linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v8.c
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mmu_context.h>
  24
  25#include "amdgpu.h"
  26#include "amdgpu_amdkfd.h"
  27#include "gfx_v8_0.h"
  28#include "gca/gfx_8_0_sh_mask.h"
  29#include "gca/gfx_8_0_d.h"
  30#include "gca/gfx_8_0_enum.h"
  31#include "oss/oss_3_0_sh_mask.h"
  32#include "oss/oss_3_0_d.h"
  33#include "gmc/gmc_8_1_sh_mask.h"
  34#include "gmc/gmc_8_1_d.h"
  35#include "vi_structs.h"
  36#include "vid.h"
  37
  38enum hqd_dequeue_request_type {
  39        NO_ACTION = 0,
  40        DRAIN_PIPE,
  41        RESET_WAVES
  42};
  43
  44static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  45{
  46        return (struct amdgpu_device *)kgd;
  47}
  48
  49static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  50                        uint32_t queue, uint32_t vmid)
  51{
  52        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  53        uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  54
  55        mutex_lock(&adev->srbm_mutex);
  56        WREG32(mmSRBM_GFX_CNTL, value);
  57}
  58
  59static void unlock_srbm(struct kgd_dev *kgd)
  60{
  61        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  62
  63        WREG32(mmSRBM_GFX_CNTL, 0);
  64        mutex_unlock(&adev->srbm_mutex);
  65}
  66
  67static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  68                                uint32_t queue_id)
  69{
  70        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  71
  72        uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  73        uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  74
  75        lock_srbm(kgd, mec, pipe, queue_id, 0);
  76}
  77
  78static void release_queue(struct kgd_dev *kgd)
  79{
  80        unlock_srbm(kgd);
  81}
  82
  83static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  84                                        uint32_t sh_mem_config,
  85                                        uint32_t sh_mem_ape1_base,
  86                                        uint32_t sh_mem_ape1_limit,
  87                                        uint32_t sh_mem_bases)
  88{
  89        struct amdgpu_device *adev = get_amdgpu_device(kgd);
  90
  91        lock_srbm(kgd, 0, 0, 0, vmid);
  92
  93        WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  94        WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  95        WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  96        WREG32(mmSH_MEM_BASES, sh_mem_bases);
  97
  98        unlock_srbm(kgd);
  99}
 100
 101static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
 102                                        unsigned int vmid)
 103{
 104        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 105
 106        /*
 107         * We have to assume that there is no outstanding mapping.
 108         * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
 109         * a mapping is in progress or because a mapping finished
 110         * and the SW cleared it.
 111         * So the protocol is to always wait & clear.
 112         */
 113        uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
 114                        ATC_VMID0_PASID_MAPPING__VALID_MASK;
 115
 116        WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
 117
 118        while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
 119                cpu_relax();
 120        WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
 121
 122        /* Mapping vmid to pasid also for IH block */
 123        WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
 124
 125        return 0;
 126}
 127
 128static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
 129{
 130        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 131        uint32_t mec;
 132        uint32_t pipe;
 133
 134        mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 135        pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 136
 137        lock_srbm(kgd, mec, pipe, 0, 0);
 138
 139        WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
 140                        CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
 141
 142        unlock_srbm(kgd);
 143
 144        return 0;
 145}
 146
 147static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
 148{
 149        uint32_t retval;
 150
 151        retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
 152                m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
 153
 154        pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
 155                        m->sdma_engine_id, m->sdma_queue_id, retval);
 156
 157        return retval;
 158}
 159
 160static inline struct vi_mqd *get_mqd(void *mqd)
 161{
 162        return (struct vi_mqd *)mqd;
 163}
 164
 165static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
 166{
 167        return (struct vi_sdma_mqd *)mqd;
 168}
 169
 170static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
 171                        uint32_t queue_id, uint32_t __user *wptr,
 172                        uint32_t wptr_shift, uint32_t wptr_mask,
 173                        struct mm_struct *mm)
 174{
 175        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 176        struct vi_mqd *m;
 177        uint32_t *mqd_hqd;
 178        uint32_t reg, wptr_val, data;
 179        bool valid_wptr = false;
 180
 181        m = get_mqd(mqd);
 182
 183        acquire_queue(kgd, pipe_id, queue_id);
 184
 185        /* HIQ is set during driver init period with vmid set to 0*/
 186        if (m->cp_hqd_vmid == 0) {
 187                uint32_t value, mec, pipe;
 188
 189                mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
 190                pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
 191
 192                pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
 193                        mec, pipe, queue_id);
 194                value = RREG32(mmRLC_CP_SCHEDULERS);
 195                value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
 196                        ((mec << 5) | (pipe << 3) | queue_id | 0x80));
 197                WREG32(mmRLC_CP_SCHEDULERS, value);
 198        }
 199
 200        /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
 201        mqd_hqd = &m->cp_mqd_base_addr_lo;
 202
 203        for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
 204                WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
 205
 206        /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
 207         * This is safe since EOP RPTR==WPTR for any inactive HQD
 208         * on ASICs that do not support context-save.
