linux/drivers/dma/nbpfaxi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd.
   4 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
   5 */
   6
   7#include <linux/bitmap.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/dmaengine.h>
  12#include <linux/err.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/log2.h>
  16#include <linux/module.h>
  17#include <linux/of.h>
  18#include <linux/of_device.h>
  19#include <linux/of_dma.h>
  20#include <linux/platform_device.h>
  21#include <linux/slab.h>
  22
  23#include <dt-bindings/dma/nbpfaxi.h>
  24
  25#include "dmaengine.h"
  26
  27#define NBPF_REG_CHAN_OFFSET    0
  28#define NBPF_REG_CHAN_SIZE      0x40
  29
  30/* Channel Current Transaction Byte register */
  31#define NBPF_CHAN_CUR_TR_BYTE   0x20
  32
  33/* Channel Status register */
  34#define NBPF_CHAN_STAT  0x24
  35#define NBPF_CHAN_STAT_EN       1
  36#define NBPF_CHAN_STAT_TACT     4
  37#define NBPF_CHAN_STAT_ERR      0x10
  38#define NBPF_CHAN_STAT_END      0x20
  39#define NBPF_CHAN_STAT_TC       0x40
  40#define NBPF_CHAN_STAT_DER      0x400
  41
  42/* Channel Control register */
  43#define NBPF_CHAN_CTRL  0x28
  44#define NBPF_CHAN_CTRL_SETEN    1
  45#define NBPF_CHAN_CTRL_CLREN    2
  46#define NBPF_CHAN_CTRL_STG      4
  47#define NBPF_CHAN_CTRL_SWRST    8
  48#define NBPF_CHAN_CTRL_CLRRQ    0x10
  49#define NBPF_CHAN_CTRL_CLREND   0x20
  50#define NBPF_CHAN_CTRL_CLRTC    0x40
  51#define NBPF_CHAN_CTRL_SETSUS   0x100
  52#define NBPF_CHAN_CTRL_CLRSUS   0x200
  53
  54/* Channel Configuration register */
  55#define NBPF_CHAN_CFG   0x2c
  56#define NBPF_CHAN_CFG_SEL       7               /* terminal SELect: 0..7 */
  57#define NBPF_CHAN_CFG_REQD      8               /* REQuest Direction: DMAREQ is 0: input, 1: output */
  58#define NBPF_CHAN_CFG_LOEN      0x10            /* LOw ENable: low DMA request line is: 0: inactive, 1: active */
  59#define NBPF_CHAN_CFG_HIEN      0x20            /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */
  60#define NBPF_CHAN_CFG_LVL       0x40            /* LeVeL: DMA request line is sensed as 0: edge, 1: level */
  61#define NBPF_CHAN_CFG_AM        0x700           /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */
  62#define NBPF_CHAN_CFG_SDS       0xf000          /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */
  63#define NBPF_CHAN_CFG_DDS       0xf0000         /* Destination Data Size: as above */
  64#define NBPF_CHAN_CFG_SAD       0x100000        /* Source ADdress counting: 0: increment, 1: fixed */
  65#define NBPF_CHAN_CFG_DAD       0x200000        /* Destination ADdress counting: 0: increment, 1: fixed */
  66#define NBPF_CHAN_CFG_TM        0x400000        /* Transfer Mode: 0: single, 1: block TM */
  67#define NBPF_CHAN_CFG_DEM       0x1000000       /* DMAEND interrupt Mask */
  68#define NBPF_CHAN_CFG_TCM       0x2000000       /* DMATCO interrupt Mask */
  69#define NBPF_CHAN_CFG_SBE       0x8000000       /* Sweep Buffer Enable */
  70#define NBPF_CHAN_CFG_RSEL      0x10000000      /* RM: Register Set sELect */
  71#define NBPF_CHAN_CFG_RSW       0x20000000      /* RM: Register Select sWitch */
  72#define NBPF_CHAN_CFG_REN       0x40000000      /* RM: Register Set Enable */
  73#define NBPF_CHAN_CFG_DMS       0x80000000      /* 0: register mode (RM), 1: link mode (LM) */
  74
  75#define NBPF_CHAN_NXLA  0x38
  76#define NBPF_CHAN_CRLA  0x3c
  77
  78/* Link Header field */
  79#define NBPF_HEADER_LV  1
  80#define NBPF_HEADER_LE  2
  81#define NBPF_HEADER_WBD 4
  82#define NBPF_HEADER_DIM 8
  83
  84#define NBPF_CTRL       0x300
  85#define NBPF_CTRL_PR    1               /* 0: fixed priority, 1: round robin */
  86#define NBPF_CTRL_LVINT 2               /* DMAEND and DMAERR signalling: 0: pulse, 1: level */
  87
  88#define NBPF_DSTAT_ER   0x314
  89#define NBPF_DSTAT_END  0x318
  90
  91#define NBPF_DMA_BUSWIDTHS \
  92        (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  93         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  94         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  95         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
  96         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
  97
  98struct nbpf_config {
  99        int num_channels;
 100        int buffer_size;
 101};
 102
 103/*
 104 * We've got 3 types of objects, used to describe DMA transfers:
 105 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object
 106 *      in it, used to communicate with the user
 107 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer
 108 *      queuing, these must be DMAable, using either the streaming DMA API or
 109 *      allocated from coherent memory - one per SG segment
 110 * 3. one per SG segment descriptors, used to manage HW link descriptors from
 111 *      (2). They do not have to be DMAable. They can either be (a) allocated
 112 *      together with link descriptors as mixed (DMA / CPU) objects, or (b)
 113 *      separately. Even if allocated separately it would be best to link them
 114 *      to link descriptors once during channel resource allocation and always
 115 *      use them as a single object.
 116 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be
 117 * treated as a single SG segment descriptor.
