linux/drivers/gpu/drm/amd/display/dc/core/dc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2015 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: AMD
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/mm.h>
  27
  28#include "dm_services.h"
  29
  30#include "dc.h"
  31
  32#include "core_status.h"
  33#include "core_types.h"
  34#include "hw_sequencer.h"
  35#include "dce/dce_hwseq.h"
  36
  37#include "resource.h"
  38
  39#include "clk_mgr.h"
  40#include "clock_source.h"
  41#include "dc_bios_types.h"
  42
  43#include "bios_parser_interface.h"
  44#include "include/irq_service_interface.h"
  45#include "transform.h"
  46#include "dmcu.h"
  47#include "dpp.h"
  48#include "timing_generator.h"
  49#include "abm.h"
  50#include "virtual/virtual_link_encoder.h"
  51
  52#include "link_hwss.h"
  53#include "link_encoder.h"
  54
  55#include "dc_link_ddc.h"
  56#include "dm_helpers.h"
  57#include "mem_input.h"
  58#include "hubp.h"
  59
  60#include "dc_link_dp.h"
  61#include "dc_dmub_srv.h"
  62
  63#include "dsc.h"
  64
  65#include "vm_helper.h"
  66
  67#include "dce/dce_i2c.h"
  68
  69#define CTX \
  70        dc->ctx
  71
  72#define DC_LOGGER \
  73        dc->ctx->logger
  74
  75static const char DC_BUILD_ID[] = "production-build";
  76
  77/**
  78 * DOC: Overview
  79 *
  80 * DC is the OS-agnostic component of the amdgpu DC driver.
  81 *
  82 * DC maintains and validates a set of structs representing the state of the
  83 * driver and writes that state to AMD hardware
  84 *
  85 * Main DC HW structs:
  86 *
  87 * struct dc - The central struct.  One per driver.  Created on driver load,
  88 * destroyed on driver unload.
  89 *
  90 * struct dc_context - One per driver.
  91 * Used as a backpointer by most other structs in dc.
  92 *
  93 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
  94 * plugpoints).  Created on driver load, destroyed on driver unload.
  95 *
  96 * struct dc_sink - One per display.  Created on boot or hotplug.
  97 * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
  98 * (the display directly attached).  It may also have one or more remote
  99 * sinks (in the Multi-Stream Transport case)
 100 *
 101 * struct resource_pool - One per driver.  Represents the hw blocks not in the
 102 * main pipeline.  Not directly accessible by dm.
 103 *
 104 * Main dc state structs:
 105 *
 106 * These structs can be created and destroyed as needed.  There is a full set of
 107 * these structs in dc->current_state representing the currently programmed state.
 108 *
 109 * struct dc_state - The global DC state to track global state information,
 110 * such as bandwidth values.
 111 *
 112 * struct dc_stream_state - Represents the hw configuration for the pipeline from
 113 * a framebuffer to a display.  Maps one-to-one with dc_sink.
 114 *
 115 * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
 116 * and may have more in the Multi-Plane Overlay case.
 117 *
 118 * struct resource_context - Represents the programmable state of everything in
 119 * the resource_pool.  Not directly accessible by dm.
 120 *
 121 * struct pipe_ctx - A member of struct resource_context.  Represents the
 122 * internal hardware pipeline components.  Each dc_plane_state has either
 123 * one or two (in the pipe-split case).
 124 */
 125
 126/*******************************************************************************
 127 * Private functions
 128 ******************************************************************************/
 129
 130static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
 131{
 132        if (new > *original)
 133                *original = new;
 134}
 135
 136static void destroy_links(struct dc *dc)
 137{
 138        uint32_t i;
 139
 140        for (i = 0; i < dc->link_count; i++) {
 141                if (NULL != dc->links[i])
 142                        link_destroy(&dc->links[i]);
 143        }
 144}
 145
 146static bool create_links(
 147                struct dc *dc,
 148                uint32_t num_virtual_links)
 149{
 150        int i;
 151        int connectors_num;
 152        struct dc_bios *bios = dc->ctx->dc_bios;
 153
 154        dc->link_count = 0;
 155
 156        connectors_num = bios->funcs->get_connectors_number(bios);
 157
 158        if (connectors_num > ENUM_ID_COUNT) {
 159                dm_error(
 160                        "DC: Number of connectors %d exceeds maximum of %d!\n",
 161                        connectors_num,
 162                        ENUM_ID_COUNT);
 163                return false;
 164        }
 165
 166        dm_output_to_console(
 167                "DC: %s: connectors_num: physical:%d, virtual:%d\n",
 168                __func__,
 169                connectors_num,
 170                num_virtual_links);
 171
 172        for (i = 0; i < connectors_num; i++) {
 173                struct link_init_data link_init_params = {0};
 174                struct dc_link *link;
 175
 176                link_init_params.ctx = dc->ctx;
 177                /* next BIOS object table connector */
 178                link_init_params.connector_index = i;
 179                link_init_params.link_index = dc->link_count;
 180                link_init_params.dc = dc;
 181                link = link_create(&link_init_params);
 182
 183                if (link) {
 184                        bool should_destory_link = false;
 185
 186                        if (link->connector_signal == SIGNAL_TYPE_EDP) {
 187                                if (dc->config.edp_not_connected)
 188                                        should_destory_link = true;
 189                                else if (dc->debug.remove_disconnect_edp) {
 190                                        enum dc_connection_type type;
 191                                        dc_link_detect_sink(link, &type);
 192                                        if (type == dc_connection_none)
 193                                                should_destory_link = true;
 194                                }
 195                        }
 196
 197                        if (dc->config.force_enum_edp || !should_destory_link) {
 198                                dc->links[dc->link_count] = link;
 199                                link->dc = dc;
 200                                ++dc->link_count;
 201                        } else {
 202                                link_destroy(&link);
 203                        }
 204                }
 205        }
 206
 207        for (i = 0; i < num_virtual_links; i++) {
 208                struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
 209                struct encoder_init_data enc_init = {0};
 210
 211                if (link == NULL) {
 212                        BREAK_TO_DEBUGGER();
 213                        goto failed_alloc;
 214                }
 215
 216                link->link_index = dc->link_count;
 217                dc->links[dc->link_count] = link;
 218                dc->link_count++;
 219
 220                link->ctx = dc->ctx;
 221                link->dc = dc;
 222                link->connector_signal = SIGNAL_TYPE_VIRTUAL;
 223                link->link_id.type = OBJECT_TYPE_CONNECTOR;
 224                link->link_id.id = CONNECTOR_ID_VIRTUAL;
 225                link->link_id.enum_id = ENUM_ID_1;
 226                link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
 227
 228                if (!link->link_enc) {
 229                        BREAK_TO_DEBUGGER();
 230                        goto failed_alloc;
 231                }
 232
 233                link->link_status.dpcd_caps = &link->dpcd_caps;
 234
 235                enc_init.ctx = dc->ctx;
 236                enc_init.channel = CHANNEL_ID_UNKNOWN;
 237                enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
 238                enc_init.transmitter = TRANSMITTER_UNKNOWN;
 239                enc_init.connector = link->link_id;
 240                enc_init.encoder.type = OBJECT_TYPE_ENCODER;
 241                enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
 242                enc_init.encoder.enum_id = ENUM_ID_1;
 243                virtual_link_encoder_construct(link->link_enc, &enc_init);
 244        }
 245
 246        return true;
 247
 248failed_alloc:
 249        return false;
 250}
 251
 252static struct dc_perf_trace *dc_perf_trace_create(void)
 253{
 254        return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
 255}
 256
 257static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
 258{
 259        kfree(*perf_trace);
 260        *perf_trace = NULL;
 261}
 262
 263/**
 264 *****************************************************************************
 265 *  Function: dc_stream_adjust_vmin_vmax
 266 *
 267 *  @brief
 268 *     Looks up the pipe context of dc_stream_state and updates the
 269 *     vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
 270 *     Rate, which is a power-saving feature that targets reducing panel
 271 *     refresh rate while the screen is static
 272 *
 273 *  @param [in] dc: dc reference
 274 *  @param [in] stream: Initial dc stream state
 275 *  @param [in] adjust: Updated parameters for vertical_total_min and
 276 *  vertical_total_max
 277 *****************************************************************************
 278 */
 279bool dc_stream_adjust_vmin_vmax(struct dc *dc,
 280                struct dc_stream_state *stream,
 281                struct dc_crtc_timing_adjust *adjust)
 282{
 283        int i = 0;
 284        bool ret = false;
 285
 286        stream->adjust = *adjust;
 287
 288        for (i = 0; i < MAX_PIPES; i++) {
 289                struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
 290
 291                if (pipe->stream == stream && pipe->stream_res.tg) {
 292                        dc->hwss.set_drr(&pipe,
 293                                        1,
 294                                        adjust->v_total_min,
 295                                        adjust->v_total_max,
 296                                        adjust->v_total_mid,
 297                                        adjust->v_total_mid_frame_num);
 298
 299                        ret = true;
 300                }
 301        }
 302        return ret;
 303}
 304
 305bool dc_stream_get_crtc_position(struct dc *dc,
 306                struct dc_stream_state **streams, int num_streams,
 307                unsigned int *v_pos, unsigned int *nom_v_pos)
 308{
 309        /* TODO: Support multiple streams */
 310        const struct dc_stream_state *stream = streams[0];
 311        int i = 0;
 312        bool ret = false;
 313        struct crtc_position position;
 314
 315        for (i = 0; i < MAX_PIPES; i++) {
 316                struct pipe_ctx *pipe =
 317                                &dc->current_state->res_ctx.pipe_ctx[i];
 318
 319                if (pipe->stream == stream && pipe->stream_res.stream_enc) {
 320                        dc->hwss.get_position(&pipe, 1, &position);
 321
 322                        *v_pos = position.vertical_count;
 323                        *nom_v_pos = position.nominal_vcount;
 324                        ret = true;
 325                }
 326        }
 327        return ret;
 328}
 329
 330/**
 331 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
 332 * @dc: DC Object
 333 * @stream: The stream to configure CRC on.
 334 * @enable: Enable CRC if true, disable otherwise.
 335 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
 336 *              once.
 337 *
 338 * By default, only CRC0 is configured, and the entire frame is used to
 339 * calculate the crc.
 340 */
 341bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
 342                             bool enable, bool continuous)
 343{
 344        int i;
 345        struct pipe_ctx *pipe;
 346        struct crc_params param;
 347        struct timing_generator *tg;
 348
 349        for (i = 0; i < MAX_PIPES; i++) {
 350                pipe = &dc->current_state->res_ctx.pipe_ctx[i];
 351                if (pipe->stream == stream)
 352                        break;
 353        }
 354        /* Stream not found */
 355        if (i == MAX_PIPES)
 356                return false;
 357
 358        /* Always capture the full frame */
 359        param.windowa_x_start = 0;
 360        param.windowa_y_start = 0;
 361        param.windowa_x_end = pipe->stream->timing.h_addressable;
 362        param.windowa_y_end = pipe->stream->timing.v_addressable;
 363        param.windowb_x_start = 0;
 364        param.windowb_y_start = 0;
 365        param.windowb_x_end = pipe->stream->timing.h_addressable;
 366        param.windowb_y_end = pipe->stream->timing.v_addressable;
 367
 368        /* Default to the union of both windows */
 369        param.selection = UNION_WINDOW_A_B;
 370        param.continuous_mode = continuous;
 371        param.enable = enable;
 372
 373        tg = pipe->stream_res.tg;
 374
 375        /* Only call if supported */
 376        if (tg->funcs->configure_crc)
 377                return tg->funcs->configure_crc(tg, &param);
 378        DC_LOG_WARNING("CRC capture not supported.");
 379        return false;
 380}
 381
 382/**
 383 * dc_stream_get_crc() - Get CRC values for the given stream.
