linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
  28#include <linux/part_stat.h>
  29
  30#define DM_MSG_PREFIX "core"
  31
  32/*
  33 * Cookies are numeric values sent with CHANGE and REMOVE
  34 * uevents while resuming, removing or renaming the device.
  35 */
  36#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  37#define DM_COOKIE_LENGTH 24
  38
  39static const char *_name = DM_NAME;
  40
  41static unsigned int major = 0;
  42static unsigned int _major = 0;
  43
  44static DEFINE_IDR(_minor_idr);
  45
  46static DEFINE_SPINLOCK(_minor_lock);
  47
  48static void do_deferred_remove(struct work_struct *w);
  49
  50static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  51
  52static struct workqueue_struct *deferred_remove_workqueue;
  53
  54atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  55DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  56
  57void dm_issue_global_event(void)
  58{
  59        atomic_inc(&dm_global_event_nr);
  60        wake_up(&dm_global_eventq);
  61}
  62
  63/*
  64 * One of these is allocated (on-stack) per original bio.
  65 */
  66struct clone_info {
  67        struct dm_table *map;
  68        struct bio *bio;
  69        struct dm_io *io;
  70        sector_t sector;
  71        unsigned sector_count;
  72};
  73
  74/*
  75 * One of these is allocated per clone bio.
  76 */
  77#define DM_TIO_MAGIC 7282014
  78struct dm_target_io {
  79        unsigned magic;
  80        struct dm_io *io;
  81        struct dm_target *ti;
  82        unsigned target_bio_nr;
  83        unsigned *len_ptr;
  84        bool inside_dm_io;
  85        struct bio clone;
  86};
  87
  88/*
  89 * One of these is allocated per original bio.
  90 * It contains the first clone used for that original.
  91 */
  92#define DM_IO_MAGIC 5191977
  93struct dm_io {
  94        unsigned magic;
  95        struct mapped_device *md;
  96        blk_status_t status;
  97        atomic_t io_count;
  98        struct bio *orig_bio;
  99        unsigned long start_time;
 100        spinlock_t endio_lock;
 101        struct dm_stats_aux stats_aux;
 102        /* last member of dm_target_io is 'struct bio' */
 103        struct dm_target_io tio;
 104};
 105
 106void *dm_per_bio_data(struct bio *bio, size_t data_size)
 107{
 108        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 109        if (!tio->inside_dm_io)
 110                return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 111        return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 112}
 113EXPORT_SYMBOL_GPL(dm_per_bio_data);
 114
 115struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 116{
 117        struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 118        if (io->magic == DM_IO_MAGIC)
 119                return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 120        BUG_ON(io->magic != DM_TIO_MAGIC);
 121        return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 122}
 123EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 124
 125unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 126{
 127        return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 128}
 129EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 130
 131#define MINOR_ALLOCED ((void *)-1)
 132
 133/*
 134 * Bits for the md->flags field.
 135 */
 136#define DMF_BLOCK_IO_FOR_SUSPEND 0
 137#define DMF_SUSPENDED 1
 138#define DMF_FROZEN 2
 139#define DMF_FREEING 3
 140#define DMF_DELETING 4
 141#define DMF_NOFLUSH_SUSPENDING 5
 142#define DMF_DEFERRED_REMOVE 6
 143#define DMF_SUSPENDED_INTERNALLY 7
 144
 145#define DM_NUMA_NODE NUMA_NO_NODE
 146static int dm_numa_node = DM_NUMA_NODE;
 147
 148/*
 149 * For mempools pre-allocation at the table loading time.
 150 */
 151struct dm_md_mempools {
 152        struct bio_set bs;
 153        struct bio_set io_bs;
 154};
 155
 156struct table_device {
 157        struct list_head list;
 158        refcount_t count;
 159        struct dm_dev dm_dev;
 160};
 161
 162/*
 163 * Bio-based DM's mempools' reserved IOs set by the user.
 164 */
 165#define RESERVED_BIO_BASED_IOS          16
 166static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 167
 168static int __dm_get_module_param_int(int *module_param, int min, int max)
 169{
 170        int param = READ_ONCE(*module_param);
 171        int modified_param = 0;
 172        bool modified = true;
 173
 174        if (param < min)
 175                modified_param = min;
 176        else if (param > max)
 177                modified_param = max;
 178        else
 179                modified = false;
 180
 181        if (modified) {
 182                (void)cmpxchg(module_param, param, modified_param);
 183                param = modified_param;
 184        }
 185
 186        return param;
 187}
 188
 189unsigned __dm_get_module_param(unsigned *module_param,
 190                               unsigned def, unsigned max)
 191{
 192        unsigned param = READ_ONCE(*module_param);
 193        unsigned modified_param = 0;
 194
 195        if (!param)
 196                modified_param = def;
 197        else if (param > max)
 198                modified_param = max;
 199
 200        if (modified_param) {
 201                (void)cmpxchg(module_param, param, modified_param);
 202                param = modified_param;
 203        }
 204
 205        return param;
 206}
 207
 208unsigned dm_get_reserved_bio_based_ios(void)
 209{
 210        return __dm_get_module_param(&reserved_bio_based_ios,
 211                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 212}
 213EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 214
 215static unsigned dm_get_numa_node(void)
 216{
 217        return __dm_get_module_param_int(&dm_numa_node,
 218                                         DM_NUMA_NODE, num_online_nodes() - 1);
 219}
 220
 221static int __init local_init(void)
 222{
 223        int r;
 224
 225        r = dm_uevent_init();
 226        if (r)
 227                return r;
 228
 229        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 230        if (!deferred_remove_workqueue) {
 231                r = -ENOMEM;
 232                goto out_uevent_exit;
 233        }
 234
 235        _major = major;
 236        r = register_blkdev(_major, _name);
 237        if (r < 0)
 238                goto out_free_workqueue;
 239
 240        if (!_major)
 241                _major = r;
 242
 243        return 0;
 244
 245out_free_workqueue:
 246        destroy_workqueue(deferred_remove_workqueue);
 247out_uevent_exit:
 248        dm_uevent_exit();
 249
 250        return r;
 251}
 252
 253static void local_exit(void)
 254{
 255        flush_scheduled_work();
 256        destroy_workqueue(deferred_remove_workqueue);
 257
 258        unregister_blkdev(_major, _name);
 259        dm_uevent_exit();
 260
 261        _major = 0;
 262
 263        DMINFO("cleaned up");
 264}
 265
 266static int (*_inits[])(void) __initdata = {
 267        local_init,
 268        dm_target_init,
 269        dm_linear_init,
 270        dm_stripe_init,
 271        dm_io_init,
 272        dm_kcopyd_init,
 273        dm_interface_init,
 274        dm_statistics_init,
 275};
 276
 277static void (*_exits[])(void) = {
 278        local_exit,
 279        dm_target_exit,
 280        dm_linear_exit,
 281        dm_stripe_exit,
 282        dm_io_exit,
 283        dm_kcopyd_exit,
 284        dm_interface_exit,
 285        dm_statistics_exit,
 286};
 287
 288static int __init dm_init(void)
 289{
 290        const int count = ARRAY_SIZE(_inits);
 291
 292        int r, i;
 293
 294        for (i = 0; i < count; i++) {
 295                r = _inits[i]();
 296                if (r)
 297                        goto bad;
 298        }
 299
 300        return 0;
 301
 302      bad:
 303        while (i--)
 304                _exits[i]();
 305
 306        return r;
 307}
 308
 309static void __exit dm_exit(void)
 310{
 311        int i = ARRAY_SIZE(_exits);
 312
 313        while (i--)
 314                _exits[i]();
 315
 316        /*
 317         * Should be empty by this point.
 318         */
 319        idr_destroy(&_minor_idr);
 320}
 321
 322/*
 323 * Block device functions
 324 */
 325int dm_deleting_md(struct mapped_device *md)
 326{
 327        return test_bit(DMF_DELETING, &md->flags);
 328}
 329
 330static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 331{
 332        struct mapped_device *md;
 333
 334        spin_lock(&_minor_lock);
 335
 336        md = bdev->bd_disk->private_data;
 337        if (!md)
 338                goto out;
 339
 340        if (test_bit(DMF_FREEING, &md->flags) ||
 341            dm_deleting_md(md)) {
 342                md = NULL;
 343                goto out;
 344        }
 345
 346        dm_get(md);
 347        atomic_inc(&md->open_count);
 348out:
 349        spin_unlock(&_minor_lock);
 350
 351        return md ? 0 : -ENXIO;
 352}
 353
 354static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 355{
 356        struct mapped_device *md;
 357
 358        spin_lock(&_minor_lock);
 359
 360        md = disk->private_data;
 361        if (WARN_ON(!md))
 362                goto out;
 363
 364        if (atomic_dec_and_test(&md->open_count) &&
 365            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 366                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 367
 368        dm_put(md);
 369out:
 370        spin_unlock(&_minor_lock);
 371}
 372
 373int dm_open_count(struct mapped_device *md)
 374{
 375        return atomic_read(&md->open_count);
 376}
 377
 378/*
 379 * Guarantees nothing is using the device before it's deleted.
 380 */
 381int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 382{
 383        int r = 0;
 384
 385        spin_lock(&_minor_lock);
 386
 387        if (dm_open_count(md)) {
 388                r = -EBUSY;
 389                if (mark_deferred)
 390                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 391        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 392                r = -EEXIST;
 393        else
 394                set_bit(DMF_DELETING, &md->flags);
 395
 396        spin_unlock(&_minor_lock);
 397
 398        return r;
 399}
 400
 401int dm_cancel_deferred_remove(struct mapped_device *md)
 402{
 403        int r = 0;
 404
 405        spin_lock(&_minor_lock);
 406
 407        if (test_bit(DMF_DELETING, &md->flags))
 408                r = -EBUSY;
 409        else
 410                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 411
 412        spin_unlock(&_minor_lock);
 413
 414        return r;
 415}
 416
 417static void do_deferred_remove(struct work_struct *w)
 418{
 419        dm_deferred_remove();
 420}
 421
 422sector_t dm_get_size(struct mapped_device *md)
 423{
 424        return get_capacity(md->disk);
 425}
 426
 427struct request_queue *dm_get_md_queue(struct mapped_device *md)
 428{
 429        return md->queue;
 430}
 431
 432struct dm_stats *dm_get_stats(struct mapped_device *md)
 433{
 434        return &md->stats;
 435}
 436
 437static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 438{
 439        struct mapped_device *md = bdev->bd_disk->private_data;
 440
 441        return dm_get_geometry(md, geo);
 442}
 443
 444#ifdef CONFIG_BLK_DEV_ZONED
 445int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 446{
 447        struct dm_report_zones_args *args = data;
 448        sector_t sector_diff = args->tgt->begin - args->start;
 449
 450        /*
 451         * Ignore zones beyond the target range.
 452         */
 453        if (zone->start >= args->start + args->tgt->len)
 454                return 0;
 455
 456        /*
 457         * Remap the start sector and write pointer position of the zone
 458         * to match its position in the target range.
