linux/drivers/iommu/ipmmu-vmsa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * IOMMU API for Renesas VMSA-compatible IPMMU
   4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   5 *
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 */
   8
   9#include <linux/bitmap.h>
  10#include <linux/delay.h>
  11#include <linux/dma-iommu.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/io-pgtable.h>
  19#include <linux/iommu.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/of_iommu.h>
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/sizes.h>
  26#include <linux/slab.h>
  27#include <linux/sys_soc.h>
  28
  29#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
  30#include <asm/dma-iommu.h>
  31#include <asm/pgalloc.h>
  32#else
  33#define arm_iommu_create_mapping(...)   NULL
  34#define arm_iommu_attach_device(...)    -ENODEV
  35#define arm_iommu_release_mapping(...)  do {} while (0)
  36#define arm_iommu_detach_device(...)    do {} while (0)
  37#endif
  38
  39#define IPMMU_CTX_MAX           8U
  40#define IPMMU_CTX_INVALID       -1
  41
  42#define IPMMU_UTLB_MAX          48U
  43
  44struct ipmmu_features {
  45        bool use_ns_alias_offset;
  46        bool has_cache_leaf_nodes;
  47        unsigned int number_of_contexts;
  48        unsigned int num_utlbs;
  49        bool setup_imbuscr;
  50        bool twobit_imttbcr_sl0;
  51        bool reserved_context;
  52        bool cache_snoop;
  53        unsigned int ctx_offset_base;
  54        unsigned int ctx_offset_stride;
  55        unsigned int utlb_offset_base;
  56};
  57
  58struct ipmmu_vmsa_device {
  59        struct device *dev;
  60        void __iomem *base;
  61        struct iommu_device iommu;
  62        struct ipmmu_vmsa_device *root;
  63        const struct ipmmu_features *features;
  64        unsigned int num_ctx;
  65        spinlock_t lock;                        /* Protects ctx and domains[] */
  66        DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
  67        struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
  68        s8 utlb_ctx[IPMMU_UTLB_MAX];
  69
  70        struct iommu_group *group;
  71        struct dma_iommu_mapping *mapping;
  72};
  73
  74struct ipmmu_vmsa_domain {
  75        struct ipmmu_vmsa_device *mmu;
  76        struct iommu_domain io_domain;
  77
  78        struct io_pgtable_cfg cfg;
  79        struct io_pgtable_ops *iop;
  80
  81        unsigned int context_id;
  82        struct mutex mutex;                     /* Protects mappings */
  83};
  84
  85static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
  86{
  87        return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
  88}
  89
  90static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
  91{
  92        return dev_iommu_priv_get(dev);
  93}
  94
  95#define TLB_LOOP_TIMEOUT                100     /* 100us */
  96
  97/* -----------------------------------------------------------------------------
  98 * Registers Definition
  99 */
 100
 101#define IM_NS_ALIAS_OFFSET              0x800
 102
 103/* MMU "context" registers */
 104#define IMCTR                           0x0000          /* R-Car Gen2/3 */
 105#define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
 106#define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
 107#define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
 108
 109#define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
 110#define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
 111#define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
 112#define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
 113#define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
 114#define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
 115#define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
 116
 117#define IMBUSCR                         0x000c          /* R-Car Gen2 only */
 118#define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
 119#define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
 120
 121#define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
 122#define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
 123
 124#define IMSTR                           0x0020          /* R-Car Gen2/3 */
 125#define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
 126#define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
 127#define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
 128#define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
 129
 130#define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
 131
 132#define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
 133#define IMEUAR                          0x0034          /* R-Car Gen3 only */
 134
 135/* uTLB registers */
 136#define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
 137#define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
 138#define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
 139#define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
 140#define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
 141#define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
 142
 143#define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
 144#define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
 145#define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
 146
 147/* -----------------------------------------------------------------------------
 148 * Root device handling
 149 */
 150
 151static struct platform_driver ipmmu_driver;
 152
 153static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
 154{
 155        return mmu->root == mmu;
 156}
 157
 158static int __ipmmu_check_device(struct device *dev, void *data)
 159{
 160        struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
 161        struct ipmmu_vmsa_device **rootp = data;
 162
 163        if (ipmmu_is_root(mmu))
 164                *rootp = mmu;
 165
 166        return 0;
 167}
 168
 169static struct ipmmu_vmsa_device *ipmmu_find_root(void)
 170{
 171        struct ipmmu_vmsa_device *root = NULL;
 172
 173        return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
 174                                      __ipmmu_check_device) == 0 ? root : NULL;
 175}
 176
 177/* -----------------------------------------------------------------------------
 178 * Read/Write Access
 179 */
 180
 181static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
 182{
 183        return ioread32(mmu->base + offset);
 184}
 185
