linux/drivers/infiniband/hw/hfi1/sdma.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2018 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/spinlock.h>
  49#include <linux/seqlock.h>
  50#include <linux/netdevice.h>
  51#include <linux/moduleparam.h>
  52#include <linux/bitops.h>
  53#include <linux/timer.h>
  54#include <linux/vmalloc.h>
  55#include <linux/highmem.h>
  56
  57#include "hfi.h"
  58#include "common.h"
  59#include "qp.h"
  60#include "sdma.h"
  61#include "iowait.h"
  62#include "trace.h"
  63
  64/* must be a power of 2 >= 64 <= 32768 */
  65#define SDMA_DESCQ_CNT 2048
  66#define SDMA_DESC_INTR 64
  67#define INVALID_TAIL 0xffff
  68#define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
  69
  70static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
  71module_param(sdma_descq_cnt, uint, S_IRUGO);
  72MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
  73
  74static uint sdma_idle_cnt = 250;
  75module_param(sdma_idle_cnt, uint, S_IRUGO);
  76MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
  77
  78uint mod_num_sdma;
  79module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
  80MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
  81
  82static uint sdma_desct_intr = SDMA_DESC_INTR;
  83module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
  84MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
  85
  86#define SDMA_WAIT_BATCH_SIZE 20
  87/* max wait time for a SDMA engine to indicate it has halted */
  88#define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
  89/* all SDMA engine errors that cause a halt */
  90
  91#define SD(name) SEND_DMA_##name
  92#define ALL_SDMA_ENG_HALT_ERRS \
  93        (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
  94        | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
  95        | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
  96        | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
  97        | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
  98        | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
  99        | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
 100        | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
 101        | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
 102        | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
 103        | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
 104        | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
 105        | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
 106        | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
 107        | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
 108        | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
 109        | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
 110        | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
 111
 112/* sdma_sendctrl operations */
 113#define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
 114#define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
 115#define SDMA_SENDCTRL_OP_HALT      BIT(2)
 116#define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
 117
 118/* handle long defines */
 119#define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
 120SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
 121#define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
 122SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
 123
 124static const char * const sdma_state_names[] = {
 125        [sdma_state_s00_hw_down]                = "s00_HwDown",
 126        [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
 127        [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
 128        [sdma_state_s20_idle]                   = "s20_Idle",
 129        [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
 130        [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
 131        [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
 132        [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
 133        [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
 134        [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
 135        [sdma_state_s99_running]                = "s99_Running",
 136};
 137
 138#ifdef CONFIG_SDMA_VERBOSITY
 139static const char * const sdma_event_names[] = {
 140        [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
 141        [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
 142        [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
 143        [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
 144        [sdma_event_e30_go_running]   = "e30_GoRunning",
 145        [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
 146        [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
 147        [sdma_event_e60_hw_halted]    = "e60_HwHalted",
 148        [sdma_event_e70_go_idle]      = "e70_GoIdle",
 149        [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
 150        [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
 151        [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
 152        [sdma_event_e85_link_down]    = "e85_LinkDown",
 153        [sdma_event_e90_sw_halted]    = "e90_SwHalted",
 154};
 155#endif
 156
 157static const struct sdma_set_state_action sdma_action_table[] = {
 158        [sdma_state_s00_hw_down] = {
 159                .go_s99_running_tofalse = 1,
 160                .op_enable = 0,
 161                .op_intenable = 0,
 162                .op_halt = 0,
 163                .op_cleanup = 0,
 164        },
 165        [sdma_state_s10_hw_start_up_halt_wait] = {
 166                .op_enable = 0,
 167                .op_intenable = 0,
 168                .op_halt = 1,
 169                .op_cleanup = 0,
 170        },
 171        [sdma_state_s15_hw_start_up_clean_wait] = {
 172                .op_enable = 0,
 173                .op_intenable = 1,
 174                .op_halt = 0,
 175                .op_cleanup = 1,
 176        },
 177        [sdma_state_s20_idle] = {
 178                .op_enable = 0,
 179                .op_intenable = 1,
 180                .op_halt = 0,
 181                .op_cleanup = 0,
 182        },
 183        [sdma_state_s30_sw_clean_up_wait] = {
 184                .op_enable = 0,
 185                .op_intenable = 0,
 186                .op_halt = 0,
 187                .op_cleanup = 0,
 188        },
 189        [sdma_state_s40_hw_clean_up_wait] = {
 190                .op_enable = 0,
 191                .op_intenable = 0,
 192                .op_halt = 0,
 193                .op_cleanup = 1,
 194        },
 195        [sdma_state_s50_hw_halt_wait] = {
 196                .op_enable = 0,
 197                .op_intenable = 0,
 198                .op_halt = 0,
 199                .op_cleanup = 0,
 200        },
 201        [sdma_state_s60_idle_halt_wait] = {
 202                .go_s99_running_tofalse = 1,
 203                .op_enable = 0,
 204                .op_intenable = 0,
 205                .op_halt = 1,
 206                .op_cleanup = 0,
 207        },
 208        [sdma_state_s80_hw_freeze] = {
 209                .op_enable = 0,
 210                .op_intenable = 0,
 211                .op_halt = 0,
 212                .op_cleanup = 0,
 213        },
 214        [sdma_state_s82_freeze_sw_clean] = {
 215                .op_enable = 0,
 216                .op_intenable = 0,
 217                .op_halt = 0,
 218                .op_cleanup = 0,
 219        },
 220        [sdma_state_s99_running] = {
 221                .op_enable = 1,
 222                .op_intenable = 1,
 223                .op_halt = 0,
 224                .op_cleanup = 0,
 225                .go_s99_running_totrue = 1,
 226        },
 227};
 228
 229#define SDMA_TAIL_UPDATE_THRESH 0x1F
 230
 231/* declare all statics here rather than keep sorting */
 232static void sdma_complete(struct kref *);
 233static void sdma_finalput(struct sdma_state *);
 234static void sdma_get(struct sdma_state *);
 235static void sdma_hw_clean_up_task(unsigned long);
 236static void sdma_put(struct sdma_state *);
 237static void sdma_set_state(struct sdma_engine *, enum sdma_states);
 238static void sdma_start_hw_clean_up(struct sdma_engine *);
 239static void sdma_sw_clean_up_task(unsigned long);
 240static void sdma_sendctrl(struct sdma_engine *, unsigned);
 241static void init_sdma_regs(struct sdma_engine *, u32, uint);
 242static void sdma_process_event(
 243        struct sdma_engine *sde,
 244        enum sdma_events event);
 245static void __sdma_process_event(
 246        struct sdma_engine *sde,
 247        enum sdma_events event);
 248static void dump_sdma_state(struct sdma_engine *sde);
 249static void sdma_make_progress(struct sdma_engine *sde, u64 status);
 250static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
 251static void sdma_flush_descq(struct sdma_engine *sde);
 252
 253/**
 254 * sdma_state_name() - return state string from enum
 255 * @state: state
 256 */
 257static const char *sdma_state_name(enum sdma_states state)
 258{
 259        return sdma_state_names[state];
 260}
 261
 262static void sdma_get(struct sdma_state *ss)
 263{
 264        kref_get(&ss->kref);
 265}
 266
 267static void sdma_complete(struct kref *kref)
 268{
 269        struct sdma_state *ss =
 270                container_of(kref, struct sdma_state, kref);
 271
 272        complete(&ss->comp);
 273}
 274
 275static void sdma_put(struct sdma_state *ss)
 276{
 277        kref_put(&ss->kref, sdma_complete);
 278}
 279
 280static void sdma_finalput(struct sdma_state *ss)
 281{
 282        sdma_put(ss);
 283        wait_for_completion(&ss->comp);
 284}
 285
 286static inline void write_sde_csr(
 287        struct sdma_engine *sde,
 288        u32 offset0,
 289        u64 value)
 290{
 291        write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
 292}
 293
 294static inline u64 read_sde_csr(
 295        struct sdma_engine *sde,
 296        u32 offset0)
 297{
 298        return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
 299}
 300
 301/*
 302 * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
 303 * sdma engine 'sde' to drop to 0.
 304 */
 305static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
 306                                        int pause)
 307{
 308        u64 off = 8 * sde->this_idx;
 309        struct hfi1_devdata *dd = sde->dd;
 310        int lcnt = 0;
 311        u64 reg_prev;
 312        u64 reg = 0;
 313
 314        while (1) {
 315                reg_prev = reg;
 316                reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
 317
 318                reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
 319                reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
 320                if (reg == 0)
 321                        break;
 322                /* counter is reest if accupancy count changes */
 323                if (reg != reg_prev)
 324                        lcnt = 0;
 325                if (lcnt++ > 500) {
 326                        /* timed out - bounce the link */
 327                        dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
 328                                   __func__, sde->this_idx, (u32)reg);
 329                        queue_work(dd->pport->link_wq,
 330                                   &dd->pport->link_bounce_work);
 331                        break;
 332                }
 333                udelay(1);
 334        }
 335}
 336
 337/*
 338 * sdma_wait() - wait for packet egress to complete for all SDMA engines,
 339 * and pause for credit return.
 340 */
 341void sdma_wait(struct hfi1_devdata *dd)
 342{
 343        int i;
 344
 345        for (i = 0; i < dd->num_sdma; i++) {
 346                struct sdma_engine *sde = &dd->per_sdma[i];
 347
 348                sdma_wait_for_packet_egress(sde, 0);
 349        }
 350}
 351
 352static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
 353{
 354        u64 reg;
 355
 356        if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
 357                return;
 358        reg = cnt;
 359        reg &= SD(DESC_CNT_CNT_MASK);
 360        reg <<= SD(DESC_CNT_CNT_SHIFT);
 361        write_sde_csr(sde, SD(DESC_CNT), reg);
 362}
 363
 364static inline void complete_tx(struct sdma_engine *sde,
 365                               struct sdma_txreq *tx,
 366                               int res)
 367{
 368        /* protect against complete modifying */
 369        struct iowait *wait = tx->wait;
 370        callback_t complete = tx->complete;
 371
 372#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
 373        trace_hfi1_sdma_out_sn(sde, tx->sn);
 374        if (WARN_ON_ONCE(sde->head_sn != tx->sn))
 375                dd_dev_err(sde->dd, "expected %llu got %llu\n",
 376                           sde->head_sn, tx->sn);
 377        sde->head_sn++;
 378#endif
 379        __sdma_txclean(sde->dd, tx);
 380        if (complete)
 381                (*complete)(tx, res);
 382        if (iowait_sdma_dec(wait))
 383                iowait_drain_wakeup(wait);
 384}
 385
 386/*
 387 * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
 388 *
 389 * Depending on timing there can be txreqs in two places:
 390 * - in the descq ring
 391 * - in the flush list
 392 *
 393 * To avoid ordering issues the descq ring needs to be flushed
 394 * first followed by the flush list.
 395 *
 396 * This routine is called from two places
 397 * - From a work queue item
 398 * - Directly from the state machine just before setting the
 399 *   state to running
 400 *
 401 * Must be called with head_lock held
 402 *
 403 */
 404static void sdma_flush(struct sdma_engine *sde)
 405{
 406        struct sdma_txreq *txp, *txp_next;
 407        LIST_HEAD(flushlist);
 408        unsigned long flags;
 409        uint seq;
 410
 411        /* flush from head to tail */
 412        sdma_flush_descq(sde);
 413        spin_lock_irqsave(&sde->flushlist_lock, flags);
 414        /* copy flush list */
 415        list_splice_init(&sde->flushlist, &flushlist);
 416        spin_unlock_irqrestore(&sde->flushlist_lock, flags);
 417        /* flush from flush list */
 418        list_for_each_entry_safe(txp, txp_next, &flushlist, list)
 419                complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 420        /* wakeup QPs orphaned on the dmawait list */
 421        do {
 422                struct iowait *w, *nw;
 423
 424                seq = read_seqbegin(&sde->waitlock);
 425                if (!list_empty(&sde->dmawait)) {
 426                        write_seqlock(&sde->waitlock);
 427                        list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
 428                                if (w->wakeup) {
 429                                        w->wakeup(w, SDMA_AVAIL_REASON);
 430                                        list_del_init(&w->list);
 431                                }
 432                        }
 433                        write_sequnlock(&sde->waitlock);
 434                }
 435        } while (read_seqretry(&sde->waitlock, seq));
 436}
 437
 438/*
 439 * Fields a work request for flushing the descq ring
 440 * and the flush list
 441 *
 442 * If the engine has been brought to running during
 443 * the scheduling delay, the flush is ignored, assuming
 444 * that the process of bringing the engine to running
 445 * would have done this flush prior to going to running.
 446 *
 447 */
 448static void sdma_field_flush(struct work_struct *work)
 449{
 450        unsigned long flags;
 451        struct sdma_engine *sde =
 452                container_of(work, struct sdma_engine, flush_worker);
 453
 454        write_seqlock_irqsave(&sde->head_lock, flags);
 455        if (!__sdma_running(sde))
 456                sdma_flush(sde);
 457        write_sequnlock_irqrestore(&sde->head_lock, flags);
 458}
 459
 460static void sdma_err_halt_wait(struct work_struct *work)
 461{
 462        struct sdma_engine *sde = container_of(work, struct sdma_engine,
 463                                                err_halt_worker);
 464        u64 statuscsr;
 465        unsigned long timeout;
 466
 467        timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
 468        while (1) {
 469                statuscsr = read_sde_csr(sde, SD(STATUS));
 470                statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
 471                if (statuscsr)
 472                        break;
 473                if (time_after(jiffies, timeout)) {
 474                        dd_dev_err(sde->dd,
 475                                   "SDMA engine %d - timeout waiting for engine to halt\n",
 476                                   sde->this_idx);
 477                        /*
 478                         * Continue anyway.  This could happen if there was
 479                         * an uncorrectable error in the wrong spot.
