sha_dd);
2679
2680        tasklet_kill(&sha_dd->queue_task);
2681        tasklet_kill(&sha_dd->done_task);
2682
2683        if (sha_dd->caps.has_dma)
2684                atmel_sha_dma_cleanup(sha_dd);
2685
2686        clk_unprepare(sha_dd->iclk);
2687
2688        return 0;
2689}
2690
2691static struct platform_driver atmel_sha_driver = {
2692        .probe          = atmel_sha_probe,
2693        .remove         = atmel_sha_remove,
2694        .driver         = {
2695                .name   = "atmel_sha",
2696                .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2697        },
2698};
2699
2700module_platform_driver(atmel_sha_driver);
2701
2702MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2703MODULE_LICENSE("GPL v2");
2704MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2705