 384 * @dc: DC object
 385 * @stream: The DC stream state of the stream to get CRCs from.
 386 * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
 387 *
 388 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
 389 * Return false if stream is not found, or if CRCs are not enabled.
 390 */
 391bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
 392                       uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
 393{
 394        int i;
 395        struct pipe_ctx *pipe;
 396        struct timing_generator *tg;
 397
 398        for (i = 0; i < MAX_PIPES; i++) {
 399                pipe = &dc->current_state->res_ctx.pipe_ctx[i];
 400                if (pipe->stream == stream)
 401                        break;
 402        }
 403        /* Stream not found */
 404        if (i == MAX_PIPES)
 405                return false;
 406
 407        tg = pipe->stream_res.tg;
 408
 409        if (tg->funcs->get_crc)
 410                return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
 411        DC_LOG_WARNING("CRC capture not supported.");
 412        return false;
 413}
 414
 415void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
 416                enum dc_dynamic_expansion option)
 417{
 418        /* OPP FMT dyn expansion updates*/
 419        int i = 0;
 420        struct pipe_ctx *pipe_ctx;
 421
 422        for (i = 0; i < MAX_PIPES; i++) {
 423                if (dc->current_state->res_ctx.pipe_ctx[i].stream
 424                                == stream) {
 425                        pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
 426                        pipe_ctx->stream_res.opp->dyn_expansion = option;
 427                        pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
 428                                        pipe_ctx->stream_res.opp,
 429                                        COLOR_SPACE_YCBCR601,
 430                                        stream->timing.display_color_depth,
 431                                        stream->signal);
 432                }
 433        }
 434}
 435
 436void dc_stream_set_dither_option(struct dc_stream_state *stream,
 437                enum dc_dither_option option)
 438{
 439        struct bit_depth_reduction_params params;
 440        struct dc_link *link = stream->link;
 441        struct pipe_ctx *pipes = NULL;
 442        int i;
 443
 444        for (i = 0; i < MAX_PIPES; i++) {
 445                if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
 446                                stream) {
 447                        pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
 448                        break;
 449                }
 450        }
 451
 452        if (!pipes)
 453                return;
 454        if (option > DITHER_OPTION_MAX)
 455                return;
 456
 457        stream->dither_option = option;
 458
 459        memset(&params, 0, sizeof(params));
 460        resource_build_bit_depth_reduction_params(stream, &params);
 461        stream->bit_depth_params = params;
 462
 463        if (pipes->plane_res.xfm &&
 464            pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
 465                pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
 466                        pipes->plane_res.xfm,
 467                        pipes->plane_res.scl_data.lb_params.depth,
 468                        &stream->bit_depth_params);
 469        }
 470
 471        pipes->stream_res.opp->funcs->
 472                opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
 473}
 474
 475bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
 476{
 477        int i = 0;
 478        bool ret = false;
 479        struct pipe_ctx *pipes;
 480
 481        for (i = 0; i < MAX_PIPES; i++) {
 482                if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
 483                        pipes = &dc->current_state->res_ctx.pipe_ctx[i];
 484                        dc->hwss.program_gamut_remap(pipes);
 485                        ret = true;
 486                }
 487        }
 488
 489        return ret;
 490}
 491
 492bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
 493{
 494        int i = 0;
 495        bool ret = false;
 496        struct pipe_ctx *pipes;
 497
 498        for (i = 0; i < MAX_PIPES; i++) {
 499                if (dc->current_state->res_ctx.pipe_ctx[i].stream
 500                                == stream) {
 501
 502                        pipes = &dc->current_state->res_ctx.pipe_ctx[i];
 503                        dc->hwss.program_output_csc(dc,
 504                                        pipes,
 505                                        stream->output_color_space,
 506                                        stream->csc_color_matrix.matrix,
 507                                        pipes->stream_res.opp->inst);
 508                        ret = true;
 509                }
 510        }
 511
 512        return ret;
 513}
 514
 515void dc_stream_set_static_screen_params(struct dc *dc,
 516                struct dc_stream_state **streams,
 517                int num_streams,
 518                const struct dc_static_screen_params *params)
 519{
 520        int i = 0;
 521        int j = 0;
 522        struct pipe_ctx *pipes_affected[MAX_PIPES];
 523        int num_pipes_affected = 0;
 524
 525        for (i = 0; i < num_streams; i++) {
 526                struct dc_stream_state *stream = streams[i];
 527
 528                for (j = 0; j < MAX_PIPES; j++) {
 529                        if (dc->current_state->res_ctx.pipe_ctx[j].stream
 530                                        == stream) {
 531                                pipes_affected[num_pipes_affected++] =
 532                                                &dc->current_state->res_ctx.pipe_ctx[j];
 533                        }
 534                }
 535        }
 536
 537        dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
 538}
 539
 540static void dc_destruct(struct dc *dc)
 541{
 542        if (dc->current_state) {
 543                dc_release_state(dc->current_state);
 544                dc->current_state = NULL;
 545        }
 546
 547        destroy_links(dc);
 548
 549        if (dc->clk_mgr) {
 550                dc_destroy_clk_mgr(dc->clk_mgr);
 551                dc->clk_mgr = NULL;
 552        }
 553
 554        dc_destroy_resource_pool(dc);
 555
 556        if (dc->ctx->gpio_service)
 557                dal_gpio_service_destroy(&dc->ctx->gpio_service);
 558
 559        if (dc->ctx->created_bios)
 560                dal_bios_parser_destroy(&dc->ctx->dc_bios);
 561
 562        dc_perf_trace_destroy(&dc->ctx->perf_trace);
 563
 564        kfree(dc->ctx);
 565        dc->ctx = NULL;
 566
 567        kfree(dc->bw_vbios);
 568        dc->bw_vbios = NULL;
 569
 570        kfree(dc->bw_dceip);
 571        dc->bw_dceip = NULL;
 572
 573#ifdef CONFIG_DRM_AMD_DC_DCN
 574        kfree(dc->dcn_soc);
 575        dc->dcn_soc = NULL;
 576
 577        kfree(dc->dcn_ip);
 578        dc->dcn_ip = NULL;
 579
 580#endif
 581        kfree(dc->vm_helper);
 582        dc->vm_helper = NULL;
 583
 584}
 585
 586static bool dc_construct_ctx(struct dc *dc,
 587                const struct dc_init_data *init_params)
 588{
 589        struct dc_context *dc_ctx;
 590        enum dce_version dc_version = DCE_VERSION_UNKNOWN;
 591
 592        dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
 593        if (!dc_ctx)
 594                return false;
 595
 596        dc_ctx->cgs_device = init_params->cgs_device;
 597        dc_ctx->driver_context = init_params->driver;
 598        dc_ctx->dc = dc;
 599        dc_ctx->asic_id = init_params->asic_id;
 600        dc_ctx->dc_sink_id_count = 0;
 601        dc_ctx->dc_stream_id_count = 0;
 602        dc_ctx->dce_environment = init_params->dce_environment;
 603
 604        /* Create logger */
 605
 606        dc_version = resource_parse_asic_id(init_params->asic_id);
 607        dc_ctx->dce_version = dc_version;
 608
 609        dc_ctx->perf_trace = dc_perf_trace_create();
 610        if (!dc_ctx->perf_trace) {
 611                ASSERT_CRITICAL(false);
 612                return false;
 613        }
 614
 615        dc->ctx = dc_ctx;
 616
 617        return true;
 618}
 619
 620static bool dc_construct(struct dc *dc,
 621                const struct dc_init_data *init_params)
 622{
 623        struct dc_context *dc_ctx;
 624        struct bw_calcs_dceip *dc_dceip;
 625        struct bw_calcs_vbios *dc_vbios;
 626#ifdef CONFIG_DRM_AMD_DC_DCN
 627        struct dcn_soc_bounding_box *dcn_soc;
 628        struct dcn_ip_params *dcn_ip;
 629#endif
 630
 631        dc->config = init_params->flags;
 632
 633        // Allocate memory for the vm_helper
 634        dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
 635        if (!dc->vm_helper) {
 636                dm_error("%s: failed to create dc->vm_helper\n", __func__);
 637                goto fail;
 638        }
 639
 640        memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
 641
 642        dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
 643        if (!dc_dceip) {
 644                dm_error("%s: failed to create dceip\n", __func__);
 645                goto fail;
 646        }
 647
 648        dc->bw_dceip = dc_dceip;
 649
 650        dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
 651        if (!dc_vbios) {
 652                dm_error("%s: failed to create vbios\n", __func__);
 653                goto fail;
 654        }
 655
 656        dc->bw_vbios = dc_vbios;
 657#ifdef CONFIG_DRM_AMD_DC_DCN
 658        dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
 659        if (!dcn_soc) {
 660                dm_error("%s: failed to create dcn_soc\n", __func__);
 661                goto fail;
 662        }
 663
 664        dc->dcn_soc = dcn_soc;
 665
 666        dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
 667        if (!dcn_ip) {
 668                dm_error("%s: failed to create dcn_ip\n", __func__);
 669                goto fail;
 670        }
 671
 672        dc->dcn_ip = dcn_ip;
 673        dc->soc_bounding_box = init_params->soc_bounding_box;
 674#endif
 675
 676        if (!dc_construct_ctx(dc, init_params)) {
 677                dm_error("%s: failed to create ctx\n", __func__);
 678                goto fail;
 679        }
 680
 681        dc_ctx = dc->ctx;
 682
 683        /* Resource should construct all asic specific resources.