 459         */
 460        zone->start += sector_diff;
 461        if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 462                if (zone->cond == BLK_ZONE_COND_FULL)
 463                        zone->wp = zone->start + zone->len;
 464                else if (zone->cond == BLK_ZONE_COND_EMPTY)
 465                        zone->wp = zone->start;
 466                else
 467                        zone->wp += sector_diff;
 468        }
 469
 470        args->next_sector = zone->start + zone->len;
 471        return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 472}
 473EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 474
 475static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 476                unsigned int nr_zones, report_zones_cb cb, void *data)
 477{
 478        struct mapped_device *md = disk->private_data;
 479        struct dm_table *map;
 480        int srcu_idx, ret;
 481        struct dm_report_zones_args args = {
 482                .next_sector = sector,
 483                .orig_data = data,
 484                .orig_cb = cb,
 485        };
 486
 487        if (dm_suspended_md(md))
 488                return -EAGAIN;
 489
 490        map = dm_get_live_table(md, &srcu_idx);
 491        if (!map)
 492                return -EIO;
 493
 494        do {
 495                struct dm_target *tgt;
 496
 497                tgt = dm_table_find_target(map, args.next_sector);
 498                if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 499                        ret = -EIO;
 500                        goto out;
 501                }
 502
 503                args.tgt = tgt;
 504                ret = tgt->type->report_zones(tgt, &args, nr_zones);
 505                if (ret < 0)
 506                        goto out;
 507        } while (args.zone_idx < nr_zones &&
 508                 args.next_sector < get_capacity(disk));
 509
 510        ret = args.zone_idx;
 511out:
 512        dm_put_live_table(md, srcu_idx);
 513        return ret;
 514}
 515#else
 516#define dm_blk_report_zones             NULL
 517#endif /* CONFIG_BLK_DEV_ZONED */
 518
 519static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 520                            struct block_device **bdev)
 521        __acquires(md->io_barrier)
 522{
 523        struct dm_target *tgt;
 524        struct dm_table *map;
 525        int r;
 526
 527retry:
 528        r = -ENOTTY;
 529        map = dm_get_live_table(md, srcu_idx);
 530        if (!map || !dm_table_get_size(map))
 531                return r;
 532
 533        /* We only support devices that have a single target */
 534        if (dm_table_get_num_targets(map) != 1)
 535                return r;
 536
 537        tgt = dm_table_get_target(map, 0);
 538        if (!tgt->type->prepare_ioctl)
 539                return r;
 540
 541        if (dm_suspended_md(md))
 542                return -EAGAIN;
 543
 544        r = tgt->type->prepare_ioctl(tgt, bdev);
 545        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 546                dm_put_live_table(md, *srcu_idx);
 547                msleep(10);
 548                goto retry;
 549        }
 550
 551        return r;
 552}
 553
 554static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 555        __releases(md->io_barrier)
 556{
 557        dm_put_live_table(md, srcu_idx);
 558}
 559
 560static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 561                        unsigned int cmd, unsigned long arg)
 562{
 563        struct mapped_device *md = bdev->bd_disk->private_data;
 564        int r, srcu_idx;
 565
 566        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 567        if (r < 0)
 568                goto out;
 569
 570        if (r > 0) {
 571                /*
 572                 * Target determined this ioctl is being issued against a
 573                 * subset of the parent bdev; require extra privileges.
 574                 */
 575                if (!capable(CAP_SYS_RAWIO)) {
 576                        DMWARN_LIMIT(
 577        "%s: sending ioctl %x to DM device without required privilege.",
 578                                current->comm, cmd);
 579                        r = -ENOIOCTLCMD;
 580                        goto out;
 581                }
 582        }
 583
 584        r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 585out:
 586        dm_unprepare_ioctl(md, srcu_idx);
 587        return r;
 588}
 589
 590static void start_io_acct(struct dm_io *io);
 591
 592static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 593{
 594        struct dm_io *io;
 595        struct dm_target_io *tio;
 596        struct bio *clone;
 597
 598        clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 599        if (!clone)
 600                return NULL;
 601
 602        tio = container_of(clone, struct dm_target_io, clone);
 603        tio->inside_dm_io = true;
 604        tio->io = NULL;
 605
 606        io = container_of(tio, struct dm_io, tio);
 607        io->magic = DM_IO_MAGIC;
 608        io->status = 0;
 609        atomic_set(&io->io_count, 1);
 610        io->orig_bio = bio;
 611        io->md = md;
 612        spin_lock_init(&io->endio_lock);
 613
 614        start_io_acct(io);
 615
 616        return io;
 617}
 618
 619static void free_io(struct mapped_device *md, struct dm_io *io)
 620{
 621        bio_put(&io->tio.clone);
 622}
 623
 624static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 625                                      unsigned target_bio_nr, gfp_t gfp_mask)
 626{
 627        struct dm_target_io *tio;
 628
 629        if (!ci->io->tio.io) {
 630                /* the dm_target_io embedded in ci->io is available */
 631                tio = &ci->io->tio;
 632        } else {
 633                struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 634                if (!clone)
 635                        return NULL;
 636
 637                tio = container_of(clone, struct dm_target_io, clone);
 638                tio->inside_dm_io = false;
 639        }
 640
 641        tio->magic = DM_TIO_MAGIC;
 642        tio->io = ci->io;
 643        tio->ti = ti;
 644        tio->target_bio_nr = target_bio_nr;
 645
 646        return tio;
 647}
 648
 649static void free_tio(struct dm_target_io *tio)
 650{
 651        if (tio->inside_dm_io)
 652                return;
 653        bio_put(&tio->clone);
 654}
 655
 656static bool md_in_flight_bios(struct mapped_device *md)
 657{
 658        int cpu;
 659        struct hd_struct *part = &dm_disk(md)->part0;
 660        long sum = 0;
 661
 662        for_each_possible_cpu(cpu) {
 663                sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
 664                sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
 665        }
 666
 667        return sum != 0;
 668}
 669
 670static bool md_in_flight(struct mapped_device *md)
 671{
 672        if (queue_is_mq(md->queue))
 673                return blk_mq_queue_inflight(md->queue);
 674        else
 675                return md_in_flight_bios(md);
 676}
 677
 678static void start_io_acct(struct dm_io *io)
 679{
 680        struct mapped_device *md = io->md;
 681        struct bio *bio = io->orig_bio;
 682
 683        io->start_time = jiffies;
 684
 685        generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
 686                              &dm_disk(md)->part0);
 687
 688        if (unlikely(dm_stats_used(&md->stats)))
 689                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 690                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 691                                    false, 0, &io->stats_aux);
 692}
 693
 694static void end_io_acct(struct dm_io *io)
 695{
 696        struct mapped_device *md = io->md;
 697        struct bio *bio = io->orig_bio;
 698        unsigned long duration = jiffies - io->start_time;
 699
 700        generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
 701                            io->start_time);
 702
 703        if (unlikely(dm_stats_used(&md->stats)))
 704                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 705                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 706                                    true, duration, &io->stats_aux);
 707
 708        /* nudge anyone waiting on suspend queue */
 709        if (unlikely(wq_has_sleeper(&md->wait)))
 710                wake_up(&md->wait);
 711}
 712
 713/*
 714 * Add the bio to the list of deferred io.
 715 */
 716static void queue_io(struct mapped_device *md, struct bio *bio)
 717{
 718        unsigned long flags;
 719
 720        spin_lock_irqsave(&md->deferred_lock, flags);
 721        bio_list_add(&md->deferred, bio);
 722        spin_unlock_irqrestore(&md->deferred_lock, flags);
 723        queue_work(md->wq, &md->work);
 724}
 725
 726/*
 727 * Everyone (including functions in this file), should use this
 728 * function to access the md->map field, and make sure they call
 729 * dm_put_live_table() when finished.
 730 */
 731struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 732{
 733        *srcu_idx = srcu_read_lock(&md->io_barrier);
 734
 735        return srcu_dereference(md->map, &md->io_barrier);
 736}
 737
 738void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 739{
 740        srcu_read_unlock(&md->io_barrier, srcu_idx);
 741}
 742
 743void dm_sync_table(struct mapped_device *md)
 744{
 745        synchronize_srcu(&md->io_barrier);
 746        synchronize_rcu_expedited();
 747}
 748
 749/*
 750 * A fast alternative to dm_get_live_table/dm_put_live_table.
 751 * The caller must not block between these two functions.
 752 */
 753static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 754{
 755        rcu_read_lock();
 756        return rcu_dereference(md->map);
 757}
 758
 759static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 760{
 761        rcu_read_unlock();
 762}
 763
 764static char *_dm_claim_ptr = "I belong to device-mapper";
 765
 766/*
 767 * Open a table device so we can use it as a map destination.
 768 */
 769static int open_table_device(struct table_device *td, dev_t dev,
 770                             struct mapped_device *md)
 771{
 772        struct block_device *bdev;
 773
 774        int r;
 775
 776        BUG_ON(td->dm_dev.bdev);
 777
 778        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 779        if (IS_ERR(bdev))
 780                return PTR_ERR(bdev);
 781
 782        r = bd_link_disk_holder(bdev, dm_disk(md));
 783        if (r) {
 784                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 785                return r;
 786        }
 787
 788        td->dm_dev.bdev = bdev;
 789        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 790        return 0;
 791}
 792
 793/*
 794 * Close a table device that we've been using.
 795 */
 796static void close_table_device(struct table_device *td, struct mapped_device *md)
 797{
 798        if (!td->dm_dev.bdev)
 799                return;
 800
 801        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 802        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 803        put_dax(td->dm_dev.dax_dev);
 804        td->dm_dev.bdev = NULL;
 805        td->dm_dev.dax_dev = NULL;
 806}
 807
 808static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 809                                              fmode_t mode)
 810{
 811        struct table_device *td;
 812
 813        list_for_each_entry(td, l, list)
 814                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 815                        return td;
 816
 817        return NULL;
 818}
 819
 820int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 821                        struct dm_dev **result)
 822{
 823        int r;
 824        struct table_device *td;
 825
 826        mutex_lock(&md->table_devices_lock);
 827        td = find_table_device(&md->table_devices, dev, mode);
 828        if (!td) {
 829                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 830                if (!td) {
 831                        mutex_unlock(&md->table_devices_lock);
 832                        return -ENOMEM;
 833                }
 834
 835                td->dm_dev.mode = mode;
 836                td->dm_dev.bdev = NULL;
 837
 838                if ((r = open_table_device(td, dev, md))) {
 839                        mutex_unlock(&md->table_devices_lock);
 840                        kfree(td);
 841                        return r;
 842                }
 843
 844                format_dev_t(td->dm_dev.name, dev);
 845
 846                refcount_set(&td->count, 1);
 847                list_add(&td->list, &md->table_devices);
 848        } else {
 849                refcount_inc(&td->count);
 850        }
 851        mutex_unlock(&md->table_devices_lock);
 852
 853        *result = &td->dm_dev;
 854        return 0;
 855}
 856EXPORT_SYMBOL_GPL(dm_get_table_device);
 857
 858void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 859{
 860        struct table_device *td = container_of(d, struct table_device, dm_dev);
 861
 862        mutex_lock(&md->table_devices_lock);
 863        if (refcount_dec_and_test(&td->count)) {
 864                close_table_device(td, md);
 865                list_del(&td->list);
 866                kfree(td);
 867        }
 868        mutex_unlock(&md->table_devices_lock);
 869}
 870EXPORT_SYMBOL(dm_put_table_device);
 871
 872static void free_table_devices(struct list_head *devices)
 873{
 874        struct list_head *tmp, *next;
 875
 876        list_for_each_safe(tmp, next, devices) {
 877                struct table_device *td = list_entry(tmp, struct table_device, list);
 878
 879                DMWARN("dm_destroy: %s still exists with %d references",
 880                       td->dm_dev.name, refcount_read(&td->count));
 881                kfree(td);
 882        }
 883}
 884
 885/*
 886 * Get the geometry associated with a dm device
 887 */
 888int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 889{
 890        *geo = md->geometry;
 891
 892        return 0;
 893}
 894
 895/*
 896 * Set the geometry of a device.