 480                         */
 481                        break;
 482                }
 483                usleep_range(80, 120);
 484        }
 485
 486        sdma_process_event(sde, sdma_event_e15_hw_halt_done);
 487}
 488
 489static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
 490{
 491        if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
 492                unsigned index;
 493                struct hfi1_devdata *dd = sde->dd;
 494
 495                for (index = 0; index < dd->num_sdma; index++) {
 496                        struct sdma_engine *curr_sdma = &dd->per_sdma[index];
 497
 498                        if (curr_sdma != sde)
 499                                curr_sdma->progress_check_head =
 500                                                        curr_sdma->descq_head;
 501                }
 502                dd_dev_err(sde->dd,
 503                           "SDMA engine %d - check scheduled\n",
 504                                sde->this_idx);
 505                mod_timer(&sde->err_progress_check_timer, jiffies + 10);
 506        }
 507}
 508
 509static void sdma_err_progress_check(struct timer_list *t)
 510{
 511        unsigned index;
 512        struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
 513
 514        dd_dev_err(sde->dd, "SDE progress check event\n");
 515        for (index = 0; index < sde->dd->num_sdma; index++) {
 516                struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
 517                unsigned long flags;
 518
 519                /* check progress on each engine except the current one */
 520                if (curr_sde == sde)
 521                        continue;
 522                /*
 523                 * We must lock interrupts when acquiring sde->lock,
 524                 * to avoid a deadlock if interrupt triggers and spins on
 525                 * the same lock on same CPU
 526                 */
 527                spin_lock_irqsave(&curr_sde->tail_lock, flags);
 528                write_seqlock(&curr_sde->head_lock);
 529
 530                /* skip non-running queues */
 531                if (curr_sde->state.current_state != sdma_state_s99_running) {
 532                        write_sequnlock(&curr_sde->head_lock);
 533                        spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 534                        continue;
 535                }
 536
 537                if ((curr_sde->descq_head != curr_sde->descq_tail) &&
 538                    (curr_sde->descq_head ==
 539                                curr_sde->progress_check_head))
 540                        __sdma_process_event(curr_sde,
 541                                             sdma_event_e90_sw_halted);
 542                write_sequnlock(&curr_sde->head_lock);
 543                spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
 544        }
 545        schedule_work(&sde->err_halt_worker);
 546}
 547
 548static void sdma_hw_clean_up_task(unsigned long opaque)
 549{
 550        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 551        u64 statuscsr;
 552
 553        while (1) {
 554#ifdef CONFIG_SDMA_VERBOSITY
 555                dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
 556                           sde->this_idx, slashstrip(__FILE__), __LINE__,
 557                        __func__);
 558#endif
 559                statuscsr = read_sde_csr(sde, SD(STATUS));
 560                statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
 561                if (statuscsr)
 562                        break;
 563                udelay(10);
 564        }
 565
 566        sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
 567}
 568
 569static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
 570{
 571        return sde->tx_ring[sde->tx_head & sde->sdma_mask];
 572}
 573
 574/*
 575 * flush ring for recovery
 576 */
 577static void sdma_flush_descq(struct sdma_engine *sde)
 578{
 579        u16 head, tail;
 580        int progress = 0;
 581        struct sdma_txreq *txp = get_txhead(sde);
 582
 583        /* The reason for some of the complexity of this code is that
 584         * not all descriptors have corresponding txps.  So, we have to
 585         * be able to skip over descs until we wander into the range of
 586         * the next txp on the list.
 587         */
 588        head = sde->descq_head & sde->sdma_mask;
 589        tail = sde->descq_tail & sde->sdma_mask;
 590        while (head != tail) {
 591                /* advance head, wrap if needed */
 592                head = ++sde->descq_head & sde->sdma_mask;
 593                /* if now past this txp's descs, do the callback */
 594                if (txp && txp->next_descq_idx == head) {
 595                        /* remove from list */
 596                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
 597                        complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
 598                        trace_hfi1_sdma_progress(sde, head, tail, txp);
 599                        txp = get_txhead(sde);
 600                }
 601                progress++;
 602        }
 603        if (progress)
 604                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
 605}
 606
 607static void sdma_sw_clean_up_task(unsigned long opaque)
 608{
 609        struct sdma_engine *sde = (struct sdma_engine *)opaque;
 610        unsigned long flags;
 611
 612        spin_lock_irqsave(&sde->tail_lock, flags);
 613        write_seqlock(&sde->head_lock);
 614
 615        /*
 616         * At this point, the following should always be true:
 617         * - We are halted, so no more descriptors are getting retired.
 618         * - We are not running, so no one is submitting new work.
 619         * - Only we can send the e40_sw_cleaned, so we can't start
 620         *   running again until we say so.  So, the active list and
 621         *   descq are ours to play with.
 622         */
 623
 624        /*
 625         * In the error clean up sequence, software clean must be called
 626         * before the hardware clean so we can use the hardware head in
 627         * the progress routine.  A hardware clean or SPC unfreeze will
 628         * reset the hardware head.
 629         *
 630         * Process all retired requests. The progress routine will use the
 631         * latest physical hardware head - we are not running so speed does
 632         * not matter.
 633         */
 634        sdma_make_progress(sde, 0);
 635
 636        sdma_flush(sde);
 637
 638        /*
 639         * Reset our notion of head and tail.
 640         * Note that the HW registers have been reset via an earlier
 641         * clean up.
 642         */
 643        sde->descq_tail = 0;
 644        sde->descq_head = 0;
 645        sde->desc_avail = sdma_descq_freecnt(sde);
 646        *sde->head_dma = 0;
 647
 648        __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
 649
 650        write_sequnlock(&sde->head_lock);
 651        spin_unlock_irqrestore(&sde->tail_lock, flags);
 652}
 653
 654static void sdma_sw_tear_down(struct sdma_engine *sde)
 655{
 656        struct sdma_state *ss = &sde->state;
 657
 658        /* Releasing this reference means the state machine has stopped. */
 659        sdma_put(ss);
 660
 661        /* stop waiting for all unfreeze events to complete */
 662        atomic_set(&sde->dd->sdma_unfreeze_count, -1);
 663        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
 664}
 665
 666static void sdma_start_hw_clean_up(struct sdma_engine *sde)
 667{
 668        tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
 669}
 670
 671static void sdma_set_state(struct sdma_engine *sde,
 672                           enum sdma_states next_state)
 673{
 674        struct sdma_state *ss = &sde->state;
 675        const struct sdma_set_state_action *action = sdma_action_table;
 676        unsigned op = 0;
 677
 678        trace_hfi1_sdma_state(
 679                sde,
 680                sdma_state_names[ss->current_state],
 681                sdma_state_names[next_state]);
 682
 683        /* debugging bookkeeping */
 684        ss->previous_state = ss->current_state;
 685        ss->previous_op = ss->current_op;
 686        ss->current_state = next_state;
 687
 688        if (ss->previous_state != sdma_state_s99_running &&
 689            next_state == sdma_state_s99_running)
 690                sdma_flush(sde);
 691
 692        if (action[next_state].op_enable)
 693                op |= SDMA_SENDCTRL_OP_ENABLE;
 694
 695        if (action[next_state].op_intenable)
 696                op |= SDMA_SENDCTRL_OP_INTENABLE;
 697
 698        if (action[next_state].op_halt)
 699                op |= SDMA_SENDCTRL_OP_HALT;
 700
 701        if (action[next_state].op_cleanup)
 702                op |= SDMA_SENDCTRL_OP_CLEANUP;
 703
 704        if (action[next_state].go_s99_running_tofalse)
 705                ss->go_s99_running = 0;
 706
 707        if (action[next_state].go_s99_running_totrue)
 708                ss->go_s99_running = 1;
 709
 710        ss->current_op = op;
 711        sdma_sendctrl(sde, ss->current_op);
 712}
 713
 714/**
 715 * sdma_get_descq_cnt() - called when device probed
 716 *
 717 * Return a validated descq count.
 718 *
 719 * This is currently only used in the verbs initialization to build the tx
 720 * list.
 721 *
 722 * This will probably be deleted in favor of a more scalable approach to
 723 * alloc tx's.
 724 *
 725 */
 726u16 sdma_get_descq_cnt(void)
 727{
 728        u16 count = sdma_descq_cnt;
 729
 730        if (!count)
 731                return SDMA_DESCQ_CNT;
 732        /* count must be a power of 2 greater than 64 and less than
 733         * 32768.   Otherwise return default.
 734         */
 735        if (!is_power_of_2(count))
 736                return SDMA_DESCQ_CNT;
 737        if (count < 64 || count > 32768)
 738                return SDMA_DESCQ_CNT;
 739        return count;
 740}
 741
 742/**
 743 * sdma_engine_get_vl() - return vl for a given sdma engine
 744 * @sde: sdma engine
 745 *
 746 * This function returns the vl mapped to a given engine, or an error if
 747 * the mapping can't be found. The mapping fields are protected by RCU.
 748 */
 749int sdma_engine_get_vl(struct sdma_engine *sde)
 750{
 751        struct hfi1_devdata *dd = sde->dd;
 752        struct sdma_vl_map *m;
 753        u8 vl;
 754
 755        if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
 756                return -EINVAL;
 757
 758        rcu_read_lock();
 759        m = rcu_dereference(dd->sdma_map);
 760        if (unlikely(!m)) {
 761                rcu_read_unlock();
 762                return -EINVAL;
 763        }
 764        vl = m->engine_to_vl[sde->this_idx];
 765        rcu_read_unlock();
 766
 767        return vl;
 768}
 769
 770/**
 771 * sdma_select_engine_vl() - select sdma engine
 772 * @dd: devdata
 773 * @selector: a spreading factor
 774 * @vl: this vl
 775 *
 776 *
 777 * This function returns an engine based on the selector and a vl.  The
 778 * mapping fields are protected by RCU.
 779 */
 780struct sdma_engine *sdma_select_engine_vl(
 781        struct hfi1_devdata *dd,
 782        u32 selector,
 783        u8 vl)
 784{
 785        struct sdma_vl_map *m;
 786        struct sdma_map_elem *e;
 787        struct sdma_engine *rval;
 788
 789        /* NOTE This should only happen if SC->VL changed after the initial
 790         *      checks on the QP/AH
 791         *      Default will return engine 0 below
 792         */
 793        if (vl >= num_vls) {
 794                rval = NULL;
 795                goto done;
 796        }
 797
 798        rcu_read_lock();
 799        m = rcu_dereference(dd->sdma_map);
 800        if (unlikely(!m)) {
 801                rcu_read_unlock();
 802                return &dd->per_sdma[0];
 803        }
 804        e = m->map[vl & m->mask];
 805        rval = e->sde[selector & e->mask];
 806        rcu_read_unlock();
 807
 808done:
 809        rval =  !rval ? &dd->per_sdma[0] : rval;
 810        trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
 811        return rval;
 812}
 813
 814/**
 815 * sdma_select_engine_sc() - select sdma engine
 816 * @dd: devdata
 817 * @selector: a spreading factor
 818 * @sc5: the 5 bit sc
 819 *
 820 *
 821 * This function returns an engine based on the selector and an sc.
 822 */
 823struct sdma_engine *sdma_select_engine_sc(
 824        struct hfi1_devdata *dd,
 825        u32 selector,
 826        u8 sc5)
 827{
 828        u8 vl = sc_to_vlt(dd, sc5);
 829
 830        return sdma_select_engine_vl(dd, selector, vl);
 831}
 832
 833struct sdma_rht_map_elem {
 834        u32 mask;
 835        u8 ctr;
 836        struct sdma_engine *sde[];
 837};
 838
 839struct sdma_rht_node {
 840        unsigned long cpu_id;
 841        struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
 842        struct rhash_head node;
 843};
 844
 845#define NR_CPUS_HINT 192
 846
 847static const struct rhashtable_params sdma_rht_params = {
 848        .nelem_hint = NR_CPUS_HINT,
 849        .head_offset = offsetof(struct sdma_rht_node, node),
 850        .key_offset = offsetof(struct sdma_rht_node, cpu_id),
 851        .key_len = sizeof_field(struct sdma_rht_node, cpu_id),
 852        .max_size = NR_CPUS,
 853        .min_size = 8,
 854        .automatic_shrinking = true,
 855};
 856
 857/*
 858 * sdma_select_user_engine() - select sdma engine based on user setup
 859 * @dd: devdata
 860 * @selector: a spreading factor
 861 * @vl: this vl
 862 *
 863 * This function returns an sdma engine for a user sdma request.
 864 * User defined sdma engine affinity setting is honored when applicable,
 865 * otherwise system default sdma engine mapping is used. To ensure correct
 866 * ordering, the mapping from <selector, vl> to sde must remain unchanged.
 867 */
 868struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
 869                                            u32 selector, u8 vl)
 870{
 871        struct sdma_rht_node *rht_node;
 872        struct sdma_engine *sde = NULL;
 873        unsigned long cpu_id;
 874
 875        /*
 876         * To ensure that always the same sdma engine(s) will be
 877         * selected make sure the process is pinned to this CPU only.