 186static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
 187                        u32 data)
 188{
 189        iowrite32(data, mmu->base + offset);
 190}
 191
 192static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
 193                                  unsigned int context_id, unsigned int reg)
 194{
 195        return mmu->features->ctx_offset_base +
 196               context_id * mmu->features->ctx_offset_stride + reg;
 197}
 198
 199static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
 200                          unsigned int context_id, unsigned int reg)
 201{
 202        return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
 203}
 204
 205static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
 206                            unsigned int context_id, unsigned int reg, u32 data)
 207{
 208        ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
 209}
 210
 211static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
 212                               unsigned int reg)
 213{
 214        return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
 215}
 216
 217static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
 218                                 unsigned int reg, u32 data)
 219{
 220        ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
 221}
 222
 223static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
 224                                unsigned int reg, u32 data)
 225{
 226        if (domain->mmu != domain->mmu->root)
 227                ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
 228
 229        ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
 230}
 231
 232static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
 233{
 234        return mmu->features->utlb_offset_base + reg;
 235}
 236
 237static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
 238                                unsigned int utlb, u32 data)
 239{
 240        ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
 241}
 242
 243static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
 244                               unsigned int utlb, u32 data)
 245{
 246        ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
 247}
 248
 249/* -----------------------------------------------------------------------------
 250 * TLB and microTLB Management
 251 */
 252
 253/* Wait for any pending TLB invalidations to complete */
 254static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
 255{
 256        unsigned int count = 0;
 257
 258        while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
 259                cpu_relax();
 260                if (++count == TLB_LOOP_TIMEOUT) {
 261                        dev_err_ratelimited(domain->mmu->dev,
 262                        "TLB sync timed out -- MMU may be deadlocked\n");
 263                        return;
 264                }
 265                udelay(1);
 266        }
 267}
 268
 269static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
 270{
 271        u32 reg;
 272
 273        reg = ipmmu_ctx_read_root(domain, IMCTR);
 274        reg |= IMCTR_FLUSH;
 275        ipmmu_ctx_write_all(domain, IMCTR, reg);
 276
 277        ipmmu_tlb_sync(domain);
 278}
 279
 280/*
 281 * Enable MMU translation for the microTLB.
 282 */
 283static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
 284                              unsigned int utlb)
 285{
 286        struct ipmmu_vmsa_device *mmu = domain->mmu;
 287
 288        /*
 289         * TODO: Reference-count the microTLB as several bus masters can be
 290         * connected to the same microTLB.
 291         */
 292
 293        /* TODO: What should we set the ASID to ? */
 294        ipmmu_imuasid_write(mmu, utlb, 0);
 295        /* TODO: Do we need to flush the microTLB ? */
 296        ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
 297                                      IMUCTR_FLUSH | IMUCTR_MMUEN);
 298        mmu->utlb_ctx[utlb] = domain->context_id;
 299}
 300
 301/*
 302 * Disable MMU translation for the microTLB.
 303 */
 304static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
 305                               unsigned int utlb)
 306{
 307        struct ipmmu_vmsa_device *mmu = domain->mmu;
 308
 309        ipmmu_imuctr_write(mmu, utlb, 0);
 310        mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
 311}
 312
 313static void ipmmu_tlb_flush_all(void *cookie)
 314{
 315        struct ipmmu_vmsa_domain *domain = cookie;
 316
 317        ipmmu_tlb_invalidate(domain);
 318}
 319
 320static void ipmmu_tlb_flush(unsigned long iova, size_t size,
 321                                size_t granule, void *cookie)
 322{
 323        ipmmu_tlb_flush_all(cookie);
 324}
 325
 326static const struct iommu_flush_ops ipmmu_flush_ops = {
 327        .tlb_flush_all = ipmmu_tlb_flush_all,
 328        .tlb_flush_walk = ipmmu_tlb_flush,
 329        .tlb_flush_leaf = ipmmu_tlb_flush,
 330};
 331
 332/* -----------------------------------------------------------------------------
 333 * Domain/Context Management
 334 */
 335
 336static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
 337                                         struct ipmmu_vmsa_domain *domain)
 338{
 339        unsigned long flags;
 340        int ret;
 341
 342        spin_lock_irqsave(&mmu->lock, flags);
 343
 344        ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
 345        if (ret != mmu->num_ctx) {
 346                mmu->domains[ret] = domain;
 347                set_bit(ret, mmu->ctx);
 348        } else
 349                ret = -EBUSY;
 350
 351        spin_unlock_irqrestore(&mmu->lock, flags);
 352
 353        return ret;
 354}
 355
 356static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
 357                                      unsigned int context_id)
 358{
 359        unsigned long flags;
 360
 361        spin_lock_irqsave(&mmu->lock, flags);
 362
 363        clear_bit(context_id, mmu->ctx);
 364        mmu->domains[context_id] = NULL;
 365
 366        spin_unlock_irqrestore(&mmu->lock, flags);
 367}
 368
 369static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
 370{
 371        u64 ttbr;
 372        u32 tmp;
 373
 374        /* TTBR0 */
 375        ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
 376        ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
 377        ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
 378
 379        /*
 380         * TTBCR
 381         * We use long descriptors and allocate the whole 32-bit VA space to
 382         * TTBR0.
