1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/of_device.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <linux/cryptohash.h>
35#include <crypto/scatterwalk.h>
36#include <crypto/algapi.h>
37#include <crypto/sha.h>
38#include <crypto/hash.h>
39#include <crypto/internal/hash.h>
40#include "atmel-sha-regs.h"
41#include "atmel-authenc.h"
42
43#define ATMEL_SHA_PRIORITY 300
44
45
46#define SHA_FLAGS_BUSY BIT(0)
47#define SHA_FLAGS_FINAL BIT(1)
48#define SHA_FLAGS_DMA_ACTIVE BIT(2)
49#define SHA_FLAGS_OUTPUT_READY BIT(3)
50#define SHA_FLAGS_INIT BIT(4)
51#define SHA_FLAGS_CPU BIT(5)
52#define SHA_FLAGS_DMA_READY BIT(6)
53#define SHA_FLAGS_DUMP_REG BIT(7)
54
55
56
57#define SHA_FLAGS_FINUP BIT(16)
58#define SHA_FLAGS_SG BIT(17)
59#define SHA_FLAGS_ERROR BIT(23)
60#define SHA_FLAGS_PAD BIT(24)
61#define SHA_FLAGS_RESTORE BIT(25)
62#define SHA_FLAGS_IDATAR0 BIT(26)
63#define SHA_FLAGS_WAIT_DATARDY BIT(27)
64
65#define SHA_OP_INIT 0
66#define SHA_OP_UPDATE 1
67#define SHA_OP_FINAL 2
68#define SHA_OP_DIGEST 3
69
70#define SHA_BUFFER_LEN (PAGE_SIZE / 16)
71
72#define ATMEL_SHA_DMA_THRESHOLD 56
73
74struct atmel_sha_caps {
75 bool has_dma;
76 bool has_dualbuff;
77 bool has_sha224;
78 bool has_sha_384_512;
79 bool has_uihv;
80 bool has_hmac;
81};
82
83struct atmel_sha_dev;
84
85
86
87
88
89struct atmel_sha_reqctx {
90 struct atmel_sha_dev *dd;
91 unsigned long flags;
92 unsigned long op;
93
94 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95 u64 digcnt[2];
96 size_t bufcnt;
97 size_t buflen;
98 dma_addr_t dma_addr;
99
100
101 struct scatterlist *sg;
102 unsigned int offset;
103 unsigned int total;
104
105 size_t block_size;
106 size_t hash_size;
107
108 u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109};
110
111typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112
113struct atmel_sha_ctx {
114 struct atmel_sha_dev *dd;
115 atmel_sha_fn_t start;
116
117 unsigned long flags;
118};
119
120#define ATMEL_SHA_QUEUE_LENGTH 50
121
122struct atmel_sha_dma {
123 struct dma_chan *chan;
124 struct dma_slave_config dma_conf;
125 struct scatterlist *sg;
126 int nents;
127 unsigned int last_sg_length;
128};
129
130struct atmel_sha_dev {
131 struct list_head list;
132 unsigned long phys_base;
133 struct device *dev;
134 struct clk *iclk;
135 int irq;
136 void __iomem *io_base;
137
138 spinlock_t lock;
139 struct tasklet_struct done_task;
140 struct tasklet_struct queue_task;
141
142 unsigned long flags;
143 struct crypto_queue queue;
144 struct ahash_request *req;
145 bool is_async;
146 bool force_complete;
147 atmel_sha_fn_t resume;
148 atmel_sha_fn_t cpu_transfer_complete;
149
150 struct atmel_sha_dma dma_lch_in;
151
152 struct atmel_sha_caps caps;
153
154 struct scatterlist tmp;
155
156 u32 hw_version;
157};
158
159struct atmel_sha_drv {
160 struct list_head dev_list;
161 spinlock_t lock;
162};
163
164static struct atmel_sha_drv atmel_sha = {
165 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167};
168
169#ifdef VERBOSE_DEBUG
170static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171{
172 switch (offset) {
173 case SHA_CR:
174 return "CR";
175
176 case SHA_MR:
177 return "MR";
178
179 case SHA_IER:
180 return "IER";
181
182 case SHA_IDR:
183 return "IDR";
184
185 case SHA_IMR:
186 return "IMR";
187
188 case SHA_ISR:
189 return "ISR";
190
191 case SHA_MSR:
192 return "MSR";
193
194 case SHA_BCR:
195 return "BCR";
196
197 case SHA_REG_DIN(0):
198 case SHA_REG_DIN(1):
199 case SHA_REG_DIN(2):
200 case SHA_REG_DIN(3):
201 case SHA_REG_DIN(4):
202 case SHA_REG_DIN(5):
203 case SHA_REG_DIN(6):
204 case SHA_REG_DIN(7):
205 case SHA_REG_DIN(8):
206 case SHA_REG_DIN(9):
207 case SHA_REG_DIN(10):
208 case SHA_REG_DIN(11):
209 case SHA_REG_DIN(12):
210 case SHA_REG_DIN(13):
211 case SHA_REG_DIN(14):
212 case SHA_REG_DIN(15):
213 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214 break;
215
216 case SHA_REG_DIGEST(0):
217 case SHA_REG_DIGEST(1):
218 case SHA_REG_DIGEST(2):
219 case SHA_REG_DIGEST(3):
220 case SHA_REG_DIGEST(4):
221 case SHA_REG_DIGEST(5):
222 case SHA_REG_DIGEST(6):
223 case SHA_REG_DIGEST(7):
224 case SHA_REG_DIGEST(8):
225 case SHA_REG_DIGEST(9):
226 case SHA_REG_DIGEST(10):
227 case SHA_REG_DIGEST(11):
228 case SHA_REG_DIGEST(12):
229 case SHA_REG_DIGEST(13):
230 case SHA_REG_DIGEST(14):
231 case SHA_REG_DIGEST(15):
232 if (wr)
233 snprintf(tmp, sz, "IDATAR[%u]",
234 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235 else
236 snprintf(tmp, sz, "ODATAR[%u]",
237 (offset - SHA_REG_DIGEST(0)) >> 2);
238 break;
239
240 case SHA_HW_VERSION:
241 return "HWVER";
242
243 default:
244 snprintf(tmp, sz, "0x%02x", offset);
245 break;
246 }
247
248 return tmp;
249}
250
251#endif
252
253static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254{
255 u32 value = readl_relaxed(dd->io_base + offset);
256
257#ifdef VERBOSE_DEBUG
258 if (dd->flags & SHA_FLAGS_DUMP_REG) {
259 char tmp[16];
260
261 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263 }
264#endif
265
266 return value;
267}
268
269static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270 u32 offset, u32 value)
271{
272#ifdef VERBOSE_DEBUG
273 if (dd->flags & SHA_FLAGS_DUMP_REG) {
274 char tmp[16];
275
276 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278 }
279#endif
280
281 writel_relaxed(value, dd->io_base + offset);
282}
283
284static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285{
286 struct ahash_request *req = dd->req;
287
288 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290 SHA_FLAGS_DUMP_REG);
291
292 clk_disable(dd->iclk);
293
294 if ((dd->is_async || dd->force_complete) && req->base.complete)
295 req->base.complete(&req->base, err);
296
297
298 tasklet_schedule(&dd->queue_task);
299
300 return err;
301}
302
303static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304{
305 size_t count;
306
307 while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308 count = min(ctx->sg->length - ctx->offset, ctx->total);
309 count = min(count, ctx->buflen - ctx->bufcnt);
310
311 if (count <= 0) {
312
313
314
315
316
317
318 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319 ctx->sg = sg_next(ctx->sg);
320 continue;
321 } else {
322 break;
323 }
324 }
325
326 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327 ctx->offset, count, 0);
328
329 ctx->bufcnt += count;
330 ctx->offset += count;
331 ctx->total -= count;
332
333 if (ctx->offset == ctx->sg->length) {
334 ctx->sg = sg_next(ctx->sg);
335 if (ctx->sg)
336 ctx->offset = 0;
337 else
338 ctx->total = 0;
339 }
340 }
341
342 return 0;
343}
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362{
363 unsigned int index, padlen;
364 __be64 bits[2];
365 u64 size[2];
366
367 size[0] = ctx->digcnt[0];
368 size[1] = ctx->digcnt[1];
369
370 size[0] += ctx->bufcnt;
371 if (size[0] < ctx->bufcnt)
372 size[1]++;
373
374 size[0] += length;
375 if (size[0] < length)
376 size[1]++;
377
378 bits[1] = cpu_to_be64(size[0] << 3);
379 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380
381 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382 case SHA_FLAGS_SHA384:
383 case SHA_FLAGS_SHA512:
384 index = ctx->bufcnt & 0x7f;
385 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386 *(ctx->buffer + ctx->bufcnt) = 0x80;
387 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389 ctx->bufcnt += padlen + 16;
390 ctx->flags |= SHA_FLAGS_PAD;
391 break;
392
393 default:
394 index = ctx->bufcnt & 0x3f;
395 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396 *(ctx->buffer + ctx->bufcnt) = 0x80;
397 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399 ctx->bufcnt += padlen + 8;
400 ctx->flags |= SHA_FLAGS_PAD;
401 break;
402 }
403}
404
405static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406{
407 struct atmel_sha_dev *dd = NULL;
408 struct atmel_sha_dev *tmp;
409
410 spin_lock_bh(&atmel_sha.lock);
411 if (!tctx->dd) {
412 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413 dd = tmp;
414 break;
415 }
416 tctx->dd = dd;
417 } else {
418 dd = tctx->dd;
419 }
420
421 spin_unlock_bh(&atmel_sha.lock);
422
423 return dd;
424}
425
426static int atmel_sha_init(struct ahash_request *req)
427{
428 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431 struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432
433 ctx->dd = dd;
434
435 ctx->flags = 0;
436
437 dev_dbg(dd->dev, "init: digest size: %d\n",
438 crypto_ahash_digestsize(tfm));
439
440 switch (crypto_ahash_digestsize(tfm)) {
441 case SHA1_DIGEST_SIZE:
442 ctx->flags |= SHA_FLAGS_SHA1;
443 ctx->block_size = SHA1_BLOCK_SIZE;
444 break;
445 case SHA224_DIGEST_SIZE:
446 ctx->flags |= SHA_FLAGS_SHA224;
447 ctx->block_size = SHA224_BLOCK_SIZE;