 878         */
 879        if (current->nr_cpus_allowed != 1)
 880                goto out;
 881
 882        cpu_id = smp_processor_id();
 883        rcu_read_lock();
 884        rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
 885                                     sdma_rht_params);
 886
 887        if (rht_node && rht_node->map[vl]) {
 888                struct sdma_rht_map_elem *map = rht_node->map[vl];
 889
 890                sde = map->sde[selector & map->mask];
 891        }
 892        rcu_read_unlock();
 893
 894        if (sde)
 895                return sde;
 896
 897out:
 898        return sdma_select_engine_vl(dd, selector, vl);
 899}
 900
 901static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
 902{
 903        int i;
 904
 905        for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
 906                map->sde[map->ctr + i] = map->sde[i];
 907}
 908
 909static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
 910                                 struct sdma_engine *sde)
 911{
 912        unsigned int i, pow;
 913
 914        /* only need to check the first ctr entries for a match */
 915        for (i = 0; i < map->ctr; i++) {
 916                if (map->sde[i] == sde) {
 917                        memmove(&map->sde[i], &map->sde[i + 1],
 918                                (map->ctr - i - 1) * sizeof(map->sde[0]));
 919                        map->ctr--;
 920                        pow = roundup_pow_of_two(map->ctr ? : 1);
 921                        map->mask = pow - 1;
 922                        sdma_populate_sde_map(map);
 923                        break;
 924                }
 925        }
 926}
 927
 928/*
 929 * Prevents concurrent reads and writes of the sdma engine cpu_mask
 930 */
 931static DEFINE_MUTEX(process_to_sde_mutex);
 932
 933ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
 934                                size_t count)
 935{
 936        struct hfi1_devdata *dd = sde->dd;
 937        cpumask_var_t mask, new_mask;
 938        unsigned long cpu;
 939        int ret, vl, sz;
 940        struct sdma_rht_node *rht_node;
 941
 942        vl = sdma_engine_get_vl(sde);
 943        if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
 944                return -EINVAL;
 945
 946        ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
 947        if (!ret)
 948                return -ENOMEM;
 949
 950        ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
 951        if (!ret) {
 952                free_cpumask_var(mask);
 953                return -ENOMEM;
 954        }
 955        ret = cpulist_parse(buf, mask);
 956        if (ret)
 957                goto out_free;
 958
 959        if (!cpumask_subset(mask, cpu_online_mask)) {
 960                dd_dev_warn(sde->dd, "Invalid CPU mask\n");
 961                ret = -EINVAL;
 962                goto out_free;
 963        }
 964
 965        sz = sizeof(struct sdma_rht_map_elem) +
 966                        (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
 967
 968        mutex_lock(&process_to_sde_mutex);
 969
 970        for_each_cpu(cpu, mask) {
 971                /* Check if we have this already mapped */
 972                if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
 973                        cpumask_set_cpu(cpu, new_mask);
 974                        continue;
 975                }
 976
 977                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
 978                                                  sdma_rht_params);
 979                if (!rht_node) {
 980                        rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
 981                        if (!rht_node) {
 982                                ret = -ENOMEM;
 983                                goto out;
 984                        }
 985
 986                        rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
 987                        if (!rht_node->map[vl]) {
 988                                kfree(rht_node);
 989                                ret = -ENOMEM;
 990                                goto out;
 991                        }
 992                        rht_node->cpu_id = cpu;
 993                        rht_node->map[vl]->mask = 0;
 994                        rht_node->map[vl]->ctr = 1;
 995                        rht_node->map[vl]->sde[0] = sde;
 996
 997                        ret = rhashtable_insert_fast(dd->sdma_rht,
 998                                                     &rht_node->node,
 999                                                     sdma_rht_params);
1000                        if (ret) {
1001                                kfree(rht_node->map[vl]);
1002                                kfree(rht_node);
1003                                dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1004                                           cpu);
1005                                goto out;
1006                        }
1007
1008                } else {
1009                        int ctr, pow;
1010
1011                        /* Add new user mappings */
1012                        if (!rht_node->map[vl])
1013                                rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1014
1015                        if (!rht_node->map[vl]) {
1016                                ret = -ENOMEM;
1017                                goto out;
1018                        }
1019
1020                        rht_node->map[vl]->ctr++;
1021                        ctr = rht_node->map[vl]->ctr;
1022                        rht_node->map[vl]->sde[ctr - 1] = sde;
1023                        pow = roundup_pow_of_two(ctr);
1024                        rht_node->map[vl]->mask = pow - 1;
1025
1026                        /* Populate the sde map table */
1027                        sdma_populate_sde_map(rht_node->map[vl]);
1028                }
1029                cpumask_set_cpu(cpu, new_mask);
1030        }
1031
1032        /* Clean up old mappings */
1033        for_each_cpu(cpu, cpu_online_mask) {
1034                struct sdma_rht_node *rht_node;
1035
1036                /* Don't cleanup sdes that are set in the new mask */
1037                if (cpumask_test_cpu(cpu, mask))
1038                        continue;
1039
1040                rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1041                                                  sdma_rht_params);
1042                if (rht_node) {
1043                        bool empty = true;
1044                        int i;
1045
1046                        /* Remove mappings for old sde */
1047                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1048                                if (rht_node->map[i])
1049                                        sdma_cleanup_sde_map(rht_node->map[i],
1050                                                             sde);
1051
1052                        /* Free empty hash table entries */
1053                        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1054                                if (!rht_node->map[i])
1055                                        continue;
1056
1057                                if (rht_node->map[i]->ctr) {
1058                                        empty = false;
1059                                        break;
1060                                }
1061                        }
1062
1063                        if (empty) {
1064                                ret = rhashtable_remove_fast(dd->sdma_rht,
1065                                                             &rht_node->node,
1066                                                             sdma_rht_params);
1067                                WARN_ON(ret);
1068
1069                                for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1070                                        kfree(rht_node->map[i]);
1071
1072                                kfree(rht_node);
1073                        }
1074                }
1075        }
1076
1077        cpumask_copy(&sde->cpu_mask, new_mask);
1078out:
1079        mutex_unlock(&process_to_sde_mutex);
1080out_free:
1081        free_cpumask_var(mask);
1082        free_cpumask_var(new_mask);
1083        return ret ? : strnlen(buf, PAGE_SIZE);
1084}
1085
1086ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1087{
1088        mutex_lock(&process_to_sde_mutex);
1089        if (cpumask_empty(&sde->cpu_mask))
1090                snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1091        else
1092                cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1093        mutex_unlock(&process_to_sde_mutex);
1094        return strnlen(buf, PAGE_SIZE);
1095}
1096
1097static void sdma_rht_free(void *ptr, void *arg)
1098{
1099        struct sdma_rht_node *rht_node = ptr;
1100        int i;
1101
1102        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1103                kfree(rht_node->map[i]);
1104
1105        kfree(rht_node);
1106}
1107
1108/**
1109 * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1110 * @s: seq file
1111 * @dd: hfi1_devdata
1112 * @cpuid: cpu id
1113 *
1114 * This routine dumps the process to sde mappings per cpu
1115 */
1116void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1117                                struct hfi1_devdata *dd,
1118                                unsigned long cpuid)
1119{
1120        struct sdma_rht_node *rht_node;
1121        int i, j;
1122
1123        rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1124                                          sdma_rht_params);
1125        if (!rht_node)
1126                return;
1127
1128        seq_printf(s, "cpu%3lu: ", cpuid);
1129        for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1130                if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1131                        continue;
1132
1133                seq_printf(s, " vl%d: [", i);
1134
1135                for (j = 0; j < rht_node->map[i]->ctr; j++) {
1136                        if (!rht_node->map[i]->sde[j])
1137                                continue;
1138
1139                        if (j > 0)
1140                                seq_puts(s, ",");
1141
1142                        seq_printf(s, " sdma%2d",
1143                                   rht_node->map[i]->sde[j]->this_idx);
1144                }
1145                seq_puts(s, " ]");
1146        }
1147
1148        seq_puts(s, "\n");
1149}
1150
1151/*
1152 * Free the indicated map struct
1153 */
1154static void sdma_map_free(struct sdma_vl_map *m)
1155{
1156        int i;
1157
1158        for (i = 0; m && i < m->actual_vls; i++)
1159                kfree(m->map[i]);
1160        kfree(m);
1161}
1162
1163/*
1164 * Handle RCU callback
1165 */
1166static void sdma_map_rcu_callback(struct rcu_head *list)
1167{
1168        struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1169
1170        sdma_map_free(m);
1171}
1172
1173/**
1174 * sdma_map_init - called when # vls change
1175 * @dd: hfi1_devdata
1176 * @port: port number
1177 * @num_vls: number of vls
1178 * @vl_engines: per vl engine mapping (optional)
1179 *
1180 * This routine changes the mapping based on the number of vls.
1181 *
1182 * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1183 * implies auto computing the loading and giving each VLs a uniform
1184 * distribution of engines per VL.
1185 *
1186 * The auto algorithm computes the sde_per_vl and the number of extra
1187 * engines.  Any extra engines are added from the last VL on down.
1188 *
1189 * rcu locking is used here to control access to the mapping fields.
1190 *
1191 * If either the num_vls or num_sdma are non-power of 2, the array sizes
1192 * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1193 * up to the next highest power of 2 and the first entry is reused
1194 * in a round robin fashion.
1195 *
1196 * If an error occurs the map change is not done and the mapping is
1197 * not changed.
1198 *
1199 */
1200int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1201{
1202        int i, j;
1203        int extra, sde_per_vl;
1204        int engine = 0;
1205        u8 lvl_engines[OPA_MAX_VLS];
1206        struct sdma_vl_map *oldmap, *newmap;
1207
1208        if (!(dd->flags & HFI1_HAS_SEND_DMA))
1209                return 0;
1210
1211        if (!vl_engines) {
1212                /* truncate divide */
1213                sde_per_vl = dd->num_sdma / num_vls;
1214                /* extras */
1215                extra = dd->num_sdma % num_vls;
1216                vl_engines = lvl_engines;
1217                /* add extras from last vl down */
1218                for (i = num_vls - 1; i >= 0; i--, extra--)
1219                        vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1220        }
1221        /* build new map */
1222        newmap = kzalloc(
1223                sizeof(struct sdma_vl_map) +
1224                        roundup_pow_of_two(num_vls) *
1225                        sizeof(struct sdma_map_elem *),
1226                GFP_KERNEL);
1227        if (!newmap)
1228                goto bail;
1229        newmap->actual_vls = num_vls;
1230        newmap->vls = roundup_pow_of_two(num_vls);
1231        newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1232        /* initialize back-map */
1233        for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1234                newmap->engine_to_vl[i] = -1;
1235        for (i = 0; i < newmap->vls; i++) {
1236                /* save for wrap around */
1237                int first_engine = engine;
1238
1239                if (i < newmap->actual_vls) {
1240                        int sz = roundup_pow_of_two(vl_engines[i]);
1241
1242                        /* only allocate once */
1243                        newmap->map[i] = kzalloc(
1244                                sizeof(struct sdma_map_elem) +
1245                                        sz * sizeof(struct sdma_engine *),
1246                                GFP_KERNEL);
1247                        if (!newmap->map[i])
1248                                goto bail;
1249                        newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1250                        /* assign engines */
1251                        for (j = 0; j < sz; j++) {
1252                                newmap->map[i]->sde[j] =
1253                                        &dd->per_sdma[engine];
1254                                if (++engine >= first_engine + vl_engines[i])
1255                                        /* wrap back to first engine */
1256                                        engine = first_engine;
1257                        }
1258                        /* assign back-map */
1259                        for (j = 0; j < vl_engines[i]; j++)
1260                                newmap->engine_to_vl[first_engine + j] = i;
1261                } else {
1262                        /* just re-use entry without allocating */
1263                        newmap->map[i] = newmap->map[i % num_vls];
1264                }
1265                engine = first_engine + vl_engines[i];
1266        }
1267        /* newmap in hand, save old map */
1268        spin_lock_irq(&dd->sde_map_lock);
1269        oldmap = rcu_dereference_protected(dd->sdma_map,
1270                                           lockdep_is_held(&dd->sde_map_lock));
1271
1272        /* publish newmap */
1273        rcu_assign_pointer(dd->sdma_map, newmap);
1274
1275        spin_unlock_irq(&dd->sde_map_lock);
1276        /* success, free any old map after grace period */
1277        if (oldmap)
1278                call_rcu(&oldmap->list, sdma_map_rcu_callback);
1279        return 0;
1280bail:
1281        /* free any partial allocation */
1282        sdma_map_free(newmap);
1283        return -ENOMEM;
1284}
1285
1286/**
1287 * sdma_clean()  Clean up allocated memory
1288 * @dd:          struct hfi1_devdata
1289 * @num_engines: num sdma engines
1290 *
1291 * This routine can be called regardless of the success of
1292 * sdma_init()
1293 */
1294void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1295{
1296        size_t i;
1297        struct sdma_engine *sde;
1298
1299        if (dd->sdma_pad_dma) {
1300                dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1301                                  (void *)dd->sdma_pad_dma,
1302                                  dd->sdma_pad_phys);
1303                dd->sdma_pad_dma = NULL;
1304                dd->sdma_pad_phys = 0;
1305        }
1306        if (dd->sdma_heads_dma) {
1307                dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1308                                  (void *)dd->sdma_heads_dma,
1309                                  dd->sdma_heads_phys);
1310                dd->sdma_heads_dma = NULL;
1311                dd->sdma_heads_phys = 0;
1312        }
1313        for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1314                sde = &dd->per_sdma[i];
1315
1316                sde->head_dma = NULL;
1317                sde->head_phys = 0;
1318
1319                if (sde->descq) {
1320                        dma_free_coherent(
1321                                &dd->pcidev->dev,
1322                                sde->descq_cnt * sizeof(u64[2]),
1323                                sde->descq,
1324                                sde->descq_phys
1325                        );
1326                        sde->descq = NULL;
1327                        sde->descq_phys = 0;
1328                }
1329                kvfree(sde->tx_ring);
1330                sde->tx_ring = NULL;
1331        }
1332        spin_lock_irq(&dd->sde_map_lock);
1333        sdma_map_free(rcu_access_pointer(dd->sdma_map));
1334        RCU_INIT_POINTER(dd->sdma_map, NULL);
1335        spin_unlock_irq(&dd->sde_map_lock);
1336        synchronize_rcu();
1337        kfree(dd->per_sdma);
1338        dd->per_sdma = NULL;
1339
1340        if (dd->sdma_rht) {
1341                rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1342                kfree(dd->sdma_rht);
1343                dd->sdma_rht = NULL;
1344        }
1345}
1346
1347/**
1348 * sdma_init() - called when device probed
1349 * @dd: hfi1_devdata
1350 * @port: port number (currently only zero)
1351 *
1352 * Initializes each sde and its csrs.