 897 */
 898int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 899{
 900        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 901
 902        if (geo->start > sz) {
 903                DMWARN("Start sector is beyond the geometry limits.");
 904                return -EINVAL;
 905        }
 906
 907        md->geometry = *geo;
 908
 909        return 0;
 910}
 911
 912static int __noflush_suspending(struct mapped_device *md)
 913{
 914        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 915}
 916
 917/*
 918 * Decrements the number of outstanding ios that a bio has been
 919 * cloned into, completing the original io if necc.
 920 */
 921static void dec_pending(struct dm_io *io, blk_status_t error)
 922{
 923        unsigned long flags;
 924        blk_status_t io_error;
 925        struct bio *bio;
 926        struct mapped_device *md = io->md;
 927
 928        /* Push-back supersedes any I/O errors */
 929        if (unlikely(error)) {
 930                spin_lock_irqsave(&io->endio_lock, flags);
 931                if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 932                        io->status = error;
 933                spin_unlock_irqrestore(&io->endio_lock, flags);
 934        }
 935
 936        if (atomic_dec_and_test(&io->io_count)) {
 937                if (io->status == BLK_STS_DM_REQUEUE) {
 938                        /*
 939                         * Target requested pushing back the I/O.
 940                         */
 941                        spin_lock_irqsave(&md->deferred_lock, flags);
 942                        if (__noflush_suspending(md))
 943                                /* NOTE early return due to BLK_STS_DM_REQUEUE below */
 944                                bio_list_add_head(&md->deferred, io->orig_bio);
 945                        else
 946                                /* noflush suspend was interrupted. */
 947                                io->status = BLK_STS_IOERR;
 948                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 949                }
 950
 951                io_error = io->status;
 952                bio = io->orig_bio;
 953                end_io_acct(io);
 954                free_io(md, io);
 955
 956                if (io_error == BLK_STS_DM_REQUEUE)
 957                        return;
 958
 959                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 960                        /*
 961                         * Preflush done for flush with data, reissue
 962                         * without REQ_PREFLUSH.
 963                         */
 964                        bio->bi_opf &= ~REQ_PREFLUSH;
 965                        queue_io(md, bio);
 966                } else {
 967                        /* done with normal IO or empty flush */
 968                        if (io_error)
 969                                bio->bi_status = io_error;
 970                        bio_endio(bio);
 971                }
 972        }
 973}
 974
 975void disable_discard(struct mapped_device *md)
 976{
 977        struct queue_limits *limits = dm_get_queue_limits(md);
 978
 979        /* device doesn't really support DISCARD, disable it */
 980        limits->max_discard_sectors = 0;
 981        blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 982}
 983
 984void disable_write_same(struct mapped_device *md)
 985{
 986        struct queue_limits *limits = dm_get_queue_limits(md);
 987
 988        /* device doesn't really support WRITE SAME, disable it */
 989        limits->max_write_same_sectors = 0;
 990}
 991
 992void disable_write_zeroes(struct mapped_device *md)
 993{
 994        struct queue_limits *limits = dm_get_queue_limits(md);
 995
 996        /* device doesn't really support WRITE ZEROES, disable it */
 997        limits->max_write_zeroes_sectors = 0;
 998}
 999
1000static void clone_endio(struct bio *bio)
1001{
1002        blk_status_t error = bio->bi_status;
1003        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1004        struct dm_io *io = tio->io;
1005        struct mapped_device *md = tio->io->md;
1006        dm_endio_fn endio = tio->ti->type->end_io;
1007
1008        if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1009                if (bio_op(bio) == REQ_OP_DISCARD &&
1010                    !bio->bi_disk->queue->limits.max_discard_sectors)
1011                        disable_discard(md);
1012                else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1013                         !bio->bi_disk->queue->limits.max_write_same_sectors)
1014                        disable_write_same(md);
1015                else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1016                         !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1017                        disable_write_zeroes(md);
1018        }
1019
1020        if (endio) {
1021                int r = endio(tio->ti, bio, &error);
1022                switch (r) {
1023                case DM_ENDIO_REQUEUE:
1024                        error = BLK_STS_DM_REQUEUE;
1025                        /*FALLTHRU*/
1026                case DM_ENDIO_DONE:
1027                        break;
1028                case DM_ENDIO_INCOMPLETE:
1029                        /* The target will handle the io */
1030                        return;
1031                default:
1032                        DMWARN("unimplemented target endio return value: %d", r);
1033                        BUG();
1034                }
1035        }
1036
1037        free_tio(tio);
1038        dec_pending(io, error);
1039}
1040
1041/*
1042 * Return maximum size of I/O possible at the supplied sector up to the current
1043 * target boundary.
1044 */
1045static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1046{
1047        sector_t target_offset = dm_target_offset(ti, sector);
1048
1049        return ti->len - target_offset;
1050}
1051
1052static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1053{
1054        sector_t len = max_io_len_target_boundary(sector, ti);
1055        sector_t offset, max_len;
1056
1057        /*
1058         * Does the target need to split even further?
1059         */
1060        if (ti->max_io_len) {
1061                offset = dm_target_offset(ti, sector);
1062                if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1063                        max_len = sector_div(offset, ti->max_io_len);
1064                else
1065                        max_len = offset & (ti->max_io_len - 1);
1066                max_len = ti->max_io_len - max_len;
1067
1068                if (len > max_len)
1069                        len = max_len;
1070        }
1071
1072        return len;
1073}
1074
1075int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1076{
1077        if (len > UINT_MAX) {
1078                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1079                      (unsigned long long)len, UINT_MAX);
1080                ti->error = "Maximum size of target IO is too large";
1081                return -EINVAL;
1082        }
1083
1084        ti->max_io_len = (uint32_t) len;
1085
1086        return 0;
1087}
1088EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1089
1090static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1091                                                sector_t sector, int *srcu_idx)
1092        __acquires(md->io_barrier)
1093{
1094        struct dm_table *map;
1095        struct dm_target *ti;
1096
1097        map = dm_get_live_table(md, srcu_idx);
1098        if (!map)
1099                return NULL;
1100
1101        ti = dm_table_find_target(map, sector);
1102        if (!ti)
1103                return NULL;
1104
1105        return ti;
1106}
1107
1108static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1109                                 long nr_pages, void **kaddr, pfn_t *pfn)
1110{
1111        struct mapped_device *md = dax_get_private(dax_dev);
1112        sector_t sector = pgoff * PAGE_SECTORS;
1113        struct dm_target *ti;
1114        long len, ret = -EIO;
1115        int srcu_idx;
1116
1117        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1118
1119        if (!ti)
1120                goto out;
1121        if (!ti->type->direct_access)
1122                goto out;
1123        len = max_io_len(sector, ti) / PAGE_SECTORS;
1124        if (len < 1)
1125                goto out;
1126        nr_pages = min(len, nr_pages);
1127        ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1128
1129 out:
1130        dm_put_live_table(md, srcu_idx);
1131
1132        return ret;
1133}
1134
1135static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1136                int blocksize, sector_t start, sector_t len)
1137{
1138        struct mapped_device *md = dax_get_private(dax_dev);
1139        struct dm_table *map;
1140        int srcu_idx;
1141        bool ret;
1142
1143        map = dm_get_live_table(md, &srcu_idx);
1144        if (!map)
1145                return false;
1146
1147        ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1148
1149        dm_put_live_table(md, srcu_idx);
1150
1151        return ret;
1152}
1153
1154static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155                                    void *addr, size_t bytes, struct iov_iter *i)
1156{
1157        struct mapped_device *md = dax_get_private(dax_dev);
1158        sector_t sector = pgoff * PAGE_SECTORS;
1159        struct dm_target *ti;
1160        long ret = 0;
1161        int srcu_idx;
1162
1163        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1164
1165        if (!ti)
1166                goto out;
1167        if (!ti->type->dax_copy_from_iter) {
1168                ret = copy_from_iter(addr, bytes, i);
1169                goto out;
1170        }
1171        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173        dm_put_live_table(md, srcu_idx);
1174
1175        return ret;
1176}
1177
1178static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179                void *addr, size_t bytes, struct iov_iter *i)
1180{
1181        struct mapped_device *md = dax_get_private(dax_dev);
1182        sector_t sector = pgoff * PAGE_SECTORS;
1183        struct dm_target *ti;
1184        long ret = 0;
1185        int srcu_idx;
1186
1187        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1188
1189        if (!ti)
1190                goto out;
1191        if (!ti->type->dax_copy_to_iter) {
1192                ret = copy_to_iter(addr, bytes, i);
1193                goto out;
1194        }
1195        ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197        dm_put_live_table(md, srcu_idx);
1198
1199        return ret;
1200}
1201
1202static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203                                  size_t nr_pages)
1204{
1205        struct mapped_device *md = dax_get_private(dax_dev);
1206        sector_t sector = pgoff * PAGE_SECTORS;
1207        struct dm_target *ti;
1208        int ret = -EIO;
1209        int srcu_idx;
1210
1211        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1212
1213        if (!ti)
1214                goto out;
1215        if (WARN_ON(!ti->type->dax_zero_page_range)) {
1216                /*
1217                 * ->zero_page_range() is mandatory dax operation. If we are
1218                 *  here, something is wrong.
1219                 */
1220                dm_put_live_table(md, srcu_idx);
1221                goto out;
1222        }
1223        ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1224
1225 out:
1226        dm_put_live_table(md, srcu_idx);
1227
1228        return ret;
1229}
1230
1231/*
1232 * A target may call dm_accept_partial_bio only from the map routine.  It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1235 *
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1239 *
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * |         1          |       2       |   3   |
1243 * +--------------------+---------------+-------+
1244 *
1245 * <-------------- *tio->len_ptr --------------->
1246 *                      <------- bi_size ------->
1247 *                      <-- n_sectors -->
1248 *
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 *      (it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 *      (it may be empty if region 1 is non-empty, although there is no reason
1253 *       to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1255 *
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1259 */
1260void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1261{
1262        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1265        BUG_ON(bi_size > *tio->len_ptr);
1266        BUG_ON(n_sectors > bi_size);
1267        *tio->len_ptr -= bi_size - n_sectors;
1268        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1269}
1270EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1271
1272static blk_qc_t __map_bio(struct dm_target_io *tio)
1273{
1274        int r;
1275        sector_t sector;
1276        struct bio *clone = &tio->clone;
1277        struct dm_io *io = tio->io;
1278        struct mapped_device *md = io->md;
1279        struct dm_target *ti = tio->ti;
1280        blk_qc_t ret = BLK_QC_T_NONE;
1281
1282        clone->bi_end_io = clone_endio;
1283
1284        /*
1285         * Map the clone.  If r == 0 we don't need to do
1286         * anything, the target has assumed ownership of
1287         * this io.