 684         * This should be the only place where we need to parse the asic id
 685         */
 686        if (init_params->vbios_override)
 687                dc_ctx->dc_bios = init_params->vbios_override;
 688        else {
 689                /* Create BIOS parser */
 690                struct bp_init_data bp_init_data;
 691
 692                bp_init_data.ctx = dc_ctx;
 693                bp_init_data.bios = init_params->asic_id.atombios_base_address;
 694
 695                dc_ctx->dc_bios = dal_bios_parser_create(
 696                                &bp_init_data, dc_ctx->dce_version);
 697
 698                if (!dc_ctx->dc_bios) {
 699                        ASSERT_CRITICAL(false);
 700                        goto fail;
 701                }
 702
 703                dc_ctx->created_bios = true;
 704        }
 705
 706        dc->vendor_signature = init_params->vendor_signature;
 707
 708        /* Create GPIO service */
 709        dc_ctx->gpio_service = dal_gpio_service_create(
 710                        dc_ctx->dce_version,
 711                        dc_ctx->dce_environment,
 712                        dc_ctx);
 713
 714        if (!dc_ctx->gpio_service) {
 715                ASSERT_CRITICAL(false);
 716                goto fail;
 717        }
 718
 719        dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
 720        if (!dc->res_pool)
 721                goto fail;
 722
 723        dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
 724        if (!dc->clk_mgr)
 725                goto fail;
 726
 727        if (dc->res_pool->funcs->update_bw_bounding_box)
 728                dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
 729
 730        /* Creation of current_state must occur after dc->dml
 731         * is initialized in dc_create_resource_pool because
 732         * on creation it copies the contents of dc->dml
 733         */
 734
 735        dc->current_state = dc_create_state(dc);
 736
 737        if (!dc->current_state) {
 738                dm_error("%s: failed to create validate ctx\n", __func__);
 739                goto fail;
 740        }
 741
 742        dc_resource_state_construct(dc, dc->current_state);
 743
 744        if (!create_links(dc, init_params->num_virtual_links))
 745                goto fail;
 746
 747        return true;
 748
 749fail:
 750        return false;
 751}
 752
 753static bool disable_all_writeback_pipes_for_stream(
 754                const struct dc *dc,
 755                struct dc_stream_state *stream,
 756                struct dc_state *context)
 757{
 758        int i;
 759
 760        for (i = 0; i < stream->num_wb_info; i++)
 761                stream->writeback_info[i].wb_enabled = false;
 762
 763        return true;
 764}
 765
 766void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
 767{
 768        int i = 0;
 769
 770        /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
 771        if (dc->hwss.interdependent_update_lock)
 772                dc->hwss.interdependent_update_lock(dc, context, lock);
 773        else {
 774                for (i = 0; i < dc->res_pool->pipe_count; i++) {
 775                        struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
 776                        struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
 777
 778                        // Copied conditions that were previously in dce110_apply_ctx_for_surface
 779                        if (stream == pipe_ctx->stream) {
 780                                if (!pipe_ctx->top_pipe &&
 781                                        (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
 782                                        dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
 783                        }
 784                }
 785        }
 786}
 787
 788static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
 789{
 790        int i, j;
 791        struct dc_state *dangling_context = dc_create_state(dc);
 792        struct dc_state *current_ctx;
 793
 794        if (dangling_context == NULL)
 795                return;
 796
 797        dc_resource_state_copy_construct(dc->current_state, dangling_context);
 798
 799        for (i = 0; i < dc->res_pool->pipe_count; i++) {
 800                struct dc_stream_state *old_stream =
 801                                dc->current_state->res_ctx.pipe_ctx[i].stream;
 802                bool should_disable = true;
 803
 804                for (j = 0; j < context->stream_count; j++) {
 805                        if (old_stream == context->streams[j]) {
 806                                should_disable = false;
 807                                break;
 808                        }
 809                }
 810                if (should_disable && old_stream) {
 811                        dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
 812                        disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
 813
 814                        if (dc->hwss.apply_ctx_for_surface) {
 815                                apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
 816                                dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
 817                                apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
 818                                dc->hwss.post_unlock_program_front_end(dc, dangling_context);
 819                        }
 820                        if (dc->hwss.program_front_end_for_ctx) {
 821                                dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
 822                                dc->hwss.program_front_end_for_ctx(dc, dangling_context);
 823                                dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
 824                                dc->hwss.post_unlock_program_front_end(dc, dangling_context);
 825                        }
 826                }
 827        }
 828
 829        current_ctx = dc->current_state;
 830        dc->current_state = dangling_context;
 831        dc_release_state(current_ctx);
 832}
 833
 834static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
 835{
 836        int i;
 837        PERF_TRACE();
 838        for (i = 0; i < MAX_PIPES; i++) {
 839                int count = 0;
 840                struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
 841
 842                if (!pipe->plane_state)
 843                        continue;
 844
 845                /* Timeout 100 ms */
 846                while (count < 100000) {
 847                        /* Must set to false to start with, due to OR in update function */
 848                        pipe->plane_state->status.is_flip_pending = false;
 849                        dc->hwss.update_pending_status(pipe);
 850                        if (!pipe->plane_state->status.is_flip_pending)
 851                                break;
 852                        udelay(1);
 853                        count++;
 854                }
 855                ASSERT(!pipe->plane_state->status.is_flip_pending);
 856        }
 857        PERF_TRACE();
 858}
 859
 860/*******************************************************************************
 861 * Public functions
 862 ******************************************************************************/
 863
 864struct dc *dc_create(const struct dc_init_data *init_params)
 865{
 866        struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
 867        unsigned int full_pipe_count;
 868
 869        if (NULL == dc)
 870                goto alloc_fail;
 871
 872        if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
 873                if (false == dc_construct_ctx(dc, init_params)) {
 874                        dc_destruct(dc);
 875                        goto construct_fail;
 876                }
 877        } else {
 878                if (false == dc_construct(dc, init_params)) {
 879                        dc_destruct(dc);
 880                        goto construct_fail;
 881                }
 882
 883                full_pipe_count = dc->res_pool->pipe_count;
 884                if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
 885                        full_pipe_count--;
 886                dc->caps.max_streams = min(
 887                                full_pipe_count,
 888                                dc->res_pool->stream_enc_count);
 889
 890                dc->optimize_seamless_boot_streams = 0;
 891                dc->caps.max_links = dc->link_count;
 892                dc->caps.max_audios = dc->res_pool->audio_count;
 893                dc->caps.linear_pitch_alignment = 64;
 894
 895                dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
 896
 897                if (dc->res_pool->dmcu != NULL)
 898                        dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
 899        }
 900
 901        /* Populate versioning information */
 902        dc->versions.dc_ver = DC_VER;
 903
 904        dc->build_id = DC_BUILD_ID;
 905
 906        DC_LOG_DC("Display Core initialized\n");
 907
 908
 909
 910        return dc;
 911
 912construct_fail:
 913        kfree(dc);
 914
 915alloc_fail:
 916        return NULL;
 917}
 918
 919void dc_hardware_init(struct dc *dc)
 920{
 921        if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
 922                dc->hwss.init_hw(dc);
 923}
 924
 925void dc_init_callbacks(struct dc *dc,
 926                const struct dc_callback_init *init_params)
 927{
 928#ifdef CONFIG_DRM_AMD_DC_HDCP
 929        dc->ctx->cp_psp = init_params->cp_psp;
 930#endif
 931}
 932
 933void dc_deinit_callbacks(struct dc *dc)
 934{
 935#ifdef CONFIG_DRM_AMD_DC_HDCP
 936        memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
 937#endif
 938}
 939
 940void dc_destroy(struct dc **dc)
 941{
 942        dc_destruct(*dc);
 943        kfree(*dc);
 944        *dc = NULL;
 945}
 946
 947static void enable_timing_multisync(
 948                struct dc *dc,
 949                struct dc_state *ctx)
 950{
 951        int i = 0, multisync_count = 0;
 952        int pipe_count = dc->res_pool->pipe_count;
 953        struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
 954
 955        for (i = 0; i < pipe_count; i++) {
 956                if (!ctx->res_ctx.pipe_ctx[i].stream ||
 957                                !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
 958                        continue;
 959                if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
 960                        continue;
 961                multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
 962                multisync_count++;
 963        }
 964
 965        if (multisync_count > 0) {
 966                dc->hwss.enable_per_frame_crtc_position_reset(
 967                        dc, multisync_count, multisync_pipes);
 968        }
 969}
 970
 971static void program_timing_sync(
 972                struct dc *dc,
 973                struct dc_state *ctx)
 974{
 975        int i, j, k;
 976        int group_index = 0;
 977        int num_group = 0;
 978        int pipe_count = dc->res_pool->pipe_count;
 979        struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
 980
 981        for (i = 0; i < pipe_count; i++) {
 982                if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
 983                        continue;
 984
 985                unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
 986        }
 987
 988        for (i = 0; i < pipe_count; i++) {
 989                int group_size = 1;
 990                struct pipe_ctx *pipe_set[MAX_PIPES];
 991
 992                if (!unsynced_pipes[i])
 993                        continue;
 994
 995                pipe_set[0] = unsynced_pipes[i];
 996                unsynced_pipes[i] = NULL;
 997
 998                /* Add tg to the set, search rest of the tg's for ones with
 999                 * same timing, add all tgs with same timing to the group
1000                 */
1001                for (j = i + 1; j < pipe_count; j++) {
1002                        if (!unsynced_pipes[j])
1003                                continue;
1004
1005                        if (resource_are_streams_timing_synchronizable(
1006                                        unsynced_pipes[j]->stream,
1007                                        pipe_set[0]->stream)) {
1008                                pipe_set[group_size] = unsynced_pipes[j];
1009                                unsynced_pipes[j] = NULL;
1010                                group_size++;
1011                        }
1012                }
1013
1014                /* set first pipe with plane as master */
1015                for (j = 0; j < group_size; j++) {
1016                        if (pipe_set[j]->plane_state) {
1017                                if (j == 0)
1018                                        break;
1019
1020                                swap(pipe_set[0], pipe_set[j]);
1021                                break;
1022                        }
1023                }
1024
1025
1026                for (k = 0; k < group_size; k++) {
1027                        struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1028
1029                        status->timing_sync_info.group_id = num_group;
1030                        status->timing_sync_info.group_size = group_size;
1031                        if (k == 0)
1032                                status->timing_sync_info.master = true;
1033                        else
1034                                status->timing_sync_info.master = false;
1035
1036                }
1037                /* remove any other pipes with plane as they have already been synced */
1038                for (j = j + 1; j < group_size; j++) {
1039                        if (pipe_set[j]->plane_state) {
1040                                group_size--;
1041                                pipe_set[j] = pipe_set[group_size];
1042                                j--;
1043                        }
1044                }
1045
1046                if (group_size > 1) {
1047                        dc->hwss.enable_timing_synchronization(
1048                                dc, group_index, group_size, pipe_set);
1049                        group_index++;
1050                }
1051                num_group++;
1052        }
1053}
1054
1055static bool context_changed(
1056                struct dc *dc,
1057                struct dc_state *context)
1058{
1059        uint8_t i;
1060
1061        if (context->stream_count != dc->current_state->stream_count)
1062                return true;
1063
1064        for (i = 0; i < dc->current_state->stream_count; i++) {
1065                if (dc->current_state->streams[i] != context->streams[i])
1066                        return true;
1067        }
1068
1069        return false;
1070}
1071
1072bool dc_validate_seamless_boot_timing(const struct dc *dc,
1073                                const struct dc_sink *sink,
1074                                struct dc_crtc_timing *crtc_timing)
1075{
1076        struct timing_generator *tg;
1077        struct stream_encoder *se = NULL;
1078
1079        struct dc_crtc_timing hw_crtc_timing = {0};
1080
1081        struct dc_link *link = sink->link;
1082        unsigned int i, enc_inst, tg_inst = 0;
1083
1084        // Seamless port only support single DP and EDP so far
1085        if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1086                sink->sink_signal != SIGNAL_TYPE_EDP)
1087                return false;
1088
1089        /* Check for enabled DIG to identify enabled display */
1090        if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1091                return false;
1092
1093        enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1094
1095        if (enc_inst == ENGINE_ID_UNKNOWN)
1096                return false;
1097
1098        for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1099                if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1100
1101                        se = dc->res_pool->stream_enc[i];
1102
1103                        tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1104                                dc->res_pool->stream_enc[i]);
1105                        break;
1106                }
1107        }
1108
1109        // tg_inst not found
1110        if (i == dc->res_pool->stream_enc_count)
1111                return false;
1112
1113        if (tg_inst >= dc->res_pool->timing_generator_count)
1114                return false;
1115
1116        tg = dc->res_pool->timing_generators[tg_inst];
1117
1118        if (!tg->funcs->get_hw_timing)
1119                return false;
1120
1121        if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1122                return false;
1123
1124        if (crtc_timing->h_total != hw_crtc_timing.h_total)
1125                return false;
1126
1127        if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1128                return false;
1129
1130        if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1131                return false;
1132
1133        if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1134                return false;
1135
1136        if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1137                return false;
1138
1139        if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1140                return false;
1141
1142        if (crtc_timing->v_total != hw_crtc_timing.v_total)
1143                return false;
1144
1145        if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1146                return false;
1147
1148        if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1149                return false;
1150
1151        if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1152                return false;
1153
1154        if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1155                return false;
1156
1157        if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1158                return false;
1159
1160        if (dc_is_dp_signal(link->connector_signal)) {
1161                unsigned int pix_clk_100hz;
1162
1163                dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1164                        dc->res_pool->dp_clock_source,
1165                        tg_inst, &pix_clk_100hz);
1166
1167                if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1168                        return false;
1169
1170                if (!se->funcs->dp_get_pixel_format)
1171                        return false;
1172
1173                if (!se->funcs->dp_get_pixel_format(
1174                        se,
1175                        &hw_crtc_timing.pixel_encoding,
1176                        &hw_crtc_timing.display_color_depth))
1177                        return false;
1178
1179                if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1180                        return false;
1181
1182                if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1183                        return false;
1184        }
1185
1186        return true;
1187}
1188
1189bool dc_enable_stereo(
1190        struct dc *dc,
1191        struct dc_state *context,
1192        struct dc_stream_state *streams[],
1193        uint8_t stream_count)
1194{
1195        bool ret = true;
1196        int i, j;
1197        struct pipe_ctx *pipe;
1198
1199        for (i = 0; i < MAX_PIPES; i++) {
1200                if (context != NULL)
1201                        pipe = &context->res_ctx.pipe_ctx[i];
1202                else
1203                        pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1204                for (j = 0 ; pipe && j < stream_count; j++)  {
1205                        if (streams[j] && streams[j] == pipe->stream &&
1206                                dc->hwss.setup_stereo)
1207                                dc->hwss.setup_stereo(pipe, dc);
1208                }
1209        }
1210
1211        return ret;
1212}
1213
1214/*
1215 * Applies given context to HW and copy it into current context.