1353 * Interrupts are not required to be enabled.
1354 *
1355 * Returns:
1356 * 0 - success, -errno on failure
1357 */
1358int sdma_init(struct hfi1_devdata *dd, u8 port)
1359{
1360        unsigned this_idx;
1361        struct sdma_engine *sde;
1362        struct rhashtable *tmp_sdma_rht;
1363        u16 descq_cnt;
1364        void *curr_head;
1365        struct hfi1_pportdata *ppd = dd->pport + port;
1366        u32 per_sdma_credits;
1367        uint idle_cnt = sdma_idle_cnt;
1368        size_t num_engines = chip_sdma_engines(dd);
1369        int ret = -ENOMEM;
1370
1371        if (!HFI1_CAP_IS_KSET(SDMA)) {
1372                HFI1_CAP_CLEAR(SDMA_AHG);
1373                return 0;
1374        }
1375        if (mod_num_sdma &&
1376            /* can't exceed chip support */
1377            mod_num_sdma <= chip_sdma_engines(dd) &&
1378            /* count must be >= vls */
1379            mod_num_sdma >= num_vls)
1380                num_engines = mod_num_sdma;
1381
1382        dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1383        dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1384        dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1385                    chip_sdma_mem_size(dd));
1386
1387        per_sdma_credits =
1388                chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1389
1390        /* set up freeze waitqueue */
1391        init_waitqueue_head(&dd->sdma_unfreeze_wq);
1392        atomic_set(&dd->sdma_unfreeze_count, 0);
1393
1394        descq_cnt = sdma_get_descq_cnt();
1395        dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1396                    num_engines, descq_cnt);
1397
1398        /* alloc memory for array of send engines */
1399        dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1400                                    GFP_KERNEL, dd->node);
1401        if (!dd->per_sdma)
1402                return ret;
1403
1404        idle_cnt = ns_to_cclock(dd, idle_cnt);
1405        if (idle_cnt)
1406                dd->default_desc1 =
1407                        SDMA_DESC1_HEAD_TO_HOST_FLAG;
1408        else
1409                dd->default_desc1 =
1410                        SDMA_DESC1_INT_REQ_FLAG;
1411
1412        if (!sdma_desct_intr)
1413                sdma_desct_intr = SDMA_DESC_INTR;
1414
1415        /* Allocate memory for SendDMA descriptor FIFOs */
1416        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1417                sde = &dd->per_sdma[this_idx];
1418                sde->dd = dd;
1419                sde->ppd = ppd;
1420                sde->this_idx = this_idx;
1421                sde->descq_cnt = descq_cnt;
1422                sde->desc_avail = sdma_descq_freecnt(sde);
1423                sde->sdma_shift = ilog2(descq_cnt);
1424                sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1425
1426                /* Create a mask specifically for each interrupt source */
1427                sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1428                                           this_idx);
1429                sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1430                                                this_idx);
1431                sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1432                                            this_idx);
1433                /* Create a combined mask to cover all 3 interrupt sources */
1434                sde->imask = sde->int_mask | sde->progress_mask |
1435                             sde->idle_mask;
1436
1437                spin_lock_init(&sde->tail_lock);
1438                seqlock_init(&sde->head_lock);
1439                spin_lock_init(&sde->senddmactrl_lock);
1440                spin_lock_init(&sde->flushlist_lock);
1441                seqlock_init(&sde->waitlock);
1442                /* insure there is always a zero bit */
1443                sde->ahg_bits = 0xfffffffe00000000ULL;
1444
1445                sdma_set_state(sde, sdma_state_s00_hw_down);
1446
1447                /* set up reference counting */
1448                kref_init(&sde->state.kref);
1449                init_completion(&sde->state.comp);
1450
1451                INIT_LIST_HEAD(&sde->flushlist);
1452                INIT_LIST_HEAD(&sde->dmawait);
1453
1454                sde->tail_csr =
1455                        get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1456
1457                tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1458                             (unsigned long)sde);
1459
1460                tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1461                             (unsigned long)sde);
1462                INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1463                INIT_WORK(&sde->flush_worker, sdma_field_flush);
1464
1465                sde->progress_check_head = 0;
1466
1467                timer_setup(&sde->err_progress_check_timer,
1468                            sdma_err_progress_check, 0);
1469
1470                sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1471                                                descq_cnt * sizeof(u64[2]),
1472                                                &sde->descq_phys, GFP_KERNEL);
1473                if (!sde->descq)
1474                        goto bail;
1475                sde->tx_ring =
1476                        kvzalloc_node(array_size(descq_cnt,
1477                                                 sizeof(struct sdma_txreq *)),
1478                                      GFP_KERNEL, dd->node);
1479                if (!sde->tx_ring)
1480                        goto bail;
1481        }
1482
1483        dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1484        /* Allocate memory for DMA of head registers to memory */
1485        dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1486                                                dd->sdma_heads_size,
1487                                                &dd->sdma_heads_phys,
1488                                                GFP_KERNEL);
1489        if (!dd->sdma_heads_dma) {
1490                dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1491                goto bail;
1492        }
1493
1494        /* Allocate memory for pad */
1495        dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1496                                              &dd->sdma_pad_phys, GFP_KERNEL);
1497        if (!dd->sdma_pad_dma) {
1498                dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1499                goto bail;
1500        }
1501
1502        /* assign each engine to different cacheline and init registers */
1503        curr_head = (void *)dd->sdma_heads_dma;
1504        for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1505                unsigned long phys_offset;
1506
1507                sde = &dd->per_sdma[this_idx];
1508
1509                sde->head_dma = curr_head;
1510                curr_head += L1_CACHE_BYTES;
1511                phys_offset = (unsigned long)sde->head_dma -
1512                              (unsigned long)dd->sdma_heads_dma;
1513                sde->head_phys = dd->sdma_heads_phys + phys_offset;
1514                init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1515        }
1516        dd->flags |= HFI1_HAS_SEND_DMA;
1517        dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1518        dd->num_sdma = num_engines;
1519        ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1520        if (ret < 0)
1521                goto bail;
1522
1523        tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1524        if (!tmp_sdma_rht) {
1525                ret = -ENOMEM;
1526                goto bail;
1527        }
1528
1529        ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1530        if (ret < 0) {
1531                kfree(tmp_sdma_rht);
1532                goto bail;
1533        }
1534
1535        dd->sdma_rht = tmp_sdma_rht;
1536
1537        dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1538        return 0;
1539
1540bail:
1541        sdma_clean(dd, num_engines);
1542        return ret;
1543}
1544
1545/**
1546 * sdma_all_running() - called when the link goes up
1547 * @dd: hfi1_devdata
1548 *
1549 * This routine moves all engines to the running state.
1550 */
1551void sdma_all_running(struct hfi1_devdata *dd)
1552{
1553        struct sdma_engine *sde;
1554        unsigned int i;
1555
1556        /* move all engines to running */
1557        for (i = 0; i < dd->num_sdma; ++i) {
1558                sde = &dd->per_sdma[i];
1559                sdma_process_event(sde, sdma_event_e30_go_running);
1560        }
1561}
1562
1563/**
1564 * sdma_all_idle() - called when the link goes down
1565 * @dd: hfi1_devdata
1566 *
1567 * This routine moves all engines to the idle state.
1568 */
1569void sdma_all_idle(struct hfi1_devdata *dd)
1570{
1571        struct sdma_engine *sde;
1572        unsigned int i;
1573
1574        /* idle all engines */
1575        for (i = 0; i < dd->num_sdma; ++i) {
1576                sde = &dd->per_sdma[i];
1577                sdma_process_event(sde, sdma_event_e70_go_idle);
1578        }
1579}
1580
1581/**
1582 * sdma_start() - called to kick off state processing for all engines
1583 * @dd: hfi1_devdata
1584 *
1585 * This routine is for kicking off the state processing for all required
1586 * sdma engines.  Interrupts need to be working at this point.
1587 *
1588 */
1589void sdma_start(struct hfi1_devdata *dd)
1590{
1591        unsigned i;
1592        struct sdma_engine *sde;
1593
1594        /* kick off the engines state processing */
1595        for (i = 0; i < dd->num_sdma; ++i) {
1596                sde = &dd->per_sdma[i];
1597                sdma_process_event(sde, sdma_event_e10_go_hw_start);
1598        }
1599}
1600
1601/**
1602 * sdma_exit() - used when module is removed
1603 * @dd: hfi1_devdata
1604 */
1605void sdma_exit(struct hfi1_devdata *dd)
1606{
1607        unsigned this_idx;
1608        struct sdma_engine *sde;
1609
1610        for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1611                        ++this_idx) {
1612                sde = &dd->per_sdma[this_idx];
1613                if (!list_empty(&sde->dmawait))
1614                        dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1615                                   sde->this_idx);
1616                sdma_process_event(sde, sdma_event_e00_go_hw_down);
1617
1618                del_timer_sync(&sde->err_progress_check_timer);
1619
1620                /*
1621                 * This waits for the state machine to exit so it is not
1622                 * necessary to kill the sdma_sw_clean_up_task to make sure
1623                 * it is not running.
1624                 */
1625                sdma_finalput(&sde->state);
1626        }
1627}
1628
1629/*
1630 * unmap the indicated descriptor
1631 */
1632static inline void sdma_unmap_desc(
1633        struct hfi1_devdata *dd,
1634        struct sdma_desc *descp)
1635{
1636        switch (sdma_mapping_type(descp)) {
1637        case SDMA_MAP_SINGLE:
1638                dma_unmap_single(
1639                        &dd->pcidev->dev,
1640                        sdma_mapping_addr(descp),
1641                        sdma_mapping_len(descp),
1642                        DMA_TO_DEVICE);
1643                break;
1644        case SDMA_MAP_PAGE:
1645                dma_unmap_page(
1646                        &dd->pcidev->dev,
1647                        sdma_mapping_addr(descp),
1648                        sdma_mapping_len(descp),
1649                        DMA_TO_DEVICE);
1650                break;
1651        }
1652}
1653
1654/*
1655 * return the mode as indicated by the first
1656 * descriptor in the tx.
1657 */
1658static inline u8 ahg_mode(struct sdma_txreq *tx)
1659{
1660        return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1661                >> SDMA_DESC1_HEADER_MODE_SHIFT;
1662}
1663
1664/**
1665 * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1666 * @dd: hfi1_devdata for unmapping
1667 * @tx: tx request to clean
1668 *
1669 * This is used in the progress routine to clean the tx or
1670 * by the ULP to toss an in-process tx build.
1671 *
1672 * The code can be called multiple times without issue.
1673 *
1674 */
1675void __sdma_txclean(
1676        struct hfi1_devdata *dd,
1677        struct sdma_txreq *tx)
1678{
1679        u16 i;
1680
1681        if (tx->num_desc) {
1682                u8 skip = 0, mode = ahg_mode(tx);
1683
1684                /* unmap first */
1685                sdma_unmap_desc(dd, &tx->descp[0]);
1686                /* determine number of AHG descriptors to skip */
1687                if (mode > SDMA_AHG_APPLY_UPDATE1)
1688                        skip = mode >> 1;
1689                for (i = 1 + skip; i < tx->num_desc; i++)
1690                        sdma_unmap_desc(dd, &tx->descp[i]);
1691                tx->num_desc = 0;
1692        }
1693        kfree(tx->coalesce_buf);
1694        tx->coalesce_buf = NULL;
1695        /* kmalloc'ed descp */
1696        if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1697                tx->desc_limit = ARRAY_SIZE(tx->descs);
1698                kfree(tx->descp);
1699        }
1700}
1701
1702static inline u16 sdma_gethead(struct sdma_engine *sde)
1703{
1704        struct hfi1_devdata *dd = sde->dd;
1705        int use_dmahead;
1706        u16 hwhead;
1707
1708#ifdef CONFIG_SDMA_VERBOSITY
1709        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1710                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1711#endif
1712
1713retry:
1714        use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1715                                        (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1716        hwhead = use_dmahead ?
1717                (u16)le64_to_cpu(*sde->head_dma) :
1718                (u16)read_sde_csr(sde, SD(HEAD));
1719
1720        if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1721                u16 cnt;
1722                u16 swtail;
1723                u16 swhead;
1724                int sane;
1725
1726                swhead = sde->descq_head & sde->sdma_mask;
1727                /* this code is really bad for cache line trading */
1728                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1729                cnt = sde->descq_cnt;
1730
1731                if (swhead < swtail)
1732                        /* not wrapped */
1733                        sane = (hwhead >= swhead) & (hwhead <= swtail);
1734                else if (swhead > swtail)
1735                        /* wrapped around */
1736                        sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1737                                (hwhead <= swtail);
1738                else
1739                        /* empty */
1740                        sane = (hwhead == swhead);
1741
1742                if (unlikely(!sane)) {
1743                        dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1744                                   sde->this_idx,
1745                                   use_dmahead ? "dma" : "kreg",
1746                                   hwhead, swhead, swtail, cnt);
1747                        if (use_dmahead) {
1748                                /* try one more time, using csr */
1749                                use_dmahead = 0;
1750                                goto retry;
1751                        }
1752                        /* proceed as if no progress */
1753                        hwhead = swhead;
1754                }
1755        }
1756        return hwhead;
1757}
1758
1759/*
1760 * This is called when there are send DMA descriptors that might be
1761 * available.
1762 *
1763 * This is called with head_lock held.