 118 */
 119
 120struct nbpf_link_reg {
 121        u32     header;
 122        u32     src_addr;
 123        u32     dst_addr;
 124        u32     transaction_size;
 125        u32     config;
 126        u32     interval;
 127        u32     extension;
 128        u32     next;
 129} __packed;
 130
 131struct nbpf_device;
 132struct nbpf_channel;
 133struct nbpf_desc;
 134
 135struct nbpf_link_desc {
 136        struct nbpf_link_reg *hwdesc;
 137        dma_addr_t hwdesc_dma_addr;
 138        struct nbpf_desc *desc;
 139        struct list_head node;
 140};
 141
 142/**
 143 * struct nbpf_desc - DMA transfer descriptor
 144 * @async_tx:   dmaengine object
 145 * @user_wait:  waiting for a user ack
 146 * @length:     total transfer length
 147 * @sg:         list of hardware descriptors, represented by struct nbpf_link_desc
 148 * @node:       member in channel descriptor lists
 149 */
 150struct nbpf_desc {
 151        struct dma_async_tx_descriptor async_tx;
 152        bool user_wait;
 153        size_t length;
 154        struct nbpf_channel *chan;
 155        struct list_head sg;
 156        struct list_head node;
 157};
 158
 159/* Take a wild guess: allocate 4 segments per descriptor */
 160#define NBPF_SEGMENTS_PER_DESC 4
 161#define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) /   \
 162        (sizeof(struct nbpf_desc) +                                     \
 163         NBPF_SEGMENTS_PER_DESC *                                       \
 164         (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg))))
 165#define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE)
 166
 167struct nbpf_desc_page {
 168        struct list_head node;
 169        struct nbpf_desc desc[NBPF_DESCS_PER_PAGE];
 170        struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE];
 171        struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE];
 172};
 173
 174/**
 175 * struct nbpf_channel - one DMAC channel
 176 * @dma_chan:   standard dmaengine channel object
 177 * @base:       register address base
 178 * @nbpf:       DMAC
 179 * @name:       IRQ name
 180 * @irq:        IRQ number
 181 * @slave_addr: address for slave DMA
 182 * @slave_width:slave data size in bytes
 183 * @slave_burst:maximum slave burst size in bytes
 184 * @terminal:   DMA terminal, assigned to this channel
 185 * @dmarq_cfg:  DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG
 186 * @flags:      configuration flags from DT
 187 * @lock:       protect descriptor lists
 188 * @free_links: list of free link descriptors
 189 * @free:       list of free descriptors
 190 * @queued:     list of queued descriptors
 191 * @active:     list of descriptors, scheduled for processing
 192 * @done:       list of completed descriptors, waiting post-processing
 193 * @desc_page:  list of additionally allocated descriptor pages - if any
 194 */
 195struct nbpf_channel {
 196        struct dma_chan dma_chan;
 197        struct tasklet_struct tasklet;
 198        void __iomem *base;
 199        struct nbpf_device *nbpf;
 200        char name[16];
 201        int irq;
 202        dma_addr_t slave_src_addr;
 203        size_t slave_src_width;
 204        size_t slave_src_burst;
 205        dma_addr_t slave_dst_addr;
 206        size_t slave_dst_width;
 207        size_t slave_dst_burst;
 208        unsigned int terminal;
 209        u32 dmarq_cfg;
 210        unsigned long flags;
 211        spinlock_t lock;
 212        struct list_head free_links;
 213        struct list_head free;
 214        struct list_head queued;
 215        struct list_head active;
 216        struct list_head done;
 217        struct list_head desc_page;
 218        struct nbpf_desc *running;
 219        bool paused;
 220};
 221
 222struct nbpf_device {
 223        struct dma_device dma_dev;
 224        void __iomem *base;
 225        u32 max_burst_mem_read;
 226        u32 max_burst_mem_write;
 227        struct clk *clk;
 228        const struct nbpf_config *config;
 229        unsigned int eirq;
 230        struct nbpf_channel chan[];
 231};
 232
 233enum nbpf_model {
 234        NBPF1B4,
 235        NBPF1B8,
 236        NBPF1B16,
 237        NBPF4B4,
 238        NBPF4B8,
 239        NBPF4B16,
 240        NBPF8B4,
 241        NBPF8B8,
 242        NBPF8B16,
 243};
 244
 245static struct nbpf_config nbpf_cfg[] = {
 246        [NBPF1B4] = {
 247                .num_channels = 1,
 248                .buffer_size = 4,
 249        },
 250        [NBPF1B8] = {
 251                .num_channels = 1,
 252                .buffer_size = 8,
 253        },
 254        [NBPF1B16] = {
 255                .num_channels = 1,
 256                .buffer_size = 16,
 257        },
 258        [NBPF4B4] = {
 259                .num_channels = 4,
 260                .buffer_size = 4,
 261        },
 262        [NBPF4B8] = {
 263                .num_channels = 4,
 264                .buffer_size = 8,
 265        },
 266        [NBPF4B16] = {
 267                .num_channels = 4,
 268                .buffer_size = 16,
 269        },
 270        [NBPF8B4] = {
 271                .num_channels = 8,
 272                .buffer_size = 4,
 273        },
 274        [NBPF8B8] = {
 275                .num_channels = 8,
 276                .buffer_size = 8,
 277        },
 278        [NBPF8B16] = {
 279                .num_channels = 8,
 280                .buffer_size = 16,
 281        },
 282};
 283
 284#define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan)
 285
 286/*
 287 * dmaengine drivers seem to have a lot in common and instead of sharing more
 288 * code, they reimplement those common algorithms independently. In this driver
 289 * we try to separate the hardware-specific part from the (largely) generic
 290 * part. This improves code readability and makes it possible in the future to
 291 * reuse the generic code in form of a helper library. That generic code should
 292 * be suitable for various DMA controllers, using transfer descriptors in RAM
 293 * and pushing one SG list at a time to the DMA controller.
 294 */
 295
 296/*              Hardware-specific part          */
 297
 298static inline u32 nbpf_chan_read(struct nbpf_channel *chan,
 299                                 unsigned int offset)
 300{
 301        u32 data = ioread32(chan->base + offset);
 302        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 303                __func__, chan->base, offset, data);
 304        return data;
 305}
 306
 307static inline void nbpf_chan_write(struct nbpf_channel *chan,
 308                                   unsigned int offset, u32 data)
 309{
 310        iowrite32(data, chan->base + offset);
 311        dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n",
 312                __func__, chan->base, offset, data);
 313}
 314
 315static inline u32 nbpf_read(struct nbpf_device *nbpf,
 316                            unsigned int offset)
 317{
 318        u32 data = ioread32(nbpf->base + offset);
 319        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 320                __func__, nbpf->base, offset, data);
 321        return data;
 322}
 323
 324static inline void nbpf_write(struct nbpf_device *nbpf,
 325                              unsigned int offset, u32 data)
 326{
 327        iowrite32(data, nbpf->base + offset);
 328        dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n",
 329                __func__, nbpf->base, offset, data);
 330}
 331
 332static void nbpf_chan_halt(struct nbpf_channel *chan)
 333{
 334        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 335}
 336
 337static bool nbpf_status_get(struct nbpf_channel *chan)
 338{
 339        u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END);
 340
 341        return status & BIT(chan - chan->nbpf->chan);
 342}
 343
 344static void nbpf_status_ack(struct nbpf_channel *chan)
 345{
 346        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND);
 347}
 348
 349static u32 nbpf_error_get(struct nbpf_device *nbpf)
 350{
 351        return nbpf_read(nbpf, NBPF_DSTAT_ER);
 352}
 353
 354static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error)
 355{
 356        return nbpf->chan + __ffs(error);
 357}
 358
 359static void nbpf_error_clear(struct nbpf_channel *chan)
 360{
 361        u32 status;
 362        int i;
 363
 364        /* Stop the channel, make sure DMA has been aborted */
 365        nbpf_chan_halt(chan);
 366
 367        for (i = 1000; i; i--) {
 368                status = nbpf_chan_read(chan, NBPF_CHAN_STAT);
 369                if (!(status & NBPF_CHAN_STAT_TACT))
 370                        break;
 371                cpu_relax();
 372        }
 373
 374        if (!i)
 375                dev_err(chan->dma_chan.device->dev,
 376                        "%s(): abort timeout, channel status 0x%x\n", __func__, status);
 377
 378        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST);
 379}
 380
 381static int nbpf_start(struct nbpf_desc *desc)
 382{
 383        struct nbpf_channel *chan = desc->chan;
 384        struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node);
 385
 386        nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr);
 387        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS);
 388        chan->paused = false;
 389
 390        /* Software trigger MEMCPY - only MEMCPY uses the block mode */
 391        if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM)
 392                nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG);
 393
 394        dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__,
 395                nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA));
 396
 397        return 0;
 398}
 399
 400static void nbpf_chan_prepare(struct nbpf_channel *chan)
 401{
 402        chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) |
 403                (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) |
 404                (chan->flags & NBPF_SLAVE_RQ_LEVEL ?