1216 * It's up to the user to release the src context afterwards.
1217 */
1218static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1219{
1220        struct dc_bios *dcb = dc->ctx->dc_bios;
1221        enum dc_status result = DC_ERROR_UNEXPECTED;
1222        struct pipe_ctx *pipe;
1223        int i, k, l;
1224        struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1225
1226        disable_dangling_plane(dc, context);
1227
1228        for (i = 0; i < context->stream_count; i++)
1229                dc_streams[i] =  context->streams[i];
1230
1231        if (!dcb->funcs->is_accelerated_mode(dcb))
1232                dc->hwss.enable_accelerated_mode(dc, context);
1233
1234        for (i = 0; i < context->stream_count; i++) {
1235                if (context->streams[i]->apply_seamless_boot_optimization)
1236                        dc->optimize_seamless_boot_streams++;
1237        }
1238
1239        if (dc->optimize_seamless_boot_streams == 0)
1240                dc->hwss.prepare_bandwidth(dc, context);
1241
1242        /* re-program planes for existing stream, in case we need to
1243         * free up plane resource for later use
1244         */
1245        if (dc->hwss.apply_ctx_for_surface) {
1246                for (i = 0; i < context->stream_count; i++) {
1247                        if (context->streams[i]->mode_changed)
1248                                continue;
1249                        apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1250                        dc->hwss.apply_ctx_for_surface(
1251                                dc, context->streams[i],
1252                                context->stream_status[i].plane_count,
1253                                context); /* use new pipe config in new context */
1254                        apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1255                        dc->hwss.post_unlock_program_front_end(dc, context);
1256                }
1257        }
1258
1259        /* Program hardware */
1260        for (i = 0; i < dc->res_pool->pipe_count; i++) {
1261                pipe = &context->res_ctx.pipe_ctx[i];
1262                dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1263        }
1264
1265        result = dc->hwss.apply_ctx_to_hw(dc, context);
1266
1267        if (result != DC_OK)
1268                return result;
1269
1270        if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1271                enable_timing_multisync(dc, context);
1272                program_timing_sync(dc, context);
1273        }
1274
1275        /* Program all planes within new context*/
1276        if (dc->hwss.program_front_end_for_ctx) {
1277                dc->hwss.interdependent_update_lock(dc, context, true);
1278                dc->hwss.program_front_end_for_ctx(dc, context);
1279                dc->hwss.interdependent_update_lock(dc, context, false);
1280                dc->hwss.post_unlock_program_front_end(dc, context);
1281        }
1282        for (i = 0; i < context->stream_count; i++) {
1283                const struct dc_link *link = context->streams[i]->link;
1284
1285                if (!context->streams[i]->mode_changed)
1286                        continue;
1287
1288                if (dc->hwss.apply_ctx_for_surface) {
1289                        apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1290                        dc->hwss.apply_ctx_for_surface(
1291                                        dc, context->streams[i],
1292                                        context->stream_status[i].plane_count,
1293                                        context);
1294                        apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1295                        dc->hwss.post_unlock_program_front_end(dc, context);
1296                }
1297
1298                /*
1299                 * enable stereo
1300                 * TODO rework dc_enable_stereo call to work with validation sets?
1301                 */
1302                for (k = 0; k < MAX_PIPES; k++) {
1303                        pipe = &context->res_ctx.pipe_ctx[k];
1304
1305                        for (l = 0 ; pipe && l < context->stream_count; l++)  {
1306                                if (context->streams[l] &&
1307                                        context->streams[l] == pipe->stream &&
1308                                        dc->hwss.setup_stereo)
1309                                        dc->hwss.setup_stereo(pipe, dc);
1310                        }
1311                }
1312
1313                CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1314                                context->streams[i]->timing.h_addressable,
1315                                context->streams[i]->timing.v_addressable,
1316                                context->streams[i]->timing.h_total,
1317                                context->streams[i]->timing.v_total,
1318                                context->streams[i]->timing.pix_clk_100hz / 10);
1319        }
1320
1321        dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1322
1323        if (dc->optimize_seamless_boot_streams == 0) {
1324                /* Must wait for no flips to be pending before doing optimize bw */
1325                wait_for_no_pipes_pending(dc, context);
1326                /* pplib is notified if disp_num changed */
1327                dc->hwss.optimize_bandwidth(dc, context);
1328        }
1329
1330        for (i = 0; i < context->stream_count; i++)
1331                context->streams[i]->mode_changed = false;
1332
1333        dc_release_state(dc->current_state);
1334
1335        dc->current_state = context;
1336
1337        dc_retain_state(dc->current_state);
1338
1339        return result;
1340}
1341
1342bool dc_commit_state(struct dc *dc, struct dc_state *context)
1343{
1344        enum dc_status result = DC_ERROR_UNEXPECTED;
1345        int i;
1346
1347        if (false == context_changed(dc, context))
1348                return DC_OK;
1349
1350        DC_LOG_DC("%s: %d streams\n",
1351                                __func__, context->stream_count);
1352
1353        for (i = 0; i < context->stream_count; i++) {
1354                struct dc_stream_state *stream = context->streams[i];
1355
1356                dc_stream_log(dc, stream);
1357        }
1358
1359        result = dc_commit_state_no_check(dc, context);
1360
1361        return (result == DC_OK);
1362}
1363
1364static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1365{
1366        int i;
1367        struct pipe_ctx *pipe;
1368
1369        for (i = 0; i < MAX_PIPES; i++) {
1370                pipe = &context->res_ctx.pipe_ctx[i];
1371
1372                if (!pipe->plane_state)
1373                        continue;
1374
1375                /* Must set to false to start with, due to OR in update function */
1376                pipe->plane_state->status.is_flip_pending = false;
1377                dc->hwss.update_pending_status(pipe);
1378                if (pipe->plane_state->status.is_flip_pending)
1379                        return true;
1380        }
1381        return false;
1382}
1383
1384bool dc_post_update_surfaces_to_stream(struct dc *dc)
1385{
1386        int i;
1387        struct dc_state *context = dc->current_state;
1388
1389        if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1390                return true;
1391
1392        post_surface_trace(dc);
1393
1394        if (is_flip_pending_in_pipes(dc, context))
1395                return true;
1396
1397        for (i = 0; i < dc->res_pool->pipe_count; i++)
1398                if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1399                    context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1400                        context->res_ctx.pipe_ctx[i].pipe_idx = i;
1401                        dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1402                }
1403
1404        dc->hwss.optimize_bandwidth(dc, context);
1405
1406        dc->optimized_required = false;
1407        dc->wm_optimized_required = false;
1408
1409        return true;
1410}
1411
1412struct dc_state *dc_create_state(struct dc *dc)
1413{
1414        struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1415                                            GFP_KERNEL);
1416
1417        if (!context)
1418                return NULL;
1419        /* Each context must have their own instance of VBA and in order to
1420         * initialize and obtain IP and SOC the base DML instance from DC is
1421         * initially copied into every context
1422         */
1423#ifdef CONFIG_DRM_AMD_DC_DCN
1424        memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1425#endif
1426
1427        kref_init(&context->refcount);
1428
1429        return context;
1430}
1431
1432struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1433{
1434        int i, j;
1435        struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1436
1437        if (!new_ctx)
1438                return NULL;
1439        memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1440
1441        for (i = 0; i < MAX_PIPES; i++) {
1442                        struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1443
1444                        if (cur_pipe->top_pipe)
1445                                cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1446
1447                        if (cur_pipe->bottom_pipe)
1448                                cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1449
1450                        if (cur_pipe->prev_odm_pipe)
1451                                cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1452
1453                        if (cur_pipe->next_odm_pipe)
1454                                cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1455
1456        }
1457
1458        for (i = 0; i < new_ctx->stream_count; i++) {
1459                        dc_stream_retain(new_ctx->streams[i]);
1460                        for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1461                                dc_plane_state_retain(
1462                                        new_ctx->stream_status[i].plane_states[j]);
1463        }
1464
1465        kref_init(&new_ctx->refcount);
1466
1467        return new_ctx;
1468}
1469
1470void dc_retain_state(struct dc_state *context)
1471{
1472        kref_get(&context->refcount);
1473}
1474
1475static void dc_state_free(struct kref *kref)
1476{
1477        struct dc_state *context = container_of(kref, struct dc_state, refcount);
1478        dc_resource_state_destruct(context);
1479        kvfree(context);
1480}
1481
1482void dc_release_state(struct dc_state *context)
1483{
1484        kref_put(&context->refcount, dc_state_free);
1485}
1486
1487bool dc_set_generic_gpio_for_stereo(bool enable,
1488                struct gpio_service *gpio_service)
1489{
1490        enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1491        struct gpio_pin_info pin_info;
1492        struct gpio *generic;
1493        struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1494                           GFP_KERNEL);
1495
1496        if (!config)
1497                return false;
1498        pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1499
1500        if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1501                kfree(config);
1502                return false;
1503        } else {
1504                generic = dal_gpio_service_create_generic_mux(
1505                        gpio_service,
1506                        pin_info.offset,
1507                        pin_info.mask);
1508        }
1509
1510        if (!generic) {
1511                kfree(config);
1512                return false;
1513        }
1514
1515        gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1516
1517        config->enable_output_from_mux = enable;
1518        config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1519
1520        if (gpio_result == GPIO_RESULT_OK)
1521                gpio_result = dal_mux_setup_config(generic, config);
1522
1523        if (gpio_result == GPIO_RESULT_OK) {
1524                dal_gpio_close(generic);
1525                dal_gpio_destroy_generic_mux(&generic);
1526                kfree(config);
1527                return true;
1528        } else {
1529                dal_gpio_close(generic);
1530                dal_gpio_destroy_generic_mux(&generic);
1531                kfree(config);
1532                return false;
1533        }
1534}
1535
1536static bool is_surface_in_context(
1537                const struct dc_state *context,
1538                const struct dc_plane_state *plane_state)
1539{
1540        int j;
1541
1542        for (j = 0; j < MAX_PIPES; j++) {
1543                const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1544
1545                if (plane_state == pipe_ctx->plane_state) {
1546                        return true;
1547                }
1548        }
1549
1550        return false;
1551}
1552
1553static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1554{
1555        union surface_update_flags *update_flags = &u->surface->update_flags;
1556        enum surface_update_type update_type = UPDATE_TYPE_FAST;