 209         * EOP writes/reads can start anywhere in the ring.
 210         */
 211        if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
 212                WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
 213                WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
 214                WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
 215        }
 216
 217        for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
 218                WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
 219
 220        /* Copy userspace write pointer value to register.
 221         * Activate doorbell logic to monitor subsequent changes.
 222         */
 223        data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
 224                             CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
 225        WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
 226
 227        /* read_user_ptr may take the mm->mmap_sem.
 228         * release srbm_mutex to avoid circular dependency between
 229         * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
 230         */
 231        release_queue(kgd);
 232        valid_wptr = read_user_wptr(mm, wptr, wptr_val);
 233        acquire_queue(kgd, pipe_id, queue_id);
 234        if (valid_wptr)
 235                WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
 236
 237        data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
 238        WREG32(mmCP_HQD_ACTIVE, data);
 239
 240        release_queue(kgd);
 241
 242        return 0;
 243}
 244
 245static int kgd_hqd_dump(struct kgd_dev *kgd,
 246                        uint32_t pipe_id, uint32_t queue_id,
 247                        uint32_t (**dump)[2], uint32_t *n_regs)
 248{
 249        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 250        uint32_t i = 0, reg;
 251#define HQD_N_REGS (54+4)
 252#define DUMP_REG(addr) do {                             \
 253                if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
 254                        break;                          \
 255                (*dump)[i][0] = (addr) << 2;            \
 256                (*dump)[i++][1] = RREG32(addr);         \
 257        } while (0)
 258
 259        *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
 260        if (*dump == NULL)
 261                return -ENOMEM;
 262
 263        acquire_queue(kgd, pipe_id, queue_id);
 264
 265        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
 266        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
 267        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
 268        DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
 269
 270        for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
 271                DUMP_REG(reg);
 272
 273        release_queue(kgd);
 274
 275        WARN_ON_ONCE(i != HQD_N_REGS);
 276        *n_regs = i;
 277
 278        return 0;
 279}
 280
 281static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
 282                             uint32_t __user *wptr, struct mm_struct *mm)
 283{
 284        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 285        struct vi_sdma_mqd *m;
 286        unsigned long end_jiffies;
 287        uint32_t sdma_rlc_reg_offset;
 288        uint32_t data;
 289
 290        m = get_sdma_mqd(mqd);
 291        sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
 292        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
 293                m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
 294
 295        end_jiffies = msecs_to_jiffies(2000) + jiffies;
 296        while (true) {
 297                data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
 298                if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 299                        break;
 300                if (time_after(jiffies, end_jiffies)) {
 301                        pr_err("SDMA RLC not idle in %s\n", __func__);
 302                        return -ETIME;
 303                }
 304                usleep_range(500, 1000);
 305        }
 306
 307        data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
 308                             ENABLE, 1);
 309        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
 310        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
 311                                m->sdmax_rlcx_rb_rptr);
 312
 313        if (read_user_wptr(mm, wptr, data))
 314                WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
 315        else
 316                WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
 317                       m->sdmax_rlcx_rb_rptr);
 318
 319        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
 320                                m->sdmax_rlcx_virtual_addr);
 321        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
 322        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
 323                        m->sdmax_rlcx_rb_base_hi);
 324        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
 325                        m->sdmax_rlcx_rb_rptr_addr_lo);
 326        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
 327                        m->sdmax_rlcx_rb_rptr_addr_hi);
 328
 329        data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
 330                             RB_ENABLE, 1);
 331        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
 332
 333        return 0;
 334}
 335
 336static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
 337                             uint32_t engine_id, uint32_t queue_id,
 338                             uint32_t (**dump)[2], uint32_t *n_regs)
 339{
 340        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 341        uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
 342                queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
 343        uint32_t i = 0, reg;
 344#undef HQD_N_REGS
 345#define HQD_N_REGS (19+4+2+3+7)
 346
 347        *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
 348        if (*dump == NULL)
 349                return -ENOMEM;