1288         */
1289        atomic_inc(&io->io_count);
1290        sector = clone->bi_iter.bi_sector;
1291
1292        r = ti->type->map(ti, clone);
1293        switch (r) {
1294        case DM_MAPIO_SUBMITTED:
1295                break;
1296        case DM_MAPIO_REMAPPED:
1297                /* the bio has been remapped so dispatch it */
1298                trace_block_bio_remap(clone->bi_disk->queue, clone,
1299                                      bio_dev(io->orig_bio), sector);
1300                if (md->type == DM_TYPE_NVME_BIO_BASED)
1301                        ret = direct_make_request(clone);
1302                else
1303                        ret = generic_make_request(clone);
1304                break;
1305        case DM_MAPIO_KILL:
1306                free_tio(tio);
1307                dec_pending(io, BLK_STS_IOERR);
1308                break;
1309        case DM_MAPIO_REQUEUE:
1310                free_tio(tio);
1311                dec_pending(io, BLK_STS_DM_REQUEUE);
1312                break;
1313        default:
1314                DMWARN("unimplemented target map return value: %d", r);
1315                BUG();
1316        }
1317
1318        return ret;
1319}
1320
1321static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1322{
1323        bio->bi_iter.bi_sector = sector;
1324        bio->bi_iter.bi_size = to_bytes(len);
1325}
1326
1327/*
1328 * Creates a bio that consists of range of complete bvecs.
1329 */
1330static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1331                     sector_t sector, unsigned len)
1332{
1333        struct bio *clone = &tio->clone;
1334
1335        __bio_clone_fast(clone, bio);
1336
1337        if (bio_integrity(bio)) {
1338                int r;
1339
1340                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1341                             !dm_target_passes_integrity(tio->ti->type))) {
1342                        DMWARN("%s: the target %s doesn't support integrity data.",
1343                                dm_device_name(tio->io->md),
1344                                tio->ti->type->name);
1345                        return -EIO;
1346                }
1347
1348                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1349                if (r < 0)
1350                        return r;
1351        }
1352
1353        bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1354        clone->bi_iter.bi_size = to_bytes(len);
1355
1356        if (bio_integrity(bio))
1357                bio_integrity_trim(clone);
1358
1359        return 0;
1360}
1361
1362static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1363                                struct dm_target *ti, unsigned num_bios)
1364{
1365        struct dm_target_io *tio;
1366        int try;
1367
1368        if (!num_bios)
1369                return;
1370
1371        if (num_bios == 1) {
1372                tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1373                bio_list_add(blist, &tio->clone);
1374                return;
1375        }
1376
1377        for (try = 0; try < 2; try++) {
1378                int bio_nr;
1379                struct bio *bio;
1380
1381                if (try)
1382                        mutex_lock(&ci->io->md->table_devices_lock);
1383                for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1384                        tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1385                        if (!tio)
1386                                break;
1387
1388                        bio_list_add(blist, &tio->clone);
1389                }
1390                if (try)
1391                        mutex_unlock(&ci->io->md->table_devices_lock);
1392                if (bio_nr == num_bios)
1393                        return;
1394
1395                while ((bio = bio_list_pop(blist))) {
1396                        tio = container_of(bio, struct dm_target_io, clone);
1397                        free_tio(tio);
1398                }
1399        }
1400}
1401
1402static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1403                                           struct dm_target_io *tio, unsigned *len)
1404{
1405        struct bio *clone = &tio->clone;
1406
1407        tio->len_ptr = len;
1408
1409        __bio_clone_fast(clone, ci->bio);
1410        if (len)
1411                bio_setup_sector(clone, ci->sector, *len);
1412
1413        return __map_bio(tio);
1414}
1415
1416static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1417                                  unsigned num_bios, unsigned *len)
1418{
1419        struct bio_list blist = BIO_EMPTY_LIST;
1420        struct bio *bio;
1421        struct dm_target_io *tio;
1422
1423        alloc_multiple_bios(&blist, ci, ti, num_bios);
1424
1425        while ((bio = bio_list_pop(&blist))) {
1426                tio = container_of(bio, struct dm_target_io, clone);
1427                (void) __clone_and_map_simple_bio(ci, tio, len);
1428        }
1429}
1430
1431static int __send_empty_flush(struct clone_info *ci)
1432{
1433        unsigned target_nr = 0;
1434        struct dm_target *ti;
1435
1436        /*
1437         * Empty flush uses a statically initialized bio, as the base for
1438         * cloning.  However, blkg association requires that a bdev is
1439         * associated with a gendisk, which doesn't happen until the bdev is
1440         * opened.  So, blkg association is done at issue time of the flush
1441         * rather than when the device is created in alloc_dev().
1442         */
1443        bio_set_dev(ci->bio, ci->io->md->bdev);
1444
1445        BUG_ON(bio_has_data(ci->bio));
1446        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1447                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1448
1449        bio_disassociate_blkg(ci->bio);
1450
1451        return 0;
1452}
1453
1454static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1455                                    sector_t sector, unsigned *len)
1456{
1457        struct bio *bio = ci->bio;
1458        struct dm_target_io *tio;
1459        int r;
1460
1461        tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1462        tio->len_ptr = len;
1463        r = clone_bio(tio, bio, sector, *len);
1464        if (r < 0) {
1465                free_tio(tio);
1466                return r;
1467        }
1468        (void) __map_bio(tio);
1469
1470        return 0;
1471}
1472
1473typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1474
1475static unsigned get_num_discard_bios(struct dm_target *ti)
1476{
1477        return ti->num_discard_bios;
1478}
1479
1480static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1481{
1482        return ti->num_secure_erase_bios;
1483}
1484
1485static unsigned get_num_write_same_bios(struct dm_target *ti)
1486{
1487        return ti->num_write_same_bios;
1488}
1489
1490static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1491{
1492        return ti->num_write_zeroes_bios;
1493}
1494
1495static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1496                                       unsigned num_bios)
1497{
1498        unsigned len;
1499
1500        /*
1501         * Even though the device advertised support for this type of
1502         * request, that does not mean every target supports it, and
1503         * reconfiguration might also have changed that since the
1504         * check was performed.
1505         */
1506        if (!num_bios)
1507                return -EOPNOTSUPP;
1508
1509        len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1510
1511        __send_duplicate_bios(ci, ti, num_bios, &len);
1512
1513        ci->sector += len;
1514        ci->sector_count -= len;
1515
1516        return 0;
1517}
1518
1519static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1520{
1521        return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1522}
1523
1524static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1525{
1526        return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1527}
1528
1529static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1530{
1531        return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1532}
1533
1534static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1535{
1536        return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1537}
1538
1539static bool is_abnormal_io(struct bio *bio)
1540{
1541        bool r = false;
1542
1543        switch (bio_op(bio)) {
1544        case REQ_OP_DISCARD:
1545        case REQ_OP_SECURE_ERASE:
1546        case REQ_OP_WRITE_SAME:
1547        case REQ_OP_WRITE_ZEROES:
1548                r = true;
1549                break;
1550        }
1551
1552        return r;
1553}
1554
1555static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1556                                  int *result)
1557{
1558        struct bio *bio = ci->bio;
1559
1560        if (bio_op(bio) == REQ_OP_DISCARD)
1561                *result = __send_discard(ci, ti);
1562        else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1563                *result = __send_secure_erase(ci, ti);
1564        else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1565                *result = __send_write_same(ci, ti);
1566        else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1567                *result = __send_write_zeroes(ci, ti);
1568        else
1569                return false;
1570
1571        return true;
1572}
1573
1574/*
1575 * Select the correct strategy for processing a non-flush bio.
1576 */
1577static int __split_and_process_non_flush(struct clone_info *ci)
1578{
1579        struct dm_target *ti;
1580        unsigned len;
1581        int r;
1582
1583        ti = dm_table_find_target(ci->map, ci->sector);
1584        if (!ti)
1585                return -EIO;
1586
1587        if (__process_abnormal_io(ci, ti, &r))
1588                return r;
1589
1590        len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1591
1592        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1593        if (r < 0)
1594                return r;
1595
1596        ci->sector += len;
1597        ci->sector_count -= len;
1598
1599        return 0;
1600}
1601
1602static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1603                            struct dm_table *map, struct bio *bio)
1604{
1605        ci->map = map;
1606        ci->io = alloc_io(md, bio);
1607        ci->sector = bio->bi_iter.bi_sector;
1608}
1609
1610#define __dm_part_stat_sub(part, field, subnd)  \
1611        (part_stat_get(part, field) -= (subnd))
1612
1613/*
1614 * Entry point to split a bio into clones and submit them to the targets.
1615 */
1616static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1617                                        struct dm_table *map, struct bio *bio)
1618{
1619        struct clone_info ci;
1620        blk_qc_t ret = BLK_QC_T_NONE;
1621        int error = 0;
1622
1623        init_clone_info(&ci, md, map, bio);
1624
1625        if (bio->bi_opf & REQ_PREFLUSH) {
1626                struct bio flush_bio;
1627
1628                /*
1629                 * Use an on-stack bio for this, it's safe since we don't
1630                 * need to reference it after submit. It's just used as
1631                 * the basis for the clone(s).
1632                 */
1633                bio_init(&flush_bio, NULL, 0);
1634                flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1635                ci.bio = &flush_bio;
1636                ci.sector_count = 0;
1637                error = __send_empty_flush(&ci);
1638                /* dec_pending submits any data associated with flush */
1639        } else if (op_is_zone_mgmt(bio_op(bio))) {
1640                ci.bio = bio;
1641                ci.sector_count = 0;
1642                error = __split_and_process_non_flush(&ci);
1643        } else {
1644                ci.bio = bio;
1645                ci.sector_count = bio_sectors(bio);
1646                while (ci.sector_count && !error) {
1647                        error = __split_and_process_non_flush(&ci);
1648                        if (current->bio_list && ci.sector_count && !error) {
1649                                /*
1650                                 * Remainder must be passed to generic_make_request()
1651                                 * so that it gets handled *after* bios already submitted
1652                                 * have been completely processed.
1653                                 * We take a clone of the original to store in
1654                                 * ci.io->orig_bio to be used by end_io_acct() and
1655                                 * for dec_pending to use for completion handling.
1656                                 */
1657                                struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1658                                                          GFP_NOIO, &md->queue->bio_split);
1659                                ci.io->orig_bio = b;
1660
1661                                /*
1662                                 * Adjust IO stats for each split, otherwise upon queue
1663                                 * reentry there will be redundant IO accounting.