 383         */
 384        if (domain->mmu->features->twobit_imttbcr_sl0)
 385                tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
 386        else
 387                tmp = IMTTBCR_SL0_LVL_1;
 388
 389        if (domain->mmu->features->cache_snoop)
 390                tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
 391                       IMTTBCR_IRGN0_WB_WA;
 392
 393        ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
 394
 395        /* MAIR0 */
 396        ipmmu_ctx_write_root(domain, IMMAIR0,
 397                             domain->cfg.arm_lpae_s1_cfg.mair);
 398
 399        /* IMBUSCR */
 400        if (domain->mmu->features->setup_imbuscr)
 401                ipmmu_ctx_write_root(domain, IMBUSCR,
 402                                     ipmmu_ctx_read_root(domain, IMBUSCR) &
 403                                     ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
 404
 405        /*
 406         * IMSTR
 407         * Clear all interrupt flags.
 408         */
 409        ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
 410
 411        /*
 412         * IMCTR
 413         * Enable the MMU and interrupt generation. The long-descriptor
 414         * translation table format doesn't use TEX remapping. Don't enable AF
 415         * software management as we have no use for it. Flush the TLB as
 416         * required when modifying the context registers.
 417         */
 418        ipmmu_ctx_write_all(domain, IMCTR,
 419                            IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
 420}
 421
 422static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
 423{
 424        int ret;
 425
 426        /*
 427         * Allocate the page table operations.
 428         *
 429         * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
 430         * access, Long-descriptor format" that the NStable bit being set in a
 431         * table descriptor will result in the NStable and NS bits of all child
 432         * entries being ignored and considered as being set. The IPMMU seems
 433         * not to comply with this, as it generates a secure access page fault
 434         * if any of the NStable and NS bits isn't set when running in
 435         * non-secure mode.
 436         */
 437        domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
 438        domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
 439        domain->cfg.ias = 32;
 440        domain->cfg.oas = 40;
 441        domain->cfg.tlb = &ipmmu_flush_ops;
 442        domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
 443        domain->io_domain.geometry.force_aperture = true;
 444        /*
 445         * TODO: Add support for coherent walk through CCI with DVM and remove
 446         * cache handling. For now, delegate it to the io-pgtable code.
 447         */
 448        domain->cfg.coherent_walk = false;
 449        domain->cfg.iommu_dev = domain->mmu->root->dev;
 450
 451        /*
 452         * Find an unused context.
 453         */
 454        ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
 455        if (ret < 0)
 456                return ret;
 457
 458        domain->context_id = ret;
 459
 460        domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
 461                                           domain);
 462        if (!domain->iop) {
 463                ipmmu_domain_free_context(domain->mmu->root,
 464                                          domain->context_id);
 465                return -EINVAL;
 466        }
 467
 468        ipmmu_domain_setup_context(domain);
 469        return 0;
 470}
 471
 472static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
 473{
 474        if (!domain->mmu)
 475                return;
 476
 477        /*
 478         * Disable the context. Flush the TLB as required when modifying the
 479         * context registers.
 480         *
 481         * TODO: Is TLB flush really needed ?