1764 */
1765static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1766{
1767        struct iowait *wait, *nw, *twait;
1768        struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1769        uint i, n = 0, seq, tidx = 0;
1770
1771#ifdef CONFIG_SDMA_VERBOSITY
1772        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1773                   slashstrip(__FILE__), __LINE__, __func__);
1774        dd_dev_err(sde->dd, "avail: %u\n", avail);
1775#endif
1776
1777        do {
1778                seq = read_seqbegin(&sde->waitlock);
1779                if (!list_empty(&sde->dmawait)) {
1780                        /* at least one item */
1781                        write_seqlock(&sde->waitlock);
1782                        /* Harvest waiters wanting DMA descriptors */
1783                        list_for_each_entry_safe(
1784                                        wait,
1785                                        nw,
1786                                        &sde->dmawait,
1787                                        list) {
1788                                u32 num_desc;
1789
1790                                if (!wait->wakeup)
1791                                        continue;
1792                                if (n == ARRAY_SIZE(waits))
1793                                        break;
1794                                iowait_init_priority(wait);
1795                                num_desc = iowait_get_all_desc(wait);
1796                                if (num_desc > avail)
1797                                        break;
1798                                avail -= num_desc;
1799                                /* Find the top-priority wait memeber */
1800                                if (n) {
1801                                        twait = waits[tidx];
1802                                        tidx =
1803                                            iowait_priority_update_top(wait,
1804                                                                       twait,
1805                                                                       n,
1806                                                                       tidx);
1807                                }
1808                                list_del_init(&wait->list);
1809                                waits[n++] = wait;
1810                        }
1811                        write_sequnlock(&sde->waitlock);
1812                        break;
1813                }
1814        } while (read_seqretry(&sde->waitlock, seq));
1815
1816        /* Schedule the top-priority entry first */
1817        if (n)
1818                waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1819
1820        for (i = 0; i < n; i++)
1821                if (i != tidx)
1822                        waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1823}
1824
1825/* head_lock must be held */
1826static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1827{
1828        struct sdma_txreq *txp = NULL;
1829        int progress = 0;
1830        u16 hwhead, swhead;
1831        int idle_check_done = 0;
1832
1833        hwhead = sdma_gethead(sde);
1834
1835        /* The reason for some of the complexity of this code is that
1836         * not all descriptors have corresponding txps.  So, we have to
1837         * be able to skip over descs until we wander into the range of
1838         * the next txp on the list.
1839         */
1840
1841retry:
1842        txp = get_txhead(sde);
1843        swhead = sde->descq_head & sde->sdma_mask;
1844        trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1845        while (swhead != hwhead) {
1846                /* advance head, wrap if needed */
1847                swhead = ++sde->descq_head & sde->sdma_mask;
1848
1849                /* if now past this txp's descs, do the callback */
1850                if (txp && txp->next_descq_idx == swhead) {
1851                        /* remove from list */
1852                        sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1853                        complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1854                        /* see if there is another txp */
1855                        txp = get_txhead(sde);
1856                }
1857                trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1858                progress++;
1859        }
1860
1861        /*
1862         * The SDMA idle interrupt is not guaranteed to be ordered with respect
1863         * to updates to the the dma_head location in host memory. The head
1864         * value read might not be fully up to date. If there are pending
1865         * descriptors and the SDMA idle interrupt fired then read from the
1866         * CSR SDMA head instead to get the latest value from the hardware.
1867         * The hardware SDMA head should be read at most once in this invocation
1868         * of sdma_make_progress(..) which is ensured by idle_check_done flag
1869         */
1870        if ((status & sde->idle_mask) && !idle_check_done) {
1871                u16 swtail;
1872
1873                swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1874                if (swtail != hwhead) {
1875                        hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1876                        idle_check_done = 1;
1877                        goto retry;
1878                }
1879        }
1880
1881        sde->last_status = status;
1882        if (progress)
1883                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1884}
1885
1886/*
1887 * sdma_engine_interrupt() - interrupt handler for engine
1888 * @sde: sdma engine
1889 * @status: sdma interrupt reason
1890 *
1891 * Status is a mask of the 3 possible interrupts for this engine.  It will
1892 * contain bits _only_ for this SDMA engine.  It will contain at least one
1893 * bit, it may contain more.
1894 */
1895void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1896{
1897        trace_hfi1_sdma_engine_interrupt(sde, status);
1898        write_seqlock(&sde->head_lock);
1899        sdma_set_desc_cnt(sde, sdma_desct_intr);
1900        if (status & sde->idle_mask)
1901                sde->idle_int_cnt++;
1902        else if (status & sde->progress_mask)
1903                sde->progress_int_cnt++;
1904        else if (status & sde->int_mask)
1905                sde->sdma_int_cnt++;
1906        sdma_make_progress(sde, status);
1907        write_sequnlock(&sde->head_lock);
1908}
1909
1910/**
1911 * sdma_engine_error() - error handler for engine
1912 * @sde: sdma engine
1913 * @status: sdma interrupt reason
1914 */
1915void sdma_engine_error(struct sdma_engine *sde, u64 status)
1916{
1917        unsigned long flags;
1918
1919#ifdef CONFIG_SDMA_VERBOSITY
1920        dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1921                   sde->this_idx,
1922                   (unsigned long long)status,
1923                   sdma_state_names[sde->state.current_state]);
1924#endif
1925        spin_lock_irqsave(&sde->tail_lock, flags);
1926        write_seqlock(&sde->head_lock);
1927        if (status & ALL_SDMA_ENG_HALT_ERRS)
1928                __sdma_process_event(sde, sdma_event_e60_hw_halted);
1929        if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1930                dd_dev_err(sde->dd,
1931                           "SDMA (%u) engine error: 0x%llx state %s\n",
1932                           sde->this_idx,
1933                           (unsigned long long)status,
1934                           sdma_state_names[sde->state.current_state]);
1935                dump_sdma_state(sde);
1936        }
1937        write_sequnlock(&sde->head_lock);
1938        spin_unlock_irqrestore(&sde->tail_lock, flags);
1939}
1940
1941static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1942{
1943        u64 set_senddmactrl = 0;
1944        u64 clr_senddmactrl = 0;
1945        unsigned long flags;
1946
1947#ifdef CONFIG_SDMA_VERBOSITY
1948        dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1949                   sde->this_idx,
1950                   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1951                   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1952                   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1953                   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1954#endif
1955
1956        if (op & SDMA_SENDCTRL_OP_ENABLE)
1957                set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1958        else
1959                clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1960
1961        if (op & SDMA_SENDCTRL_OP_INTENABLE)
1962                set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1963        else
1964                clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1965
1966        if (op & SDMA_SENDCTRL_OP_HALT)
1967                set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1968        else
1969                clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1970
1971        spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1972
1973        sde->p_senddmactrl |= set_senddmactrl;
1974        sde->p_senddmactrl &= ~clr_senddmactrl;
1975
1976        if (op & SDMA_SENDCTRL_OP_CLEANUP)
1977                write_sde_csr(sde, SD(CTRL),
1978                              sde->p_senddmactrl |
1979                              SD(CTRL_SDMA_CLEANUP_SMASK));
1980        else
1981                write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1982
1983        spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1984
1985#ifdef CONFIG_SDMA_VERBOSITY
1986        sdma_dumpstate(sde);
1987#endif
1988}
1989
1990static void sdma_setlengen(struct sdma_engine *sde)
1991{
1992#ifdef CONFIG_SDMA_VERBOSITY
1993        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1994                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1995#endif
1996
1997        /*
1998         * Set SendDmaLenGen and clear-then-set the MSB of the generation
1999         * count to enable generation checking and load the internal
2000         * generation counter.
2001         */
2002        write_sde_csr(sde, SD(LEN_GEN),
2003                      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2004        write_sde_csr(sde, SD(LEN_GEN),
2005                      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2006                      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2007}
2008
2009static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2010{
2011        /* Commit writes to memory and advance the tail on the chip */
2012        smp_wmb(); /* see get_txhead() */
2013        writeq(tail, sde->tail_csr);
2014}
2015
2016/*
2017 * This is called when changing to state s10_hw_start_up_halt_wait as
2018 * a result of send buffer errors or send DMA descriptor errors.
2019 */
2020static void sdma_hw_start_up(struct sdma_engine *sde)
2021{
2022        u64 reg;
2023
2024#ifdef CONFIG_SDMA_VERBOSITY
2025        dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2026                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2027#endif
2028
2029        sdma_setlengen(sde);
2030        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2031        *sde->head_dma = 0;
2032
2033        reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2034              SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2035        write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2036}
2037
2038/*
2039 * set_sdma_integrity
2040 *
2041 * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2042 */
2043static void set_sdma_integrity(struct sdma_engine *sde)
2044{
2045        struct hfi1_devdata *dd = sde->dd;
2046
2047        write_sde_csr(sde, SD(CHECK_ENABLE),
2048                      hfi1_pkt_base_sdma_integrity(dd));
2049}
2050
2051static void init_sdma_regs(
2052        struct sdma_engine *sde,
2053        u32 credits,
2054        uint idle_cnt)
2055{
2056        u8 opval, opmask;
2057#ifdef CONFIG_SDMA_VERBOSITY
2058        struct hfi1_devdata *dd = sde->dd;
2059
2060        dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2061                   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2062#endif
2063
2064        write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2065        sdma_setlengen(sde);
2066        sdma_update_tail(sde, 0); /* Set SendDmaTail */
2067        write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2068        write_sde_csr(sde, SD(DESC_CNT), 0);
2069        write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2070        write_sde_csr(sde, SD(MEMORY),
2071                      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2072                      ((u64)(credits * sde->this_idx) <<
2073                       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2074        write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2075        set_sdma_integrity(sde);
2076        opmask = OPCODE_CHECK_MASK_DISABLED;
2077        opval = OPCODE_CHECK_VAL_DISABLED;
2078        write_sde_csr(sde, SD(CHECK_OPCODE),
2079                      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2080                      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2081}
2082
2083#ifdef CONFIG_SDMA_VERBOSITY
2084
2085#define sdma_dumpstate_helper0(reg) do { \
2086                csr = read_csr(sde->dd, reg); \
2087                dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2088        } while (0)
2089
2090#define sdma_dumpstate_helper(reg) do { \
2091                csr = read_sde_csr(sde, reg); \
2092                dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2093                        #reg, sde->this_idx, csr); \
2094        } while (0)
2095
2096#define sdma_dumpstate_helper2(reg) do { \
2097                csr = read_csr(sde->dd, reg + (8 * i)); \
2098                dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2099                                #reg, i, csr); \
2100        } while (0)
2101
2102void sdma_dumpstate(struct sdma_engine *sde)
2103{
2104        u64 csr;
2105        unsigned i;
2106
2107        sdma_dumpstate_helper(SD(CTRL));
2108        sdma_dumpstate_helper(SD(STATUS));
2109        sdma_dumpstate_helper0(SD(ERR_STATUS));
2110        sdma_dumpstate_helper0(SD(ERR_MASK));
2111        sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2112        sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2113
2114        for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2115                sdma_dumpstate_helper2(CCE_INT_STATUS);
2116                sdma_dumpstate_helper2(CCE_INT_MASK);
2117                sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2118        }
2119
2120        sdma_dumpstate_helper(SD(TAIL));
2121        sdma_dumpstate_helper(SD(HEAD));
2122        sdma_dumpstate_helper(SD(PRIORITY_THLD));
2123        sdma_dumpstate_helper(SD(IDLE_CNT));
2124        sdma_dumpstate_helper(SD(RELOAD_CNT));
2125        sdma_dumpstate_helper(SD(DESC_CNT));
2126        sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2127        sdma_dumpstate_helper(SD(MEMORY));
2128        sdma_dumpstate_helper0(SD(ENGINES));
2129        sdma_dumpstate_helper0(SD(MEM_SIZE));
2130        /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2131        sdma_dumpstate_helper(SD(BASE_ADDR));
2132        sdma_dumpstate_helper(SD(LEN_GEN));
2133        sdma_dumpstate_helper(SD(HEAD_ADDR));
2134        sdma_dumpstate_helper(SD(CHECK_ENABLE));
2135        sdma_dumpstate_helper(SD(CHECK_VL));
2136        sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2137        sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2138        sdma_dumpstate_helper(SD(CHECK_SLID));
2139        sdma_dumpstate_helper(SD(CHECK_OPCODE));
2140}
2141#endif
2142
2143static void dump_sdma_state(struct sdma_engine *sde)
2144{
2145        struct hw_sdma_desc *descqp;
2146        u64 desc[2];
2147        u64 addr;
2148        u8 gen;
2149        u16 len;
2150        u16 head, tail, cnt;
2151
2152        head = sde->descq_head & sde->sdma_mask;
2153        tail = sde->descq_tail & sde->sdma_mask;
2154        cnt = sdma_descq_freecnt(sde);
2155
2156        dd_dev_err(sde->dd,
2157                   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2158                   sde->this_idx, head, tail, cnt,
2159                   !list_empty(&sde->flushlist));
2160
2161        /* print info for each entry in the descriptor queue */
2162        while (head != tail) {
2163                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2164
2165                descqp = &sde->descq[head];
2166                desc[0] = le64_to_cpu(descqp->qw[0]);
2167                desc[1] = le64_to_cpu(descqp->qw[1]);
2168                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2169                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2170                                'H' : '-';
2171                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2172                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2173                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2174                        & SDMA_DESC0_PHY_ADDR_MASK;
2175                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2176                        & SDMA_DESC1_GENERATION_MASK;
2177                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2178                        & SDMA_DESC0_BYTE_COUNT_MASK;
2179                dd_dev_err(sde->dd,
2180                           "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2181                           head, flags, addr, gen, len);
2182                dd_dev_err(sde->dd,
2183                           "\tdesc0:0x%016llx desc1 0x%016llx\n",
2184                           desc[0], desc[1]);
2185                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2186                        dd_dev_err(sde->dd,
2187                                   "\taidx: %u amode: %u alen: %u\n",
2188                                   (u8)((desc[1] &
2189                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2190                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2191                                   (u8)((desc[1] &
2192                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2193                                        SDMA_DESC1_HEADER_MODE_SHIFT),
2194                                   (u8)((desc[1] &
2195                                         SDMA_DESC1_HEADER_DWS_SMASK) >>
2196                                        SDMA_DESC1_HEADER_DWS_SHIFT));
2197                head++;
2198                head &= sde->sdma_mask;
2199        }
2200}
2201
2202#define SDE_FMT \
2203        "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2204/**
2205 * sdma_seqfile_dump_sde() - debugfs dump of sde
2206 * @s: seq file
2207 * @sde: send dma engine to dump
2208 *
2209 * This routine dumps the sde to the indicated seq file.