448 break;
449 case SHA256_DIGEST_SIZE:
450 ctx->flags |= SHA_FLAGS_SHA256;
451 ctx->block_size = SHA256_BLOCK_SIZE;
452 break;
453 case SHA384_DIGEST_SIZE:
454 ctx->flags |= SHA_FLAGS_SHA384;
455 ctx->block_size = SHA384_BLOCK_SIZE;
456 break;
457 case SHA512_DIGEST_SIZE:
458 ctx->flags |= SHA_FLAGS_SHA512;
459 ctx->block_size = SHA512_BLOCK_SIZE;
460 break;
461 default:
462 return -EINVAL;
463 break;
464 }
465
466 ctx->bufcnt = 0;
467 ctx->digcnt[0] = 0;
468 ctx->digcnt[1] = 0;
469 ctx->buflen = SHA_BUFFER_LEN;
470
471 return 0;
472}
473
474static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
475{
476 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
477 u32 valmr = SHA_MR_MODE_AUTO;
478 unsigned int i, hashsize = 0;
479
480 if (likely(dma)) {
481 if (!dd->caps.has_dma)
482 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
483 valmr = SHA_MR_MODE_PDC;
484 if (dd->caps.has_dualbuff)
485 valmr |= SHA_MR_DUALBUFF;
486 } else {
487 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
488 }
489
490 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
491 case SHA_FLAGS_SHA1:
492 valmr |= SHA_MR_ALGO_SHA1;
493 hashsize = SHA1_DIGEST_SIZE;
494 break;
495
496 case SHA_FLAGS_SHA224:
497 valmr |= SHA_MR_ALGO_SHA224;
498 hashsize = SHA256_DIGEST_SIZE;
499 break;
500
501 case SHA_FLAGS_SHA256:
502 valmr |= SHA_MR_ALGO_SHA256;
503 hashsize = SHA256_DIGEST_SIZE;
504 break;
505
506 case SHA_FLAGS_SHA384:
507 valmr |= SHA_MR_ALGO_SHA384;
508 hashsize = SHA512_DIGEST_SIZE;
509 break;
510
511 case SHA_FLAGS_SHA512:
512 valmr |= SHA_MR_ALGO_SHA512;
513 hashsize = SHA512_DIGEST_SIZE;
514 break;
515
516 default:
517 break;
518 }
519
520
521 if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
522 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
523 } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
524 const u32 *hash = (const u32 *)ctx->digest;
525
526
527
528
529
530
531
532 ctx->flags &= ~SHA_FLAGS_RESTORE;
533 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
534 for (i = 0; i < hashsize / sizeof(u32); ++i)
535 atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
536 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
537 valmr |= SHA_MR_UIHV;
538 }
539
540
541
542
543
544
545
546 atmel_sha_write(dd, SHA_MR, valmr);
547}
548
549static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
550 atmel_sha_fn_t resume)
551{
552 u32 isr = atmel_sha_read(dd, SHA_ISR);
553
554 if (unlikely(isr & SHA_INT_DATARDY))
555 return resume(dd);
556
557 dd->resume = resume;
558 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
559 return -EINPROGRESS;
560}
561
562static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
563 size_t length, int final)
564{
565 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
566 int count, len32;
567 const u32 *buffer = (const u32 *)buf;
568
569 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
570 ctx->digcnt[1], ctx->digcnt[0], length, final);
571
572 atmel_sha_write_ctrl(dd, 0);
573
574
575 ctx->digcnt[0] += length;
576 if (ctx->digcnt[0] < length)
577 ctx->digcnt[1]++;
578
579 if (final)
580 dd->flags |= SHA_FLAGS_FINAL;
581
582 len32 = DIV_ROUND_UP(length, sizeof(u32));
583
584 dd->flags |= SHA_FLAGS_CPU;
585
586 for (count = 0; count < len32; count++)
587 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
588
589 return -EINPROGRESS;
590}
591
592static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
593 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
594{
595 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
596 int len32;
597
598 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
599 ctx->digcnt[1], ctx->digcnt[0], length1, final);
600
601 len32 = DIV_ROUND_UP(length1, sizeof(u32));
602 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
603 atmel_sha_write(dd, SHA_TPR, dma_addr1);
604 atmel_sha_write(dd, SHA_TCR, len32);
605
606 len32 = DIV_ROUND_UP(length2, sizeof(u32));
607 atmel_sha_write(dd, SHA_TNPR, dma_addr2);
608 atmel_sha_write(dd, SHA_TNCR, len32);
609
610 atmel_sha_write_ctrl(dd, 1);
611
612
613 ctx->digcnt[0] += length1;
614 if (ctx->digcnt[0] < length1)
615 ctx->digcnt[1]++;
616
617 if (final)
618 dd->flags |= SHA_FLAGS_FINAL;
619
620 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
621
622
623 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
624
625 return -EINPROGRESS;
626}
627
628static void atmel_sha_dma_callback(void *data)
629{
630 struct atmel_sha_dev *dd = data;
631
632 dd->is_async = true;
633
634
635 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
636}
637
638static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
639 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
640{
641 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
642 struct dma_async_tx_descriptor *in_desc;
643 struct scatterlist sg[2];
644
645 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
646 ctx->digcnt[1], ctx->digcnt[0], length1, final);
647
648 dd->dma_lch_in.dma_conf.src_maxburst = 16;
649 dd->dma_lch_in.dma_conf.dst_maxburst = 16;
650
651 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
652
653 if (length2) {
654 sg_init_table(sg, 2);
655 sg_dma_address(&sg[0]) = dma_addr1;
656 sg_dma_len(&sg[0]) = length1;
657 sg_dma_address(&sg[1]) = dma_addr2;
658 sg_dma_len(&sg[1]) = length2;
659 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
660 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
661 } else {
662 sg_init_table(sg, 1);
663 sg_dma_address(&sg[0]) = dma_addr1;
664 sg_dma_len(&sg[0]) = length1;
665 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
666 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
667 }
668 if (!in_desc)
669 return atmel_sha_complete(dd, -EINVAL);
670
671 in_desc->callback = atmel_sha_dma_callback;
672 in_desc->callback_param = dd;
673
674 atmel_sha_write_ctrl(dd, 1);
675
676
677 ctx->digcnt[0] += length1;
678 if (ctx->digcnt[0] < length1)
679 ctx->digcnt[1]++;
680
681 if (final)
682 dd->flags |= SHA_FLAGS_FINAL;
683
684 dd->flags |= SHA_FLAGS_DMA_ACTIVE;
685
686
687 dmaengine_submit(in_desc);
688 dma_async_issue_pending(dd->dma_lch_in.chan);
689
690 return -EINPROGRESS;
691}
692
693static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
694 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
695{
696 if (dd->caps.has_dma)
697 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
698 dma_addr2, length2, final);
699 else
700 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
701 dma_addr2, length2, final);
702}
703
704static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
705{
706 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
707 int bufcnt;
708
709 atmel_sha_append_sg(ctx);
710 atmel_sha_fill_padding(ctx, 0);
711 bufcnt = ctx->bufcnt;
712 ctx->bufcnt = 0;
713
714 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
715}
716
717static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
718 struct atmel_sha_reqctx *ctx,
719 size_t length, int final)
720{
721 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
722 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
723 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
724 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
725 ctx->block_size);
726 return atmel_sha_complete(dd, -EINVAL);
727 }
728
729 ctx->flags &= ~SHA_FLAGS_SG;
730
731
732 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
733}
734
735static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
736{
737 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
738 unsigned int final;
739 size_t count;
740
741 atmel_sha_append_sg(ctx);
742
743 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
744
745 dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
746 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
747
748 if (final)
749 atmel_sha_fill_padding(ctx, 0);
750
751 if (final || (ctx->bufcnt == ctx->buflen)) {
752 count = ctx->bufcnt;
753 ctx->bufcnt = 0;
754 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
755 }
756
757 return 0;
758}
759
760static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
761{
762 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
763 unsigned int length, final, tail;
764 struct scatterlist *sg;
765 unsigned int count;
766
767 if (!ctx->total)
768 return 0;
769
770 if (ctx->bufcnt || ctx->offset)
771 return atmel_sha_update_dma_slow(dd);
772
773 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
774 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
775
776 sg = ctx->sg;
777
778 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
779 return atmel_sha_update_dma_slow(dd);
780
781 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