 482         */
 483        ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
 484        ipmmu_tlb_sync(domain);
 485        ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
 486}
 487
 488/* -----------------------------------------------------------------------------
 489 * Fault Handling
 490 */
 491
 492static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
 493{
 494        const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
 495        struct ipmmu_vmsa_device *mmu = domain->mmu;
 496        unsigned long iova;
 497        u32 status;
 498
 499        status = ipmmu_ctx_read_root(domain, IMSTR);
 500        if (!(status & err_mask))
 501                return IRQ_NONE;
 502
 503        iova = ipmmu_ctx_read_root(domain, IMELAR);
 504        if (IS_ENABLED(CONFIG_64BIT))
 505                iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
 506
 507        /*
 508         * Clear the error status flags. Unlike traditional interrupt flag
 509         * registers that must be cleared by writing 1, this status register
 510         * seems to require 0. The error address register must be read before,
 511         * otherwise its value will be 0.
 512         */
 513        ipmmu_ctx_write_root(domain, IMSTR, 0);
 514
 515        /* Log fatal errors. */
 516        if (status & IMSTR_MHIT)
 517                dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
 518                                    iova);
 519        if (status & IMSTR_ABORT)
 520                dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
 521                                    iova);
 522
 523        if (!(status & (IMSTR_PF | IMSTR_TF)))
 524                return IRQ_NONE;
 525
 526        /*
 527         * Try to handle page faults and translation faults.
 528         *
 529         * TODO: We need to look up the faulty device based on the I/O VA. Use
 530         * the IOMMU device for now.
 531         */
 532        if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
 533                return IRQ_HANDLED;
 534
 535        dev_err_ratelimited(mmu->dev,
 536                            "Unhandled fault: status 0x%08x iova 0x%lx\n",
 537                            status, iova);
 538
 539        return IRQ_HANDLED;
 540}
 541
 542static irqreturn_t ipmmu_irq(int irq, void *dev)
 543{
 544        struct ipmmu_vmsa_device *mmu = dev;
 545        irqreturn_t status = IRQ_NONE;
 546        unsigned int i;
 547        unsigned long flags;
 548
 549        spin_lock_irqsave(&mmu->lock, flags);
 550
 551        /*
 552         * Check interrupts for all active contexts.
 553         */
 554        for (i = 0; i < mmu->num_ctx; i++) {
 555                if (!mmu->domains[i])
 556                        continue;
 557                if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
 558                        status = IRQ_HANDLED;
 559        }
 560
 561        spin_unlock_irqrestore(&mmu->lock, flags);
 562
 563        return status;
 564}
 565
 566/* -----------------------------------------------------------------------------
 567 * IOMMU Operations
 568 */
 569
 570static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
 571{
 572        struct ipmmu_vmsa_domain *domain;
 573
 574        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 575        if (!domain)
 576                return NULL;
 577
 578        mutex_init(&domain->mutex);
 579
 580        return &domain->io_domain;
 581}
 582
 583static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
 584{
 585        struct iommu_domain *io_domain = NULL;
 586
 587        switch (type) {
 588        case IOMMU_DOMAIN_UNMANAGED:
 589                io_domain = __ipmmu_domain_alloc(type);
 590                break;
 591
 592        case IOMMU_DOMAIN_DMA:
 593                io_domain = __ipmmu_domain_alloc(type);
 594                if (io_domain && iommu_get_dma_cookie(io_domain)) {
 595                        kfree(io_domain);
 596                        io_domain = NULL;
 597                }
 598                break;
 599        }
 600
 601        return io_domain;
 602}
 603
 604static void ipmmu_domain_free(struct iommu_domain *io_domain)
 605{
 606        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 607
 608        /*
 609         * Free the domain resources. We assume that all devices have already
 610         * been detached.
 611         */
 612        iommu_put_dma_cookie(io_domain);
 613        ipmmu_domain_destroy_context(domain);
 614        free_io_pgtable_ops(domain->iop);
 615        kfree(domain);
 616}
 617
 618static int ipmmu_attach_device(struct iommu_domain *io_domain,
 619                               struct device *dev)
 620{
 621        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 622        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 623        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 624        unsigned int i;
 625        int ret = 0;
 626
 627        if (!mmu) {
 628                dev_err(dev, "Cannot attach to IPMMU\n");
 629                return -ENXIO;
 630        }
 631
 632        mutex_lock(&domain->mutex);
 633
 634        if (!domain->mmu) {
 635                /* The domain hasn't been used yet, initialize it. */
 636                domain->mmu = mmu;
 637                ret = ipmmu_domain_init_context(domain);
 638                if (ret < 0) {
 639                        dev_err(dev, "Unable to initialize IPMMU context\n");
 640                        domain->mmu = NULL;
 641                } else {
 642                        dev_info(dev, "Using IPMMU context %u\n",
 643                                 domain->context_id);
 644                }
 645        } else if (domain->mmu != mmu) {
 646                /*
 647                 * Something is wrong, we can't attach two devices using
 648                 * different IOMMUs to the same domain.