2210 */
2211void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2212{
2213        u16 head, tail;
2214        struct hw_sdma_desc *descqp;
2215        u64 desc[2];
2216        u64 addr;
2217        u8 gen;
2218        u16 len;
2219
2220        head = sde->descq_head & sde->sdma_mask;
2221        tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2222        seq_printf(s, SDE_FMT, sde->this_idx,
2223                   sde->cpu,
2224                   sdma_state_name(sde->state.current_state),
2225                   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2226                   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2227                   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2228                   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2229                   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2230                   (unsigned long long)le64_to_cpu(*sde->head_dma),
2231                   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2232                   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2233                   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2234                   (unsigned long long)sde->last_status,
2235                   (unsigned long long)sde->ahg_bits,
2236                   sde->tx_tail,
2237                   sde->tx_head,
2238                   sde->descq_tail,
2239                   sde->descq_head,
2240                   !list_empty(&sde->flushlist),
2241                   sde->descq_full_count,
2242                   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2243
2244        /* print info for each entry in the descriptor queue */
2245        while (head != tail) {
2246                char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2247
2248                descqp = &sde->descq[head];
2249                desc[0] = le64_to_cpu(descqp->qw[0]);
2250                desc[1] = le64_to_cpu(descqp->qw[1]);
2251                flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2252                flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2253                                'H' : '-';
2254                flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2255                flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2256                addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2257                        & SDMA_DESC0_PHY_ADDR_MASK;
2258                gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2259                        & SDMA_DESC1_GENERATION_MASK;
2260                len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2261                        & SDMA_DESC0_BYTE_COUNT_MASK;
2262                seq_printf(s,
2263                           "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2264                           head, flags, addr, gen, len);
2265                if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2266                        seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2267                                   (u8)((desc[1] &
2268                                         SDMA_DESC1_HEADER_INDEX_SMASK) >>
2269                                        SDMA_DESC1_HEADER_INDEX_SHIFT),
2270                                   (u8)((desc[1] &
2271                                         SDMA_DESC1_HEADER_MODE_SMASK) >>
2272                                        SDMA_DESC1_HEADER_MODE_SHIFT));
2273                head = (head + 1) & sde->sdma_mask;
2274        }
2275}
2276
2277/*
2278 * add the generation number into
2279 * the qw1 and return
2280 */
2281static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2282{
2283        u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2284
2285        qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2286        qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2287                        << SDMA_DESC1_GENERATION_SHIFT;
2288        return qw1;
2289}
2290
2291/*
2292 * This routine submits the indicated tx
2293 *
2294 * Space has already been guaranteed and
2295 * tail side of ring is locked.
2296 *
2297 * The hardware tail update is done
2298 * in the caller and that is facilitated
2299 * by returning the new tail.
2300 *
2301 * There is special case logic for ahg
2302 * to not add the generation number for
2303 * up to 2 descriptors that follow the
2304 * first descriptor.
2305 *
2306 */
2307static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2308{
2309        int i;
2310        u16 tail;
2311        struct sdma_desc *descp = tx->descp;
2312        u8 skip = 0, mode = ahg_mode(tx);
2313
2314        tail = sde->descq_tail & sde->sdma_mask;
2315        sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2316        sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2317        trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2318                                   tail, &sde->descq[tail]);
2319        tail = ++sde->descq_tail & sde->sdma_mask;
2320        descp++;
2321        if (mode > SDMA_AHG_APPLY_UPDATE1)
2322                skip = mode >> 1;
2323        for (i = 1; i < tx->num_desc; i++, descp++) {
2324                u64 qw1;
2325
2326                sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2327                if (skip) {
2328                        /* edits don't have generation */
2329                        qw1 = descp->qw[1];
2330                        skip--;
2331                } else {
2332                        /* replace generation with real one for non-edits */
2333                        qw1 = add_gen(sde, descp->qw[1]);
2334                }
2335                sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2336                trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2337                                           tail, &sde->descq[tail]);
2338                tail = ++sde->descq_tail & sde->sdma_mask;
2339        }
2340        tx->next_descq_idx = tail;
2341#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2342        tx->sn = sde->tail_sn++;
2343        trace_hfi1_sdma_in_sn(sde, tx->sn);
2344        WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2345#endif
2346        sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2347        sde->desc_avail -= tx->num_desc;
2348        return tail;
2349}
2350
2351/*
2352 * Check for progress
2353 */
2354static int sdma_check_progress(
2355        struct sdma_engine *sde,
2356        struct iowait_work *wait,
2357        struct sdma_txreq *tx,
2358        bool pkts_sent)
2359{
2360        int ret;
2361
2362        sde->desc_avail = sdma_descq_freecnt(sde);
2363        if (tx->num_desc <= sde->desc_avail)
2364                return -EAGAIN;
2365        /* pulse the head_lock */
2366        if (wait && iowait_ioww_to_iow(wait)->sleep) {
2367                unsigned seq;
2368
2369                seq = raw_seqcount_begin(
2370                        (const seqcount_t *)&sde->head_lock.seqcount);
2371                ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2372                if (ret == -EAGAIN)
2373                        sde->desc_avail = sdma_descq_freecnt(sde);
2374        } else {
2375                ret = -EBUSY;
2376        }
2377        return ret;
2378}
2379
2380/**
2381 * sdma_send_txreq() - submit a tx req to ring
2382 * @sde: sdma engine to use
2383 * @wait: SE wait structure to use when full (may be NULL)
2384 * @tx: sdma_txreq to submit
2385 * @pkts_sent: has any packet been sent yet?
2386 *
2387 * The call submits the tx into the ring.  If a iowait structure is non-NULL
2388 * the packet will be queued to the list in wait.
2389 *
2390 * Return:
2391 * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2392 * ring (wait == NULL)
2393 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2394 */
2395int sdma_send_txreq(struct sdma_engine *sde,
2396                    struct iowait_work *wait,
2397                    struct sdma_txreq *tx,
2398                    bool pkts_sent)
2399{
2400        int ret = 0;
2401        u16 tail;
2402        unsigned long flags;
2403
2404        /* user should have supplied entire packet */
2405        if (unlikely(tx->tlen))
2406                return -EINVAL;
2407        tx->wait = iowait_ioww_to_iow(wait);
2408        spin_lock_irqsave(&sde->tail_lock, flags);
2409retry:
2410        if (unlikely(!__sdma_running(sde)))
2411                goto unlock_noconn;
2412        if (unlikely(tx->num_desc > sde->desc_avail))
2413                goto nodesc;
2414        tail = submit_tx(sde, tx);
2415        if (wait)
2416                iowait_sdma_inc(iowait_ioww_to_iow(wait));
2417        sdma_update_tail(sde, tail);
2418unlock:
2419        spin_unlock_irqrestore(&sde->tail_lock, flags);
2420        return ret;
2421unlock_noconn:
2422        if (wait)
2423                iowait_sdma_inc(iowait_ioww_to_iow(wait));
2424        tx->next_descq_idx = 0;
2425#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2426        tx->sn = sde->tail_sn++;
2427        trace_hfi1_sdma_in_sn(sde, tx->sn);
2428#endif
2429        spin_lock(&sde->flushlist_lock);
2430        list_add_tail(&tx->list, &sde->flushlist);
2431        spin_unlock(&sde->flushlist_lock);
2432        iowait_inc_wait_count(wait, tx->num_desc);
2433        queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2434        ret = -ECOMM;
2435        goto unlock;
2436nodesc:
2437        ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2438        if (ret == -EAGAIN) {
2439                ret = 0;
2440                goto retry;
2441        }
2442        sde->descq_full_count++;
2443        goto unlock;
2444}
2445
2446/**
2447 * sdma_send_txlist() - submit a list of tx req to ring
2448 * @sde: sdma engine to use
2449 * @wait: SE wait structure to use when full (may be NULL)
2450 * @tx_list: list of sdma_txreqs to submit
2451 * @count: pointer to a u16 which, after return will contain the total number of
2452 *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2453 *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2454 *         which are added to SDMA engine flush list if the SDMA engine state is
2455 *         not running.
2456 *
2457 * The call submits the list into the ring.
2458 *
2459 * If the iowait structure is non-NULL and not equal to the iowait list
2460 * the unprocessed part of the list  will be appended to the list in wait.
2461 *
2462 * In all cases, the tx_list will be updated so the head of the tx_list is
2463 * the list of descriptors that have yet to be transmitted.
2464 *
2465 * The intent of this call is to provide a more efficient
2466 * way of submitting multiple packets to SDMA while holding the tail
2467 * side locking.
2468 *
2469 * Return:
2470 * 0 - Success,
2471 * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2472 * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2473 */
2474int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2475                     struct list_head *tx_list, u16 *count_out)
2476{
2477        struct sdma_txreq *tx, *tx_next;
2478        int ret = 0;
2479        unsigned long flags;
2480        u16 tail = INVALID_TAIL;
2481        u32 submit_count = 0, flush_count = 0, total_count;
2482
2483        spin_lock_irqsave(&sde->tail_lock, flags);
2484retry:
2485        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2486                tx->wait = iowait_ioww_to_iow(wait);
2487                if (unlikely(!__sdma_running(sde)))
2488                        goto unlock_noconn;
2489                if (unlikely(tx->num_desc > sde->desc_avail))
2490                        goto nodesc;
2491                if (unlikely(tx->tlen)) {
2492                        ret = -EINVAL;
2493                        goto update_tail;
2494                }
2495                list_del_init(&tx->list);
2496                tail = submit_tx(sde, tx);
2497                submit_count++;
2498                if (tail != INVALID_TAIL &&
2499                    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2500                        sdma_update_tail(sde, tail);
2501                        tail = INVALID_TAIL;
2502                }
2503        }
2504update_tail:
2505        total_count = submit_count + flush_count;
2506        if (wait) {
2507                iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2508                iowait_starve_clear(submit_count > 0,
2509                                    iowait_ioww_to_iow(wait));
2510        }
2511        if (tail != INVALID_TAIL)
2512                sdma_update_tail(sde, tail);
2513        spin_unlock_irqrestore(&sde->tail_lock, flags);
2514        *count_out = total_count;
2515        return ret;
2516unlock_noconn:
2517        spin_lock(&sde->flushlist_lock);
2518        list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2519                tx->wait = iowait_ioww_to_iow(wait);
2520                list_del_init(&tx->list);
2521                tx->next_descq_idx = 0;
2522#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523                tx->sn = sde->tail_sn++;
2524                trace_hfi1_sdma_in_sn(sde, tx->sn);
2525#endif
2526                list_add_tail(&tx->list, &sde->flushlist);
2527                flush_count++;
2528                iowait_inc_wait_count(wait, tx->num_desc);
2529        }
2530        spin_unlock(&sde->flushlist_lock);
2531        queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2532        ret = -ECOMM;
2533        goto update_tail;
2534nodesc:
2535        ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2536        if (ret == -EAGAIN) {
2537                ret = 0;
2538                goto retry;
2539        }
2540        sde->descq_full_count++;
2541        goto update_tail;
2542}
2543
2544static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2545{
2546        unsigned long flags;
2547
2548        spin_lock_irqsave(&sde->tail_lock, flags);
2549        write_seqlock(&sde->head_lock);
2550
2551        __sdma_process_event(sde, event);
2552
2553        if (sde->state.current_state == sdma_state_s99_running)
2554                sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2555
2556        write_sequnlock(&sde->head_lock);
2557        spin_unlock_irqrestore(&sde->tail_lock, flags);
2558}
2559
2560static void __sdma_process_event(struct sdma_engine *sde,
2561                                 enum sdma_events event)
2562{
2563        struct sdma_state *ss = &sde->state;
2564        int need_progress = 0;
2565
2566        /* CONFIG SDMA temporary */
2567#ifdef CONFIG_SDMA_VERBOSITY
2568        dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2569                   sdma_state_names[ss->current_state],
2570                   sdma_event_names[event]);
2571#endif
2572
2573        switch (ss->current_state) {
2574        case sdma_state_s00_hw_down:
2575                switch (event) {
2576                case sdma_event_e00_go_hw_down:
2577                        break;
2578                case sdma_event_e30_go_running:
2579                        /*
2580                         * If down, but running requested (usually result
2581                         * of link up, then we need to start up.
2582                         * This can happen when hw down is requested while
2583                         * bringing the link up with traffic active on
2584                         * 7220, e.g.