 405                 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) |
 406                chan->terminal;
 407}
 408
 409static void nbpf_chan_prepare_default(struct nbpf_channel *chan)
 410{
 411        /* Don't output DMAACK */
 412        chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400;
 413        chan->terminal = 0;
 414        chan->flags = 0;
 415}
 416
 417static void nbpf_chan_configure(struct nbpf_channel *chan)
 418{
 419        /*
 420         * We assume, that only the link mode and DMA request line configuration
 421         * have to be set in the configuration register manually. Dynamic
 422         * per-transfer configuration will be loaded from transfer descriptors.
 423         */
 424        nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg);
 425}
 426
 427static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size,
 428                        enum dma_transfer_direction direction)
 429{
 430        int max_burst = nbpf->config->buffer_size * 8;
 431
 432        if (nbpf->max_burst_mem_read || nbpf->max_burst_mem_write) {
 433                switch (direction) {
 434                case DMA_MEM_TO_MEM:
 435                        max_burst = min_not_zero(nbpf->max_burst_mem_read,
 436                                                 nbpf->max_burst_mem_write);
 437                        break;
 438                case DMA_MEM_TO_DEV:
 439                        if (nbpf->max_burst_mem_read)
 440                                max_burst = nbpf->max_burst_mem_read;
 441                        break;
 442                case DMA_DEV_TO_MEM:
 443                        if (nbpf->max_burst_mem_write)
 444                                max_burst = nbpf->max_burst_mem_write;
 445                        break;
 446                case DMA_DEV_TO_DEV:
 447                default:
 448                        break;
 449                }
 450        }
 451
 452        /* Maximum supported bursts depend on the buffer size */
 453        return min_t(int, __ffs(size), ilog2(max_burst));
 454}
 455
 456static size_t nbpf_xfer_size(struct nbpf_device *nbpf,
 457                             enum dma_slave_buswidth width, u32 burst)
 458{
 459        size_t size;
 460
 461        if (!burst)
 462                burst = 1;
 463
 464        switch (width) {
 465        case DMA_SLAVE_BUSWIDTH_8_BYTES:
 466                size = 8 * burst;
 467                break;
 468
 469        case DMA_SLAVE_BUSWIDTH_4_BYTES:
 470                size = 4 * burst;
 471                break;
 472
 473        case DMA_SLAVE_BUSWIDTH_2_BYTES:
 474                size = 2 * burst;
 475                break;
 476
 477        default:
 478                pr_warn("%s(): invalid bus width %u\n", __func__, width);
 479                /* fall through */
 480        case DMA_SLAVE_BUSWIDTH_1_BYTE:
 481                size = burst;
 482        }
 483
 484        return nbpf_xfer_ds(nbpf, size, DMA_TRANS_NONE);
 485}
 486
 487/*
 488 * We need a way to recognise slaves, whose data is sent "raw" over the bus,
 489 * i.e. it isn't known in advance how many bytes will be received. Therefore
 490 * the slave driver has to provide a "large enough" buffer and either read the
 491 * buffer, when it is full, or detect, that some data has arrived, then wait for
 492 * a timeout, if no more data arrives - receive what's already there. We want to
 493 * handle such slaves in a special way to allow an optimised mode for other
 494 * users, for whom the amount of data is known in advance. So far there's no way
 495 * to recognise such slaves. We use a data-width check to distinguish between
 496 * the SD host and the PL011 UART.
 497 */
 498
 499static int nbpf_prep_one(struct nbpf_link_desc *ldesc,
 500                         enum dma_transfer_direction direction,
 501                         dma_addr_t src, dma_addr_t dst, size_t size, bool last)
 502{
 503        struct nbpf_link_reg *hwdesc = ldesc->hwdesc;
 504        struct nbpf_desc *desc = ldesc->desc;
 505        struct nbpf_channel *chan = desc->chan;
 506        struct device *dev = chan->dma_chan.device->dev;
 507        size_t mem_xfer, slave_xfer;
 508        bool can_burst;
 509
 510        hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV |
 511                (last ? NBPF_HEADER_LE : 0);
 512
 513        hwdesc->src_addr = src;
 514        hwdesc->dst_addr = dst;
 515        hwdesc->transaction_size = size;
 516
 517        /*
 518         * set config: SAD, DAD, DDS, SDS, etc.
 519         * Note on transfer sizes: the DMAC can perform unaligned DMA transfers,
 520         * but it is important to have transaction size a multiple of both
 521         * receiver and transmitter transfer sizes. It is also possible to use
 522         * different RAM and device transfer sizes, and it does work well with
 523         * some devices, e.g. with V08R07S01E SD host controllers, which can use
 524         * 128 byte transfers. But this doesn't work with other devices,
 525         * especially when the transaction size is unknown. This is the case,
 526         * e.g. with serial drivers like amba-pl011.c. For reception it sets up
 527         * the transaction size of 4K and if fewer bytes are received, it
 528         * pauses DMA and reads out data received via DMA as well as those left
 529         * in the Rx FIFO. For this to work with the RAM side using burst
 530         * transfers we enable the SBE bit and terminate the transfer in our
 531         * .device_pause handler.
 532         */
 533        mem_xfer = nbpf_xfer_ds(chan->nbpf, size, direction);
 534
 535        switch (direction) {
 536        case DMA_DEV_TO_MEM:
 537                can_burst = chan->slave_src_width >= 3;
 538                slave_xfer = min(mem_xfer, can_burst ?
 539                                 chan->slave_src_burst : chan->slave_src_width);
 540                /*
 541                 * Is the slave narrower than 64 bits, i.e. isn't using the full
 542                 * bus width and cannot use bursts?