1664                                 * NOTE: this is a stop-gap fix, a proper fix involves
1665                                 * significant refactoring of DM core's bio splitting
1666                                 * (by eliminating DM's splitting and just using bio_split)
1667                                 */
1668                                part_stat_lock();
1669                                __dm_part_stat_sub(&dm_disk(md)->part0,
1670                                                   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1671                                part_stat_unlock();
1672
1673                                bio_chain(b, bio);
1674                                trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1675                                ret = generic_make_request(bio);
1676                                break;
1677                        }
1678                }
1679        }
1680
1681        /* drop the extra reference count */
1682        dec_pending(ci.io, errno_to_blk_status(error));
1683        return ret;
1684}
1685
1686/*
1687 * Optimized variant of __split_and_process_bio that leverages the
1688 * fact that targets that use it do _not_ have a need to split bios.
1689 */
1690static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1691                              struct bio *bio, struct dm_target *ti)
1692{
1693        struct clone_info ci;
1694        blk_qc_t ret = BLK_QC_T_NONE;
1695        int error = 0;
1696
1697        init_clone_info(&ci, md, map, bio);
1698
1699        if (bio->bi_opf & REQ_PREFLUSH) {
1700                struct bio flush_bio;
1701
1702                /*
1703                 * Use an on-stack bio for this, it's safe since we don't
1704                 * need to reference it after submit. It's just used as
1705                 * the basis for the clone(s).
1706                 */
1707                bio_init(&flush_bio, NULL, 0);
1708                flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1709                ci.bio = &flush_bio;
1710                ci.sector_count = 0;
1711                error = __send_empty_flush(&ci);
1712                /* dec_pending submits any data associated with flush */
1713        } else {
1714                struct dm_target_io *tio;
1715
1716                ci.bio = bio;
1717                ci.sector_count = bio_sectors(bio);
1718                if (__process_abnormal_io(&ci, ti, &error))
1719                        goto out;
1720
1721                tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1722                ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1723        }
1724out:
1725        /* drop the extra reference count */
1726        dec_pending(ci.io, errno_to_blk_status(error));
1727        return ret;
1728}
1729
1730static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1731{
1732        unsigned len, sector_count;
1733
1734        sector_count = bio_sectors(*bio);
1735        len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1736
1737        if (sector_count > len) {
1738                struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1739
1740                bio_chain(split, *bio);
1741                trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1742                generic_make_request(*bio);
1743                *bio = split;
1744        }
1745}
1746
1747static blk_qc_t dm_process_bio(struct mapped_device *md,
1748                               struct dm_table *map, struct bio *bio)
1749{
1750        blk_qc_t ret = BLK_QC_T_NONE;
1751        struct dm_target *ti = md->immutable_target;
1752
1753        if (unlikely(!map)) {
1754                bio_io_error(bio);
1755                return ret;
1756        }
1757
1758        if (!ti) {
1759                ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1760                if (unlikely(!ti)) {
1761                        bio_io_error(bio);
1762                        return ret;
1763                }
1764        }
1765
1766        /*
1767         * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1768         * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1769         * won't be imposed.
1770         */
1771        if (current->bio_list) {
1772                if (is_abnormal_io(bio))
1773                        blk_queue_split(md->queue, &bio);
1774                else
1775                        dm_queue_split(md, ti, &bio);
1776        }
1777
1778        if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1779                return __process_bio(md, map, bio, ti);
1780        else
1781                return __split_and_process_bio(md, map, bio);
1782}
1783
1784static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1785{
1786        struct mapped_device *md = q->queuedata;
1787        blk_qc_t ret = BLK_QC_T_NONE;
1788        int srcu_idx;
1789        struct dm_table *map;
1790
1791        map = dm_get_live_table(md, &srcu_idx);
1792
1793        /* if we're suspended, we have to queue this io for later */
1794        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1795                dm_put_live_table(md, srcu_idx);
1796
1797                if (!(bio->bi_opf & REQ_RAHEAD))
1798                        queue_io(md, bio);
1799                else
1800                        bio_io_error(bio);
1801                return ret;
1802        }
1803
1804        ret = dm_process_bio(md, map, bio);
1805
1806        dm_put_live_table(md, srcu_idx);
1807        return ret;
1808}
1809
1810static int dm_any_congested(void *congested_data, int bdi_bits)
1811{
1812        int r = bdi_bits;
1813        struct mapped_device *md = congested_data;
1814        struct dm_table *map;
1815
1816        if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1817                if (dm_request_based(md)) {
1818                        /*
1819                         * With request-based DM we only need to check the
1820                         * top-level queue for congestion.
1821                         */
1822                        struct backing_dev_info *bdi = md->queue->backing_dev_info;
1823                        r = bdi->wb.congested->state & bdi_bits;
1824                } else {
1825                        map = dm_get_live_table_fast(md);
1826                        if (map)
1827                                r = dm_table_any_congested(map, bdi_bits);
1828                        dm_put_live_table_fast(md);
1829                }
1830        }
1831
1832        return r;
1833}
1834
1835/*-----------------------------------------------------------------
1836 * An IDR is used to keep track of allocated minor numbers.
1837 *---------------------------------------------------------------*/
1838static void free_minor(int minor)
1839{
1840        spin_lock(&_minor_lock);
1841        idr_remove(&_minor_idr, minor);
1842        spin_unlock(&_minor_lock);
1843}
1844
1845/*
1846 * See if the device with a specific minor # is free.
1847 */
1848static int specific_minor(int minor)
1849{
1850        int r;
1851
1852        if (minor >= (1 << MINORBITS))
1853                return -EINVAL;
1854
1855        idr_preload(GFP_KERNEL);
1856        spin_lock(&_minor_lock);
1857
1858        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1859
1860        spin_unlock(&_minor_lock);
1861        idr_preload_end();
1862        if (r < 0)
1863                return r == -ENOSPC ? -EBUSY : r;
1864        return 0;
1865}
1866
1867static int next_free_minor(int *minor)
1868{
1869        int r;
1870
1871        idr_preload(GFP_KERNEL);
1872        spin_lock(&_minor_lock);
1873
1874        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1875
1876        spin_unlock(&_minor_lock);
1877        idr_preload_end();
1878        if (r < 0)
1879                return r;
1880        *minor = r;
1881        return 0;
1882}
1883
1884static const struct block_device_operations dm_blk_dops;
1885static const struct dax_operations dm_dax_ops;
1886
1887static void dm_wq_work(struct work_struct *work);
1888
1889static void cleanup_mapped_device(struct mapped_device *md)
1890{
1891        if (md->wq)
1892                destroy_workqueue(md->wq);
1893        bioset_exit(&md->bs);
1894        bioset_exit(&md->io_bs);
1895
1896        if (md->dax_dev) {
1897                kill_dax(md->dax_dev);
1898                put_dax(md->dax_dev);
1899                md->dax_dev = NULL;
1900        }
1901
1902        if (md->disk) {
1903                spin_lock(&_minor_lock);
1904                md->disk->private_data = NULL;
1905                spin_unlock(&_minor_lock);
1906                del_gendisk(md->disk);
1907                put_disk(md->disk);
1908        }
1909
1910        if (md->queue)
1911                blk_cleanup_queue(md->queue);
1912
1913        cleanup_srcu_struct(&md->io_barrier);
1914
1915        if (md->bdev) {
1916                bdput(md->bdev);
1917                md->bdev = NULL;
1918        }
1919
1920        mutex_destroy(&md->suspend_lock);
1921        mutex_destroy(&md->type_lock);
1922        mutex_destroy(&md->table_devices_lock);
1923
1924        dm_mq_cleanup_mapped_device(md);
1925}
1926
1927/*
1928 * Allocate and initialise a blank device with a given minor.
1929 */
1930static struct mapped_device *alloc_dev(int minor)
1931{
1932        int r, numa_node_id = dm_get_numa_node();
1933        struct mapped_device *md;
1934        void *old_md;
1935
1936        md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1937        if (!md) {
1938                DMWARN("unable to allocate device, out of memory.");
1939                return NULL;
1940        }
1941
1942        if (!try_module_get(THIS_MODULE))
1943                goto bad_module_get;
1944
1945        /* get a minor number for the dev */
1946        if (minor == DM_ANY_MINOR)
1947                r = next_free_minor(&minor);
1948        else
1949                r = specific_minor(minor);
1950        if (r < 0)
1951                goto bad_minor;
1952
1953        r = init_srcu_struct(&md->io_barrier);
1954        if (r < 0)
1955                goto bad_io_barrier;
1956
1957        md->numa_node_id = numa_node_id;
1958        md->init_tio_pdu = false;
1959        md->type = DM_TYPE_NONE;
1960        mutex_init(&md->suspend_lock);
1961        mutex_init(&md->type_lock);
1962        mutex_init(&md->table_devices_lock);
1963        spin_lock_init(&md->deferred_lock);
1964        atomic_set(&md->holders, 1);
1965        atomic_set(&md->open_count, 0);
1966        atomic_set(&md->event_nr, 0);
1967        atomic_set(&md->uevent_seq, 0);
1968        INIT_LIST_HEAD(&md->uevent_list);
1969        INIT_LIST_HEAD(&md->table_devices);
1970        spin_lock_init(&md->uevent_lock);
1971
1972        /*
1973         * default to bio-based required ->make_request_fn until DM
1974         * table is loaded and md->type established. If request-based
1975         * table is loaded: blk-mq will override accordingly.
1976         */
1977        md->queue = blk_alloc_queue(dm_make_request, numa_node_id);
1978        if (!md->queue)
1979                goto bad;
1980        md->queue->queuedata = md;
1981
1982        md->disk = alloc_disk_node(1, md->numa_node_id);
1983        if (!md->disk)
1984                goto bad;
1985
1986        init_waitqueue_head(&md->wait);
1987        INIT_WORK(&md->work, dm_wq_work);
1988        init_waitqueue_head(&md->eventq);
1989        init_completion(&md->kobj_holder.completion);
1990
1991        md->disk->major = _major;
1992        md->disk->first_minor = minor;
1993        md->disk->fops = &dm_blk_dops;
1994        md->disk->queue = md->queue;
1995        md->disk->private_data = md;
1996        sprintf(md->disk->disk_name, "dm-%d", minor);
1997
1998        if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1999                md->dax_dev = alloc_dax(md, md->disk->disk_name,
2000                                        &dm_dax_ops, 0);
2001                if (IS_ERR(md->dax_dev))
2002                        goto bad;
2003        }
2004
2005        add_disk_no_queue_reg(md->disk);
2006        format_dev_t(md->name, MKDEV(_major, minor));
2007
2008        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2009        if (!md->wq)
2010                goto bad;
2011
2012        md->bdev = bdget_disk(md->disk, 0);
2013        if (!md->bdev)
2014                goto bad;
2015
2016        dm_stats_init(&md->stats);
2017
2018        /* Populate the mapping, nobody knows we exist yet */
2019        spin_lock(&_minor_lock);
2020        old_md = idr_replace(&_minor_idr, md, minor);
2021        spin_unlock(&_minor_lock);
2022
2023        BUG_ON(old_md != MINOR_ALLOCED);
2024
2025        return md;
2026
2027bad:
2028        cleanup_mapped_device(md);
2029bad_io_barrier:
2030        free_minor(minor);
2031bad_minor:
2032        module_put(THIS_MODULE);
2033bad_module_get:
2034        kvfree(md);
2035        return NULL;
2036}
2037
2038static void unlock_fs(struct mapped_device *md);
2039
2040static void free_dev(struct mapped_device *md)
2041{
2042        int minor = MINOR(disk_devt(md->disk));
2043
2044        unlock_fs(md);
2045
2046        cleanup_mapped_device(md);
2047
2048        free_table_devices(&md->table_devices);
2049        dm_stats_cleanup(&md->stats);
2050        free_minor(minor);
2051
2052        module_put(THIS_MODULE);
2053        kvfree(md);
2054}
2055
2056static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2057{
2058        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2059        int ret = 0;
2060
2061        if (dm_table_bio_based(t)) {
2062                /*
2063                 * The md may already have mempools that need changing.