 649                 */
 650                dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
 651                        dev_name(mmu->dev), dev_name(domain->mmu->dev));
 652                ret = -EINVAL;
 653        } else
 654                dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
 655
 656        mutex_unlock(&domain->mutex);
 657
 658        if (ret < 0)
 659                return ret;
 660
 661        for (i = 0; i < fwspec->num_ids; ++i)
 662                ipmmu_utlb_enable(domain, fwspec->ids[i]);
 663
 664        return 0;
 665}
 666
 667static void ipmmu_detach_device(struct iommu_domain *io_domain,
 668                                struct device *dev)
 669{
 670        struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 671        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 672        unsigned int i;
 673
 674        for (i = 0; i < fwspec->num_ids; ++i)
 675                ipmmu_utlb_disable(domain, fwspec->ids[i]);
 676
 677        /*
 678         * TODO: Optimize by disabling the context when no device is attached.
 679         */
 680}
 681
 682static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
 683                     phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
 684{
 685        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 686
 687        if (!domain)
 688                return -ENODEV;
 689
 690        return domain->iop->map(domain->iop, iova, paddr, size, prot);
 691}
 692
 693static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
 694                          size_t size, struct iommu_iotlb_gather *gather)
 695{
 696        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 697
 698        return domain->iop->unmap(domain->iop, iova, size, gather);
 699}
 700
 701static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
 702{
 703        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 704
 705        if (domain->mmu)
 706                ipmmu_tlb_flush_all(domain);
 707}
 708
 709static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
 710                             struct iommu_iotlb_gather *gather)
 711{
 712        ipmmu_flush_iotlb_all(io_domain);
 713}
 714
 715static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
 716                                      dma_addr_t iova)
 717{
 718        struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
 719
 720        /* TODO: Is locking needed ? */
 721
 722        return domain->iop->iova_to_phys(domain->iop, iova);
 723}
 724
 725static int ipmmu_init_platform_device(struct device *dev,
 726                                      struct of_phandle_args *args)
 727{
 728        struct platform_device *ipmmu_pdev;
 729
 730        ipmmu_pdev = of_find_device_by_node(args->np);
 731        if (!ipmmu_pdev)
 732                return -ENODEV;
 733
 734        dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
 735
 736        return 0;
 737}
 738
 739static const struct soc_device_attribute soc_rcar_gen3[] = {
 740        { .soc_id = "r8a774a1", },
 741        { .soc_id = "r8a774b1", },
 742        { .soc_id = "r8a774c0", },
 743        { .soc_id = "r8a7795", },
 744        { .soc_id = "r8a7796", },
 745        { .soc_id = "r8a77965", },
 746        { .soc_id = "r8a77970", },
 747        { .soc_id = "r8a77990", },
 748        { .soc_id = "r8a77995", },
 749        { /* sentinel */ }
 750};
 751
 752static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
 753        { .soc_id = "r8a774b1", },
 754        { .soc_id = "r8a774c0", },
 755        { .soc_id = "r8a7795", .revision = "ES3.*" },
 756        { .soc_id = "r8a77965", },
 757        { .soc_id = "r8a77990", },
 758        { .soc_id = "r8a77995", },
 759        { /* sentinel */ }
 760};
 761
 762static const char * const rcar_gen3_slave_whitelist[] = {
 763};
 764
 765static bool ipmmu_slave_whitelist(struct device *dev)
 766{
 767        unsigned int i;
 768
 769        /*
 770         * For R-Car Gen3 use a white list to opt-in slave devices.
 771         * For Other SoCs, this returns true anyway.