1557
1558        if (!u->plane_info)
1559                return UPDATE_TYPE_FAST;
1560
1561        if (u->plane_info->color_space != u->surface->color_space) {
1562                update_flags->bits.color_space_change = 1;
1563                elevate_update_type(&update_type, UPDATE_TYPE_MED);
1564        }
1565
1566        if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1567                update_flags->bits.horizontal_mirror_change = 1;
1568                elevate_update_type(&update_type, UPDATE_TYPE_MED);
1569        }
1570
1571        if (u->plane_info->rotation != u->surface->rotation) {
1572                update_flags->bits.rotation_change = 1;
1573                elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1574        }
1575
1576        if (u->plane_info->format != u->surface->format) {
1577                update_flags->bits.pixel_format_change = 1;
1578                elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1579        }
1580
1581        if (u->plane_info->stereo_format != u->surface->stereo_format) {
1582                update_flags->bits.stereo_format_change = 1;
1583                elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1584        }
1585
1586        if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1587                update_flags->bits.per_pixel_alpha_change = 1;
1588                elevate_update_type(&update_type, UPDATE_TYPE_MED);
1589        }
1590
1591        if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1592                update_flags->bits.global_alpha_change = 1;
1593                elevate_update_type(&update_type, UPDATE_TYPE_MED);
1594        }
1595
1596        if (u->plane_info->dcc.enable != u->surface->dcc.enable
1597                        || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1598                        || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1599                update_flags->bits.dcc_change = 1;
1600                elevate_update_type(&update_type, UPDATE_TYPE_MED);
1601        }
1602
1603        if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1604                        resource_pixel_format_to_bpp(u->surface->format)) {
1605                /* different bytes per element will require full bandwidth
1606                 * and DML calculation
1607                 */
1608                update_flags->bits.bpp_change = 1;
1609                elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1610        }
1611
1612        if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1613                        || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1614                update_flags->bits.plane_size_change = 1;
1615                elevate_update_type(&update_type, UPDATE_TYPE_MED);
1616        }
1617
1618
1619        if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1620                        sizeof(union dc_tiling_info)) != 0) {
1621                update_flags->bits.swizzle_change = 1;
1622                elevate_update_type(&update_type, UPDATE_TYPE_MED);
1623
1624                /* todo: below are HW dependent, we should add a hook to
1625                 * DCE/N resource and validated there.
1626                 */
1627                if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1628                        /* swizzled mode requires RQ to be setup properly,
1629                         * thus need to run DML to calculate RQ settings
1630                         */
1631                        update_flags->bits.bandwidth_change = 1;
1632                        elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1633                }
1634        }
1635
1636        /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1637        return update_type;
1638}
1639
1640static enum surface_update_type get_scaling_info_update_type(
1641                const struct dc_surface_update *u)
1642{
1643        union surface_update_flags *update_flags = &u->surface->update_flags;
1644
1645        if (!u->scaling_info)
1646                return UPDATE_TYPE_FAST;
1647
1648        if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1649                        || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1650                        || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1651                        || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1652                        || u->scaling_info->scaling_quality.integer_scaling !=
1653                                u->surface->scaling_quality.integer_scaling
1654                        ) {
1655                update_flags->bits.scaling_change = 1;
1656
1657                if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1658                        || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1659                                && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1660                                        || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1661                        /* Making dst rect smaller requires a bandwidth change */
1662                        update_flags->bits.bandwidth_change = 1;
1663        }
1664
1665        if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1666                || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1667
1668                update_flags->bits.scaling_change = 1;
1669                if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1670                                || u->scaling_info->src_rect.height > u->surface->src_rect.height)
1671                        /* Making src rect bigger requires a bandwidth change */
1672                        update_flags->bits.clock_change = 1;
1673        }
1674
1675        if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1676                        || u->scaling_info->src_rect.y != u->surface->src_rect.y
1677                        || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1678                        || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1679                        || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1680                        || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1681                update_flags->bits.position_change = 1;
1682
1683        if (update_flags->bits.clock_change
1684                        || update_flags->bits.bandwidth_change
1685                        || update_flags->bits.scaling_change)
1686                return UPDATE_TYPE_FULL;
1687
1688        if (update_flags->bits.position_change)
1689                return UPDATE_TYPE_MED;
1690
1691        return UPDATE_TYPE_FAST;
1692}
1693
1694static enum surface_update_type det_surface_update(const struct dc *dc,
1695                const struct dc_surface_update *u)
1696{
1697        const struct dc_state *context = dc->current_state;
1698        enum surface_update_type type;
1699        enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1700        union surface_update_flags *update_flags = &u->surface->update_flags;
1701
1702        if (u->flip_addr)
1703                update_flags->bits.addr_update = 1;
1704
1705        if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1706                update_flags->raw = 0xFFFFFFFF;
1707                return UPDATE_TYPE_FULL;
1708        }
1709
1710        update_flags->raw = 0; // Reset all flags
1711
1712        type = get_plane_info_update_type(u);
1713        elevate_update_type(&overall_type, type);
1714
1715        type = get_scaling_info_update_type(u);
1716        elevate_update_type(&overall_type, type);
1717
1718        if (u->flip_addr)
1719                update_flags->bits.addr_update = 1;
1720
1721        if (u->in_transfer_func)
1722                update_flags->bits.in_transfer_func_change = 1;
1723
1724        if (u->input_csc_color_matrix)
1725                update_flags->bits.input_csc_change = 1;
1726
1727        if (u->coeff_reduction_factor)
1728                update_flags->bits.coeff_reduction_change = 1;
1729
1730        if (u->gamut_remap_matrix)
1731                update_flags->bits.gamut_remap_change = 1;
1732
1733        if (u->gamma) {
1734                enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1735
1736                if (u->plane_info)
1737                        format = u->plane_info->format;
1738                else if (u->surface)
1739                        format = u->surface->format;
1740
1741                if (dce_use_lut(format))
1742                        update_flags->bits.gamma_change = 1;
1743        }
1744
1745        if (u->hdr_mult.value)
1746                if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1747                        update_flags->bits.hdr_mult = 1;
1748                        elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1749                }
1750
1751        if (update_flags->bits.in_transfer_func_change) {
1752                type = UPDATE_TYPE_MED;
1753                elevate_update_type(&overall_type, type);
1754        }
1755
1756        if (update_flags->bits.input_csc_change
1757                        || update_flags->bits.coeff_reduction_change
1758                        || update_flags->bits.gamma_change
1759                        || update_flags->bits.gamut_remap_change) {
1760                type = UPDATE_TYPE_FULL;
1761                elevate_update_type(&overall_type, type);
1762        }
1763
1764        return overall_type;
1765}
1766
1767static enum surface_update_type check_update_surfaces_for_stream(
1768                struct dc *dc,
1769                struct dc_surface_update *updates,
1770                int surface_count,
1771                struct dc_stream_update *stream_update,
1772                const struct dc_stream_status *stream_status)
1773{
1774        int i;
1775        enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1776
1777        if (stream_status == NULL || stream_status->plane_count != surface_count)
1778                overall_type = UPDATE_TYPE_FULL;
1779
1780        /* some stream updates require passive update */
1781        if (stream_update) {
1782                union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1783
1784                if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1785                        (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1786                        stream_update->integer_scaling_update)
1787                        su_flags->bits.scaling = 1;
1788
1789                if (stream_update->out_transfer_func)
1790                        su_flags->bits.out_tf = 1;
1791
1792                if (stream_update->abm_level)
1793                        su_flags->bits.abm_level = 1;
1794
1795                if (stream_update->dpms_off)
1796                        su_flags->bits.dpms_off = 1;
1797
1798                if (stream_update->gamut_remap)
1799                        su_flags->bits.gamut_remap = 1;
1800
1801                if (stream_update->wb_update)
1802                        su_flags->bits.wb_update = 1;
1803
1804                if (stream_update->dsc_config)
1805                        su_flags->bits.dsc_changed = 1;
1806
1807                if (su_flags->raw != 0)
1808                        overall_type = UPDATE_TYPE_FULL;
1809
1810                if (stream_update->output_csc_transform || stream_update->output_color_space)
1811                        su_flags->bits.out_csc = 1;
1812        }
1813
1814        for (i = 0 ; i < surface_count; i++) {
1815                enum surface_update_type type =
1816                                det_surface_update(dc, &updates[i]);
1817
1818                elevate_update_type(&overall_type, type);
1819        }
1820
1821        return overall_type;
1822}
1823
1824/**
1825 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1826 *
1827 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1828 */
1829enum surface_update_type dc_check_update_surfaces_for_stream(
1830                struct dc *dc,
1831                struct dc_surface_update *updates,
1832                int surface_count,
1833                struct dc_stream_update *stream_update,
1834                const struct dc_stream_status *stream_status)
1835{
1836        int i;
1837        enum surface_update_type type;
1838
1839        if (stream_update)
1840                stream_update->stream->update_flags.raw = 0;
1841        for (i = 0; i < surface_count; i++)
1842                updates[i].surface->update_flags.raw = 0;
1843
1844        type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
1845        if (type == UPDATE_TYPE_FULL) {
1846                if (stream_update) {
1847                        uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
1848                        stream_update->stream->update_flags.raw = 0xFFFFFFFF;
1849                        stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
1850                }
1851                for (i = 0; i < surface_count; i++)
1852                        updates[i].surface->update_flags.raw = 0xFFFFFFFF;
1853        }
1854
1855        if (type == UPDATE_TYPE_FAST) {
1856                // If there's an available clock comparator, we use that.