 543                 */
 544                if (mem_xfer > chan->slave_src_burst && !can_burst)
 545                        mem_xfer = chan->slave_src_burst;
 546                /* Device-to-RAM DMA is unreliable without REQD set */
 547                hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) |
 548                        (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD |
 549                        NBPF_CHAN_CFG_SBE;
 550                break;
 551
 552        case DMA_MEM_TO_DEV:
 553                slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ?
 554                                 chan->slave_dst_burst : chan->slave_dst_width);
 555                hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 556                        (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD;
 557                break;
 558
 559        case DMA_MEM_TO_MEM:
 560                hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM |
 561                        (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) |
 562                        (NBPF_CHAN_CFG_DDS & (mem_xfer << 16));
 563                break;
 564
 565        default:
 566                return -EINVAL;
 567        }
 568
 569        hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) |
 570                NBPF_CHAN_CFG_DMS;
 571
 572        dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n",
 573                __func__, &ldesc->hwdesc_dma_addr, hwdesc->header,
 574                hwdesc->config, size, &src, &dst);
 575
 576        dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc),
 577                                   DMA_TO_DEVICE);
 578
 579        return 0;
 580}
 581
 582static size_t nbpf_bytes_left(struct nbpf_channel *chan)
 583{
 584        return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE);
 585}
 586
 587static void nbpf_configure(struct nbpf_device *nbpf)
 588{
 589        nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT);
 590}
 591
 592/*              Generic part                    */
 593
 594/* DMA ENGINE functions */
 595static void nbpf_issue_pending(struct dma_chan *dchan)
 596{
 597        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 598        unsigned long flags;
 599
 600        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
 601
 602        spin_lock_irqsave(&chan->lock, flags);
 603        if (list_empty(&chan->queued))
 604                goto unlock;
 605
 606        list_splice_tail_init(&chan->queued, &chan->active);
 607
 608        if (!chan->running) {
 609                struct nbpf_desc *desc = list_first_entry(&chan->active,
 610                                                struct nbpf_desc, node);
 611                if (!nbpf_start(desc))
 612                        chan->running = desc;
 613        }
 614
 615unlock:
 616        spin_unlock_irqrestore(&chan->lock, flags);
 617}
 618
 619static enum dma_status nbpf_tx_status(struct dma_chan *dchan,
 620                dma_cookie_t cookie, struct dma_tx_state *state)
 621{
 622        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 623        enum dma_status status = dma_cookie_status(dchan, cookie, state);
 624
 625        if (state) {
 626                dma_cookie_t running;
 627                unsigned long flags;
 628
 629                spin_lock_irqsave(&chan->lock, flags);
 630                running = chan->running ? chan->running->async_tx.cookie : -EINVAL;
 631
 632                if (cookie == running) {
 633                        state->residue = nbpf_bytes_left(chan);
 634                        dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__,
 635                                state->residue);
 636                } else if (status == DMA_IN_PROGRESS) {
 637                        struct nbpf_desc *desc;
 638                        bool found = false;
 639
 640                        list_for_each_entry(desc, &chan->active, node)
 641                                if (desc->async_tx.cookie == cookie) {
 642                                        found = true;
 643                                        break;
 644                                }
 645
 646                        if (!found)
 647                                list_for_each_entry(desc, &chan->queued, node)
 648                                        if (desc->async_tx.cookie == cookie) {
 649                                                found = true;
 650                                                break;
 651
 652                                        }
 653
 654                        state->residue = found ? desc->length : 0;
 655                }
 656
 657                spin_unlock_irqrestore(&chan->lock, flags);
 658        }
 659
 660        if (chan->paused)
 661                status = DMA_PAUSED;
 662
 663        return status;
 664}
 665
 666static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx)
 667{
 668        struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx);
 669        struct nbpf_channel *chan = desc->chan;
 670        unsigned long flags;
 671        dma_cookie_t cookie;
 672
 673        spin_lock_irqsave(&chan->lock, flags);
 674        cookie = dma_cookie_assign(tx);
 675        list_add_tail(&desc->node, &chan->queued);
 676        spin_unlock_irqrestore(&chan->lock, flags);
 677
 678        dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie);
 679
 680        return cookie;
 681}
 682
 683static int nbpf_desc_page_alloc(struct nbpf_channel *chan)
 684{
 685        struct dma_chan *dchan = &chan->dma_chan;
 686        struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
 687        struct nbpf_link_desc *ldesc;
 688        struct nbpf_link_reg *hwdesc;
 689        struct nbpf_desc *desc;
 690        LIST_HEAD(head);
 691        LIST_HEAD(lhead);
 692        int i;
 693        struct device *dev = dchan->device->dev;
 694
 695        if (!dpage)
 696                return -ENOMEM;
 697
 698        dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n",
 699                __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage));
 700
 701        for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc;
 702             i < ARRAY_SIZE(dpage->ldesc);
 703             i++, ldesc++, hwdesc++) {
 704                ldesc->hwdesc = hwdesc;
 705                list_add_tail(&ldesc->node, &lhead);
 706                ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev,
 707                                        hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE);
 708
 709                dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__,
 710                        hwdesc, &ldesc->hwdesc_dma_addr);
 711        }
 712
 713        for (i = 0, desc = dpage->desc;
 714             i < ARRAY_SIZE(dpage->desc);
 715             i++, desc++) {
 716                dma_async_tx_descriptor_init(&desc->async_tx, dchan);
 717                desc->async_tx.tx_submit = nbpf_tx_submit;
 718                desc->chan = chan;
 719                INIT_LIST_HEAD(&desc->sg);
 720                list_add_tail(&desc->node, &head);
 721        }
 722
 723        /*
 724         * This function cannot be called from interrupt context, so, no need to
 725         * save flags
 726         */
 727        spin_lock_irq(&chan->lock);
 728        list_splice_tail(&lhead, &chan->free_links);
 729        list_splice_tail(&head, &chan->free);
 730        list_add(&dpage->node, &chan->desc_page);
 731        spin_unlock_irq(&chan->lock);
 732
 733        return ARRAY_SIZE(dpage->desc);
 734}
 735
 736static void nbpf_desc_put(struct nbpf_desc *desc)
 737{
 738        struct nbpf_channel *chan = desc->chan;
 739        struct nbpf_link_desc *ldesc, *tmp;
 740        unsigned long flags;
 741
 742        spin_lock_irqsave(&chan->lock, flags);
 743        list_for_each_entry_safe(ldesc, tmp, &desc->sg, node)
 744                list_move(&ldesc->node, &chan->free_links);
 745
 746        list_add(&desc->node, &chan->free);
 747        spin_unlock_irqrestore(&chan->lock, flags);
 748}
 749
 750static void nbpf_scan_acked(struct nbpf_channel *chan)
 751{
 752        struct nbpf_desc *desc, *tmp;
 753        unsigned long flags;
 754        LIST_HEAD(head);
 755
 756        spin_lock_irqsave(&chan->lock, flags);
 757        list_for_each_entry_safe(desc, tmp, &chan->done, node)
 758                if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) {
 759                        list_move(&desc->node, &head);
 760                        desc->user_wait = false;
 761                }
 762        spin_unlock_irqrestore(&chan->lock, flags);
 763
 764        list_for_each_entry_safe(desc, tmp, &head, node) {
 765                list_del(&desc->node);
 766                nbpf_desc_put(desc);
 767        }
 768}
 769
 770/*
 771 * We have to allocate descriptors with the channel lock dropped. This means,
 772 * before we re-acquire the lock buffers can be taken already, so we have to
 773 * re-check after re-acquiring the lock and possibly retry, if buffers are gone
 774 * again.