 772         */
 773        if (!soc_device_match(soc_rcar_gen3))
 774                return true;
 775
 776        /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
 777        if (!soc_device_match(soc_rcar_gen3_whitelist))
 778                return false;
 779
 780        /* Check whether this slave device can work with the IPMMU */
 781        for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
 782                if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
 783                        return true;
 784        }
 785
 786        /* Otherwise, do not allow use of IPMMU */
 787        return false;
 788}
 789
 790static int ipmmu_of_xlate(struct device *dev,
 791                          struct of_phandle_args *spec)
 792{
 793        if (!ipmmu_slave_whitelist(dev))
 794                return -ENODEV;
 795
 796        iommu_fwspec_add_ids(dev, spec->args, 1);
 797
 798        /* Initialize once - xlate() will call multiple times */
 799        if (to_ipmmu(dev))
 800                return 0;
 801
 802        return ipmmu_init_platform_device(dev, spec);
 803}
 804
 805static int ipmmu_init_arm_mapping(struct device *dev)
 806{
 807        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 808        struct iommu_group *group;
 809        int ret;
 810
 811        /* Create a device group and add the device to it. */
 812        group = iommu_group_alloc();
 813        if (IS_ERR(group)) {
 814                dev_err(dev, "Failed to allocate IOMMU group\n");
 815                return PTR_ERR(group);
 816        }
 817
 818        ret = iommu_group_add_device(group, dev);
 819        iommu_group_put(group);
 820
 821        if (ret < 0) {
 822                dev_err(dev, "Failed to add device to IPMMU group\n");
 823                return ret;
 824        }
 825
 826        /*
 827         * Create the ARM mapping, used by the ARM DMA mapping core to allocate
 828         * VAs. This will allocate a corresponding IOMMU domain.
 829         *
 830         * TODO:
 831         * - Create one mapping per context (TLB).
 832         * - Make the mapping size configurable ? We currently use a 2GB mapping
 833         *   at a 1GB offset to ensure that NULL VAs will fault.
 834         */
 835        if (!mmu->mapping) {
 836                struct dma_iommu_mapping *mapping;
 837
 838                mapping = arm_iommu_create_mapping(&platform_bus_type,
 839                                                   SZ_1G, SZ_2G);
 840                if (IS_ERR(mapping)) {
 841                        dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
 842                        ret = PTR_ERR(mapping);
 843                        goto error;
 844                }
 845
 846                mmu->mapping = mapping;
 847        }
 848
 849        /* Attach the ARM VA mapping to the device. */
 850        ret = arm_iommu_attach_device(dev, mmu->mapping);
 851        if (ret < 0) {
 852                dev_err(dev, "Failed to attach device to VA mapping\n");
 853                goto error;
 854        }
 855
 856        return 0;
 857
 858error:
 859        iommu_group_remove_device(dev);
 860        if (mmu->mapping)
 861                arm_iommu_release_mapping(mmu->mapping);
 862
 863        return ret;
 864}
 865
 866static int ipmmu_add_device(struct device *dev)
 867{
 868        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 869        struct iommu_group *group;
 870        int ret;
 871
 872        /*
 873         * Only let through devices that have been verified in xlate()
 874         */
 875        if (!mmu)
 876                return -ENODEV;
 877
 878        if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) {
 879                ret = ipmmu_init_arm_mapping(dev);
 880                if (ret)
 881                        return ret;
 882        } else {
 883                group = iommu_group_get_for_dev(dev);
 884                if (IS_ERR(group))
 885                        return PTR_ERR(group);
 886
 887                iommu_group_put(group);
 888        }
 889
 890        iommu_device_link(&mmu->iommu, dev);
 891        return 0;
 892}
 893
 894static void ipmmu_remove_device(struct device *dev)
 895{
 896        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 897
 898        iommu_device_unlink(&mmu->iommu, dev);
 899        arm_iommu_detach_device(dev);
 900        iommu_group_remove_device(dev);
 901}
 902
 903static struct iommu_group *ipmmu_find_group(struct device *dev)
 904{
 905        struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
 906        struct iommu_group *group;
 907
 908        if (mmu->group)
 909                return iommu_group_ref_get(mmu->group);
 910
 911        group = iommu_group_alloc();
 912        if (!IS_ERR(group))
 913                mmu->group = group;
 914
 915        return group;
 916}
 917
 918static const struct iommu_ops ipmmu_ops = {
 919        .domain_alloc = ipmmu_domain_alloc,
 920        .domain_free = ipmmu_domain_free,
 921        .attach_dev = ipmmu_attach_device,
 922        .detach_dev = ipmmu_detach_device,
 923        .map = ipmmu_map,
 924        .unmap = ipmmu_unmap,
 925        .flush_iotlb_all = ipmmu_flush_iotlb_all,
 926        .iotlb_sync = ipmmu_iotlb_sync,
 927        .iova_to_phys = ipmmu_iova_to_phys,
 928        .add_device = ipmmu_add_device,
 929        .remove_device = ipmmu_remove_device,