1857                if (dc->clk_mgr->funcs->are_clock_states_equal) {
1858                        if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
1859                                dc->optimized_required = true;
1860                // Else we fallback to mem compare.
1861                } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
1862                        dc->optimized_required = true;
1863                }
1864
1865                dc->optimized_required |= dc->wm_optimized_required;
1866        }
1867
1868        return type;
1869}
1870
1871static struct dc_stream_status *stream_get_status(
1872        struct dc_state *ctx,
1873        struct dc_stream_state *stream)
1874{
1875        uint8_t i;
1876
1877        for (i = 0; i < ctx->stream_count; i++) {
1878                if (stream == ctx->streams[i]) {
1879                        return &ctx->stream_status[i];
1880                }
1881        }
1882
1883        return NULL;
1884}
1885
1886static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
1887
1888static void copy_surface_update_to_plane(
1889                struct dc_plane_state *surface,
1890                struct dc_surface_update *srf_update)
1891{
1892        if (srf_update->flip_addr) {
1893                surface->address = srf_update->flip_addr->address;
1894                surface->flip_immediate =
1895                        srf_update->flip_addr->flip_immediate;
1896                surface->time.time_elapsed_in_us[surface->time.index] =
1897                        srf_update->flip_addr->flip_timestamp_in_us -
1898                                surface->time.prev_update_time_in_us;
1899                surface->time.prev_update_time_in_us =
1900                        srf_update->flip_addr->flip_timestamp_in_us;
1901                surface->time.index++;
1902                if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
1903                        surface->time.index = 0;
1904
1905                surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
1906        }
1907
1908        if (srf_update->scaling_info) {
1909                surface->scaling_quality =
1910                                srf_update->scaling_info->scaling_quality;
1911                surface->dst_rect =
1912                                srf_update->scaling_info->dst_rect;
1913                surface->src_rect =
1914                                srf_update->scaling_info->src_rect;
1915                surface->clip_rect =
1916                                srf_update->scaling_info->clip_rect;
1917        }
1918
1919        if (srf_update->plane_info) {
1920                surface->color_space =
1921                                srf_update->plane_info->color_space;
1922                surface->format =
1923                                srf_update->plane_info->format;
1924                surface->plane_size =
1925                                srf_update->plane_info->plane_size;
1926                surface->rotation =
1927                                srf_update->plane_info->rotation;
1928                surface->horizontal_mirror =
1929                                srf_update->plane_info->horizontal_mirror;
1930                surface->stereo_format =
1931                                srf_update->plane_info->stereo_format;
1932                surface->tiling_info =
1933                                srf_update->plane_info->tiling_info;
1934                surface->visible =
1935                                srf_update->plane_info->visible;
1936                surface->per_pixel_alpha =
1937                                srf_update->plane_info->per_pixel_alpha;
1938                surface->global_alpha =
1939                                srf_update->plane_info->global_alpha;
1940                surface->global_alpha_value =
1941                                srf_update->plane_info->global_alpha_value;
1942                surface->dcc =
1943                                srf_update->plane_info->dcc;
1944                surface->layer_index =
1945                                srf_update->plane_info->layer_index;
1946        }
1947
1948        if (srf_update->gamma &&
1949                        (surface->gamma_correction !=
1950                                        srf_update->gamma)) {
1951                memcpy(&surface->gamma_correction->entries,
1952                        &srf_update->gamma->entries,
1953                        sizeof(struct dc_gamma_entries));
1954                surface->gamma_correction->is_identity =
1955                        srf_update->gamma->is_identity;
1956                surface->gamma_correction->num_entries =
1957                        srf_update->gamma->num_entries;
1958                surface->gamma_correction->type =
1959                        srf_update->gamma->type;
1960        }
1961
1962        if (srf_update->in_transfer_func &&
1963                        (surface->in_transfer_func !=
1964                                srf_update->in_transfer_func)) {
1965                surface->in_transfer_func->sdr_ref_white_level =
1966                        srf_update->in_transfer_func->sdr_ref_white_level;
1967                surface->in_transfer_func->tf =
1968                        srf_update->in_transfer_func->tf;
1969                surface->in_transfer_func->type =
1970                        srf_update->in_transfer_func->type;
1971                memcpy(&surface->in_transfer_func->tf_pts,
1972                        &srf_update->in_transfer_func->tf_pts,
1973                        sizeof(struct dc_transfer_func_distributed_points));
1974        }
1975
1976        if (srf_update->func_shaper &&
1977                        (surface->in_shaper_func !=
1978                        srf_update->func_shaper))
1979                memcpy(surface->in_shaper_func, srf_update->func_shaper,
1980                sizeof(*surface->in_shaper_func));
1981
1982        if (srf_update->lut3d_func &&
1983                        (surface->lut3d_func !=
1984                        srf_update->lut3d_func))
1985                memcpy(surface->lut3d_func, srf_update->lut3d_func,
1986                sizeof(*surface->lut3d_func));
1987
1988        if (srf_update->hdr_mult.value)
1989                surface->hdr_mult =
1990                                srf_update->hdr_mult;
1991
1992        if (srf_update->blend_tf &&
1993                        (surface->blend_tf !=
1994                        srf_update->blend_tf))
1995                memcpy(surface->blend_tf, srf_update->blend_tf,
1996                sizeof(*surface->blend_tf));
1997
1998        if (srf_update->input_csc_color_matrix)
1999                surface->input_csc_color_matrix =
2000                        *srf_update->input_csc_color_matrix;
2001
2002        if (srf_update->coeff_reduction_factor)
2003                surface->coeff_reduction_factor =
2004                        *srf_update->coeff_reduction_factor;
2005
2006        if (srf_update->gamut_remap_matrix)
2007                surface->gamut_remap_matrix =
2008                        *srf_update->gamut_remap_matrix;
2009}
2010
2011static void copy_stream_update_to_stream(struct dc *dc,
2012                                         struct dc_state *context,
2013                                         struct dc_stream_state *stream,
2014                                         struct dc_stream_update *update)
2015{
2016        struct dc_context *dc_ctx = dc->ctx;
2017
2018        if (update == NULL || stream == NULL)
2019                return;
2020
2021        if (update->src.height && update->src.width)
2022                stream->src = update->src;
2023
2024        if (update->dst.height && update->dst.width)
2025                stream->dst = update->dst;
2026
2027        if (update->out_transfer_func &&
2028            stream->out_transfer_func != update->out_transfer_func) {
2029                stream->out_transfer_func->sdr_ref_white_level =
2030                        update->out_transfer_func->sdr_ref_white_level;
2031                stream->out_transfer_func->tf = update->out_transfer_func->tf;
2032                stream->out_transfer_func->type =
2033                        update->out_transfer_func->type;
2034                memcpy(&stream->out_transfer_func->tf_pts,
2035                       &update->out_transfer_func->tf_pts,
2036                       sizeof(struct dc_transfer_func_distributed_points));
2037        }
2038
2039        if (update->hdr_static_metadata)
2040                stream->hdr_static_metadata = *update->hdr_static_metadata;
2041
2042        if (update->abm_level)
2043                stream->abm_level = *update->abm_level;
2044
2045        if (update->periodic_interrupt0)
2046                stream->periodic_interrupt0 = *update->periodic_interrupt0;
2047
2048        if (update->periodic_interrupt1)
2049                stream->periodic_interrupt1 = *update->periodic_interrupt1;
2050
2051        if (update->gamut_remap)
2052                stream->gamut_remap_matrix = *update->gamut_remap;
2053
2054        /* Note: this being updated after mode set is currently not a use case
2055         * however if it arises OCSC would need to be reprogrammed at the
2056         * minimum
2057         */
2058        if (update->output_color_space)
2059                stream->output_color_space = *update->output_color_space;
2060
2061        if (update->output_csc_transform)
2062                stream->csc_color_matrix = *update->output_csc_transform;
2063
2064        if (update->vrr_infopacket)
2065                stream->vrr_infopacket = *update->vrr_infopacket;
2066
2067        if (update->dpms_off)
2068                stream->dpms_off = *update->dpms_off;
2069
2070        if (update->vsc_infopacket)
2071                stream->vsc_infopacket = *update->vsc_infopacket;
2072
2073        if (update->vsp_infopacket)
2074                stream->vsp_infopacket = *update->vsp_infopacket;
2075
2076        if (update->dither_option)
2077                stream->dither_option = *update->dither_option;
2078        /* update current stream with writeback info */
2079        if (update->wb_update) {
2080                int i;
2081
2082                stream->num_wb_info = update->wb_update->num_wb_info;
2083                ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2084                for (i = 0; i < stream->num_wb_info; i++)
2085                        stream->writeback_info[i] =
2086                                update->wb_update->writeback_info[i];
2087        }
2088        if (update->dsc_config) {
2089                struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2090                uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2091                uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2092                                       update->dsc_config->num_slices_v != 0);
2093
2094                /* Use temporarry context for validating new DSC config */
2095                struct dc_state *dsc_validate_context = dc_create_state(dc);
2096
2097                if (dsc_validate_context) {
2098                        dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2099
2100                        stream->timing.dsc_cfg = *update->dsc_config;
2101                        stream->timing.flags.DSC = enable_dsc;
2102                        if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2103                                stream->timing.dsc_cfg = old_dsc_cfg;
2104                                stream->timing.flags.DSC = old_dsc_enabled;
2105                                update->dsc_config = NULL;
2106                        }
2107
2108                        dc_release_state(dsc_validate_context);
2109                } else {
2110                        DC_ERROR("Failed to allocate new validate context for DSC change\n");
2111                        update->dsc_config = NULL;
2112                }
2113        }
2114}
2115
2116static void commit_planes_do_stream_update(struct dc *dc,
2117                struct dc_stream_state *stream,
2118                struct dc_stream_update *stream_update,
2119                enum surface_update_type update_type,
2120                struct dc_state *context)
2121{
2122        int j;
2123        bool should_program_abm;
2124
2125        // Stream updates
2126        for (j = 0; j < dc->res_pool->pipe_count; j++) {
2127                struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2128
2129                if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2130
2131                        if (stream_update->periodic_interrupt0 &&
2132                                        dc->hwss.setup_periodic_interrupt)
2133                                dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE0);
2134
2135                        if (stream_update->periodic_interrupt1 &&
2136                                        dc->hwss.setup_periodic_interrupt)
2137                                dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE1);
2138
2139                        if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2140                                        stream_update->vrr_infopacket ||
2141                                        stream_update->vsc_infopacket ||
2142                                        stream_update->vsp_infopacket) {
2143                                resource_build_info_frame(pipe_ctx);
2144                                dc->hwss.update_info_frame(pipe_ctx);
2145                        }
2146
2147                        if (stream_update->hdr_static_metadata &&
2148                                        stream->use_dynamic_meta &&
2149                                        dc->hwss.set_dmdata_attributes &&
2150                                        pipe_ctx->stream->dmdata_address.quad_part != 0)
2151                                dc->hwss.set_dmdata_attributes(pipe_ctx);
2152
2153                        if (stream_update->gamut_remap)
2154                                dc_stream_set_gamut_remap(dc, stream);
2155
2156                        if (stream_update->output_csc_transform)
2157                                dc_stream_program_csc_matrix(dc, stream);
2158
2159                        if (stream_update->dither_option) {
2160                                struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2161                                resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2162                                                                        &pipe_ctx->stream->bit_depth_params);