 775 */
 776static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len)
 777{
 778        struct nbpf_desc *desc = NULL;
 779        struct nbpf_link_desc *ldesc, *prev = NULL;
 780
 781        nbpf_scan_acked(chan);
 782
 783        spin_lock_irq(&chan->lock);
 784
 785        do {
 786                int i = 0, ret;
 787
 788                if (list_empty(&chan->free)) {
 789                        /* No more free descriptors */
 790                        spin_unlock_irq(&chan->lock);
 791                        ret = nbpf_desc_page_alloc(chan);
 792                        if (ret < 0)
 793                                return NULL;
 794                        spin_lock_irq(&chan->lock);
 795                        continue;
 796                }
 797                desc = list_first_entry(&chan->free, struct nbpf_desc, node);
 798                list_del(&desc->node);
 799
 800                do {
 801                        if (list_empty(&chan->free_links)) {
 802                                /* No more free link descriptors */
 803                                spin_unlock_irq(&chan->lock);
 804                                ret = nbpf_desc_page_alloc(chan);
 805                                if (ret < 0) {
 806                                        nbpf_desc_put(desc);
 807                                        return NULL;
 808                                }
 809                                spin_lock_irq(&chan->lock);
 810                                continue;
 811                        }
 812
 813                        ldesc = list_first_entry(&chan->free_links,
 814                                                 struct nbpf_link_desc, node);
 815                        ldesc->desc = desc;
 816                        if (prev)
 817                                prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr;
 818
 819                        prev = ldesc;
 820                        list_move_tail(&ldesc->node, &desc->sg);
 821
 822                        i++;
 823                } while (i < len);
 824        } while (!desc);
 825
 826        prev->hwdesc->next = 0;
 827
 828        spin_unlock_irq(&chan->lock);
 829
 830        return desc;
 831}
 832
 833static void nbpf_chan_idle(struct nbpf_channel *chan)
 834{
 835        struct nbpf_desc *desc, *tmp;
 836        unsigned long flags;
 837        LIST_HEAD(head);
 838
 839        spin_lock_irqsave(&chan->lock, flags);
 840
 841        list_splice_init(&chan->done, &head);
 842        list_splice_init(&chan->active, &head);
 843        list_splice_init(&chan->queued, &head);
 844
 845        chan->running = NULL;
 846
 847        spin_unlock_irqrestore(&chan->lock, flags);
 848
 849        list_for_each_entry_safe(desc, tmp, &head, node) {
 850                dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n",
 851                        __func__, desc, desc->async_tx.cookie);
 852                list_del(&desc->node);
 853                nbpf_desc_put(desc);
 854        }
 855}
 856
 857static int nbpf_pause(struct dma_chan *dchan)
 858{
 859        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 860
 861        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 862
 863        chan->paused = true;
 864        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS);
 865        /* See comment in nbpf_prep_one() */
 866        nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN);
 867
 868        return 0;
 869}
 870
 871static int nbpf_terminate_all(struct dma_chan *dchan)
 872{
 873        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 874
 875        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 876        dev_dbg(dchan->device->dev, "Terminating\n");
 877
 878        nbpf_chan_halt(chan);
 879        nbpf_chan_idle(chan);
 880
 881        return 0;
 882}
 883
 884static int nbpf_config(struct dma_chan *dchan,
 885                       struct dma_slave_config *config)
 886{
 887        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 888
 889        dev_dbg(dchan->device->dev, "Entry %s\n", __func__);
 890
 891        /*
 892         * We could check config->slave_id to match chan->terminal here,
 893         * but with DT they would be coming from the same source, so
 894         * such a check would be superflous
 895         */
 896
 897        chan->slave_dst_addr = config->dst_addr;
 898        chan->slave_dst_width = nbpf_xfer_size(chan->nbpf,
 899                                               config->dst_addr_width, 1);
 900        chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf,
 901                                               config->dst_addr_width,
 902                                               config->dst_maxburst);
 903        chan->slave_src_addr = config->src_addr;
 904        chan->slave_src_width = nbpf_xfer_size(chan->nbpf,
 905                                               config->src_addr_width, 1);
 906        chan->slave_src_burst = nbpf_xfer_size(chan->nbpf,
 907                                               config->src_addr_width,
 908                                               config->src_maxburst);
 909
 910        return 0;
 911}
 912
 913static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan,
 914                struct scatterlist *src_sg, struct scatterlist *dst_sg,
 915                size_t len, enum dma_transfer_direction direction,
 916                unsigned long flags)
 917{
 918        struct nbpf_link_desc *ldesc;
 919        struct scatterlist *mem_sg;
 920        struct nbpf_desc *desc;
 921        bool inc_src, inc_dst;
 922        size_t data_len = 0;
 923        int i = 0;
 924
 925        switch (direction) {
 926        case DMA_DEV_TO_MEM:
 927                mem_sg = dst_sg;
 928                inc_src = false;
 929                inc_dst = true;
 930                break;
 931
 932        case DMA_MEM_TO_DEV:
 933                mem_sg = src_sg;
 934                inc_src = true;
 935                inc_dst = false;
 936                break;
 937
 938        default:
 939        case DMA_MEM_TO_MEM:
 940                mem_sg = src_sg;
 941                inc_src = true;
 942                inc_dst = true;
 943        }
 944
 945        desc = nbpf_desc_get(chan, len);
 946        if (!desc)
 947                return NULL;
 948
 949        desc->async_tx.flags = flags;
 950        desc->async_tx.cookie = -EBUSY;
 951        desc->user_wait = false;
 952
 953        /*
 954         * This is a private descriptor list, and we own the descriptor. No need
 955         * to lock.