 930        .device_group = ipmmu_find_group,
 931        .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
 932        .of_xlate = ipmmu_of_xlate,
 933};
 934
 935/* -----------------------------------------------------------------------------
 936 * Probe/remove and init
 937 */
 938
 939static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
 940{
 941        unsigned int i;
 942
 943        /* Disable all contexts. */
 944        for (i = 0; i < mmu->num_ctx; ++i)
 945                ipmmu_ctx_write(mmu, i, IMCTR, 0);
 946}
 947
 948static const struct ipmmu_features ipmmu_features_default = {
 949        .use_ns_alias_offset = true,
 950        .has_cache_leaf_nodes = false,
 951        .number_of_contexts = 1, /* software only tested with one context */
 952        .num_utlbs = 32,
 953        .setup_imbuscr = true,
 954        .twobit_imttbcr_sl0 = false,
 955        .reserved_context = false,
 956        .cache_snoop = true,
 957        .ctx_offset_base = 0,
 958        .ctx_offset_stride = 0x40,
 959        .utlb_offset_base = 0,
 960};
 961
 962static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
 963        .use_ns_alias_offset = false,
 964        .has_cache_leaf_nodes = true,
 965        .number_of_contexts = 8,
 966        .num_utlbs = 48,
 967        .setup_imbuscr = false,
 968        .twobit_imttbcr_sl0 = true,
 969        .reserved_context = true,
 970        .cache_snoop = false,
 971        .ctx_offset_base = 0,
 972        .ctx_offset_stride = 0x40,
 973        .utlb_offset_base = 0,
 974};
 975
 976static const struct of_device_id ipmmu_of_ids[] = {
 977        {
 978                .compatible = "renesas,ipmmu-vmsa",
 979                .data = &ipmmu_features_default,
 980        }, {
 981                .compatible = "renesas,ipmmu-r8a774a1",
 982                .data = &ipmmu_features_rcar_gen3,
 983        }, {
 984                .compatible = "renesas,ipmmu-r8a774b1",
 985                .data = &ipmmu_features_rcar_gen3,
 986        }, {
 987                .compatible = "renesas,ipmmu-r8a774c0",
 988                .data = &ipmmu_features_rcar_gen3,
 989        }, {
 990                .compatible = "renesas,ipmmu-r8a7795",
 991                .data = &ipmmu_features_rcar_gen3,
 992        }, {
 993                .compatible = "renesas,ipmmu-r8a7796",
 994                .data = &ipmmu_features_rcar_gen3,
 995        }, {
 996                .compatible = "renesas,ipmmu-r8a77965",
 997                .data = &ipmmu_features_rcar_gen3,
 998        }, {
 999                .compatible = "renesas,ipmmu-r8a77970",
1000                .data = &ipmmu_features_rcar_gen3,
1001        }, {
1002                .compatible = "renesas,ipmmu-r8a77990",
1003                .data = &ipmmu_features_rcar_gen3,
1004        }, {
1005                .compatible = "renesas,ipmmu-r8a77995",
1006                .data = &ipmmu_features_rcar_gen3,
1007        }, {
1008                /* Terminator */
1009        },
1010};
1011
1012static int ipmmu_probe(struct platform_device *pdev)
1013{
1014        struct ipmmu_vmsa_device *mmu;
1015        struct resource *res;
1016        int irq;
1017        int ret;
1018
1019        mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1020        if (!mmu) {
1021                dev_err(&pdev->dev, "cannot allocate device data\n");
1022                return -ENOMEM;
1023        }
1024
1025        mmu->dev = &pdev->dev;
1026        spin_lock_init(&mmu->lock);
1027        bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1028        mmu->features = of_device_get_match_data(&pdev->dev);
1029        memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1030        dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1031
1032        /* Map I/O memory and request IRQ. */
1033        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1034        mmu->base = devm_ioremap_resource(&pdev->dev, res);
1035        if (IS_ERR(mmu->base))
1036                return PTR_ERR(mmu->base);
1037
1038        /*
1039         * The IPMMU has two register banks, for secure and non-secure modes.
1040         * The bank mapped at the beginning of the IPMMU address space
1041         * corresponds to the running mode of the CPU. When running in secure
1042         * mode the non-secure register bank is also available at an offset.
1043         *
1044         * Secure mode operation isn't clearly documented and is thus currently
1045         * not implemented in the driver. Furthermore, preliminary tests of
1046         * non-secure operation with the main register bank were not successful.
1047         * Offset the registers base unconditionally to point to the non-secure
1048         * alias space for now.
1049         */
1050        if (mmu->features->use_ns_alias_offset)
1051                mmu->base += IM_NS_ALIAS_OFFSET;
1052
1053        mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1054
1055        /*
1056         * Determine if this IPMMU instance is a root device by checking for
1057         * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1058         */
1059        if (!mmu->features->has_cache_leaf_nodes ||
1060            !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1061                mmu->root = mmu;
1062        else
1063                mmu->root = ipmmu_find_root();
1064
1065        /*
1066         * Wait until the root device has been registered for sure.