2163                                pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2164                                                &stream->bit_depth_params,
2165                                                &stream->clamping);
2166                                while (odm_pipe) {
2167                                        odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2168                                                        &stream->bit_depth_params,
2169                                                        &stream->clamping);
2170                                        odm_pipe = odm_pipe->next_odm_pipe;
2171                                }
2172                        }
2173
2174                        /* Full fe update*/
2175                        if (update_type == UPDATE_TYPE_FAST)
2176                                continue;
2177
2178                        if (stream_update->dsc_config)
2179                                dp_update_dsc_config(pipe_ctx);
2180
2181                        if (stream_update->dpms_off) {
2182                                if (*stream_update->dpms_off) {
2183                                        core_link_disable_stream(pipe_ctx);
2184                                        /* for dpms, keep acquired resources*/
2185                                        if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2186                                                pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2187
2188                                        dc->hwss.optimize_bandwidth(dc, dc->current_state);
2189                                } else {
2190                                        if (dc->optimize_seamless_boot_streams == 0)
2191                                                dc->hwss.prepare_bandwidth(dc, dc->current_state);
2192
2193                                        core_link_enable_stream(dc->current_state, pipe_ctx);
2194                                }
2195                        }
2196
2197                        if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2198                                should_program_abm = true;
2199
2200                                // if otg funcs defined check if blanked before programming
2201                                if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2202                                        if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2203                                                should_program_abm = false;
2204
2205                                if (should_program_abm) {
2206                                        if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2207                                                pipe_ctx->stream_res.abm->funcs->set_abm_immediate_disable(pipe_ctx->stream_res.abm);
2208                                        } else {
2209                                                pipe_ctx->stream_res.abm->funcs->set_abm_level(
2210                                                        pipe_ctx->stream_res.abm, stream->abm_level);
2211                                        }
2212                                }
2213                        }
2214                }
2215        }
2216}
2217
2218static void commit_planes_for_stream(struct dc *dc,
2219                struct dc_surface_update *srf_updates,
2220                int surface_count,
2221                struct dc_stream_state *stream,
2222                struct dc_stream_update *stream_update,
2223                enum surface_update_type update_type,
2224                struct dc_state *context)
2225{
2226        int i, j;
2227        struct pipe_ctx *top_pipe_to_program = NULL;
2228
2229        if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2230                /* Optimize seamless boot flag keeps clocks and watermarks high until
2231                 * first flip. After first flip, optimization is required to lower
2232                 * bandwidth. Important to note that it is expected UEFI will
2233                 * only light up a single display on POST, therefore we only expect
2234                 * one stream with seamless boot flag set.
2235                 */
2236                if (stream->apply_seamless_boot_optimization) {
2237                        stream->apply_seamless_boot_optimization = false;
2238                        dc->optimize_seamless_boot_streams--;
2239
2240                        if (dc->optimize_seamless_boot_streams == 0)
2241                                dc->optimized_required = true;
2242                }
2243        }
2244
2245        if (update_type == UPDATE_TYPE_FULL && dc->optimize_seamless_boot_streams == 0) {
2246                dc->hwss.prepare_bandwidth(dc, context);
2247                context_clock_trace(dc, context);
2248        }
2249
2250        for (j = 0; j < dc->res_pool->pipe_count; j++) {
2251                struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2252
2253                if (!pipe_ctx->top_pipe &&
2254                        !pipe_ctx->prev_odm_pipe &&
2255                        pipe_ctx->stream &&
2256                        pipe_ctx->stream == stream) {
2257                        top_pipe_to_program = pipe_ctx;
2258                }
2259        }
2260
2261        if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2262                if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable)
2263                        top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2264                                        top_pipe_to_program->stream_res.tg);
2265
2266        if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2267                dc->hwss.interdependent_update_lock(dc, context, true);
2268        else
2269                /* Lock the top pipe while updating plane addrs, since freesync requires
2270                 *  plane addr update event triggers to be synchronized.
2271                 *  top_pipe_to_program is expected to never be NULL
2272                 */
2273                dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2274
2275
2276        // Stream updates
2277        if (stream_update)
2278                commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2279
2280        if (surface_count == 0) {
2281                /*
2282                 * In case of turning off screen, no need to program front end a second time.
2283                 * just return after program blank.
2284                 */
2285                if (dc->hwss.apply_ctx_for_surface)
2286                        dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2287                if (dc->hwss.program_front_end_for_ctx)
2288                        dc->hwss.program_front_end_for_ctx(dc, context);
2289
2290                if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2291                        dc->hwss.interdependent_update_lock(dc, context, false);
2292                else
2293                        dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2294
2295                dc->hwss.post_unlock_program_front_end(dc, context);
2296                return;
2297        }
2298
2299        if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2300                for (i = 0; i < surface_count; i++) {
2301                        struct dc_plane_state *plane_state = srf_updates[i].surface;
2302                        /*set logical flag for lock/unlock use*/
2303                        for (j = 0; j < dc->res_pool->pipe_count; j++) {
2304                                struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2305                                if (!pipe_ctx->plane_state)
2306                                        continue;
2307                                if (pipe_ctx->plane_state != plane_state)
2308                                        continue;
2309                                plane_state->triplebuffer_flips = false;
2310                                if (update_type == UPDATE_TYPE_FAST &&
2311                                        dc->hwss.program_triplebuffer != NULL &&
2312                                        !plane_state->flip_immediate &&
2313                                        !dc->debug.disable_tri_buf) {
2314                                                /*triple buffer for VUpdate  only*/
2315                                                plane_state->triplebuffer_flips = true;
2316                                }
2317                        }
2318                }
2319        }
2320
2321        // Update Type FULL, Surface updates
2322        for (j = 0; j < dc->res_pool->pipe_count; j++) {
2323                struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2324
2325                if (!pipe_ctx->top_pipe &&
2326                        !pipe_ctx->prev_odm_pipe &&
2327                        pipe_ctx->stream &&
2328                        pipe_ctx->stream == stream) {
2329                        struct dc_stream_status *stream_status = NULL;
2330
2331                        if (!pipe_ctx->plane_state)
2332                                continue;
2333
2334                        /* Full fe update*/
2335                        if (update_type == UPDATE_TYPE_FAST)
2336                                continue;
2337
2338                        ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2339
2340                        if (dc->hwss.program_triplebuffer != NULL &&
2341                                !dc->debug.disable_tri_buf) {
2342                                /*turn off triple buffer for full update*/
2343                                dc->hwss.program_triplebuffer(
2344                                        dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2345                        }
2346                        stream_status =
2347                                stream_get_status(context, pipe_ctx->stream);
2348
2349                        if (dc->hwss.apply_ctx_for_surface)
2350                                dc->hwss.apply_ctx_for_surface(
2351                                        dc, pipe_ctx->stream, stream_status->plane_count, context);
2352                }
2353        }
2354        if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2355                dc->hwss.program_front_end_for_ctx(dc, context);
2356#ifdef CONFIG_DRM_AMD_DC_DCN
2357                if (dc->debug.validate_dml_output) {
2358                        for (i = 0; i < dc->res_pool->pipe_count; i++) {
2359                                struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2360                                if (cur_pipe.stream == NULL)
2361                                        continue;
2362
2363                                cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2364                                                cur_pipe.plane_res.hubp, dc->ctx,
2365                                                &context->res_ctx.pipe_ctx[i].rq_regs,
2366                                                &context->res_ctx.pipe_ctx[i].dlg_regs,
2367                                                &context->res_ctx.pipe_ctx[i].ttu_regs);
2368                        }
2369                }
2370#endif
2371        }
2372
2373        // Update Type FAST, Surface updates
2374        if (update_type == UPDATE_TYPE_FAST) {
2375                if (dc->hwss.set_flip_control_gsl)
2376                        for (i = 0; i < surface_count; i++) {
2377                                struct dc_plane_state *plane_state = srf_updates[i].surface;
2378
2379                                for (j = 0; j < dc->res_pool->pipe_count; j++) {
2380                                        struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2381
2382                                        if (pipe_ctx->stream != stream)
2383                                                continue;
2384
2385                                        if (pipe_ctx->plane_state != plane_state)
2386                                                continue;
2387
2388                                        // GSL has to be used for flip immediate
2389                                        dc->hwss.set_flip_control_gsl(pipe_ctx,
2390                                                        plane_state->flip_immediate);
2391                                }
2392                        }
2393                /* Perform requested Updates */
2394                for (i = 0; i < surface_count; i++) {
2395                        struct dc_plane_state *plane_state = srf_updates[i].surface;
2396
2397                        for (j = 0; j < dc->res_pool->pipe_count; j++) {
2398                                struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2399
2400                                if (pipe_ctx->stream != stream)
2401                                        continue;
2402
2403                                if (pipe_ctx->plane_state != plane_state)
2404                                        continue;
2405                                /*program triple buffer after lock based on flip type*/
2406                                if (dc->hwss.program_triplebuffer != NULL &&
2407                                        !dc->debug.disable_tri_buf) {
2408                                        /*only enable triplebuffer for  fast_update*/
2409                                        dc->hwss.program_triplebuffer(
2410                                                dc, pipe_ctx, plane_state->triplebuffer_flips);
2411                                }
2412                                if (srf_updates[i].flip_addr)
2413                                        dc->hwss.update_plane_addr(dc, pipe_ctx);
2414                        }
2415                }
2416        }
2417
2418        if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2419                dc->hwss.interdependent_update_lock(dc, context, false);
2420        else
2421                dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2422
2423        if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2424                if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2425                        top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2426                                        top_pipe_to_program->stream_res.tg,
2427                                        CRTC_STATE_VACTIVE);
2428                        top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2429                                        top_pipe_to_program->stream_res.tg,