2064                 * If so, reload bioset because front_pad may have changed
2065                 * because a different table was loaded.
2066                 */
2067                bioset_exit(&md->bs);
2068                bioset_exit(&md->io_bs);
2069
2070        } else if (bioset_initialized(&md->bs)) {
2071                /*
2072                 * There's no need to reload with request-based dm
2073                 * because the size of front_pad doesn't change.
2074                 * Note for future: If you are to reload bioset,
2075                 * prep-ed requests in the queue may refer
2076                 * to bio from the old bioset, so you must walk
2077                 * through the queue to unprep.
2078                 */
2079                goto out;
2080        }
2081
2082        BUG_ON(!p ||
2083               bioset_initialized(&md->bs) ||
2084               bioset_initialized(&md->io_bs));
2085
2086        ret = bioset_init_from_src(&md->bs, &p->bs);
2087        if (ret)
2088                goto out;
2089        ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2090        if (ret)
2091                bioset_exit(&md->bs);
2092out:
2093        /* mempool bind completed, no longer need any mempools in the table */
2094        dm_table_free_md_mempools(t);
2095        return ret;
2096}
2097
2098/*
2099 * Bind a table to the device.
2100 */
2101static void event_callback(void *context)
2102{
2103        unsigned long flags;
2104        LIST_HEAD(uevents);
2105        struct mapped_device *md = (struct mapped_device *) context;
2106
2107        spin_lock_irqsave(&md->uevent_lock, flags);
2108        list_splice_init(&md->uevent_list, &uevents);
2109        spin_unlock_irqrestore(&md->uevent_lock, flags);
2110
2111        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2112
2113        atomic_inc(&md->event_nr);
2114        wake_up(&md->eventq);
2115        dm_issue_global_event();
2116}
2117
2118/*
2119 * Protected by md->suspend_lock obtained by dm_swap_table().
2120 */
2121static void __set_size(struct mapped_device *md, sector_t size)
2122{
2123        lockdep_assert_held(&md->suspend_lock);
2124
2125        set_capacity(md->disk, size);
2126
2127        i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2128}
2129
2130/*
2131 * Returns old map, which caller must destroy.
2132 */
2133static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2134                               struct queue_limits *limits)
2135{
2136        struct dm_table *old_map;
2137        struct request_queue *q = md->queue;
2138        bool request_based = dm_table_request_based(t);
2139        sector_t size;
2140        int ret;
2141
2142        lockdep_assert_held(&md->suspend_lock);
2143
2144        size = dm_table_get_size(t);
2145
2146        /*
2147         * Wipe any geometry if the size of the table changed.
2148         */
2149        if (size != dm_get_size(md))
2150                memset(&md->geometry, 0, sizeof(md->geometry));
2151
2152        __set_size(md, size);
2153
2154        dm_table_event_callback(t, event_callback, md);
2155
2156        /*
2157         * The queue hasn't been stopped yet, if the old table type wasn't
2158         * for request-based during suspension.  So stop it to prevent
2159         * I/O mapping before resume.
2160         * This must be done before setting the queue restrictions,
2161         * because request-based dm may be run just after the setting.
2162         */
2163        if (request_based)
2164                dm_stop_queue(q);
2165
2166        if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2167                /*
2168                 * Leverage the fact that request-based DM targets and
2169                 * NVMe bio based targets are immutable singletons
2170                 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2171                 *   and __process_bio.
2172                 */
2173                md->immutable_target = dm_table_get_immutable_target(t);
2174        }
2175
2176        ret = __bind_mempools(md, t);
2177        if (ret) {
2178                old_map = ERR_PTR(ret);
2179                goto out;
2180        }
2181
2182        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2183        rcu_assign_pointer(md->map, (void *)t);
2184        md->immutable_target_type = dm_table_get_immutable_target_type(t);
2185
2186        dm_table_set_restrictions(t, q, limits);
2187        if (old_map)
2188                dm_sync_table(md);
2189
2190out:
2191        return old_map;
2192}
2193
2194/*
2195 * Returns unbound table for the caller to free.
2196 */
2197static struct dm_table *__unbind(struct mapped_device *md)
2198{
2199        struct dm_table *map = rcu_dereference_protected(md->map, 1);
2200
2201        if (!map)
2202                return NULL;
2203
2204        dm_table_event_callback(map, NULL, NULL);
2205        RCU_INIT_POINTER(md->map, NULL);
2206        dm_sync_table(md);
2207
2208        return map;
2209}
2210
2211/*
2212 * Constructor for a new device.
2213 */
2214int dm_create(int minor, struct mapped_device **result)
2215{
2216        int r;
2217        struct mapped_device *md;
2218
2219        md = alloc_dev(minor);
2220        if (!md)
2221                return -ENXIO;
2222
2223        r = dm_sysfs_init(md);
2224        if (r) {
2225                free_dev(md);
2226                return r;
2227        }
2228
2229        *result = md;
2230        return 0;
2231}
2232
2233/*
2234 * Functions to manage md->type.
2235 * All are required to hold md->type_lock.
2236 */
2237void dm_lock_md_type(struct mapped_device *md)
2238{
2239        mutex_lock(&md->type_lock);
2240}
2241
2242void dm_unlock_md_type(struct mapped_device *md)
2243{
2244        mutex_unlock(&md->type_lock);
2245}
2246
2247void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2248{
2249        BUG_ON(!mutex_is_locked(&md->type_lock));
2250        md->type = type;
2251}
2252
2253enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2254{
2255        return md->type;
2256}
2257
2258struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2259{
2260        return md->immutable_target_type;
2261}
2262
2263/*
2264 * The queue_limits are only valid as long as you have a reference
2265 * count on 'md'.
2266 */
2267struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2268{
2269        BUG_ON(!atomic_read(&md->holders));
2270        return &md->queue->limits;
2271}
2272EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2273
2274static void dm_init_congested_fn(struct mapped_device *md)
2275{
2276        md->queue->backing_dev_info->congested_data = md;
2277        md->queue->backing_dev_info->congested_fn = dm_any_congested;
2278}
2279
2280/*
2281 * Setup the DM device's queue based on md's type
2282 */
2283int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2284{
2285        int r;
2286        struct queue_limits limits;
2287        enum dm_queue_mode type = dm_get_md_type(md);
2288
2289        switch (type) {
2290        case DM_TYPE_REQUEST_BASED:
2291                r = dm_mq_init_request_queue(md, t);
2292                if (r) {
2293                        DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2294                        return r;
2295                }
2296                dm_init_congested_fn(md);
2297                break;
2298        case DM_TYPE_BIO_BASED:
2299        case DM_TYPE_DAX_BIO_BASED:
2300        case DM_TYPE_NVME_BIO_BASED:
2301                dm_init_congested_fn(md);
2302                break;
2303        case DM_TYPE_NONE:
2304                WARN_ON_ONCE(true);
2305                break;
2306        }
2307
2308        r = dm_calculate_queue_limits(t, &limits);
2309        if (r) {
2310                DMERR("Cannot calculate initial queue limits");
2311                return r;
2312        }
2313        dm_table_set_restrictions(t, md->queue, &limits);
2314        blk_register_queue(md->disk);
2315
2316        return 0;
2317}
2318
2319struct mapped_device *dm_get_md(dev_t dev)
2320{
2321        struct mapped_device *md;
2322        unsigned minor = MINOR(dev);
2323
2324        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2325                return NULL;
2326
2327        spin_lock(&_minor_lock);
2328
2329        md = idr_find(&_minor_idr, minor);
2330        if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2331            test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2332                md = NULL;
2333                goto out;
2334        }
2335        dm_get(md);
2336out:
2337        spin_unlock(&_minor_lock);
2338
2339        return md;
2340}
2341EXPORT_SYMBOL_GPL(dm_get_md);
2342
2343void *dm_get_mdptr(struct mapped_device *md)
2344{
2345        return md->interface_ptr;
2346}
2347
2348void dm_set_mdptr(struct mapped_device *md, void *ptr)
2349{
2350        md->interface_ptr = ptr;
2351}
2352
2353void dm_get(struct mapped_device *md)
2354{
2355        atomic_inc(&md->holders);
2356        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2357}
2358
2359int dm_hold(struct mapped_device *md)
2360{
2361        spin_lock(&_minor_lock);
2362        if (test_bit(DMF_FREEING, &md->flags)) {
2363                spin_unlock(&_minor_lock);
2364                return -EBUSY;
2365        }
2366        dm_get(md);
2367        spin_unlock(&_minor_lock);
2368        return 0;
2369}
2370EXPORT_SYMBOL_GPL(dm_hold);
2371
2372const char *dm_device_name(struct mapped_device *md)
2373{
2374        return md->name;
2375}
2376EXPORT_SYMBOL_GPL(dm_device_name);
2377
2378static void __dm_destroy(struct mapped_device *md, bool wait)
2379{
2380        struct dm_table *map;
2381        int srcu_idx;
2382
2383        might_sleep();
2384
2385        spin_lock(&_minor_lock);
2386        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2387        set_bit(DMF_FREEING, &md->flags);
2388        spin_unlock(&_minor_lock);
2389
2390        blk_set_queue_dying(md->queue);
2391
2392        /*
2393         * Take suspend_lock so that presuspend and postsuspend methods
2394         * do not race with internal suspend.
2395         */
2396        mutex_lock(&md->suspend_lock);
2397        map = dm_get_live_table(md, &srcu_idx);
2398        if (!dm_suspended_md(md)) {
2399                dm_table_presuspend_targets(map);
2400                set_bit(DMF_SUSPENDED, &md->flags);
2401                dm_table_postsuspend_targets(map);
2402        }
2403        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2404        dm_put_live_table(md, srcu_idx);
2405        mutex_unlock(&md->suspend_lock);
2406
2407        /*
2408         * Rare, but there may be I/O requests still going to complete,
2409         * for example.  Wait for all references to disappear.
2410         * No one should increment the reference count of the mapped_device,
2411         * after the mapped_device state becomes DMF_FREEING.