 956         */
 957        list_for_each_entry(ldesc, &desc->sg, node) {
 958                int ret = nbpf_prep_one(ldesc, direction,
 959                                        sg_dma_address(src_sg),
 960                                        sg_dma_address(dst_sg),
 961                                        sg_dma_len(mem_sg),
 962                                        i == len - 1);
 963                if (ret < 0) {
 964                        nbpf_desc_put(desc);
 965                        return NULL;
 966                }
 967                data_len += sg_dma_len(mem_sg);
 968                if (inc_src)
 969                        src_sg = sg_next(src_sg);
 970                if (inc_dst)
 971                        dst_sg = sg_next(dst_sg);
 972                mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg;
 973                i++;
 974        }
 975
 976        desc->length = data_len;
 977
 978        /* The user has to return the descriptor to us ASAP via .tx_submit() */
 979        return &desc->async_tx;
 980}
 981
 982static struct dma_async_tx_descriptor *nbpf_prep_memcpy(
 983        struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
 984        size_t len, unsigned long flags)
 985{
 986        struct nbpf_channel *chan = nbpf_to_chan(dchan);
 987        struct scatterlist dst_sg;
 988        struct scatterlist src_sg;
 989
 990        sg_init_table(&dst_sg, 1);
 991        sg_init_table(&src_sg, 1);
 992
 993        sg_dma_address(&dst_sg) = dst;
 994        sg_dma_address(&src_sg) = src;
 995
 996        sg_dma_len(&dst_sg) = len;
 997        sg_dma_len(&src_sg) = len;
 998
 999        dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n",
1000                __func__, len, &src, &dst);
1001
1002        return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1,
1003                            DMA_MEM_TO_MEM, flags);
1004}
1005
1006static struct dma_async_tx_descriptor *nbpf_prep_slave_sg(
1007        struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
1008        enum dma_transfer_direction direction, unsigned long flags, void *context)
1009{
1010        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1011        struct scatterlist slave_sg;
1012
1013        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1014
1015        sg_init_table(&slave_sg, 1);
1016
1017        switch (direction) {
1018        case DMA_MEM_TO_DEV:
1019                sg_dma_address(&slave_sg) = chan->slave_dst_addr;
1020                return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len,
1021                                    direction, flags);
1022
1023        case DMA_DEV_TO_MEM:
1024                sg_dma_address(&slave_sg) = chan->slave_src_addr;
1025                return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len,
1026                                    direction, flags);
1027
1028        default:
1029                return NULL;
1030        }
1031}
1032
1033static int nbpf_alloc_chan_resources(struct dma_chan *dchan)
1034{
1035        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1036        int ret;
1037
1038        INIT_LIST_HEAD(&chan->free);
1039        INIT_LIST_HEAD(&chan->free_links);
1040        INIT_LIST_HEAD(&chan->queued);
1041        INIT_LIST_HEAD(&chan->active);
1042        INIT_LIST_HEAD(&chan->done);
1043
1044        ret = nbpf_desc_page_alloc(chan);
1045        if (ret < 0)
1046                return ret;
1047
1048        dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__,
1049                chan->terminal);
1050
1051        nbpf_chan_configure(chan);
1052
1053        return ret;
1054}
1055
1056static void nbpf_free_chan_resources(struct dma_chan *dchan)
1057{
1058        struct nbpf_channel *chan = nbpf_to_chan(dchan);
1059        struct nbpf_desc_page *dpage, *tmp;
1060
1061        dev_dbg(dchan->device->dev, "Entry %s()\n", __func__);
1062
1063        nbpf_chan_halt(chan);
1064        nbpf_chan_idle(chan);
1065        /* Clean up for if a channel is re-used for MEMCPY after slave DMA */
1066        nbpf_chan_prepare_default(chan);
1067
1068        list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) {
1069                struct nbpf_link_desc *ldesc;
1070                int i;
1071                list_del(&dpage->node);
1072                for (i = 0, ldesc = dpage->ldesc;
1073                     i < ARRAY_SIZE(dpage->ldesc);
1074                     i++, ldesc++)
1075                        dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr,
1076                                         sizeof(*ldesc->hwdesc), DMA_TO_DEVICE);
1077                free_page((unsigned long)dpage);
1078        }
1079}
1080
1081static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec,
1082                                      struct of_dma *ofdma)
1083{
1084        struct nbpf_device *nbpf = ofdma->of_dma_data;
1085        struct dma_chan *dchan;
1086        struct nbpf_channel *chan;
1087
1088        if (dma_spec->args_count != 2)
1089                return NULL;
1090
1091        dchan = dma_get_any_slave_channel(&nbpf->dma_dev);
1092        if (!dchan)
1093                return NULL;
1094
1095        dev_dbg(dchan->device->dev, "Entry %s(%pOFn)\n", __func__,
1096                dma_spec->np);
1097
1098        chan = nbpf_to_chan(dchan);
1099
1100        chan->terminal = dma_spec->args[0];
1101        chan->flags = dma_spec->args[1];
1102
1103        nbpf_chan_prepare(chan);
1104        nbpf_chan_configure(chan);
1105
1106        return dchan;
1107}
1108
1109static void nbpf_chan_tasklet(unsigned long data)
1110{
1111        struct nbpf_channel *chan = (struct nbpf_channel *)data;
1112        struct nbpf_desc *desc, *tmp;
1113        struct dmaengine_desc_callback cb;
1114
1115        while (!list_empty(&chan->done)) {
1116                bool found = false, must_put, recycling = false;
1117
1118                spin_lock_irq(&chan->lock);
1119
1120                list_for_each_entry_safe(desc, tmp, &chan->done, node) {
1121                        if (!desc->user_wait) {
1122                                /* Newly completed descriptor, have to process */
1123                                found = true;
1124                                break;
1125                        } else if (async_tx_test_ack(&desc->async_tx)) {
1126                                /*
1127                                 * This descriptor was waiting for a user ACK,
1128                                 * it can be recycled now.