2430                                        CRTC_STATE_VBLANK);
2431                        top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2432                                        top_pipe_to_program->stream_res.tg,
2433                                        CRTC_STATE_VACTIVE);
2434                        top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2435                                        top_pipe_to_program->stream_res.tg);
2436                }
2437
2438        if (update_type != UPDATE_TYPE_FAST)
2439                dc->hwss.post_unlock_program_front_end(dc, context);
2440
2441        // Fire manual trigger only when bottom plane is flipped
2442        for (j = 0; j < dc->res_pool->pipe_count; j++) {
2443                struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2444
2445                if (pipe_ctx->bottom_pipe ||
2446                                !pipe_ctx->stream ||
2447                                pipe_ctx->stream != stream ||
2448                                !pipe_ctx->plane_state->update_flags.bits.addr_update)
2449                        continue;
2450
2451                if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2452                        pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2453        }
2454}
2455
2456void dc_commit_updates_for_stream(struct dc *dc,
2457                struct dc_surface_update *srf_updates,
2458                int surface_count,
2459                struct dc_stream_state *stream,
2460                struct dc_stream_update *stream_update,
2461                struct dc_state *state)
2462{
2463        const struct dc_stream_status *stream_status;
2464        enum surface_update_type update_type;
2465        struct dc_state *context;
2466        struct dc_context *dc_ctx = dc->ctx;
2467        int i, j;
2468
2469        stream_status = dc_stream_get_status(stream);
2470        context = dc->current_state;
2471
2472        update_type = dc_check_update_surfaces_for_stream(
2473                                dc, srf_updates, surface_count, stream_update, stream_status);
2474
2475        if (update_type >= update_surface_trace_level)
2476                update_surface_trace(dc, srf_updates, surface_count);
2477
2478
2479        if (update_type >= UPDATE_TYPE_FULL) {
2480
2481                /* initialize scratch memory for building context */
2482                context = dc_create_state(dc);
2483                if (context == NULL) {
2484                        DC_ERROR("Failed to allocate new validate context!\n");
2485                        return;
2486                }
2487
2488                dc_resource_state_copy_construct(state, context);
2489
2490                for (i = 0; i < dc->res_pool->pipe_count; i++) {
2491                        struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2492                        struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2493
2494                        if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2495                                new_pipe->plane_state->force_full_update = true;
2496                }
2497        }
2498
2499
2500        for (i = 0; i < surface_count; i++) {
2501                struct dc_plane_state *surface = srf_updates[i].surface;
2502
2503                copy_surface_update_to_plane(surface, &srf_updates[i]);
2504
2505                if (update_type >= UPDATE_TYPE_MED) {
2506                        for (j = 0; j < dc->res_pool->pipe_count; j++) {
2507                                struct pipe_ctx *pipe_ctx =
2508                                        &context->res_ctx.pipe_ctx[j];
2509
2510                                if (pipe_ctx->plane_state != surface)
2511                                        continue;
2512
2513                                resource_build_scaling_params(pipe_ctx);
2514                        }
2515                }
2516        }
2517
2518        copy_stream_update_to_stream(dc, context, stream, stream_update);
2519
2520        commit_planes_for_stream(
2521                                dc,
2522                                srf_updates,
2523                                surface_count,
2524                                stream,
2525                                stream_update,
2526                                update_type,
2527                                context);
2528        /*update current_State*/
2529        if (dc->current_state != context) {
2530
2531                struct dc_state *old = dc->current_state;
2532
2533                dc->current_state = context;
2534                dc_release_state(old);
2535
2536                for (i = 0; i < dc->res_pool->pipe_count; i++) {
2537                        struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2538
2539                        if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2540                                pipe_ctx->plane_state->force_full_update = false;
2541                }
2542        }
2543        /*let's use current_state to update watermark etc*/
2544        if (update_type >= UPDATE_TYPE_FULL)
2545                dc_post_update_surfaces_to_stream(dc);
2546
2547        return;
2548
2549}
2550
2551uint8_t dc_get_current_stream_count(struct dc *dc)
2552{
2553        return dc->current_state->stream_count;
2554}
2555
2556struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2557{
2558        if (i < dc->current_state->stream_count)
2559                return dc->current_state->streams[i];
2560        return NULL;
2561}
2562
2563enum dc_irq_source dc_interrupt_to_irq_source(
2564                struct dc *dc,
2565                uint32_t src_id,
2566                uint32_t ext_id)
2567{
2568        return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2569}
2570
2571/**
2572 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2573 */
2574bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2575{
2576
2577        if (dc == NULL)
2578                return false;
2579
2580        return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2581}
2582
2583void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2584{
2585        dal_irq_service_ack(dc->res_pool->irqs, src);
2586}
2587
2588void dc_set_power_state(
2589        struct dc *dc,
2590        enum dc_acpi_cm_power_state power_state)
2591{
2592        struct kref refcount;
2593        struct display_mode_lib *dml;
2594
2595        switch (power_state) {
2596        case DC_ACPI_CM_POWER_STATE_D0:
2597                dc_resource_state_construct(dc, dc->current_state);
2598
2599                if (dc->ctx->dmub_srv)
2600                        dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2601
2602                dc->hwss.init_hw(dc);
2603
2604                if (dc->hwss.init_sys_ctx != NULL &&
2605                        dc->vm_pa_config.valid) {
2606                        dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2607                }
2608
2609                break;
2610        default:
2611                ASSERT(dc->current_state->stream_count == 0);
2612                /* Zero out the current context so that on resume we start with
2613                 * clean state, and dc hw programming optimizations will not
2614                 * cause any trouble.
2615                 */
2616                dml = kzalloc(sizeof(struct display_mode_lib),
2617                                GFP_KERNEL);
2618
2619                ASSERT(dml);
2620                if (!dml)
2621                        return;
2622
2623                /* Preserve refcount */
2624                refcount = dc->current_state->refcount;
2625                /* Preserve display mode lib */
2626                memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2627
2628                dc_resource_state_destruct(dc->current_state);
2629                memset(dc->current_state, 0,
2630                                sizeof(*dc->current_state));
2631
2632                dc->current_state->refcount = refcount;
2633                dc->current_state->bw_ctx.dml = *dml;
2634
2635                kfree(dml);
2636
2637                break;
2638        }
2639}
2640
2641void dc_resume(struct dc *dc)
2642{
2643
2644        uint32_t i;
2645
2646        for (i = 0; i < dc->link_count; i++)
2647                core_link_resume(dc->links[i]);
2648}
2649
2650unsigned int dc_get_current_backlight_pwm(struct dc *dc)
2651{
2652        struct abm *abm = dc->res_pool->abm;
2653
2654        if (abm)
2655                return abm->funcs->get_current_backlight(abm);
2656
2657        return 0;
2658}
2659
2660unsigned int dc_get_target_backlight_pwm(struct dc *dc)
2661{
2662        struct abm *abm = dc->res_pool->abm;
2663
2664        if (abm)
2665                return abm->funcs->get_target_backlight(abm);
2666
2667        return 0;
2668}
2669
2670bool dc_is_dmcu_initialized(struct dc *dc)
2671{
2672        struct dmcu *dmcu = dc->res_pool->dmcu;
2673
2674        if (dmcu)
2675                return dmcu->funcs->is_dmcu_initialized(dmcu);
2676        return false;
2677}
2678
2679bool dc_submit_i2c(
2680                struct dc *dc,
2681                uint32_t link_index,
2682                struct i2c_command *cmd)
2683{
2684
2685        struct dc_link *link = dc->links[link_index];
2686        struct ddc_service *ddc = link->ddc;
2687        return dce_i2c_submit_command(
2688                dc->res_pool,
2689                ddc->ddc_pin,
2690                cmd);
2691}
2692
2693bool dc_submit_i2c_oem(
2694                struct dc *dc,
2695                struct i2c_command *cmd)
2696{
2697        struct ddc_service *ddc = dc->res_pool->oem_device;
2698        return dce_i2c_submit_command(
2699                dc->res_pool,
2700                ddc->ddc_pin,
2701                cmd);
2702}
2703
2704static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2705{
2706        if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2707                BREAK_TO_DEBUGGER();
2708                return false;
2709        }
2710
2711        dc_sink_retain(sink);
2712
2713        dc_link->remote_sinks[dc_link->sink_count] = sink;
2714        dc_link->sink_count++;
2715
2716        return true;
2717}
2718
2719/**
2720 * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2721 *
2722 * EDID length is in bytes
2723 */
2724struct dc_sink *dc_link_add_remote_sink(
2725                struct dc_link *link,
2726                const uint8_t *edid,
2727                int len,
2728                struct dc_sink_init_data *init_data)
2729{
2730        struct dc_sink *dc_sink;
2731        enum dc_edid_status edid_status;
2732
2733        if (len > DC_MAX_EDID_BUFFER_SIZE) {
2734                dm_error("Max EDID buffer size breached!\n");
2735                return NULL;
2736        }
2737
2738        if (!init_data) {
2739                BREAK_TO_DEBUGGER();
2740                return NULL;
2741        }
2742
2743        if (!init_data->link) {
2744                BREAK_TO_DEBUGGER();
2745                return NULL;
2746        }
2747
2748        dc_sink = dc_sink_create(init_data);
2749
2750        if (!dc_sink)
2751                return NULL;
2752
2753        memmove(dc_sink->dc_edid.raw_edid, edid, len);
2754        dc_sink->dc_edid.length = len;
2755
2756        if (!link_add_remote_sink_helper(
2757                        link,
2758                        dc_sink))
2759                goto fail_add_sink;
2760
2761        edid_status = dm_helpers_parse_edid_caps(
2762                        link->ctx,
2763                        &dc_sink->dc_edid,
2764                        &dc_sink->edid_caps);
2765
2766        /*
2767         * Treat device as no EDID device if EDID
2768         * parsing fails
2769         */
2770        if (edid_status != EDID_OK) {
2771                dc_sink->dc_edid.length = 0;
2772                dm_error("Bad EDID, status%d!\n", edid_status);
2773        }
2774
2775        return dc_sink;
2776
2777fail_add_sink:
2778        dc_sink_release(dc_sink);
2779        return NULL;
2780}
2781
2782/**
2783 * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2784 *
2785 * Note that this just removes the struct dc_sink - it doesn't
2786 * program hardware or alter other members of dc_link
2787 */
2788void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2789{
2790        int i;
2791
2792        if (!link->sink_count) {
2793                BREAK_TO_DEBUGGER();
2794                return;
2795        }
2796
2797        for (i = 0; i < link->sink_count; i++) {
2798                if (link->remote_sinks[i] == sink) {
2799                        dc_sink_release(sink);
2800                        link->remote_sinks[i] = NULL;
2801
2802                        /* shrink array to remove empty place */
2803                        while (i < link->sink_count - 1) {
2804                                link->remote_sinks[i] = link->remote_sinks[i+1];
2805                                i++;
2806                        }
2807                        link->remote_sinks[i] = NULL;
2808                        link->sink_count--;
2809                        return;
2810                }
2811        }
2812}
2813
2814void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
2815{
2816        info->displayClock                              = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
2817        info->engineClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
2818        info->memoryClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
2819        info->maxSupportedDppClock              = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
2820        info->dppClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
2821        info->socClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
2822        info->dcfClockDeepSleep                 = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
2823        info->fClock                                    = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
2824        info->phyClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
2825}
2826enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
2827{
2828        if (dc->hwss.set_clock)
2829                return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
2830        return DC_ERROR_UNEXPECTED;
2831}
2832void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
2833{
2834        if (dc->hwss.get_clock)
2835                dc->hwss.get_clock(dc, clock_type, clock_cfg);
2836}
2837