2412         */
2413        if (wait)
2414                while (atomic_read(&md->holders))
2415                        msleep(1);
2416        else if (atomic_read(&md->holders))
2417                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2418                       dm_device_name(md), atomic_read(&md->holders));
2419
2420        dm_sysfs_exit(md);
2421        dm_table_destroy(__unbind(md));
2422        free_dev(md);
2423}
2424
2425void dm_destroy(struct mapped_device *md)
2426{
2427        __dm_destroy(md, true);
2428}
2429
2430void dm_destroy_immediate(struct mapped_device *md)
2431{
2432        __dm_destroy(md, false);
2433}
2434
2435void dm_put(struct mapped_device *md)
2436{
2437        atomic_dec(&md->holders);
2438}
2439EXPORT_SYMBOL_GPL(dm_put);
2440
2441static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2442{
2443        int r = 0;
2444        DEFINE_WAIT(wait);
2445
2446        while (1) {
2447                prepare_to_wait(&md->wait, &wait, task_state);
2448
2449                if (!md_in_flight(md))
2450                        break;
2451
2452                if (signal_pending_state(task_state, current)) {
2453                        r = -EINTR;
2454                        break;
2455                }
2456
2457                io_schedule();
2458        }
2459        finish_wait(&md->wait, &wait);
2460
2461        return r;
2462}
2463
2464/*
2465 * Process the deferred bios
2466 */
2467static void dm_wq_work(struct work_struct *work)
2468{
2469        struct mapped_device *md = container_of(work, struct mapped_device,
2470                                                work);
2471        struct bio *c;
2472        int srcu_idx;
2473        struct dm_table *map;
2474
2475        map = dm_get_live_table(md, &srcu_idx);
2476
2477        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2478                spin_lock_irq(&md->deferred_lock);
2479                c = bio_list_pop(&md->deferred);
2480                spin_unlock_irq(&md->deferred_lock);
2481
2482                if (!c)
2483                        break;
2484
2485                if (dm_request_based(md))
2486                        (void) generic_make_request(c);
2487                else
2488                        (void) dm_process_bio(md, map, c);
2489        }
2490
2491        dm_put_live_table(md, srcu_idx);
2492}
2493
2494static void dm_queue_flush(struct mapped_device *md)
2495{
2496        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2497        smp_mb__after_atomic();
2498        queue_work(md->wq, &md->work);
2499}
2500
2501/*
2502 * Swap in a new table, returning the old one for the caller to destroy.
2503 */
2504struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2505{
2506        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2507        struct queue_limits limits;
2508        int r;
2509
2510        mutex_lock(&md->suspend_lock);
2511
2512        /* device must be suspended */
2513        if (!dm_suspended_md(md))
2514                goto out;
2515
2516        /*
2517         * If the new table has no data devices, retain the existing limits.
2518         * This helps multipath with queue_if_no_path if all paths disappear,
2519         * then new I/O is queued based on these limits, and then some paths
2520         * reappear.
2521         */
2522        if (dm_table_has_no_data_devices(table)) {
2523                live_map = dm_get_live_table_fast(md);
2524                if (live_map)
2525                        limits = md->queue->limits;
2526                dm_put_live_table_fast(md);
2527        }
2528
2529        if (!live_map) {
2530                r = dm_calculate_queue_limits(table, &limits);
2531                if (r) {
2532                        map = ERR_PTR(r);
2533                        goto out;
2534                }
2535        }
2536
2537        map = __bind(md, table, &limits);
2538        dm_issue_global_event();
2539
2540out:
2541        mutex_unlock(&md->suspend_lock);
2542        return map;
2543}
2544
2545/*
2546 * Functions to lock and unlock any filesystem running on the
2547 * device.
2548 */
2549static int lock_fs(struct mapped_device *md)
2550{
2551        int r;
2552
2553        WARN_ON(md->frozen_sb);
2554
2555        md->frozen_sb = freeze_bdev(md->bdev);
2556        if (IS_ERR(md->frozen_sb)) {
2557                r = PTR_ERR(md->frozen_sb);
2558                md->frozen_sb = NULL;
2559                return r;
2560        }
2561
2562        set_bit(DMF_FROZEN, &md->flags);
2563
2564        return 0;
2565}
2566
2567static void unlock_fs(struct mapped_device *md)
2568{
2569        if (!test_bit(DMF_FROZEN, &md->flags))
2570                return;
2571
2572        thaw_bdev(md->bdev, md->frozen_sb);
2573        md->frozen_sb = NULL;
2574        clear_bit(DMF_FROZEN, &md->flags);
2575}
2576
2577/*
2578 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2579 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2580 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2581 *
2582 * If __dm_suspend returns 0, the device is completely quiescent
2583 * now. There is no request-processing activity. All new requests
2584 * are being added to md->deferred list.
2585 */
2586static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2587                        unsigned suspend_flags, long task_state,
2588                        int dmf_suspended_flag)
2589{
2590        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2591        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2592        int r;
2593
2594        lockdep_assert_held(&md->suspend_lock);
2595
2596        /*
2597         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2598         * This flag is cleared before dm_suspend returns.
2599         */
2600        if (noflush)
2601                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2602        else
2603                pr_debug("%s: suspending with flush\n", dm_device_name(md));
2604
2605        /*
2606         * This gets reverted if there's an error later and the targets
2607         * provide the .presuspend_undo hook.
2608         */
2609        dm_table_presuspend_targets(map);
2610
2611        /*
2612         * Flush I/O to the device.
2613         * Any I/O submitted after lock_fs() may not be flushed.
2614         * noflush takes precedence over do_lockfs.
2615         * (lock_fs() flushes I/Os and waits for them to complete.)
2616         */
2617        if (!noflush && do_lockfs) {
2618                r = lock_fs(md);
2619                if (r) {
2620                        dm_table_presuspend_undo_targets(map);
2621                        return r;
2622                }
2623        }
2624
2625        /*
2626         * Here we must make sure that no processes are submitting requests
2627         * to target drivers i.e. no one may be executing
2628         * __split_and_process_bio. This is called from dm_request and
2629         * dm_wq_work.
2630         *
2631         * To get all processes out of __split_and_process_bio in dm_request,
2632         * we take the write lock. To prevent any process from reentering
2633         * __split_and_process_bio from dm_request and quiesce the thread
2634         * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2635         * flush_workqueue(md->wq).
2636         */
2637        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2638        if (map)
2639                synchronize_srcu(&md->io_barrier);
2640
2641        /*
2642         * Stop md->queue before flushing md->wq in case request-based
2643         * dm defers requests to md->wq from md->queue.
2644         */
2645        if (dm_request_based(md))
2646                dm_stop_queue(md->queue);
2647
2648        flush_workqueue(md->wq);
2649
2650        /*
2651         * At this point no more requests are entering target request routines.
2652         * We call dm_wait_for_completion to wait for all existing requests
2653         * to finish.
2654         */
2655        r = dm_wait_for_completion(md, task_state);
2656        if (!r)
2657                set_bit(dmf_suspended_flag, &md->flags);
2658
2659        if (noflush)
2660                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2661        if (map)
2662                synchronize_srcu(&md->io_barrier);
2663
2664        /* were we interrupted ? */
2665        if (r < 0) {
2666                dm_queue_flush(md);
2667
2668                if (dm_request_based(md))
2669                        dm_start_queue(md->queue);
2670
2671                unlock_fs(md);
2672                dm_table_presuspend_undo_targets(map);
2673                /* pushback list is already flushed, so skip flush */
2674        }
2675
2676        return r;
2677}
2678
2679/*
2680 * We need to be able to change a mapping table under a mounted
2681 * filesystem.  For example we might want to move some data in
2682 * the background.  Before the table can be swapped with
2683 * dm_bind_table, dm_suspend must be called to flush any in
2684 * flight bios and ensure that any further io gets deferred.
2685 */
2686/*
2687 * Suspend mechanism in request-based dm.
2688 *
2689 * 1. Flush all I/Os by lock_fs() if needed.
2690 * 2. Stop dispatching any I/O by stopping the request_queue.
2691 * 3. Wait for all in-flight I/Os to be completed or requeued.
2692 *
2693 * To abort suspend, start the request_queue.
2694 */
2695int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2696{
2697        struct dm_table *map = NULL;
2698        int r = 0;
2699
2700retry:
2701        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2702
2703        if (dm_suspended_md(md)) {
2704                r = -EINVAL;
2705                goto out_unlock;
2706        }
2707
2708        if (dm_suspended_internally_md(md)) {
2709                /* already internally suspended, wait for internal resume */
2710                mutex_unlock(&md->suspend_lock);
2711                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2712                if (r)
2713                        return r;
2714                goto retry;
2715        }
2716
2717        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2718
2719        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2720        if (r)
2721                goto out_unlock;
2722
2723        dm_table_postsuspend_targets(map);
2724
2725out_unlock:
2726        mutex_unlock(&md->suspend_lock);
2727        return r;
2728}
2729
2730static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2731{
2732        if (map) {
2733                int r = dm_table_resume_targets(map);
2734                if (r)
2735                        return r;
2736        }
2737
2738        dm_queue_flush(md);
2739
2740        /*
2741         * Flushing deferred I/Os must be done after targets are resumed
2742         * so that mapping of targets can work correctly.
2743         * Request-based dm is queueing the deferred I/Os in its request_queue.
2744         */
2745        if (dm_request_based(md))
2746                dm_start_queue(md->queue);
2747
2748        unlock_fs(md);
2749
2750        return 0;
2751}
2752
2753int dm_resume(struct mapped_device *md)
2754{
2755        int r;
2756        struct dm_table *map = NULL;
2757
2758retry:
2759        r = -EINVAL;
2760        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2761
2762        if (!dm_suspended_md(md))
2763                goto out;
2764
2765        if (dm_suspended_internally_md(md)) {
2766                /* already internally suspended, wait for internal resume */
2767                mutex_unlock(&md->suspend_lock);
2768                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2769                if (r)
2770                        return r;
2771                goto retry;
2772        }
2773
2774        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2775        if (!map || !dm_table_get_size(map))
2776                goto out;
2777
2778        r = __dm_resume(md, map);
2779        if (r)
2780                goto out;
2781
2782        clear_bit(DMF_SUSPENDED, &md->flags);
2783out:
2784        mutex_unlock(&md->suspend_lock);
2785
2786        return r;
2787}
2788
2789/*
2790 * Internal suspend/resume works like userspace-driven suspend. It waits
2791 * until all bios finish and prevents issuing new bios to the target drivers.
2792 * It may be used only from the kernel.
2793 */
2794
2795static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2796{
2797        struct dm_table *map = NULL;
2798
2799        lockdep_assert_held(&md->suspend_lock);
2800
2801        if (md->internal_suspend_count++)
2802                return; /* nested internal suspend */
2803
2804        if (dm_suspended_md(md)) {
2805                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2806                return; /* nest suspend */
2807        }
2808
2809        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2810
2811        /*
2812         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2813         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2814         * would require changing .presuspend to return an error -- avoid this
2815         * until there is a need for more elaborate variants of internal suspend.
2816         */
2817        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2818                            DMF_SUSPENDED_INTERNALLY);
2819
2820        dm_table_postsuspend_targets(map);
2821}
2822
2823static void __dm_internal_resume(struct mapped_device *md)
2824{
2825        BUG_ON(!md->internal_suspend_count);
2826
2827        if (--md->internal_suspend_count)
2828                return; /* resume from nested internal suspend */
2829
2830        if (dm_suspended_md(md))
2831                goto done; /* resume from nested suspend */
2832
2833        /*
2834         * NOTE: existing callers don't need to call dm_table_resume_targets
2835         * (which may fail -- so best to avoid it for now by passing NULL map)
2836         */
2837        (void) __dm_resume(md, NULL);
2838
2839done:
2840        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2841        smp_mb__after_atomic();
2842        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2843}
2844
2845void dm_internal_suspend_noflush(struct mapped_device *md)
2846{
2847        mutex_lock(&md->suspend_lock);
2848        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2849        mutex_unlock(&md->suspend_lock);
2850}
2851EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2852
2853void dm_internal_resume(struct mapped_device *md)
2854{
2855        mutex_lock(&md->suspend_lock);
2856        __dm_internal_resume(md);
2857        mutex_unlock(&md->suspend_lock);
2858}
2859EXPORT_SYMBOL_GPL(dm_internal_resume);
2860
2861/*
2862 * Fast variants of internal suspend/resume hold md->suspend_lock,
2863 * which prevents interaction with userspace-driven suspend.