2585                         */
2586                        ss->go_s99_running = 1;
2587                        /* fall through -- and start dma engine */
2588                case sdma_event_e10_go_hw_start:
2589                        /* This reference means the state machine is started */
2590                        sdma_get(&sde->state);
2591                        sdma_set_state(sde,
2592                                       sdma_state_s10_hw_start_up_halt_wait);
2593                        break;
2594                case sdma_event_e15_hw_halt_done:
2595                        break;
2596                case sdma_event_e25_hw_clean_up_done:
2597                        break;
2598                case sdma_event_e40_sw_cleaned:
2599                        sdma_sw_tear_down(sde);
2600                        break;
2601                case sdma_event_e50_hw_cleaned:
2602                        break;
2603                case sdma_event_e60_hw_halted:
2604                        break;
2605                case sdma_event_e70_go_idle:
2606                        break;
2607                case sdma_event_e80_hw_freeze:
2608                        break;
2609                case sdma_event_e81_hw_frozen:
2610                        break;
2611                case sdma_event_e82_hw_unfreeze:
2612                        break;
2613                case sdma_event_e85_link_down:
2614                        break;
2615                case sdma_event_e90_sw_halted:
2616                        break;
2617                }
2618                break;
2619
2620        case sdma_state_s10_hw_start_up_halt_wait:
2621                switch (event) {
2622                case sdma_event_e00_go_hw_down:
2623                        sdma_set_state(sde, sdma_state_s00_hw_down);
2624                        sdma_sw_tear_down(sde);
2625                        break;
2626                case sdma_event_e10_go_hw_start:
2627                        break;
2628                case sdma_event_e15_hw_halt_done:
2629                        sdma_set_state(sde,
2630                                       sdma_state_s15_hw_start_up_clean_wait);
2631                        sdma_start_hw_clean_up(sde);
2632                        break;
2633                case sdma_event_e25_hw_clean_up_done:
2634                        break;
2635                case sdma_event_e30_go_running:
2636                        ss->go_s99_running = 1;
2637                        break;
2638                case sdma_event_e40_sw_cleaned:
2639                        break;
2640                case sdma_event_e50_hw_cleaned:
2641                        break;
2642                case sdma_event_e60_hw_halted:
2643                        schedule_work(&sde->err_halt_worker);
2644                        break;
2645                case sdma_event_e70_go_idle:
2646                        ss->go_s99_running = 0;
2647                        break;
2648                case sdma_event_e80_hw_freeze:
2649                        break;
2650                case sdma_event_e81_hw_frozen:
2651                        break;
2652                case sdma_event_e82_hw_unfreeze:
2653                        break;
2654                case sdma_event_e85_link_down:
2655                        break;
2656                case sdma_event_e90_sw_halted:
2657                        break;
2658                }
2659                break;
2660
2661        case sdma_state_s15_hw_start_up_clean_wait:
2662                switch (event) {
2663                case sdma_event_e00_go_hw_down:
2664                        sdma_set_state(sde, sdma_state_s00_hw_down);
2665                        sdma_sw_tear_down(sde);
2666                        break;
2667                case sdma_event_e10_go_hw_start:
2668                        break;
2669                case sdma_event_e15_hw_halt_done:
2670                        break;
2671                case sdma_event_e25_hw_clean_up_done:
2672                        sdma_hw_start_up(sde);
2673                        sdma_set_state(sde, ss->go_s99_running ?
2674                                       sdma_state_s99_running :
2675                                       sdma_state_s20_idle);
2676                        break;
2677                case sdma_event_e30_go_running:
2678                        ss->go_s99_running = 1;
2679                        break;
2680                case sdma_event_e40_sw_cleaned:
2681                        break;
2682                case sdma_event_e50_hw_cleaned:
2683                        break;
2684                case sdma_event_e60_hw_halted:
2685                        break;
2686                case sdma_event_e70_go_idle:
2687                        ss->go_s99_running = 0;
2688                        break;
2689                case sdma_event_e80_hw_freeze:
2690                        break;
2691                case sdma_event_e81_hw_frozen:
2692                        break;
2693                case sdma_event_e82_hw_unfreeze:
2694                        break;
2695                case sdma_event_e85_link_down:
2696                        break;
2697                case sdma_event_e90_sw_halted:
2698                        break;
2699                }
2700                break;
2701
2702        case sdma_state_s20_idle:
2703                switch (event) {
2704                case sdma_event_e00_go_hw_down:
2705                        sdma_set_state(sde, sdma_state_s00_hw_down);
2706                        sdma_sw_tear_down(sde);
2707                        break;
2708                case sdma_event_e10_go_hw_start:
2709                        break;
2710                case sdma_event_e15_hw_halt_done:
2711                        break;
2712                case sdma_event_e25_hw_clean_up_done:
2713                        break;
2714                case sdma_event_e30_go_running:
2715                        sdma_set_state(sde, sdma_state_s99_running);
2716                        ss->go_s99_running = 1;
2717                        break;
2718                case sdma_event_e40_sw_cleaned:
2719                        break;
2720                case sdma_event_e50_hw_cleaned:
2721                        break;
2722                case sdma_event_e60_hw_halted:
2723                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2724                        schedule_work(&sde->err_halt_worker);
2725                        break;
2726                case sdma_event_e70_go_idle:
2727                        break;
2728                case sdma_event_e85_link_down:
2729                        /* fall through */
2730                case sdma_event_e80_hw_freeze:
2731                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
2732                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2733                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2734                        break;
2735                case sdma_event_e81_hw_frozen:
2736                        break;
2737                case sdma_event_e82_hw_unfreeze:
2738                        break;
2739                case sdma_event_e90_sw_halted:
2740                        break;
2741                }
2742                break;
2743
2744        case sdma_state_s30_sw_clean_up_wait:
2745                switch (event) {
2746                case sdma_event_e00_go_hw_down:
2747                        sdma_set_state(sde, sdma_state_s00_hw_down);
2748                        break;
2749                case sdma_event_e10_go_hw_start:
2750                        break;
2751                case sdma_event_e15_hw_halt_done:
2752                        break;
2753                case sdma_event_e25_hw_clean_up_done:
2754                        break;
2755                case sdma_event_e30_go_running:
2756                        ss->go_s99_running = 1;
2757                        break;
2758                case sdma_event_e40_sw_cleaned:
2759                        sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2760                        sdma_start_hw_clean_up(sde);
2761                        break;
2762                case sdma_event_e50_hw_cleaned:
2763                        break;
2764                case sdma_event_e60_hw_halted:
2765                        break;
2766                case sdma_event_e70_go_idle:
2767                        ss->go_s99_running = 0;
2768                        break;
2769                case sdma_event_e80_hw_freeze:
2770                        break;
2771                case sdma_event_e81_hw_frozen:
2772                        break;
2773                case sdma_event_e82_hw_unfreeze:
2774                        break;
2775                case sdma_event_e85_link_down:
2776                        ss->go_s99_running = 0;
2777                        break;
2778                case sdma_event_e90_sw_halted:
2779                        break;
2780                }
2781                break;
2782
2783        case sdma_state_s40_hw_clean_up_wait:
2784                switch (event) {
2785                case sdma_event_e00_go_hw_down:
2786                        sdma_set_state(sde, sdma_state_s00_hw_down);
2787                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2788                        break;
2789                case sdma_event_e10_go_hw_start:
2790                        break;
2791                case sdma_event_e15_hw_halt_done:
2792                        break;
2793                case sdma_event_e25_hw_clean_up_done:
2794                        sdma_hw_start_up(sde);
2795                        sdma_set_state(sde, ss->go_s99_running ?
2796                                       sdma_state_s99_running :
2797                                       sdma_state_s20_idle);
2798                        break;
2799                case sdma_event_e30_go_running:
2800                        ss->go_s99_running = 1;
2801                        break;
2802                case sdma_event_e40_sw_cleaned:
2803                        break;
2804                case sdma_event_e50_hw_cleaned:
2805                        break;
2806                case sdma_event_e60_hw_halted:
2807                        break;
2808                case sdma_event_e70_go_idle:
2809                        ss->go_s99_running = 0;
2810                        break;
2811                case sdma_event_e80_hw_freeze:
2812                        break;
2813                case sdma_event_e81_hw_frozen:
2814                        break;
2815                case sdma_event_e82_hw_unfreeze:
2816                        break;
2817                case sdma_event_e85_link_down:
2818                        ss->go_s99_running = 0;
2819                        break;
2820                case sdma_event_e90_sw_halted:
2821                        break;
2822                }
2823                break;
2824
2825        case sdma_state_s50_hw_halt_wait:
2826                switch (event) {
2827                case sdma_event_e00_go_hw_down:
2828                        sdma_set_state(sde, sdma_state_s00_hw_down);
2829                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2830                        break;
2831                case sdma_event_e10_go_hw_start:
2832                        break;
2833                case sdma_event_e15_hw_halt_done:
2834                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2835                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2836                        break;
2837                case sdma_event_e25_hw_clean_up_done:
2838                        break;
2839                case sdma_event_e30_go_running:
2840                        ss->go_s99_running = 1;
2841                        break;
2842                case sdma_event_e40_sw_cleaned:
2843                        break;
2844                case sdma_event_e50_hw_cleaned:
2845                        break;
2846                case sdma_event_e60_hw_halted:
2847                        schedule_work(&sde->err_halt_worker);
2848                        break;
2849                case sdma_event_e70_go_idle:
2850                        ss->go_s99_running = 0;
2851                        break;
2852                case sdma_event_e80_hw_freeze:
2853                        break;
2854                case sdma_event_e81_hw_frozen:
2855                        break;
2856                case sdma_event_e82_hw_unfreeze:
2857                        break;
2858                case sdma_event_e85_link_down:
2859                        ss->go_s99_running = 0;
2860                        break;
2861                case sdma_event_e90_sw_halted:
2862                        break;
2863                }
2864                break;
2865
2866        case sdma_state_s60_idle_halt_wait:
2867                switch (event) {
2868                case sdma_event_e00_go_hw_down:
2869                        sdma_set_state(sde, sdma_state_s00_hw_down);
2870                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2871                        break;
2872                case sdma_event_e10_go_hw_start:
2873                        break;
2874                case sdma_event_e15_hw_halt_done:
2875                        sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2876                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2877                        break;
2878                case sdma_event_e25_hw_clean_up_done:
2879                        break;
2880                case sdma_event_e30_go_running:
2881                        ss->go_s99_running = 1;
2882                        break;
2883                case sdma_event_e40_sw_cleaned:
2884                        break;
2885                case sdma_event_e50_hw_cleaned:
2886                        break;
2887                case sdma_event_e60_hw_halted:
2888                        schedule_work(&sde->err_halt_worker);
2889                        break;
2890                case sdma_event_e70_go_idle:
2891                        ss->go_s99_running = 0;
2892                        break;
2893                case sdma_event_e80_hw_freeze:
2894                        break;
2895                case sdma_event_e81_hw_frozen:
2896                        break;
2897                case sdma_event_e82_hw_unfreeze:
2898                        break;
2899                case sdma_event_e85_link_down:
2900                        break;
2901                case sdma_event_e90_sw_halted:
2902                        break;
2903                }
2904                break;
2905
2906        case sdma_state_s80_hw_freeze:
2907                switch (event) {
2908                case sdma_event_e00_go_hw_down:
2909                        sdma_set_state(sde, sdma_state_s00_hw_down);
2910                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2911                        break;
2912                case sdma_event_e10_go_hw_start:
2913                        break;
2914                case sdma_event_e15_hw_halt_done:
2915                        break;
2916                case sdma_event_e25_hw_clean_up_done:
2917                        break;
2918                case sdma_event_e30_go_running:
2919                        ss->go_s99_running = 1;
2920                        break;
2921                case sdma_event_e40_sw_cleaned:
2922                        break;
2923                case sdma_event_e50_hw_cleaned:
2924                        break;
2925                case sdma_event_e60_hw_halted:
2926                        break;
2927                case sdma_event_e70_go_idle:
2928                        ss->go_s99_running = 0;
2929                        break;
2930                case sdma_event_e80_hw_freeze:
2931                        break;
2932                case sdma_event_e81_hw_frozen:
2933                        sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2934                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2935                        break;
2936                case sdma_event_e82_hw_unfreeze:
2937                        break;
2938                case sdma_event_e85_link_down:
2939                        break;
2940                case sdma_event_e90_sw_halted:
2941                        break;
2942                }
2943                break;
2944
2945        case sdma_state_s82_freeze_sw_clean:
2946                switch (event) {
2947                case sdma_event_e00_go_hw_down:
2948                        sdma_set_state(sde, sdma_state_s00_hw_down);
2949                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2950                        break;
2951                case sdma_event_e10_go_hw_start:
2952                        break;
2953                case sdma_event_e15_hw_halt_done:
2954                        break;
2955                case sdma_event_e25_hw_clean_up_done:
2956                        break;
2957                case sdma_event_e30_go_running:
2958                        ss->go_s99_running = 1;
2959                        break;
2960                case sdma_event_e40_sw_cleaned:
2961                        /* notify caller this engine is done cleaning */
2962                        atomic_dec(&sde->dd->sdma_unfreeze_count);
2963                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2964                        break;
2965                case sdma_event_e50_hw_cleaned:
2966                        break;
2967                case sdma_event_e60_hw_halted:
2968                        break;
2969                case sdma_event_e70_go_idle:
2970                        ss->go_s99_running = 0;
2971                        break;
2972                case sdma_event_e80_hw_freeze:
2973                        break;
2974                case sdma_event_e81_hw_frozen:
2975                        break;
2976                case sdma_event_e82_hw_unfreeze:
2977                        sdma_hw_start_up(sde);
2978                        sdma_set_state(sde, ss->go_s99_running ?