1067         */
1068        if (!mmu->root)
1069                return -EPROBE_DEFER;
1070
1071        /* Root devices have mandatory IRQs */
1072        if (ipmmu_is_root(mmu)) {
1073                irq = platform_get_irq(pdev, 0);
1074                if (irq < 0)
1075                        return irq;
1076
1077                ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1078                                       dev_name(&pdev->dev), mmu);
1079                if (ret < 0) {
1080                        dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1081                        return ret;
1082                }
1083
1084                ipmmu_device_reset(mmu);
1085
1086                if (mmu->features->reserved_context) {
1087                        dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1088                        set_bit(0, mmu->ctx);
1089                }
1090        }
1091
1092        /*
1093         * Register the IPMMU to the IOMMU subsystem in the following cases:
1094         * - R-Car Gen2 IPMMU (all devices registered)
1095         * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1096         */
1097        if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1098                ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1099                                             dev_name(&pdev->dev));
1100                if (ret)
1101                        return ret;
1102
1103                iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1104                iommu_device_set_fwnode(&mmu->iommu,
1105                                        &pdev->dev.of_node->fwnode);
1106
1107                ret = iommu_device_register(&mmu->iommu);
1108                if (ret)
1109                        return ret;
1110
1111#if defined(CONFIG_IOMMU_DMA)
1112                if (!iommu_present(&platform_bus_type))
1113                        bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1114#endif
1115        }
1116
1117        /*
1118         * We can't create the ARM mapping here as it requires the bus to have
1119         * an IOMMU, which only happens when bus_set_iommu() is called in
1120         * ipmmu_init() after the probe function returns.
1121         */
1122
1123        platform_set_drvdata(pdev, mmu);
1124
1125        return 0;
1126}
1127
1128static int ipmmu_remove(struct platform_device *pdev)
1129{
1130        struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1131
1132        iommu_device_sysfs_remove(&mmu->iommu);
1133        iommu_device_unregister(&mmu->iommu);
1134
1135        arm_iommu_release_mapping(mmu->mapping);
1136
1137        ipmmu_device_reset(mmu);
1138
1139        return 0;
1140}
1141
1142#ifdef CONFIG_PM_SLEEP
1143static int ipmmu_resume_noirq(struct device *dev)
1144{
1145        struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1146        unsigned int i;
1147
1148        /* Reset root MMU and restore contexts */
1149        if (ipmmu_is_root(mmu)) {
1150                ipmmu_device_reset(mmu);
1151
1152                for (i = 0; i < mmu->num_ctx; i++) {
1153                        if (!mmu->domains[i])
1154                                continue;
1155
1156                        ipmmu_domain_setup_context(mmu->domains[i]);
1157                }
1158        }
1159
1160        /* Re-enable active micro-TLBs */
1161        for (i = 0; i < mmu->features->num_utlbs; i++) {
1162                if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1163                        continue;
1164
1165                ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1166        }
1167
1168        return 0;
1169}
1170
1171static const struct dev_pm_ops ipmmu_pm  = {
1172        SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1173};
1174#define DEV_PM_OPS      &ipmmu_pm
1175#else
1176#define DEV_PM_OPS      NULL
1177#endif /* CONFIG_PM_SLEEP */
1178
1179static struct platform_driver ipmmu_driver = {
1180        .driver = {
1181                .name = "ipmmu-vmsa",
1182                .of_match_table = of_match_ptr(ipmmu_of_ids),
1183                .pm = DEV_PM_OPS,
1184        },
1185        .probe = ipmmu_probe,
1186        .remove = ipmmu_remove,
1187};
1188
1189static int __init ipmmu_init(void)
1190{
1191        struct device_node *np;
1192        static bool setup_done;
1193        int ret;
1194
1195        if (setup_done)
1196                return 0;
1197
1198        np = of_find_matching_node(NULL, ipmmu_of_ids);
1199        if (!np)
1200                return 0;
1201
1202        of_node_put(np);
1203
1204        ret = platform_driver_register(&ipmmu_driver);
1205        if (ret < 0)
1206                return ret;
1207
1208#if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1209        if (!iommu_present(&platform_bus_type))
1210                bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1211#endif
1212
1213        setup_done = true;
1214        return 0;
1215}
1216subsys_initcall(ipmmu_init);
1217