782
783 return atmel_sha_update_dma_slow(dd);
784
785 length = min(ctx->total, sg->length);
786
787 if (sg_is_last(sg)) {
788 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
789
790 tail = length & (ctx->block_size - 1);
791 length -= tail;
792 }
793 }
794
795 ctx->total -= length;
796 ctx->offset = length;
797
798 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
799
800
801 if (final) {
802 tail = length & (ctx->block_size - 1);
803 length -= tail;
804 ctx->total += tail;
805 ctx->offset = length;
806
807 sg = ctx->sg;
808 atmel_sha_append_sg(ctx);
809
810 atmel_sha_fill_padding(ctx, length);
811
812 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
813 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
814 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
815 dev_err(dd->dev, "dma %zu bytes error\n",
816 ctx->buflen + ctx->block_size);
817 return atmel_sha_complete(dd, -EINVAL);
818 }
819
820 if (length == 0) {
821 ctx->flags &= ~SHA_FLAGS_SG;
822 count = ctx->bufcnt;
823 ctx->bufcnt = 0;
824 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
825 0, final);
826 } else {
827 ctx->sg = sg;
828 if (!dma_map_sg(dd->dev, ctx->sg, 1,
829 DMA_TO_DEVICE)) {
830 dev_err(dd->dev, "dma_map_sg error\n");
831 return atmel_sha_complete(dd, -EINVAL);
832 }
833
834 ctx->flags |= SHA_FLAGS_SG;
835
836 count = ctx->bufcnt;
837 ctx->bufcnt = 0;
838 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
839 length, ctx->dma_addr, count, final);
840 }
841 }
842
843 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
844 dev_err(dd->dev, "dma_map_sg error\n");
845 return atmel_sha_complete(dd, -EINVAL);
846 }
847
848 ctx->flags |= SHA_FLAGS_SG;
849
850
851 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
852 0, final);
853}
854
855static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
856{
857 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
858
859 if (ctx->flags & SHA_FLAGS_SG) {
860 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
861 if (ctx->sg->length == ctx->offset) {
862 ctx->sg = sg_next(ctx->sg);
863 if (ctx->sg)
864 ctx->offset = 0;
865 }
866 if (ctx->flags & SHA_FLAGS_PAD) {
867 dma_unmap_single(dd->dev, ctx->dma_addr,
868 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
869 }
870 } else {
871 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
872 ctx->block_size, DMA_TO_DEVICE);
873 }
874}
875
876static int atmel_sha_update_req(struct atmel_sha_dev *dd)
877{
878 struct ahash_request *req = dd->req;
879 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
880 int err;
881
882 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
883 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
884
885 if (ctx->flags & SHA_FLAGS_CPU)
886 err = atmel_sha_update_cpu(dd);
887 else
888 err = atmel_sha_update_dma_start(dd);
889
890
891 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
892 err, ctx->digcnt[1], ctx->digcnt[0]);
893
894 return err;
895}
896
897static int atmel_sha_final_req(struct atmel_sha_dev *dd)
898{
899 struct ahash_request *req = dd->req;
900 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
901 int err = 0;
902 int count;
903
904 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
905 atmel_sha_fill_padding(ctx, 0);
906 count = ctx->bufcnt;
907 ctx->bufcnt = 0;
908 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
909 }
910
911 else {
912 atmel_sha_fill_padding(ctx, 0);
913 count = ctx->bufcnt;
914 ctx->bufcnt = 0;
915 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
916 }
917
918 dev_dbg(dd->dev, "final_req: err: %d\n", err);
919
920 return err;
921}
922
923static void atmel_sha_copy_hash(struct ahash_request *req)
924{
925 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
926 u32 *hash = (u32 *)ctx->digest;
927 unsigned int i, hashsize;
928
929 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
930 case SHA_FLAGS_SHA1:
931 hashsize = SHA1_DIGEST_SIZE;
932 break;
933
934 case SHA_FLAGS_SHA224:
935 case SHA_FLAGS_SHA256:
936 hashsize = SHA256_DIGEST_SIZE;
937 break;
938
939 case SHA_FLAGS_SHA384:
940 case SHA_FLAGS_SHA512:
941 hashsize = SHA512_DIGEST_SIZE;
942 break;
943
944 default:
945
946 return;
947 }
948
949 for (i = 0; i < hashsize / sizeof(u32); ++i)
950 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
951 ctx->flags |= SHA_FLAGS_RESTORE;
952}
953
954static void atmel_sha_copy_ready_hash(struct ahash_request *req)
955{
956 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
957
958 if (!req->result)
959 return;
960
961 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
962 default:
963 case SHA_FLAGS_SHA1:
964 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
965 break;
966
967 case SHA_FLAGS_SHA224:
968 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
969 break;
970
971 case SHA_FLAGS_SHA256:
972 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
973 break;
974
975 case SHA_FLAGS_SHA384:
976 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
977 break;
978
979 case SHA_FLAGS_SHA512:
980 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
981 break;
982 }
983}
984
985static int atmel_sha_finish(struct ahash_request *req)
986{
987 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
988 struct atmel_sha_dev *dd = ctx->dd;
989
990 if (ctx->digcnt[0] || ctx->digcnt[1])
991 atmel_sha_copy_ready_hash(req);
992
993 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
994 ctx->digcnt[0], ctx->bufcnt);
995
996 return 0;
997}
998
999static void atmel_sha_finish_req(struct ahash_request *req, int err)
1000{
1001 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1002 struct atmel_sha_dev *dd = ctx->dd;
1003
1004 if (!err) {
1005 atmel_sha_copy_hash(req);
1006 if (SHA_FLAGS_FINAL & dd->flags)
1007 err = atmel_sha_finish(req);
1008 } else {
1009 ctx->flags |= SHA_FLAGS_ERROR;
1010 }
1011
1012
1013 (void)atmel_sha_complete(dd, err);
1014}
1015
1016static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1017{
1018 int err;
1019
1020 err = clk_enable(dd->iclk);
1021 if (err)
1022 return err;
1023
1024 if (!(SHA_FLAGS_INIT & dd->flags)) {
1025 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1026 dd->flags |= SHA_FLAGS_INIT;
1027 }
1028
1029 return 0;
1030}
1031
1032static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1033{
1034 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1035}
1036
1037static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1038{
1039 int err;
1040
1041 err = atmel_sha_hw_init(dd);
1042 if (err)
1043 return err;
1044
1045 dd->hw_version = atmel_sha_get_version(dd);
1046
1047 dev_info(dd->dev,
1048 "version: 0x%x\n", dd->hw_version);
1049
1050 clk_disable(dd->iclk);
1051
1052 return 0;
1053}
1054
1055static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1056 struct ahash_request *req)
1057{
1058 struct crypto_async_request *async_req, *backlog;
1059 struct atmel_sha_ctx *ctx;
1060 unsigned long flags;
1061 bool start_async;
1062 int err = 0, ret = 0;
1063
1064 spin_lock_irqsave(&dd->lock, flags);
1065 if (req)
1066 ret = ahash_enqueue_request(&dd->queue, req);
1067
1068 if (SHA_FLAGS_BUSY & dd->flags) {
1069 spin_unlock_irqrestore(&dd->lock, flags);
1070 return ret;
1071 }
1072
1073 backlog = crypto_get_backlog(&dd->queue);
1074 async_req = crypto_dequeue_request(&dd->queue);
1075 if (async_req)
1076 dd->flags |= SHA_FLAGS_BUSY;
1077
1078 spin_unlock_irqrestore(&dd->lock, flags);
1079
1080 if (!async_req)
1081 return ret;
1082
1083 if (backlog)
1084 backlog->complete(backlog, -EINPROGRESS);
1085
1086 ctx = crypto_tfm_ctx(async_req->tfm);
1087
1088 dd->req = ahash_request_cast(async_req);
1089 start_async = (dd->req != req);
1090 dd->is_async = start_async;
1091 dd->force_complete = false;
1092
1093
1094 err = ctx->start(dd);
1095 return (start_async) ? ret : err;
1096}
1097
1098static int atmel_sha_done(struct atmel_sha_dev *dd);
1099
1100static int atmel_sha_start(struct atmel_sha_dev *dd)
1101{
1102 struct ahash_request *req = dd->req;
1103 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1104 int err;
1105
1106 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1107 ctx->op, req->nbytes);
1108
1109 err = atmel_sha_hw_init(dd);
1110 if (err)
1111 return atmel_sha_complete(dd, err);
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132 dd->resume = atmel_sha_done;
1133 if (ctx->op == SHA_OP_UPDATE) {
1134 err = atmel_sha_update_req(dd);
1135 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1136
1137 err = atmel_sha_final_req(dd);
1138 } else if (ctx->op == SHA_OP_FINAL) {
1139 err = atmel_sha_final_req(dd);
1140 }
1141
1142 if (!err)
1143
1144 atmel_sha_finish_req(req, err);
1145