2979                                       sdma_state_s99_running :
2980                                       sdma_state_s20_idle);
2981                        break;
2982                case sdma_event_e85_link_down:
2983                        break;
2984                case sdma_event_e90_sw_halted:
2985                        break;
2986                }
2987                break;
2988
2989        case sdma_state_s99_running:
2990                switch (event) {
2991                case sdma_event_e00_go_hw_down:
2992                        sdma_set_state(sde, sdma_state_s00_hw_down);
2993                        tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2994                        break;
2995                case sdma_event_e10_go_hw_start:
2996                        break;
2997                case sdma_event_e15_hw_halt_done:
2998                        break;
2999                case sdma_event_e25_hw_clean_up_done:
3000                        break;
3001                case sdma_event_e30_go_running:
3002                        break;
3003                case sdma_event_e40_sw_cleaned:
3004                        break;
3005                case sdma_event_e50_hw_cleaned:
3006                        break;
3007                case sdma_event_e60_hw_halted:
3008                        need_progress = 1;
3009                        sdma_err_progress_check_schedule(sde);
3010                        /* fall through */
3011                case sdma_event_e90_sw_halted:
3012                        /*
3013                        * SW initiated halt does not perform engines
3014                        * progress check
3015                        */
3016                        sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3017                        schedule_work(&sde->err_halt_worker);
3018                        break;
3019                case sdma_event_e70_go_idle:
3020                        sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3021                        break;
3022                case sdma_event_e85_link_down:
3023                        ss->go_s99_running = 0;
3024                        /* fall through */
3025                case sdma_event_e80_hw_freeze:
3026                        sdma_set_state(sde, sdma_state_s80_hw_freeze);
3027                        atomic_dec(&sde->dd->sdma_unfreeze_count);
3028                        wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3029                        break;
3030                case sdma_event_e81_hw_frozen:
3031                        break;
3032                case sdma_event_e82_hw_unfreeze:
3033                        break;
3034                }
3035                break;
3036        }
3037
3038        ss->last_event = event;
3039        if (need_progress)
3040                sdma_make_progress(sde, 0);
3041}
3042
3043/*
3044 * _extend_sdma_tx_descs() - helper to extend txreq
3045 *
3046 * This is called once the initial nominal allocation
3047 * of descriptors in the sdma_txreq is exhausted.
3048 *
3049 * The code will bump the allocation up to the max
3050 * of MAX_DESC (64) descriptors. There doesn't seem
3051 * much point in an interim step. The last descriptor
3052 * is reserved for coalesce buffer in order to support
3053 * cases where input packet has >MAX_DESC iovecs.
3054 *
3055 */
3056static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3057{
3058        int i;
3059
3060        /* Handle last descriptor */
3061        if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3062                /* if tlen is 0, it is for padding, release last descriptor */
3063                if (!tx->tlen) {
3064                        tx->desc_limit = MAX_DESC;
3065                } else if (!tx->coalesce_buf) {
3066                        /* allocate coalesce buffer with space for padding */
3067                        tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3068                                                   GFP_ATOMIC);
3069                        if (!tx->coalesce_buf)
3070                                goto enomem;
3071                        tx->coalesce_idx = 0;
3072                }
3073                return 0;
3074        }
3075
3076        if (unlikely(tx->num_desc == MAX_DESC))
3077                goto enomem;
3078
3079        tx->descp = kmalloc_array(
3080                        MAX_DESC,
3081                        sizeof(struct sdma_desc),
3082                        GFP_ATOMIC);
3083        if (!tx->descp)
3084                goto enomem;
3085
3086        /* reserve last descriptor for coalescing */
3087        tx->desc_limit = MAX_DESC - 1;
3088        /* copy ones already built */
3089        for (i = 0; i < tx->num_desc; i++)
3090                tx->descp[i] = tx->descs[i];
3091        return 0;
3092enomem:
3093        __sdma_txclean(dd, tx);
3094        return -ENOMEM;
3095}
3096
3097/*
3098 * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3099 *
3100 * This is called once the initial nominal allocation of descriptors
3101 * in the sdma_txreq is exhausted.
3102 *
3103 * This function calls _extend_sdma_tx_descs to extend or allocate
3104 * coalesce buffer. If there is a allocated coalesce buffer, it will
3105 * copy the input packet data into the coalesce buffer. It also adds
3106 * coalesce buffer descriptor once when whole packet is received.
3107 *
3108 * Return:
3109 * <0 - error
3110 * 0 - coalescing, don't populate descriptor
3111 * 1 - continue with populating descriptor
3112 */
3113int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3114                           int type, void *kvaddr, struct page *page,
3115                           unsigned long offset, u16 len)
3116{
3117        int pad_len, rval;
3118        dma_addr_t addr;
3119
3120        rval = _extend_sdma_tx_descs(dd, tx);
3121        if (rval) {
3122                __sdma_txclean(dd, tx);
3123                return rval;
3124        }
3125
3126        /* If coalesce buffer is allocated, copy data into it */
3127        if (tx->coalesce_buf) {
3128                if (type == SDMA_MAP_NONE) {
3129                        __sdma_txclean(dd, tx);
3130                        return -EINVAL;
3131                }
3132
3133                if (type == SDMA_MAP_PAGE) {
3134                        kvaddr = kmap(page);
3135                        kvaddr += offset;
3136                } else if (WARN_ON(!kvaddr)) {
3137                        __sdma_txclean(dd, tx);
3138                        return -EINVAL;
3139                }
3140
3141                memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3142                tx->coalesce_idx += len;
3143                if (type == SDMA_MAP_PAGE)
3144                        kunmap(page);
3145
3146                /* If there is more data, return */
3147                if (tx->tlen - tx->coalesce_idx)
3148                        return 0;
3149
3150                /* Whole packet is received; add any padding */
3151                pad_len = tx->packet_len & (sizeof(u32) - 1);
3152                if (pad_len) {
3153                        pad_len = sizeof(u32) - pad_len;
3154                        memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3155                        /* padding is taken care of for coalescing case */
3156                        tx->packet_len += pad_len;
3157                        tx->tlen += pad_len;
3158                }
3159
3160                /* dma map the coalesce buffer */
3161                addr = dma_map_single(&dd->pcidev->dev,
3162                                      tx->coalesce_buf,
3163                                      tx->tlen,
3164                                      DMA_TO_DEVICE);
3165
3166                if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3167                        __sdma_txclean(dd, tx);
3168                        return -ENOSPC;
3169                }
3170
3171                /* Add descriptor for coalesce buffer */
3172                tx->desc_limit = MAX_DESC;
3173                return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3174                                         addr, tx->tlen);
3175        }
3176
3177        return 1;
3178}
3179
3180/* Update sdes when the lmc changes */
3181void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3182{
3183        struct sdma_engine *sde;
3184        int i;
3185        u64 sreg;
3186
3187        sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3188                SD(CHECK_SLID_MASK_SHIFT)) |
3189                (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3190                SD(CHECK_SLID_VALUE_SHIFT));
3191
3192        for (i = 0; i < dd->num_sdma; i++) {
3193                hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3194                          i, (u32)sreg);
3195                sde = &dd->per_sdma[i];
3196                write_sde_csr(sde, SD(CHECK_SLID), sreg);
3197        }
3198}
3199
3200/* tx not dword sized - pad */
3201int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3202{
3203        int rval = 0;
3204
3205        tx->num_desc++;
3206        if ((unlikely(tx->num_desc == tx->desc_limit))) {
3207                rval = _extend_sdma_tx_descs(dd, tx);
3208                if (rval) {
3209                        __sdma_txclean(dd, tx);
3210                        return rval;
3211                }
3212        }
3213        /* finish the one just added */
3214        make_tx_sdma_desc(
3215                tx,
3216                SDMA_MAP_NONE,
3217                dd->sdma_pad_phys,
3218                sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3219        _sdma_close_tx(dd, tx);
3220        return rval;
3221}
3222
3223/*
3224 * Add ahg to the sdma_txreq
3225 *
3226 * The logic will consume up to 3
3227 * descriptors at the beginning of
3228 * sdma_txreq.
3229 */
3230void _sdma_txreq_ahgadd(
3231        struct sdma_txreq *tx,
3232        u8 num_ahg,
3233        u8 ahg_entry,
3234        u32 *ahg,
3235        u8 ahg_hlen)
3236{
3237        u32 i, shift = 0, desc = 0;
3238        u8 mode;
3239
3240        WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3241        /* compute mode */
3242        if (num_ahg == 1)
3243                mode = SDMA_AHG_APPLY_UPDATE1;
3244        else if (num_ahg <= 5)
3245                mode = SDMA_AHG_APPLY_UPDATE2;
3246        else
3247                mode = SDMA_AHG_APPLY_UPDATE3;
3248        tx->num_desc++;
3249        /* initialize to consumed descriptors to zero */
3250        switch (mode) {
3251        case SDMA_AHG_APPLY_UPDATE3:
3252                tx->num_desc++;
3253                tx->descs[2].qw[0] = 0;
3254                tx->descs[2].qw[1] = 0;
3255                /* FALLTHROUGH */
3256        case SDMA_AHG_APPLY_UPDATE2:
3257                tx->num_desc++;
3258                tx->descs[1].qw[0] = 0;
3259                tx->descs[1].qw[1] = 0;
3260                break;
3261        }
3262        ahg_hlen >>= 2;
3263        tx->descs[0].qw[1] |=
3264                (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3265                        << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3266                (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3267                        << SDMA_DESC1_HEADER_DWS_SHIFT) |
3268                (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3269                        << SDMA_DESC1_HEADER_MODE_SHIFT) |
3270                (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3271                        << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3272        for (i = 0; i < (num_ahg - 1); i++) {
3273                if (!shift && !(i & 2))
3274                        desc++;
3275                tx->descs[desc].qw[!!(i & 2)] |=
3276                        (((u64)ahg[i + 1])
3277                                << shift);
3278                shift = (shift + 32) & 63;
3279        }
3280}
3281
3282/**
3283 * sdma_ahg_alloc - allocate an AHG entry
3284 * @sde: engine to allocate from
3285 *
3286 * Return:
3287 * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3288 * -ENOSPC if an entry is not available
3289 */
3290int sdma_ahg_alloc(struct sdma_engine *sde)
3291{
3292        int nr;
3293        int oldbit;
3294
3295        if (!sde) {
3296                trace_hfi1_ahg_allocate(sde, -EINVAL);
3297                return -EINVAL;
3298        }
3299        while (1) {
3300                nr = ffz(READ_ONCE(sde->ahg_bits));
3301                if (nr > 31) {
3302                        trace_hfi1_ahg_allocate(sde, -ENOSPC);
3303                        return -ENOSPC;
3304                }
3305                oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3306                if (!oldbit)
3307                        break;
3308                cpu_relax();
3309        }
3310        trace_hfi1_ahg_allocate(sde, nr);
3311        return nr;
3312}
3313
3314/**
3315 * sdma_ahg_free - free an AHG entry
3316 * @sde: engine to return AHG entry
3317 * @ahg_index: index to free
3318 *
3319 * This routine frees the indicate AHG entry.
3320 */
3321void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3322{
3323        if (!sde)
3324                return;
3325        trace_hfi1_ahg_deallocate(sde, ahg_index);
3326        if (ahg_index < 0 || ahg_index > 31)
3327                return;
3328        clear_bit(ahg_index, &sde->ahg_bits);
3329}
3330
3331/*
3332 * SPC freeze handling for SDMA engines.  Called when the driver knows
3333 * the SPC is going into a freeze but before the freeze is fully
3334 * settled.  Generally an error interrupt.
3335 *
3336 * This event will pull the engine out of running so no more entries can be
3337 * added to the engine's queue.
3338 */
3339void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3340{
3341        int i;
3342        enum sdma_events event = link_down ? sdma_event_e85_link_down :
3343                                             sdma_event_e80_hw_freeze;
3344
3345        /* set up the wait but do not wait here */
3346        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3347
3348        /* tell all engines to stop running and wait */
3349        for (i = 0; i < dd->num_sdma; i++)
3350                sdma_process_event(&dd->per_sdma[i], event);
3351
3352        /* sdma_freeze() will wait for all engines to have stopped */
3353}
3354
3355/*
3356 * SPC freeze handling for SDMA engines.  Called when the driver knows
3357 * the SPC is fully frozen.
3358 */
3359void sdma_freeze(struct hfi1_devdata *dd)
3360{
3361        int i;
3362        int ret;
3363
3364        /*
3365         * Make sure all engines have moved out of the running state before
3366         * continuing.
3367         */
3368        ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3369                                       atomic_read(&dd->sdma_unfreeze_count) <=
3370                                       0);
3371        /* interrupted or count is negative, then unloading - just exit */
3372        if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3373                return;
3374
3375        /* set up the count for the next wait */
3376        atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3377
3378        /* tell all engines that the SPC is frozen, they can start cleaning */
3379        for (i = 0; i < dd->num_sdma; i++)
3380                sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3381
3382        /*
3383         * Wait for everyone to finish software clean before exiting.  The
3384         * software clean will read engine CSRs, so must be completed before
3385         * the next step, which will clear the engine CSRs.
3386         */
3387        (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3388                                atomic_read(&dd->sdma_unfreeze_count) <= 0);
3389        /* no need to check results - done no matter what */
3390}
3391
3392/*
3393 * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3394 *
3395 * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3396 * that is left is a software clean.  We could do it after the SPC is fully
3397 * frozen, but then we'd have to add another state to wait for the unfreeze.
3398 * Instead, just defer the software clean until the unfreeze step.
3399 */
3400void sdma_unfreeze(struct hfi1_devdata *dd)
3401{
3402        int i;
3403
3404        /* tell all engines start freeze clean up */
3405        for (i = 0; i < dd->num_sdma; i++)
3406                sdma_process_event(&dd->per_sdma[i],
3407                                   sdma_event_e82_hw_unfreeze);
3408}
3409
3410/**
3411 * _sdma_engine_progress_schedule() - schedule progress on engine
3412 * @sde: sdma_engine to schedule progress
3413 *
3414 */
3415void _sdma_engine_progress_schedule(
3416        struct sdma_engine *sde)
3417{
3418        trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3419        /* assume we have selected a good cpu */
3420        write_csr(sde->dd,
3421                  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3422                  sde->progress_mask);
3423}
3424