 350
 351        for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
 352                DUMP_REG(sdma_offset + reg);
 353        for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
 354             reg++)
 355                DUMP_REG(sdma_offset + reg);
 356        for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
 357             reg++)
 358                DUMP_REG(sdma_offset + reg);
 359        for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
 360             reg++)
 361                DUMP_REG(sdma_offset + reg);
 362        for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
 363             reg++)
 364                DUMP_REG(sdma_offset + reg);
 365
 366        WARN_ON_ONCE(i != HQD_N_REGS);
 367        *n_regs = i;
 368
 369        return 0;
 370}
 371
 372static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
 373                                uint32_t pipe_id, uint32_t queue_id)
 374{
 375        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 376        uint32_t act;
 377        bool retval = false;
 378        uint32_t low, high;
 379
 380        acquire_queue(kgd, pipe_id, queue_id);
 381        act = RREG32(mmCP_HQD_ACTIVE);
 382        if (act) {
 383                low = lower_32_bits(queue_address >> 8);
 384                high = upper_32_bits(queue_address >> 8);
 385
 386                if (low == RREG32(mmCP_HQD_PQ_BASE) &&
 387                                high == RREG32(mmCP_HQD_PQ_BASE_HI))
 388                        retval = true;
 389        }
 390        release_queue(kgd);
 391        return retval;
 392}
 393
 394static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
 395{
 396        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 397        struct vi_sdma_mqd *m;
 398        uint32_t sdma_rlc_reg_offset;
 399        uint32_t sdma_rlc_rb_cntl;
 400
 401        m = get_sdma_mqd(mqd);
 402        sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
 403
 404        sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
 405
 406        if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
 407                return true;
 408
 409        return false;
 410}
 411
 412static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
 413                                enum kfd_preempt_type reset_type,
 414                                unsigned int utimeout, uint32_t pipe_id,
 415                                uint32_t queue_id)
 416{
 417        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 418        uint32_t temp;
 419        enum hqd_dequeue_request_type type;
 420        unsigned long flags, end_jiffies;
 421        int retry;
 422        struct vi_mqd *m = get_mqd(mqd);
 423
 424        if (adev->in_gpu_reset)
 425                return -EIO;
 426
 427        acquire_queue(kgd, pipe_id, queue_id);
 428
 429        if (m->cp_hqd_vmid == 0)
 430                WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
 431
 432        switch (reset_type) {
 433        case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
 434                type = DRAIN_PIPE;
 435                break;
 436        case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
 437                type = RESET_WAVES;
 438                break;
 439        default:
 440                type = DRAIN_PIPE;
 441                break;
 442        }
 443
 444        /* Workaround: If IQ timer is active and the wait time is close to or
 445         * equal to 0, dequeueing is not safe. Wait until either the wait time
 446         * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
 447         * cleared before continuing. Also, ensure wait times are set to at
 448         * least 0x3.
 449         */
 450        local_irq_save(flags);
 451        preempt_disable();
 452        retry = 5000; /* wait for 500 usecs at maximum */
 453        while (true) {
 454                temp = RREG32(mmCP_HQD_IQ_TIMER);
 455                if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
 456                        pr_debug("HW is processing IQ\n");
 457                        goto loop;
 458                }
 459                if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
 460                        if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
 461                                        == 3) /* SEM-rearm is safe */
 462                                break;
 463                        /* Wait time 3 is safe for CP, but our MMIO read/write
 464                         * time is close to 1 microsecond, so check for 10 to
 465                         * leave more buffer room
 466                         */
 467                        if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
 468                                        >= 10)
 469                                break;
 470                        pr_debug("IQ timer is active\n");
 471                } else
 472                        break;
 473loop:
 474                if (!retry) {
 475                        pr_err("CP HQD IQ timer status time out\n");
 476                        break;
 477                }
 478                ndelay(100);
 479                --retry;
 480        }
 481        retry = 1000;
 482        while (true) {
 483                temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
 484                if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
 485                        break;
 486                pr_debug("Dequeue request is pending\n");
 487
 488                if (!retry) {
 489                        pr_err("CP HQD dequeue request time out\n");
 490                        break;
 491                }
 492                ndelay(100);
 493                --retry;
 494        }
 495        local_irq_restore(flags);
 496        preempt_enable();
 497
 498        WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
 499
 500        end_jiffies = (utimeout * HZ / 1000) + jiffies;
 501        while (true) {
 502                temp = RREG32(mmCP_HQD_ACTIVE);
 503                if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