1146 dev_dbg(dd->dev, "exit, err: %d\n", err);
1147
1148 return err;
1149}
1150
1151static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1152{
1153 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1154 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1155 struct atmel_sha_dev *dd = tctx->dd;
1156
1157 ctx->op = op;
1158
1159 return atmel_sha_handle_queue(dd, req);
1160}
1161
1162static int atmel_sha_update(struct ahash_request *req)
1163{
1164 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1165
1166 if (!req->nbytes)
1167 return 0;
1168
1169 ctx->total = req->nbytes;
1170 ctx->sg = req->src;
1171 ctx->offset = 0;
1172
1173 if (ctx->flags & SHA_FLAGS_FINUP) {
1174 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1175
1176 ctx->flags |= SHA_FLAGS_CPU;
1177 } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1178 atmel_sha_append_sg(ctx);
1179 return 0;
1180 }
1181 return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1182}
1183
1184static int atmel_sha_final(struct ahash_request *req)
1185{
1186 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1187
1188 ctx->flags |= SHA_FLAGS_FINUP;
1189
1190 if (ctx->flags & SHA_FLAGS_ERROR)
1191 return 0;
1192
1193 if (ctx->flags & SHA_FLAGS_PAD)
1194
1195 return atmel_sha_finish(req);
1196
1197 return atmel_sha_enqueue(req, SHA_OP_FINAL);
1198}
1199
1200static int atmel_sha_finup(struct ahash_request *req)
1201{
1202 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1203 int err1, err2;
1204
1205 ctx->flags |= SHA_FLAGS_FINUP;
1206
1207 err1 = atmel_sha_update(req);
1208 if (err1 == -EINPROGRESS ||
1209 (err1 == -EBUSY && (ahash_request_flags(req) &
1210 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1211 return err1;
1212
1213
1214
1215
1216
1217 err2 = atmel_sha_final(req);
1218
1219 return err1 ?: err2;
1220}
1221
1222static int atmel_sha_digest(struct ahash_request *req)
1223{
1224 return atmel_sha_init(req) ?: atmel_sha_finup(req);
1225}
1226
1227
1228static int atmel_sha_export(struct ahash_request *req, void *out)
1229{
1230 const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1231
1232 memcpy(out, ctx, sizeof(*ctx));
1233 return 0;
1234}
1235
1236static int atmel_sha_import(struct ahash_request *req, const void *in)
1237{
1238 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1239
1240 memcpy(ctx, in, sizeof(*ctx));
1241 return 0;
1242}
1243
1244static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1245{
1246 struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1247
1248 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1249 sizeof(struct atmel_sha_reqctx));
1250 ctx->start = atmel_sha_start;
1251
1252 return 0;
1253}
1254
1255static void atmel_sha_alg_init(struct ahash_alg *alg)
1256{
1257 alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1258 alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1259 alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1260 alg->halg.base.cra_module = THIS_MODULE;
1261 alg->halg.base.cra_init = atmel_sha_cra_init;
1262
1263 alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1264
1265 alg->init = atmel_sha_init;
1266 alg->update = atmel_sha_update;
1267 alg->final = atmel_sha_final;
1268 alg->finup = atmel_sha_finup;
1269 alg->digest = atmel_sha_digest;
1270 alg->export = atmel_sha_export;
1271 alg->import = atmel_sha_import;
1272}
1273
1274static struct ahash_alg sha_1_256_algs[] = {
1275{
1276 .halg.base.cra_name = "sha1",
1277 .halg.base.cra_driver_name = "atmel-sha1",
1278 .halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
1279
1280 .halg.digestsize = SHA1_DIGEST_SIZE,
1281},
1282{
1283 .halg.base.cra_name = "sha256",
1284 .halg.base.cra_driver_name = "atmel-sha256",
1285 .halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
1286
1287 .halg.digestsize = SHA256_DIGEST_SIZE,
1288},
1289};
1290
1291static struct ahash_alg sha_224_alg = {
1292 .halg.base.cra_name = "sha224",
1293 .halg.base.cra_driver_name = "atmel-sha224",
1294 .halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
1295
1296 .halg.digestsize = SHA224_DIGEST_SIZE,
1297};
1298
1299static struct ahash_alg sha_384_512_algs[] = {
1300{
1301 .halg.base.cra_name = "sha384",
1302 .halg.base.cra_driver_name = "atmel-sha384",
1303 .halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
1304 .halg.base.cra_alignmask = 0x3,
1305
1306 .halg.digestsize = SHA384_DIGEST_SIZE,
1307},
1308{
1309 .halg.base.cra_name = "sha512",
1310 .halg.base.cra_driver_name = "atmel-sha512",
1311 .halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
1312 .halg.base.cra_alignmask = 0x3,
1313
1314 .halg.digestsize = SHA512_DIGEST_SIZE,
1315},
1316};
1317
1318static void atmel_sha_queue_task(unsigned long data)
1319{
1320 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1321
1322 atmel_sha_handle_queue(dd, NULL);
1323}
1324
1325static int atmel_sha_done(struct atmel_sha_dev *dd)
1326{
1327 int err = 0;
1328
1329 if (SHA_FLAGS_CPU & dd->flags) {
1330 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1331 dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1332 goto finish;
1333 }
1334 } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1335 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1336 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1337 atmel_sha_update_dma_stop(dd);
1338 }
1339 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1340
1341 dd->flags &= ~(SHA_FLAGS_DMA_READY |
1342 SHA_FLAGS_OUTPUT_READY);
1343 err = atmel_sha_update_dma_start(dd);
1344 if (err != -EINPROGRESS)
1345 goto finish;
1346 }
1347 }
1348 return err;
1349
1350finish:
1351
1352 atmel_sha_finish_req(dd->req, err);
1353
1354 return err;
1355}
1356
1357static void atmel_sha_done_task(unsigned long data)
1358{
1359 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1360
1361 dd->is_async = true;
1362 (void)dd->resume(dd);
1363}
1364
1365static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1366{
1367 struct atmel_sha_dev *sha_dd = dev_id;
1368 u32 reg;
1369
1370 reg = atmel_sha_read(sha_dd, SHA_ISR);
1371 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1372 atmel_sha_write(sha_dd, SHA_IDR, reg);
1373 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1374 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1375 if (!(SHA_FLAGS_CPU & sha_dd->flags))
1376 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1377 tasklet_schedule(&sha_dd->done_task);
1378 } else {
1379 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1380 }
1381 return IRQ_HANDLED;
1382 }
1383
1384 return IRQ_NONE;
1385}
1386
1387
1388
1389
1390static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1391 struct scatterlist *sg,
1392 size_t len)
1393{
1394 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1395 struct ahash_request *req = dd->req;
1396 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1397 size_t bs = ctx->block_size;
1398 int nents;
1399
1400 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1401 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1402 return false;
1403
1404
1405
1406
1407
1408 if (len <= sg->length) {
1409 dma->nents = nents + 1;
1410 dma->last_sg_length = sg->length;
1411 sg->length = ALIGN(len, sizeof(u32));
1412 return true;
1413 }
1414
1415
1416 if (!IS_ALIGNED(sg->length, bs))
1417 return false;
1418
1419 len -= sg->length;
1420 }
1421
1422 return false;
1423}
1424
1425static void atmel_sha_dma_callback2(void *data)
1426{
1427 struct atmel_sha_dev *dd = data;
1428 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1429 struct scatterlist *sg;
1430 int nents;
1431
1432 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1433
1434 sg = dma->sg;
1435 for (nents = 0; nents < dma->nents - 1; ++nents)
1436 sg = sg_next(sg);
1437 sg->length = dma->last_sg_length;
1438
1439 dd->is_async = true;
1440 (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1441}
1442
1443static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1444 struct scatterlist *src,
1445 size_t len,
1446 atmel_sha_fn_t resume)
1447{
1448 struct atmel_sha_dma *dma = &dd->dma_lch_in;
1449 struct dma_slave_config *config = &dma->dma_conf;
1450 struct dma_chan *chan = dma->chan;
1451 struct dma_async_tx_descriptor *desc;
1452 dma_cookie_t cookie;
1453 unsigned int sg_len;
1454 int err;
1455
1456 dd->resume = resume;
1457
1458
1459
1460
1461
1462 dma->sg = src;
1463 sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1464 if (!sg_len) {
1465 err = -ENOMEM;
1466 goto exit;
1467 }
1468
1469 config->src_maxburst = 16;
1470 config->dst_maxburst = 16;
1471 err = dmaengine_slave_config(chan, config);
1472 if (err)
1473 goto unmap_sg;
1474