1129                                 */
1130                                list_del(&desc->node);
1131                                spin_unlock_irq(&chan->lock);
1132                                nbpf_desc_put(desc);
1133                                recycling = true;
1134                                break;
1135                        }
1136                }
1137
1138                if (recycling)
1139                        continue;
1140
1141                if (!found) {
1142                        /* This can happen if TERMINATE_ALL has been called */
1143                        spin_unlock_irq(&chan->lock);
1144                        break;
1145                }
1146
1147                dma_cookie_complete(&desc->async_tx);
1148
1149                /*
1150                 * With released lock we cannot dereference desc, maybe it's
1151                 * still on the "done" list
1152                 */
1153                if (async_tx_test_ack(&desc->async_tx)) {
1154                        list_del(&desc->node);
1155                        must_put = true;
1156                } else {
1157                        desc->user_wait = true;
1158                        must_put = false;
1159                }
1160
1161                dmaengine_desc_get_callback(&desc->async_tx, &cb);
1162
1163                /* ack and callback completed descriptor */
1164                spin_unlock_irq(&chan->lock);
1165
1166                dmaengine_desc_callback_invoke(&cb, NULL);
1167
1168                if (must_put)
1169                        nbpf_desc_put(desc);
1170        }
1171}
1172
1173static irqreturn_t nbpf_chan_irq(int irq, void *dev)
1174{
1175        struct nbpf_channel *chan = dev;
1176        bool done = nbpf_status_get(chan);
1177        struct nbpf_desc *desc;
1178        irqreturn_t ret;
1179        bool bh = false;
1180
1181        if (!done)
1182                return IRQ_NONE;
1183
1184        nbpf_status_ack(chan);
1185
1186        dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__);
1187
1188        spin_lock(&chan->lock);
1189        desc = chan->running;
1190        if (WARN_ON(!desc)) {
1191                ret = IRQ_NONE;
1192                goto unlock;
1193        } else {
1194                ret = IRQ_HANDLED;
1195                bh = true;
1196        }
1197
1198        list_move_tail(&desc->node, &chan->done);
1199        chan->running = NULL;
1200
1201        if (!list_empty(&chan->active)) {
1202                desc = list_first_entry(&chan->active,
1203                                        struct nbpf_desc, node);
1204                if (!nbpf_start(desc))
1205                        chan->running = desc;
1206        }
1207
1208unlock:
1209        spin_unlock(&chan->lock);
1210
1211        if (bh)
1212                tasklet_schedule(&chan->tasklet);
1213
1214        return ret;
1215}
1216
1217static irqreturn_t nbpf_err_irq(int irq, void *dev)
1218{
1219        struct nbpf_device *nbpf = dev;
1220        u32 error = nbpf_error_get(nbpf);
1221
1222        dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq);
1223
1224        if (!error)
1225                return IRQ_NONE;
1226
1227        do {
1228                struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error);
1229                /* On error: abort all queued transfers, no callback */
1230                nbpf_error_clear(chan);
1231                nbpf_chan_idle(chan);
1232                error = nbpf_error_get(nbpf);
1233        } while (error);
1234
1235        return IRQ_HANDLED;
1236}
1237
1238static int nbpf_chan_probe(struct nbpf_device *nbpf, int n)
1239{
1240        struct dma_device *dma_dev = &nbpf->dma_dev;
1241        struct nbpf_channel *chan = nbpf->chan + n;
1242        int ret;
1243
1244        chan->nbpf = nbpf;
1245        chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n;
1246        INIT_LIST_HEAD(&chan->desc_page);
1247        spin_lock_init(&chan->lock);
1248        chan->dma_chan.device = dma_dev;
1249        dma_cookie_init(&chan->dma_chan);
1250        nbpf_chan_prepare_default(chan);
1251
1252        dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base);
1253
1254        snprintf(chan->name, sizeof(chan->name), "nbpf %d", n);
1255
1256        tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan);
1257        ret = devm_request_irq(dma_dev->dev, chan->irq,
1258                        nbpf_chan_irq, IRQF_SHARED,
1259                        chan->name, chan);
1260        if (ret < 0)
1261                return ret;
1262
1263        /* Add the channel to DMA device channel list */
1264        list_add_tail(&chan->dma_chan.device_node,
1265                      &dma_dev->channels);
1266
1267        return 0;
1268}
1269
1270static const struct of_device_id nbpf_match[] = {
1271        {.compatible = "renesas,nbpfaxi64dmac1b4",      .data = &nbpf_cfg[NBPF1B4]},
1272        {.compatible = "renesas,nbpfaxi64dmac1b8",      .data = &nbpf_cfg[NBPF1B8]},
1273        {.compatible = "renesas,nbpfaxi64dmac1b16",     .data = &nbpf_cfg[NBPF1B16]},
1274        {.compatible = "renesas,nbpfaxi64dmac4b4",      .data = &nbpf_cfg[NBPF4B4]},
1275        {.compatible = "renesas,nbpfaxi64dmac4b8",      .data = &nbpf_cfg[NBPF4B8]},
1276        {.compatible = "renesas,nbpfaxi64dmac4b16",     .data = &nbpf_cfg[NBPF4B16]},
1277        {.compatible = "renesas,nbpfaxi64dmac8b4",      .data = &nbpf_cfg[NBPF8B4]},
1278        {.compatible = "renesas,nbpfaxi64dmac8b8",      .data = &nbpf_cfg[NBPF8B8]},
1279        {.compatible = "renesas,nbpfaxi64dmac8b16",     .data = &nbpf_cfg[NBPF8B16]},
1280        {}
1281};
1282MODULE_DEVICE_TABLE(of, nbpf_match);
1283
1284static int nbpf_probe(struct platform_device *pdev)
1285{
1286        struct device *dev = &pdev->dev;
1287        struct device_node *np = dev->of_node;
1288        struct nbpf_device *nbpf;
1289        struct dma_device *dma_dev;
1290        struct resource *iomem, *irq_res;
1291        const struct nbpf_config *cfg;
1292        int num_channels;
1293        int ret, irq, eirq, i;
1294        int irqbuf[9] /* maximum 8 channels + error IRQ */;
1295        unsigned int irqs = 0;
1296
1297        BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE);
1298
1299        /* DT only */
1300        if (!np)
1301                return -ENODEV;
1302
1303        cfg = of_device_get_match_data(dev);
1304        num_channels = cfg->num_channels;
1305
1306        nbpf = devm_kzalloc(dev, struct_size(nbpf, chan, num_channels),
1307                            GFP_KERNEL);
1308        if (!nbpf)
1309                return -ENOMEM;
1310
1311        dma_dev = &nbpf->dma_dev;
1312        dma_dev->dev = dev;
1313
1314        iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1315        nbpf->base = devm_ioremap_resource(dev, iomem);
1316        if (IS_ERR(nbpf->base))
1317                return PTR_ERR(nbpf->base);
1318
1319        nbpf->clk = devm_clk_get(dev, NULL);
1320        if (IS_ERR(nbpf->clk))
1321                return PTR_ERR(nbpf->clk);
1322
1323        of_property_read_u32(np, "max-burst-mem-read",
1324                             &nbpf->max_burst_mem_read);
1325        of_property_read_u32(np, "max-burst-mem-write",
1326                             &nbpf->max_burst_mem_write);
1327
1328        nbpf->config = cfg;
1329