2864 */
2865
2866void dm_internal_suspend_fast(struct mapped_device *md)
2867{
2868        mutex_lock(&md->suspend_lock);
2869        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2870                return;
2871
2872        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2873        synchronize_srcu(&md->io_barrier);
2874        flush_workqueue(md->wq);
2875        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2876}
2877EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2878
2879void dm_internal_resume_fast(struct mapped_device *md)
2880{
2881        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2882                goto done;
2883
2884        dm_queue_flush(md);
2885
2886done:
2887        mutex_unlock(&md->suspend_lock);
2888}
2889EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2890
2891/*-----------------------------------------------------------------
2892 * Event notification.
2893 *---------------------------------------------------------------*/
2894int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2895                       unsigned cookie)
2896{
2897        char udev_cookie[DM_COOKIE_LENGTH];
2898        char *envp[] = { udev_cookie, NULL };
2899
2900        if (!cookie)
2901                return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2902        else {
2903                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2904                         DM_COOKIE_ENV_VAR_NAME, cookie);
2905                return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2906                                          action, envp);
2907        }
2908}
2909
2910uint32_t dm_next_uevent_seq(struct mapped_device *md)
2911{
2912        return atomic_add_return(1, &md->uevent_seq);
2913}
2914
2915uint32_t dm_get_event_nr(struct mapped_device *md)
2916{
2917        return atomic_read(&md->event_nr);
2918}
2919
2920int dm_wait_event(struct mapped_device *md, int event_nr)
2921{
2922        return wait_event_interruptible(md->eventq,
2923                        (event_nr != atomic_read(&md->event_nr)));
2924}
2925
2926void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2927{
2928        unsigned long flags;
2929
2930        spin_lock_irqsave(&md->uevent_lock, flags);
2931        list_add(elist, &md->uevent_list);
2932        spin_unlock_irqrestore(&md->uevent_lock, flags);
2933}
2934
2935/*
2936 * The gendisk is only valid as long as you have a reference
2937 * count on 'md'.
2938 */
2939struct gendisk *dm_disk(struct mapped_device *md)
2940{
2941        return md->disk;
2942}
2943EXPORT_SYMBOL_GPL(dm_disk);
2944
2945struct kobject *dm_kobject(struct mapped_device *md)
2946{
2947        return &md->kobj_holder.kobj;
2948}
2949
2950struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2951{
2952        struct mapped_device *md;
2953
2954        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2955
2956        spin_lock(&_minor_lock);
2957        if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2958                md = NULL;
2959                goto out;
2960        }
2961        dm_get(md);
2962out:
2963        spin_unlock(&_minor_lock);
2964
2965        return md;
2966}
2967
2968int dm_suspended_md(struct mapped_device *md)
2969{
2970        return test_bit(DMF_SUSPENDED, &md->flags);
2971}
2972
2973int dm_suspended_internally_md(struct mapped_device *md)
2974{
2975        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2976}
2977
2978int dm_test_deferred_remove_flag(struct mapped_device *md)
2979{
2980        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2981}
2982
2983int dm_suspended(struct dm_target *ti)
2984{
2985        return dm_suspended_md(dm_table_get_md(ti->table));
2986}
2987EXPORT_SYMBOL_GPL(dm_suspended);
2988
2989int dm_noflush_suspending(struct dm_target *ti)
2990{
2991        return __noflush_suspending(dm_table_get_md(ti->table));
2992}
2993EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2994
2995struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2996                                            unsigned integrity, unsigned per_io_data_size,
2997                                            unsigned min_pool_size)
2998{
2999        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3000        unsigned int pool_size = 0;
3001        unsigned int front_pad, io_front_pad;
3002        int ret;
3003
3004        if (!pools)
3005                return NULL;
3006
3007        switch (type) {
3008        case DM_TYPE_BIO_BASED:
3009        case DM_TYPE_DAX_BIO_BASED:
3010        case DM_TYPE_NVME_BIO_BASED:
3011                pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3012                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3013                io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3014                ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3015                if (ret)
3016                        goto out;
3017                if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3018                        goto out;
3019                break;
3020        case DM_TYPE_REQUEST_BASED:
3021                pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3022                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3023                /* per_io_data_size is used for blk-mq pdu at queue allocation */
3024                break;
3025        default:
3026                BUG();
3027        }
3028
3029        ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3030        if (ret)
3031                goto out;
3032
3033        if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3034                goto out;
3035
3036        return pools;
3037
3038out:
3039        dm_free_md_mempools(pools);
3040
3041        return NULL;
3042}
3043
3044void dm_free_md_mempools(struct dm_md_mempools *pools)
3045{
3046        if (!pools)
3047                return;
3048
3049        bioset_exit(&pools->bs);
3050        bioset_exit(&pools->io_bs);
3051
3052        kfree(pools);
3053}
3054
3055struct dm_pr {
3056        u64     old_key;
3057        u64     new_key;
3058        u32     flags;
3059        bool    fail_early;
3060};
3061
3062static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3063                      void *data)
3064{
3065        struct mapped_device *md = bdev->bd_disk->private_data;
3066        struct dm_table *table;
3067        struct dm_target *ti;
3068        int ret = -ENOTTY, srcu_idx;
3069
3070        table = dm_get_live_table(md, &srcu_idx);
3071        if (!table || !dm_table_get_size(table))
3072                goto out;
3073
3074        /* We only support devices that have a single target */
3075        if (dm_table_get_num_targets(table) != 1)
3076                goto out;
3077        ti = dm_table_get_target(table, 0);
3078
3079        ret = -EINVAL;
3080        if (!ti->type->iterate_devices)
3081                goto out;
3082
3083        ret = ti->type->iterate_devices(ti, fn, data);
3084out:
3085        dm_put_live_table(md, srcu_idx);
3086        return ret;
3087}
3088
3089/*
3090 * For register / unregister we need to manually call out to every path.
3091 */
3092static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3093                            sector_t start, sector_t len, void *data)
3094{
3095        struct dm_pr *pr = data;
3096        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3097
3098        if (!ops || !ops->pr_register)
3099                return -EOPNOTSUPP;
3100        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3101}
3102
3103static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3104                          u32 flags)
3105{
3106        struct dm_pr pr = {
3107                .old_key        = old_key,
3108                .new_key        = new_key,
3109                .flags          = flags,
3110                .fail_early     = true,
3111        };
3112        int ret;
3113
3114        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3115        if (ret && new_key) {
3116                /* unregister all paths if we failed to register any path */
3117                pr.old_key = new_key;
3118                pr.new_key = 0;
3119                pr.flags = 0;
3120                pr.fail_early = false;
3121                dm_call_pr(bdev, __dm_pr_register, &pr);
3122        }
3123
3124        return ret;
3125}
3126
3127static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3128                         u32 flags)
3129{
3130        struct mapped_device *md = bdev->bd_disk->private_data;
3131        const struct pr_ops *ops;
3132        int r, srcu_idx;
3133
3134        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3135        if (r < 0)
3136                goto out;
3137
3138        ops = bdev->bd_disk->fops->pr_ops;
3139        if (ops && ops->pr_reserve)
3140                r = ops->pr_reserve(bdev, key, type, flags);
3141        else
3142                r = -EOPNOTSUPP;
3143out:
3144        dm_unprepare_ioctl(md, srcu_idx);
3145        return r;
3146}
3147
3148static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3149{
3150        struct mapped_device *md = bdev->bd_disk->private_data;
3151        const struct pr_ops *ops;
3152        int r, srcu_idx;
3153
3154        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3155        if (r < 0)
3156                goto out;
3157
3158        ops = bdev->bd_disk->fops->pr_ops;
3159        if (ops && ops->pr_release)
3160                r = ops->pr_release(bdev, key, type);
3161        else
3162                r = -EOPNOTSUPP;
3163out:
3164        dm_unprepare_ioctl(md, srcu_idx);
3165        return r;
3166}
3167
3168static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3169                         enum pr_type type, bool abort)
3170{
3171        struct mapped_device *md = bdev->bd_disk->private_data;
3172        const struct pr_ops *ops;
3173        int r, srcu_idx;
3174
3175        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3176        if (r < 0)
3177                goto out;
3178
3179        ops = bdev->bd_disk->fops->pr_ops;
3180        if (ops && ops->pr_preempt)
3181                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3182        else
3183                r = -EOPNOTSUPP;
3184out:
3185        dm_unprepare_ioctl(md, srcu_idx);
3186        return r;
3187}
3188
3189static int dm_pr_clear(struct block_device *bdev, u64 key)
3190{
3191        struct mapped_device *md = bdev->bd_disk->private_data;
3192        const struct pr_ops *ops;
3193        int r, srcu_idx;
3194
3195        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3196        if (r < 0)
3197                goto out;
3198
3199        ops = bdev->bd_disk->fops->pr_ops;
3200        if (ops && ops->pr_clear)
3201                r = ops->pr_clear(bdev, key);
3202        else
3203                r = -EOPNOTSUPP;
3204out:
3205        dm_unprepare_ioctl(md, srcu_idx);
3206        return r;
3207}
3208
3209static const struct pr_ops dm_pr_ops = {
3210        .pr_register    = dm_pr_register,
3211        .pr_reserve     = dm_pr_reserve,
3212        .pr_release     = dm_pr_release,
3213        .pr_preempt     = dm_pr_preempt,
3214        .pr_clear       = dm_pr_clear,
3215};
3216
3217static const struct block_device_operations dm_blk_dops = {
3218        .open = dm_blk_open,
3219        .release = dm_blk_close,
3220        .ioctl = dm_blk_ioctl,
3221        .getgeo = dm_blk_getgeo,
3222        .report_zones = dm_blk_report_zones,
3223        .pr_ops = &dm_pr_ops,
3224        .owner = THIS_MODULE
3225};
3226
3227static const struct dax_operations dm_dax_ops = {
3228        .direct_access = dm_dax_direct_access,
3229        .dax_supported = dm_dax_supported,
3230        .copy_from_iter = dm_dax_copy_from_iter,
3231        .copy_to_iter = dm_dax_copy_to_iter,
3232        .zero_page_range = dm_dax_zero_page_range,
3233};
3234
3235/*
3236 * module hooks
3237 */
3238module_init(dm_init);
3239module_exit(dm_exit);
3240
3241module_param(major, uint, 0);
3242MODULE_PARM_DESC(major, "The major number of the device mapper");
3243
3244module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3245MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3246
3247module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3248MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3249
3250MODULE_DESCRIPTION(DM_NAME " driver");
3251MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3252MODULE_LICENSE("GPL");
3253