1475 desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1476 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1477 if (!desc) {
1478 err = -ENOMEM;
1479 goto unmap_sg;
1480 }
1481
1482 desc->callback = atmel_sha_dma_callback2;
1483 desc->callback_param = dd;
1484 cookie = dmaengine_submit(desc);
1485 err = dma_submit_error(cookie);
1486 if (err)
1487 goto unmap_sg;
1488
1489 dma_async_issue_pending(chan);
1490
1491 return -EINPROGRESS;
1492
1493unmap_sg:
1494 dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1495exit:
1496 return atmel_sha_complete(dd, err);
1497}
1498
1499
1500
1501
1502static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1503{
1504 struct ahash_request *req = dd->req;
1505 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1506 const u32 *words = (const u32 *)ctx->buffer;
1507 size_t i, num_words;
1508 u32 isr, din, din_inc;
1509
1510 din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1511 for (;;) {
1512
1513 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1514 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1515 atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1516
1517 ctx->offset += ctx->bufcnt;
1518 ctx->total -= ctx->bufcnt;
1519
1520 if (!ctx->total)
1521 break;
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1532 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1533 ctx->offset, ctx->bufcnt, 0);
1534
1535
1536 isr = atmel_sha_read(dd, SHA_ISR);
1537 if (!(isr & SHA_INT_DATARDY)) {
1538
1539 dd->resume = atmel_sha_cpu_transfer;
1540 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1541 return -EINPROGRESS;
1542 }
1543 }
1544
1545 if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1546 return dd->cpu_transfer_complete(dd);
1547
1548 return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1549}
1550
1551static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1552 struct scatterlist *sg,
1553 unsigned int len,
1554 bool idatar0_only,
1555 bool wait_data_ready,
1556 atmel_sha_fn_t resume)
1557{
1558 struct ahash_request *req = dd->req;
1559 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1560
1561 if (!len)
1562 return resume(dd);
1563
1564 ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1565
1566 if (idatar0_only)
1567 ctx->flags |= SHA_FLAGS_IDATAR0;
1568
1569 if (wait_data_ready)
1570 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1571
1572 ctx->sg = sg;
1573 ctx->total = len;
1574 ctx->offset = 0;
1575
1576
1577 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1578 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1579 ctx->offset, ctx->bufcnt, 0);
1580
1581 dd->cpu_transfer_complete = resume;
1582 return atmel_sha_cpu_transfer(dd);
1583}
1584
1585static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1586 const void *data, unsigned int datalen,
1587 bool auto_padding,
1588 atmel_sha_fn_t resume)
1589{
1590 struct ahash_request *req = dd->req;
1591 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1592 u32 msglen = (auto_padding) ? datalen : 0;
1593 u32 mr = SHA_MR_MODE_AUTO;
1594
1595 if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1596 return atmel_sha_complete(dd, -EINVAL);
1597
1598 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1599 atmel_sha_write(dd, SHA_MR, mr);
1600 atmel_sha_write(dd, SHA_MSR, msglen);
1601 atmel_sha_write(dd, SHA_BCR, msglen);
1602 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1603
1604 sg_init_one(&dd->tmp, data, datalen);
1605 return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1606}
1607
1608
1609
1610
1611struct atmel_sha_hmac_key {
1612 bool valid;
1613 unsigned int keylen;
1614 u8 buffer[SHA512_BLOCK_SIZE];
1615 u8 *keydup;
1616};
1617
1618static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1619{
1620 memset(hkey, 0, sizeof(*hkey));
1621}
1622
1623static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1624{
1625 kfree(hkey->keydup);
1626 memset(hkey, 0, sizeof(*hkey));
1627}
1628
1629static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1630 const u8 *key,
1631 unsigned int keylen)
1632{
1633 atmel_sha_hmac_key_release(hkey);
1634
1635 if (keylen > sizeof(hkey->buffer)) {
1636 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1637 if (!hkey->keydup)
1638 return -ENOMEM;
1639
1640 } else {
1641 memcpy(hkey->buffer, key, keylen);
1642 }
1643
1644 hkey->valid = true;
1645 hkey->keylen = keylen;
1646 return 0;
1647}
1648
1649static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1650 const u8 **key,
1651 unsigned int *keylen)
1652{
1653 if (!hkey->valid)
1654 return false;
1655
1656 *keylen = hkey->keylen;
1657 *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1658 return true;
1659}
1660
1661
1662struct atmel_sha_hmac_ctx {
1663 struct atmel_sha_ctx base;
1664
1665 struct atmel_sha_hmac_key hkey;
1666 u32 ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1667 u32 opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1668 atmel_sha_fn_t resume;
1669};
1670
1671static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1672 atmel_sha_fn_t resume);
1673static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1674 const u8 *key, unsigned int keylen);
1675static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1676static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1677static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1678static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1679
1680static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1681static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1682static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1683static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1684
1685static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1686 atmel_sha_fn_t resume)
1687{
1688 struct ahash_request *req = dd->req;
1689 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1690 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1691 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1692 unsigned int keylen;
1693 const u8 *key;
1694 size_t bs;
1695
1696 hmac->resume = resume;
1697 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1698 case SHA_FLAGS_SHA1:
1699 ctx->block_size = SHA1_BLOCK_SIZE;
1700 ctx->hash_size = SHA1_DIGEST_SIZE;
1701 break;
1702
1703 case SHA_FLAGS_SHA224:
1704 ctx->block_size = SHA224_BLOCK_SIZE;
1705 ctx->hash_size = SHA256_DIGEST_SIZE;
1706 break;
1707
1708 case SHA_FLAGS_SHA256:
1709 ctx->block_size = SHA256_BLOCK_SIZE;
1710 ctx->hash_size = SHA256_DIGEST_SIZE;
1711 break;
1712
1713 case SHA_FLAGS_SHA384:
1714 ctx->block_size = SHA384_BLOCK_SIZE;
1715 ctx->hash_size = SHA512_DIGEST_SIZE;
1716 break;
1717
1718 case SHA_FLAGS_SHA512:
1719 ctx->block_size = SHA512_BLOCK_SIZE;
1720 ctx->hash_size = SHA512_DIGEST_SIZE;
1721 break;
1722
1723 default:
1724 return atmel_sha_complete(dd, -EINVAL);
1725 }
1726 bs = ctx->block_size;
1727
1728 if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1729 return resume(dd);
1730
1731
1732 if (unlikely(keylen > bs))
1733 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1734
1735
1736 memcpy((u8 *)hmac->ipad, key, keylen);
1737 memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1738 return atmel_sha_hmac_compute_ipad_hash(dd);
1739}
1740
1741static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742 const u8 *key, unsigned int keylen)
1743{
1744 return atmel_sha_cpu_hash(dd, key, keylen, true,
1745 atmel_sha_hmac_prehash_key_done);
1746}
1747
1748static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1749{
1750 struct ahash_request *req = dd->req;
1751 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1752 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1753 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1754 size_t ds = crypto_ahash_digestsize(tfm);
1755 size_t bs = ctx->block_size;
1756 size_t i, num_words = ds / sizeof(u32);
1757
1758
1759 for (i = 0; i < num_words; ++i)
1760 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1761 memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1762 return atmel_sha_hmac_compute_ipad_hash(dd);
1763}
1764
1765static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1766{
1767 struct ahash_request *req = dd->req;
1768 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1769 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1770 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1771 size_t bs = ctx->block_size;
1772 size_t i, num_words = bs / sizeof(u32);
1773
1774 memcpy(hmac->opad, hmac->ipad, bs);
1775 for (i = 0; i < num_words; ++i) {
1776 hmac->ipad[i] ^= 0x36363636;
1777 hmac->opad[i] ^= 0x5c5c5c5c;
1778 }
1779
1780 return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1781 atmel_sha_hmac_compute_opad_hash);