1330        for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) {
1331                irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1332                if (!irq_res)
1333                        break;
1334
1335                for (irq = irq_res->start; irq <= irq_res->end;
1336                     irq++, irqs++)
1337                        irqbuf[irqs] = irq;
1338        }
1339
1340        /*
1341         * 3 IRQ resource schemes are supported:
1342         * 1. 1 shared IRQ for error and all channels
1343         * 2. 2 IRQs: one for error and one shared for all channels
1344         * 3. 1 IRQ for error and an own IRQ for each channel
1345         */
1346        if (irqs != 1 && irqs != 2 && irqs != num_channels + 1)
1347                return -ENXIO;
1348
1349        if (irqs == 1) {
1350                eirq = irqbuf[0];
1351
1352                for (i = 0; i <= num_channels; i++)
1353                        nbpf->chan[i].irq = irqbuf[0];
1354        } else {
1355                eirq = platform_get_irq_byname(pdev, "error");
1356                if (eirq < 0)
1357                        return eirq;
1358
1359                if (irqs == num_channels + 1) {
1360                        struct nbpf_channel *chan;
1361
1362                        for (i = 0, chan = nbpf->chan; i <= num_channels;
1363                             i++, chan++) {
1364                                /* Skip the error IRQ */
1365                                if (irqbuf[i] == eirq)
1366                                        i++;
1367                                chan->irq = irqbuf[i];
1368                        }
1369
1370                        if (chan != nbpf->chan + num_channels)
1371                                return -EINVAL;
1372                } else {
1373                        /* 2 IRQs and more than one channel */
1374                        if (irqbuf[0] == eirq)
1375                                irq = irqbuf[1];
1376                        else
1377                                irq = irqbuf[0];
1378
1379                        for (i = 0; i <= num_channels; i++)
1380                                nbpf->chan[i].irq = irq;
1381                }
1382        }
1383
1384        ret = devm_request_irq(dev, eirq, nbpf_err_irq,
1385                               IRQF_SHARED, "dma error", nbpf);
1386        if (ret < 0)
1387                return ret;
1388        nbpf->eirq = eirq;
1389
1390        INIT_LIST_HEAD(&dma_dev->channels);
1391
1392        /* Create DMA Channel */
1393        for (i = 0; i < num_channels; i++) {
1394                ret = nbpf_chan_probe(nbpf, i);
1395                if (ret < 0)
1396                        return ret;
1397        }
1398
1399        dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1400        dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1401        dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1402
1403        /* Common and MEMCPY operations */
1404        dma_dev->device_alloc_chan_resources
1405                = nbpf_alloc_chan_resources;
1406        dma_dev->device_free_chan_resources = nbpf_free_chan_resources;
1407        dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy;
1408        dma_dev->device_tx_status = nbpf_tx_status;
1409        dma_dev->device_issue_pending = nbpf_issue_pending;
1410
1411        /*
1412         * If we drop support for unaligned MEMCPY buffer addresses and / or
1413         * lengths by setting
1414         * dma_dev->copy_align = 4;
1415         * then we can set transfer length to 4 bytes in nbpf_prep_one() for
1416         * DMA_MEM_TO_MEM
1417         */
1418
1419        /* Compulsory for DMA_SLAVE fields */
1420        dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg;
1421        dma_dev->device_config = nbpf_config;
1422        dma_dev->device_pause = nbpf_pause;
1423        dma_dev->device_terminate_all = nbpf_terminate_all;
1424
1425        dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS;
1426        dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS;
1427        dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1428
1429        platform_set_drvdata(pdev, nbpf);
1430
1431        ret = clk_prepare_enable(nbpf->clk);
1432        if (ret < 0)
1433                return ret;
1434
1435        nbpf_configure(nbpf);
1436
1437        ret = dma_async_device_register(dma_dev);
1438        if (ret < 0)
1439                goto e_clk_off;
1440
1441        ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf);
1442        if (ret < 0)
1443                goto e_dma_dev_unreg;
1444
1445        return 0;
1446
1447e_dma_dev_unreg:
1448        dma_async_device_unregister(dma_dev);
1449e_clk_off:
1450        clk_disable_unprepare(nbpf->clk);
1451
1452        return ret;
1453}
1454
1455static int nbpf_remove(struct platform_device *pdev)
1456{
1457        struct nbpf_device *nbpf = platform_get_drvdata(pdev);
1458        int i;
1459
1460        devm_free_irq(&pdev->dev, nbpf->eirq, nbpf);
1461
1462        for (i = 0; i < nbpf->config->num_channels; i++) {
1463                struct nbpf_channel *chan = nbpf->chan + i;
1464
1465                devm_free_irq(&pdev->dev, chan->irq, chan);
1466
1467                tasklet_kill(&chan->tasklet);
1468        }
1469
1470        of_dma_controller_free(pdev->dev.of_node);
1471        dma_async_device_unregister(&nbpf->dma_dev);
1472        clk_disable_unprepare(nbpf->clk);
1473
1474        return 0;
1475}
1476
1477static const struct platform_device_id nbpf_ids[] = {
1478        {"nbpfaxi64dmac1b4",    (kernel_ulong_t)&nbpf_cfg[NBPF1B4]},
1479        {"nbpfaxi64dmac1b8",    (kernel_ulong_t)&nbpf_cfg[NBPF1B8]},
1480        {"nbpfaxi64dmac1b16",   (kernel_ulong_t)&nbpf_cfg[NBPF1B16]},
1481        {"nbpfaxi64dmac4b4",    (kernel_ulong_t)&nbpf_cfg[NBPF4B4]},
1482        {"nbpfaxi64dmac4b8",    (kernel_ulong_t)&nbpf_cfg[NBPF4B8]},
1483        {"nbpfaxi64dmac4b16",   (kernel_ulong_t)&nbpf_cfg[NBPF4B16]},
1484        {"nbpfaxi64dmac8b4",    (kernel_ulong_t)&nbpf_cfg[NBPF8B4]},
1485        {"nbpfaxi64dmac8b8",    (kernel_ulong_t)&nbpf_cfg[NBPF8B8]},
1486        {"nbpfaxi64dmac8b16",   (kernel_ulong_t)&nbpf_cfg[NBPF8B16]},
1487        {},
1488};
1489MODULE_DEVICE_TABLE(platform, nbpf_ids);
1490
1491#ifdef CONFIG_PM
1492static int nbpf_runtime_suspend(struct device *dev)
1493{
1494        struct nbpf_device *nbpf = dev_get_drvdata(dev);
1495        clk_disable_unprepare(nbpf->clk);
1496        return 0;
1497}
1498
1499static int nbpf_runtime_resume(struct device *dev)
1500{
1501        struct nbpf_device *nbpf = dev_get_drvdata(dev);
1502        return clk_prepare_enable(nbpf->clk);
1503}
1504#endif
1505
1506static const struct dev_pm_ops nbpf_pm_ops = {
1507        SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL)
1508};
1509
1510static struct platform_driver nbpf_driver = {
1511        .driver = {
1512                .name = "dma-nbpf",
1513                .of_match_table = nbpf_match,
1514                .pm = &nbpf_pm_ops,
1515        },
1516        .id_table = nbpf_ids,
1517        .probe = nbpf_probe,
1518        .remove = nbpf_remove,
1519};
1520
1521module_platform_driver(nbpf_driver);
1522
1523MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1524MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs");
1525MODULE_LICENSE("GPL v2");
1526