 504                        break;
 505                if (time_after(jiffies, end_jiffies)) {
 506                        pr_err("cp queue preemption time out.\n");
 507                        release_queue(kgd);
 508                        return -ETIME;
 509                }
 510                usleep_range(500, 1000);
 511        }
 512
 513        release_queue(kgd);
 514        return 0;
 515}
 516
 517static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
 518                                unsigned int utimeout)
 519{
 520        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 521        struct vi_sdma_mqd *m;
 522        uint32_t sdma_rlc_reg_offset;
 523        uint32_t temp;
 524        unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
 525
 526        m = get_sdma_mqd(mqd);
 527        sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
 528
 529        temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
 530        temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
 531        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
 532
 533        while (true) {
 534                temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
 535                if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
 536                        break;
 537                if (time_after(jiffies, end_jiffies)) {
 538                        pr_err("SDMA RLC not idle in %s\n", __func__);
 539                        return -ETIME;
 540                }
 541                usleep_range(500, 1000);
 542        }
 543
 544        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
 545        WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
 546                RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
 547                SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
 548
 549        m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
 550
 551        return 0;
 552}
 553
 554static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
 555                                        uint8_t vmid, uint16_t *p_pasid)
 556{
 557        uint32_t value;
 558        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 559
 560        value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
 561        *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
 562
 563        return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
 564}
 565
 566static int kgd_address_watch_disable(struct kgd_dev *kgd)
 567{
 568        return 0;
 569}
 570
 571static int kgd_address_watch_execute(struct kgd_dev *kgd,
 572                                        unsigned int watch_point_id,
 573                                        uint32_t cntl_val,
 574                                        uint32_t addr_hi,
 575                                        uint32_t addr_lo)
 576{
 577        return 0;
 578}
 579
 580static int kgd_wave_control_execute(struct kgd_dev *kgd,
 581                                        uint32_t gfx_index_val,
 582                                        uint32_t sq_cmd)
 583{
 584        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 585        uint32_t data = 0;
 586
 587        mutex_lock(&adev->grbm_idx_mutex);
 588
 589        WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
 590        WREG32(mmSQ_CMD, sq_cmd);
 591
 592        data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 593                INSTANCE_BROADCAST_WRITES, 1);
 594        data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 595                SH_BROADCAST_WRITES, 1);
 596        data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
 597                SE_BROADCAST_WRITES, 1);
 598
 599        WREG32(mmGRBM_GFX_INDEX, data);
 600        mutex_unlock(&adev->grbm_idx_mutex);
 601
 602        return 0;
 603}
 604
 605static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
 606                                        unsigned int watch_point_id,
 607                                        unsigned int reg_offset)
 608{
 609        return 0;
 610}
 611
 612static void set_scratch_backing_va(struct kgd_dev *kgd,
 613                                        uint64_t va, uint32_t vmid)
 614{
 615        struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
 616
 617        lock_srbm(kgd, 0, 0, 0, vmid);
 618        WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
 619        unlock_srbm(kgd);
 620}
 621
 622static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
 623                uint64_t page_table_base)
 624{
 625        struct amdgpu_device *adev = get_amdgpu_device(kgd);
 626
 627        if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
 628                pr_err("trying to set page table base for wrong VMID\n");
 629                return;
 630        }
 631        WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
 632                        lower_32_bits(page_table_base));
 633}
 634
 635const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
 636        .program_sh_mem_settings = kgd_program_sh_mem_settings,
 637        .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
 638        .init_interrupts = kgd_init_interrupts,
 639        .hqd_load = kgd_hqd_load,
 640        .hqd_sdma_load = kgd_hqd_sdma_load,
 641        .hqd_dump = kgd_hqd_dump,
 642        .hqd_sdma_dump = kgd_hqd_sdma_dump,
 643        .hqd_is_occupied = kgd_hqd_is_occupied,
 644        .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
 645        .hqd_destroy = kgd_hqd_destroy,
 646        .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
 647        .address_watch_disable = kgd_address_watch_disable,
 648        .address_watch_execute = kgd_address_watch_execute,
 649        .wave_control_execute = kgd_wave_control_execute,
 650        .address_watch_get_offset = kgd_address_watch_get_offset,
 651        .get_atc_vmid_pasid_mapping_info =
 652                        get_atc_vmid_pasid_mapping_info,
 653        .set_scratch_backing_va = set_scratch_backing_va,
 654        .set_vm_context_page_table_base = set_vm_context_page_table_base,
 655};
 656