1782}
1783
1784static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1785{
1786 struct ahash_request *req = dd->req;
1787 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1788 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1789 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1790 size_t bs = ctx->block_size;
1791 size_t hs = ctx->hash_size;
1792 size_t i, num_words = hs / sizeof(u32);
1793
1794 for (i = 0; i < num_words; ++i)
1795 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1796 return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1797 atmel_sha_hmac_setup_done);
1798}
1799
1800static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1801{
1802 struct ahash_request *req = dd->req;
1803 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1804 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1805 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1806 size_t hs = ctx->hash_size;
1807 size_t i, num_words = hs / sizeof(u32);
1808
1809 for (i = 0; i < num_words; ++i)
1810 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1811 atmel_sha_hmac_key_release(&hmac->hkey);
1812 return hmac->resume(dd);
1813}
1814
1815static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1816{
1817 struct ahash_request *req = dd->req;
1818 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819 int err;
1820
1821 err = atmel_sha_hw_init(dd);
1822 if (err)
1823 return atmel_sha_complete(dd, err);
1824
1825 switch (ctx->op) {
1826 case SHA_OP_INIT:
1827 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1828 break;
1829
1830 case SHA_OP_UPDATE:
1831 dd->resume = atmel_sha_done;
1832 err = atmel_sha_update_req(dd);
1833 break;
1834
1835 case SHA_OP_FINAL:
1836 dd->resume = atmel_sha_hmac_final;
1837 err = atmel_sha_final_req(dd);
1838 break;
1839
1840 case SHA_OP_DIGEST:
1841 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1842 break;
1843
1844 default:
1845 return atmel_sha_complete(dd, -EINVAL);
1846 }
1847
1848 return err;
1849}
1850
1851static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1852 unsigned int keylen)
1853{
1854 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1855
1856 return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1857}
1858
1859static int atmel_sha_hmac_init(struct ahash_request *req)
1860{
1861 int err;
1862
1863 err = atmel_sha_init(req);
1864 if (err)
1865 return err;
1866
1867 return atmel_sha_enqueue(req, SHA_OP_INIT);
1868}
1869
1870static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1871{
1872 struct ahash_request *req = dd->req;
1873 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1875 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1876 size_t bs = ctx->block_size;
1877 size_t hs = ctx->hash_size;
1878
1879 ctx->bufcnt = 0;
1880 ctx->digcnt[0] = bs;
1881 ctx->digcnt[1] = 0;
1882 ctx->flags |= SHA_FLAGS_RESTORE;
1883 memcpy(ctx->digest, hmac->ipad, hs);
1884 return atmel_sha_complete(dd, 0);
1885}
1886
1887static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1888{
1889 struct ahash_request *req = dd->req;
1890 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1891 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1892 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1893 u32 *digest = (u32 *)ctx->digest;
1894 size_t ds = crypto_ahash_digestsize(tfm);
1895 size_t bs = ctx->block_size;
1896 size_t hs = ctx->hash_size;
1897 size_t i, num_words;
1898 u32 mr;
1899
1900
1901 num_words = ds / sizeof(u32);
1902 for (i = 0; i < num_words; ++i)
1903 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1904
1905
1906 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1907 num_words = hs / sizeof(u32);
1908 for (i = 0; i < num_words; ++i)
1909 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1910
1911 mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1912 mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1913 atmel_sha_write(dd, SHA_MR, mr);
1914 atmel_sha_write(dd, SHA_MSR, bs + ds);
1915 atmel_sha_write(dd, SHA_BCR, ds);
1916 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1917
1918 sg_init_one(&dd->tmp, digest, ds);
1919 return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1920 atmel_sha_hmac_final_done);
1921}
1922
1923static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1924{
1925
1926
1927
1928
1929
1930 atmel_sha_copy_hash(dd->req);
1931 atmel_sha_copy_ready_hash(dd->req);
1932 return atmel_sha_complete(dd, 0);
1933}
1934
1935static int atmel_sha_hmac_digest(struct ahash_request *req)
1936{
1937 int err;
1938
1939 err = atmel_sha_init(req);
1940 if (err)
1941 return err;
1942
1943 return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1944}
1945
1946static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1947{
1948 struct ahash_request *req = dd->req;
1949 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1950 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1951 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1952 size_t hs = ctx->hash_size;
1953 size_t i, num_words = hs / sizeof(u32);
1954 bool use_dma = false;
1955 u32 mr;
1956
1957
1958 if (!req->nbytes)
1959 return atmel_sha_complete(dd, -EINVAL);
1960
1961
1962 if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1963 atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1964 use_dma = true;
1965
1966
1967 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1968 for (i = 0; i < num_words; ++i)
1969 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1970
1971 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1972 for (i = 0; i < num_words; ++i)
1973 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1974
1975
1976 mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1977 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1978 if (use_dma)
1979 mr |= SHA_MR_MODE_IDATAR0;
1980 else
1981 mr |= SHA_MR_MODE_AUTO;
1982 atmel_sha_write(dd, SHA_MR, mr);
1983
1984 atmel_sha_write(dd, SHA_MSR, req->nbytes);
1985 atmel_sha_write(dd, SHA_BCR, req->nbytes);
1986
1987 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1988
1989
1990 if (use_dma)
1991 return atmel_sha_dma_start(dd, req->src, req->nbytes,
1992 atmel_sha_hmac_final_done);
1993
1994 return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
1995 atmel_sha_hmac_final_done);
1996}
1997
1998static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
1999{
2000 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2001
2002 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2003 sizeof(struct atmel_sha_reqctx));
2004 hmac->base.start = atmel_sha_hmac_start;
2005 atmel_sha_hmac_key_init(&hmac->hkey);
2006
2007 return 0;
2008}
2009
2010static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2011{
2012 struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2013
2014 atmel_sha_hmac_key_release(&hmac->hkey);
2015}
2016
2017static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2018{
2019 alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2020 alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2021 alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2022 alg->halg.base.cra_module = THIS_MODULE;
2023 alg->halg.base.cra_init = atmel_sha_hmac_cra_init;
2024 alg->halg.base.cra_exit = atmel_sha_hmac_cra_exit;
2025
2026 alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2027
2028 alg->init = atmel_sha_hmac_init;
2029 alg->update = atmel_sha_update;
2030 alg->final = atmel_sha_final;
2031 alg->digest = atmel_sha_hmac_digest;
2032 alg->setkey = atmel_sha_hmac_setkey;
2033 alg->export = atmel_sha_export;
2034 alg->import = atmel_sha_import;
2035}
2036
2037static struct ahash_alg sha_hmac_algs[] = {
2038{
2039 .halg.base.cra_name = "hmac(sha1)",
2040 .halg.base.cra_driver_name = "atmel-hmac-sha1",
2041 .halg.base.cra_blocksize = SHA1_BLOCK_SIZE,
2042
2043 .halg.digestsize = SHA1_DIGEST_SIZE,
2044},
2045{
2046 .halg.base.cra_name = "hmac(sha224)",
2047 .halg.base.cra_driver_name = "atmel-hmac-sha224",
2048 .halg.base.cra_blocksize = SHA224_BLOCK_SIZE,
2049
2050 .halg.digestsize = SHA224_DIGEST_SIZE,
2051},
2052{
2053 .halg.base.cra_name = "hmac(sha256)",
2054 .halg.base.cra_driver_name = "atmel-hmac-sha256",
2055 .halg.base.cra_blocksize = SHA256_BLOCK_SIZE,
2056
2057 .halg.digestsize = SHA256_DIGEST_SIZE,
2058},
2059{
2060 .halg.base.cra_name = "hmac(sha384)",
2061 .halg.base.cra_driver_name = "atmel-hmac-sha384",
2062 .halg.base.cra_blocksize = SHA384_BLOCK_SIZE,
2063
2064 .halg.digestsize = SHA384_DIGEST_SIZE,
2065},
2066{
2067 .halg.base.cra_name = "hmac(sha512)",
2068 .halg.base.cra_driver_name = "atmel-hmac-sha512",
2069 .halg.base.cra_blocksize = SHA512_BLOCK_SIZE,
2070
2071 .halg.digestsize = SHA512_DIGEST_SIZE,
2072},
2073};
2074
2075#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2076
2077
2078static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2079static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2080static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2081
2082
2083struct atmel_sha_authenc_ctx {
2084 struct crypto_ahash *tfm;
2085};
2086
2087struct atmel_sha_authenc_reqctx {
2088 struct atmel_sha_reqctx base;
2089
2090 atmel_aes_authenc_fn_t cb;
2091 struct atmel_aes_dev *aes_dev;
2092
2093
2094 struct scatterlist *assoc;
2095 u32 assoclen;
2096 u32 textlen;
2097
2098
2099 u32 *digest;
2100 unsigned int digestlen;
2101};
2102
2103static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2104 int err)
2105{
2106 struct ahash_request *req = areq->data;
2107 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2108
2109 authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2110}
2111
2112static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2113{
2114 struct ahash_request *req = dd->req;
2115 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2116 int err;
2117
2118
2119
2120
2121
2122 dd->force_complete = true;
2123
2124 err = atmel_sha_hw_init(dd);
2125 return authctx->cb(authctx->aes_dev, err, dd->is_async);
2126}
2127
2128bool atmel_sha_authenc_is_ready(void)
2129{
2130 struct atmel_sha_ctx dummy;
2131
2132 dummy.dd = NULL;
2133 return (atmel_sha_find_dev(&dummy) != NULL);
2134}
2135EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2136
2137unsigned int atmel_sha_authenc_get_reqsize(void)
2138{
2139 return sizeof(struct atmel_sha_authenc_reqctx);
2140}
2141EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2142
2143struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2144{
2145 struct atmel_sha_authenc_ctx *auth;
2146 struct crypto_ahash *tfm;
2147 struct atmel_sha_ctx *tctx;
2148 const char *name;
2149 int err = -EINVAL;
2150
2151 switch (mode & SHA_FLAGS_MODE_MASK) {
2152 case SHA_FLAGS_HMAC_SHA1:
2153 name = "atmel-hmac-sha1";
2154 break;
2155
2156 case SHA_FLAGS_HMAC_SHA224:
2157 name = "atmel-hmac-sha224";
2158 break;
2159
2160 case SHA_FLAGS_HMAC_SHA256:
2161 name = "atmel-hmac-sha256";
2162 break;
2163
2164 case SHA_FLAGS_HMAC_SHA384:
2165 name = "atmel-hmac-sha384";
2166 break;
2167
2168 case SHA_FLAGS_HMAC_SHA512:
2169 name = "atmel-hmac-sha512";
2170 break;
2171
2172 default:
2173 goto error;
2174 }
2175
2176 tfm = crypto_alloc_ahash(name, 0, 0);
2177 if (IS_ERR(tfm)) {
2178 err = PTR_ERR(tfm);
2179 goto error;
2180 }
2181 tctx = crypto_ahash_ctx(tfm);
2182 tctx->start = atmel_sha_authenc_start;
2183 tctx->flags = mode;
2184
2185 auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2186 if (!auth) {
2187 err = -ENOMEM;
2188 goto err_free_ahash;
2189 }
2190 auth->tfm = tfm;
2191
2192 return auth;
2193
2194err_free_ahash:
2195 crypto_free_ahash(tfm);
2196error:
2197 return ERR_PTR(err);
2198}
2199EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2200
2201void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2202{
2203 if (auth)
2204 crypto_free_ahash(auth->tfm);
2205 kfree(auth);
2206}
2207EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2208
2209int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2210 const u8 *key, unsigned int keylen, u32 flags)
2211{
2212 struct crypto_ahash *tfm = auth->tfm;
2213
2214 crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2215 crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2216 return crypto_ahash_setkey(tfm, key, keylen);
2217}
2218EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2219
2220int atmel_sha_authenc_schedule(struct ahash_request *req,
2221 struct atmel_sha_authenc_ctx *auth,
2222 atmel_aes_authenc_fn_t cb,
2223 struct atmel_aes_dev *aes_dev)
2224{
2225 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2226 struct atmel_sha_reqctx *ctx = &authctx->base;
2227 struct crypto_ahash *tfm = auth->tfm;
2228 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2229 struct atmel_sha_dev *dd;
2230
2231
2232 memset(authctx, 0, sizeof(*authctx));
2233
2234
2235 dd = atmel_sha_find_dev(tctx);
2236 if (!dd)
2237 return cb(aes_dev, -ENODEV, false);
2238
2239
2240 ctx->dd = dd;
2241 ctx->buflen = SHA_BUFFER_LEN;
2242 authctx->cb = cb;
2243 authctx->aes_dev = aes_dev;
2244 ahash_request_set_tfm(req, tfm);
2245 ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2246
2247 return atmel_sha_handle_queue(dd, req);
2248}
2249EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2250
2251int atmel_sha_authenc_init(struct ahash_request *req,
2252 struct scatterlist *assoc, unsigned int assoclen,
2253 unsigned int textlen,
2254 atmel_aes_authenc_fn_t cb,
2255 struct atmel_aes_dev *aes_dev)
2256{
2257 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2258 struct atmel_sha_reqctx *ctx = &authctx->base;
2259 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2260 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2261 struct atmel_sha_dev *dd = ctx->dd;
2262
2263 if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2264 return atmel_sha_complete(dd, -EINVAL);
2265
2266 authctx->cb = cb;
2267 authctx->aes_dev = aes_dev;
2268 authctx->assoc = assoc;
2269 authctx->assoclen = assoclen;
2270 authctx->textlen = textlen;
2271
2272 ctx->flags = hmac->base.flags;
2273 return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2274}
2275EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2276
2277static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2278{
2279 struct ahash_request *req = dd->req;
2280 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2281 struct atmel_sha_reqctx *ctx = &authctx->base;
2282 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2283 struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2284 size_t hs = ctx->hash_size;
2285 size_t i, num_words = hs / sizeof(u32);
2286 u32 mr, msg_size;
2287
2288 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2289 for (i = 0; i < num_words; ++i)
2290 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2291
2292 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2293 for (i = 0; i < num_words; ++i)
2294 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2295
2296 mr = (SHA_MR_MODE_IDATAR0 |
2297 SHA_MR_HMAC |
2298 SHA_MR_DUALBUFF);
2299 mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2300 atmel_sha_write(dd, SHA_MR, mr);
2301
2302 msg_size = authctx->assoclen + authctx->textlen;
2303 atmel_sha_write(dd, SHA_MSR, msg_size);
2304 atmel_sha_write(dd, SHA_BCR, msg_size);
2305
2306 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2307
2308
2309 return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2310 true, false,
2311 atmel_sha_authenc_init_done);
2312}
2313
2314static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2315{
2316 struct ahash_request *req = dd->req;
2317 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2318
2319 return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2320}
2321
2322int atmel_sha_authenc_final(struct ahash_request *req,
2323 u32 *digest, unsigned int digestlen,
2324 atmel_aes_authenc_fn_t cb,
2325 struct atmel_aes_dev *aes_dev)
2326{
2327 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2328 struct atmel_sha_reqctx *ctx = &authctx->base;
2329 struct atmel_sha_dev *dd = ctx->dd;
2330
2331 switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2332 case SHA_FLAGS_SHA1:
2333 authctx->digestlen = SHA1_DIGEST_SIZE;
2334 break;
2335
2336 case SHA_FLAGS_SHA224:
2337 authctx->digestlen = SHA224_DIGEST_SIZE;
2338 break;
2339
2340 case SHA_FLAGS_SHA256:
2341 authctx->digestlen = SHA256_DIGEST_SIZE;
2342 break;
2343
2344 case SHA_FLAGS_SHA384:
2345 authctx->digestlen = SHA384_DIGEST_SIZE;
2346 break;
2347
2348 case SHA_FLAGS_SHA512:
2349 authctx->digestlen = SHA512_DIGEST_SIZE;
2350 break;
2351
2352 default:
2353 return atmel_sha_complete(dd, -EINVAL);
2354 }
2355 if (authctx->digestlen > digestlen)
2356 authctx->digestlen = digestlen;
2357
2358 authctx->cb = cb;
2359 authctx->aes_dev = aes_dev;
2360 authctx->digest = digest;
2361 return atmel_sha_wait_for_data_ready(dd,
2362 atmel_sha_authenc_final_done);
2363}
2364EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2365
2366static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2367{
2368 struct ahash_request *req = dd->req;
2369 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2370 size_t i, num_words = authctx->digestlen / sizeof(u32);
2371
2372 for (i = 0; i < num_words; ++i)
2373 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2374
2375 return atmel_sha_complete(dd, 0);
2376}
2377
2378void atmel_sha_authenc_abort(struct ahash_request *req)
2379{
2380 struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2381 struct atmel_sha_reqctx *ctx = &authctx->base;
2382 struct atmel_sha_dev *dd = ctx->dd;
2383
2384
2385 dd->is_async = false;
2386 dd->force_complete = false;
2387 (void)atmel_sha_complete(dd, 0);
2388}
2389EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2390
2391#endif
2392
2393
2394static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2395{
2396 int i;
2397
2398 if (dd->caps.has_hmac)
2399 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2400 crypto_unregister_ahash(&sha_hmac_algs[i]);
2401
2402 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2403 crypto_unregister_ahash(&sha_1_256_algs[i]);
2404
2405 if (dd->caps.has_sha224)
2406 crypto_unregister_ahash(&sha_224_alg);
2407
2408 if (dd->caps.has_sha_384_512) {
2409 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2410 crypto_unregister_ahash(&sha_384_512_algs[i]);
2411 }
2412}
2413
2414static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2415{
2416 int err, i, j;
2417
2418 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2419 atmel_sha_alg_init(&sha_1_256_algs[i]);
2420
2421 err = crypto_register_ahash(&sha_1_256_algs[i]);
2422 if (err)
2423 goto err_sha_1_256_algs;
2424 }
2425
2426 if (dd->caps.has_sha224) {
2427 atmel_sha_alg_init(&sha_224_alg);
2428
2429 err = crypto_register_ahash(&sha_224_alg);
2430 if (err)
2431 goto err_sha_224_algs;
2432 }
2433
2434 if (dd->caps.has_sha_384_512) {
2435 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2436 atmel_sha_alg_init(&sha_384_512_algs[i]);
2437
2438 err = crypto_register_ahash(&sha_384_512_algs[i]);
2439 if (err)
2440 goto err_sha_384_512_algs;
2441 }
2442 }
2443
2444 if (dd->caps.has_hmac) {
2445 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2446 atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2447
2448 err = crypto_register_ahash(&sha_hmac_algs[i]);
2449 if (err)
2450 goto err_sha_hmac_algs;
2451 }
2452 }
2453
2454 return 0;
2455
2456
2457err_sha_hmac_algs:
2458 for (j = 0; j < i; j++)
2459 crypto_unregister_ahash(&sha_hmac_algs[j]);
2460 i = ARRAY_SIZE(sha_384_512_algs);
2461err_sha_384_512_algs:
2462 for (j = 0; j < i; j++)
2463 crypto_unregister_ahash(&sha_384_512_algs[j]);
2464 crypto_unregister_ahash(&sha_224_alg);
2465err_sha_224_algs:
2466 i = ARRAY_SIZE(sha_1_256_algs);
2467err_sha_1_256_algs:
2468 for (j = 0; j < i; j++)
2469 crypto_unregister_ahash(&sha_1_256_algs[j]);
2470
2471 return err;
2472}
2473
2474static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2475{
2476 dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2477 if (IS_ERR(dd->dma_lch_in.chan)) {
2478 dev_err(dd->dev, "DMA channel is not available\n");
2479 return PTR_ERR(dd->dma_lch_in.chan);
2480 }
2481
2482 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2483 SHA_REG_DIN(0);
2484 dd->dma_lch_in.dma_conf.src_maxburst = 1;
2485 dd->dma_lch_in.dma_conf.src_addr_width =
2486 DMA_SLAVE_BUSWIDTH_4_BYTES;
2487 dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2488 dd->dma_lch_in.dma_conf.dst_addr_width =
2489 DMA_SLAVE_BUSWIDTH_4_BYTES;
2490 dd->dma_lch_in.dma_conf.device_fc = false;
2491
2492 return 0;
2493}
2494
2495static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2496{
2497 dma_release_channel(dd->dma_lch_in.chan);
2498}
2499
2500static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2501{
2502
2503 dd->caps.has_dma = 0;
2504 dd->caps.has_dualbuff = 0;
2505 dd->caps.has_sha224 = 0;
2506 dd->caps.has_sha_384_512 = 0;
2507 dd->caps.has_uihv = 0;
2508 dd->caps.has_hmac = 0;
2509
2510
2511 switch (dd->hw_version & 0xff0) {
2512 case 0x510:
2513 dd->caps.has_dma = 1;
2514 dd->caps.has_dualbuff = 1;
2515 dd->caps.has_sha224 = 1;
2516 dd->caps.has_sha_384_512 = 1;
2517 dd->caps.has_uihv = 1;
2518 dd->caps.has_hmac = 1;
2519 break;
2520 case 0x420:
2521 dd->caps.has_dma = 1;
2522 dd->caps.has_dualbuff = 1;
2523 dd->caps.has_sha224 = 1;
2524 dd->caps.has_sha_384_512 = 1;
2525 dd->caps.has_uihv = 1;
2526 break;
2527 case 0x410:
2528 dd->caps.has_dma = 1;
2529 dd->caps.has_dualbuff = 1;
2530 dd->caps.has_sha224 = 1;
2531 dd->caps.has_sha_384_512 = 1;
2532 break;
2533 case 0x400:
2534 dd->caps.has_dma = 1;
2535 dd->caps.has_dualbuff = 1;
2536 dd->caps.has_sha224 = 1;
2537 break;
2538 case 0x320:
2539 break;
2540 default:
2541 dev_warn(dd->dev,
2542 "Unmanaged sha version, set minimum capabilities\n");
2543 break;
2544 }
2545}
2546
2547#if defined(CONFIG_OF)
2548static const struct of_device_id atmel_sha_dt_ids[] = {
2549 { .compatible = "atmel,at91sam9g46-sha" },
2550 { }
2551};
2552
2553MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2554#endif
2555
2556static int atmel_sha_probe(struct platform_device *pdev)
2557{
2558 struct atmel_sha_dev *sha_dd;
2559 struct device *dev = &pdev->dev;
2560 struct resource *sha_res;
2561 int err;
2562
2563 sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2564 if (!sha_dd)
2565 return -ENOMEM;
2566
2567 sha_dd->dev = dev;
2568
2569 platform_set_drvdata(pdev, sha_dd);
2570
2571 INIT_LIST_HEAD(&sha_dd->list);
2572 spin_lock_init(&sha_dd->lock);
2573
2574 tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2575 (unsigned long)sha_dd);
2576 tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2577 (unsigned long)sha_dd);
2578
2579 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2580
2581
2582 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2583 if (!sha_res) {
2584 dev_err(dev, "no MEM resource info\n");
2585 err = -ENODEV;
2586 goto err_tasklet_kill;
2587 }
2588 sha_dd->phys_base = sha_res->start;
2589
2590
2591 sha_dd->irq = platform_get_irq(pdev, 0);
2592 if (sha_dd->irq < 0) {
2593 err = sha_dd->irq;
2594 goto err_tasklet_kill;
2595 }
2596
2597 err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2598 IRQF_SHARED, "atmel-sha", sha_dd);
2599 if (err) {
2600 dev_err(dev, "unable to request sha irq.\n");
2601 goto err_tasklet_kill;
2602 }
2603
2604
2605 sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2606 if (IS_ERR(sha_dd->iclk)) {
2607 dev_err(dev, "clock initialization failed.\n");
2608 err = PTR_ERR(sha_dd->iclk);
2609 goto err_tasklet_kill;
2610 }
2611
2612 sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2613 if (IS_ERR(sha_dd->io_base)) {
2614 dev_err(dev, "can't ioremap\n");
2615 err = PTR_ERR(sha_dd->io_base);
2616 goto err_tasklet_kill;
2617 }
2618
2619 err = clk_prepare(sha_dd->iclk);
2620 if (err)
2621 goto err_tasklet_kill;
2622
2623 err = atmel_sha_hw_version_init(sha_dd);
2624 if (err)
2625 goto err_iclk_unprepare;
2626
2627 atmel_sha_get_cap(sha_dd);
2628
2629 if (sha_dd->caps.has_dma) {
2630 err = atmel_sha_dma_init(sha_dd);
2631 if (err)
2632 goto err_iclk_unprepare;
2633
2634 dev_info(dev, "using %s for DMA transfers\n",
2635 dma_chan_name(sha_dd->dma_lch_in.chan));
2636 }
2637
2638 spin_lock(&atmel_sha.lock);
2639 list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2640 spin_unlock(&atmel_sha.lock);
2641
2642 err = atmel_sha_register_algs(sha_dd);
2643 if (err)
2644 goto err_algs;
2645
2646 dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2647 sha_dd->caps.has_sha224 ? "/SHA224" : "",
2648 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2649
2650 return 0;
2651
2652err_algs:
2653 spin_lock(&atmel_sha.lock);
2654 list_del(&sha_dd->list);
2655 spin_unlock(&atmel_sha.lock);
2656 if (sha_dd->caps.has_dma)
2657 atmel_sha_dma_cleanup(sha_dd);
2658err_iclk_unprepare:
2659 clk_unprepare(sha_dd->iclk);
2660err_tasklet_kill:
2661 tasklet_kill(&sha_dd->queue_task);
2662 tasklet_kill(&sha_dd->done_task);
2663
2664 return err;
2665}
2666
2667static int atmel_sha_remove(struct platform_device *pdev)
2668{
2669 struct atmel_sha_dev *sha_dd;
2670
2671 sha_dd = platform_get_drvdata(pdev);
2672 if (!sha_dd)
2673 return -ENODEV;
2674 spin_lock(&atmel_sha.lock);
2675 list_del(&sha_dd->list);
2676 spin_unlock(&atmel_sha.lock);
2677
2678 atmel_sha_unregister_algs(sha_dd);
2679
2680 tasklet_kill(&sha_dd->queue_task);
2681 tasklet_kill(&sha_dd->done_task);
2682
2683 if (sha_dd->caps.has_dma)
2684 atmel_sha_dma_cleanup(sha_dd);
2685
2686 clk_unprepare(sha_dd->iclk);
2687
2688 return 0;
2689}
2690
2691static struct platform_driver atmel_sha_driver = {
2692 .probe = atmel_sha_probe,
2693 .remove = atmel_sha_remove,
2694 .driver = {
2695 .name = "atmel_sha",
2696 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2697 },
2698};
2699
2700module_platform_driver(atmel_sha_driver);
2701
2702MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2703MODULE_LICENSE("GPL v2");
2704MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2705