linux/drivers/mmc/host/mmc_spi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Access SD/MMC cards through SPI master controllers
   4 *
   5 * (C) Copyright 2005, Intec Automation,
   6 *              Mike Lavender (mike@steroidmicros)
   7 * (C) Copyright 2006-2007, David Brownell
   8 * (C) Copyright 2007, Axis Communications,
   9 *              Hans-Peter Nilsson (hp@axis.com)
  10 * (C) Copyright 2007, ATRON electronic GmbH,
  11 *              Jan Nikitenko <jan.nikitenko@gmail.com>
  12 */
  13#include <linux/sched.h>
  14#include <linux/delay.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/bio.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/crc7.h>
  20#include <linux/crc-itu-t.h>
  21#include <linux/scatterlist.h>
  22
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/mmc.h>              /* for R1_SPI_* bit values */
  25#include <linux/mmc/slot-gpio.h>
  26
  27#include <linux/spi/spi.h>
  28#include <linux/spi/mmc_spi.h>
  29
  30#include <asm/unaligned.h>
  31
  32
  33/* NOTES:
  34 *
  35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  36 *   controller, although some of them do have hardware support for
  37 *   SPI protocol.  The main reason for such configs would be mmc-ish
  38 *   cards like DataFlash, which don't support that "native" protocol.
  39 *
  40 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  41 *   switch between driver stacks, and in any case if "native" mode
  42 *   is available, it will be faster and hence preferable.
  43 *
  44 * - MMC depends on a different chipselect management policy than the
  45 *   SPI interface currently supports for shared bus segments:  it needs
  46 *   to issue multiple spi_message requests with the chipselect active,
  47 *   using the results of one message to decide the next one to issue.
  48 *
  49 *   Pending updates to the programming interface, this driver expects
  50 *   that it not share the bus with other drivers (precluding conflicts).
  51 *
  52 * - We tell the controller to keep the chipselect active from the
  53 *   beginning of an mmc_host_ops.request until the end.  So beware
  54 *   of SPI controller drivers that mis-handle the cs_change flag!
  55 *
  56 *   However, many cards seem OK with chipselect flapping up/down
  57 *   during that time ... at least on unshared bus segments.
  58 */
  59
  60
  61/*
  62 * Local protocol constants, internal to data block protocols.
  63 */
  64
  65/* Response tokens used to ack each block written: */
  66#define SPI_MMC_RESPONSE_CODE(x)        ((x) & 0x1f)
  67#define SPI_RESPONSE_ACCEPTED           ((2 << 1)|1)
  68#define SPI_RESPONSE_CRC_ERR            ((5 << 1)|1)
  69#define SPI_RESPONSE_WRITE_ERR          ((6 << 1)|1)
  70
  71/* Read and write blocks start with these tokens and end with crc;
  72 * on error, read tokens act like a subset of R2_SPI_* values.
  73 */
  74#define SPI_TOKEN_SINGLE        0xfe    /* single block r/w, multiblock read */
  75#define SPI_TOKEN_MULTI_WRITE   0xfc    /* multiblock write */
  76#define SPI_TOKEN_STOP_TRAN     0xfd    /* terminate multiblock write */
  77
  78#define MMC_SPI_BLOCKSIZE       512
  79
  80
  81/* These fixed timeouts come from the latest SD specs, which say to ignore
  82 * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
  83 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
  84 * reads which takes nowhere near that long.  Older cards may be able to use
  85 * shorter timeouts ... but why bother?
  86 */
  87#define r1b_timeout             (HZ * 3)
  88
  89/* One of the critical speed parameters is the amount of data which may
  90 * be transferred in one command. If this value is too low, the SD card
  91 * controller has to do multiple partial block writes (argggh!). With
  92 * today (2008) SD cards there is little speed gain if we transfer more
  93 * than 64 KBytes at a time. So use this value until there is any indication
  94 * that we should do more here.
  95 */
  96#define MMC_SPI_BLOCKSATONCE    128
  97
  98/****************************************************************************/
  99
 100/*
 101 * Local Data Structures
 102 */
 103
 104/* "scratch" is per-{command,block} data exchanged with the card */
 105struct scratch {
 106        u8                      status[29];
 107        u8                      data_token;
 108        __be16                  crc_val;
 109};
 110
 111struct mmc_spi_host {
 112        struct mmc_host         *mmc;
 113        struct spi_device       *spi;
 114
 115        unsigned char           power_mode;
 116        u16                     powerup_msecs;
 117
 118        struct mmc_spi_platform_data    *pdata;
 119
 120        /* for bulk data transfers */
 121        struct spi_transfer     token, t, crc, early_status;
 122        struct spi_message      m;
 123
 124        /* for status readback */
 125        struct spi_transfer     status;
 126        struct spi_message      readback;
 127
 128        /* underlying DMA-aware controller, or null */
 129        struct device           *dma_dev;
 130
 131        /* buffer used for commands and for message "overhead" */
 132        struct scratch          *data;
 133        dma_addr_t              data_dma;
 134
 135        /* Specs say to write ones most of the time, even when the card
 136         * has no need to read its input data; and many cards won't care.
 137         * This is our source of those ones.
 138         */
 139        void                    *ones;
 140        dma_addr_t              ones_dma;
 141};
 142
 143
 144/****************************************************************************/
 145
 146/*
 147 * MMC-over-SPI protocol glue, used by the MMC stack interface
 148 */
 149
 150static inline int mmc_cs_off(struct mmc_spi_host *host)
 151{
 152        /* chipselect will always be inactive after setup() */
 153        return spi_setup(host->spi);
 154}
 155
 156static int
 157mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 158{
 159        int status;
 160
 161        if (len > sizeof(*host->data)) {
 162                WARN_ON(1);
 163                return -EIO;
 164        }
 165
 166        host->status.len = len;
 167
 168        if (host->dma_dev)
 169                dma_sync_single_for_device(host->dma_dev,
 170                                host->data_dma, sizeof(*host->data),
 171                                DMA_FROM_DEVICE);
 172
 173        status = spi_sync_locked(host->spi, &host->readback);
 174
 175        if (host->dma_dev)
 176                dma_sync_single_for_cpu(host->dma_dev,
 177                                host->data_dma, sizeof(*host->data),
 178                                DMA_FROM_DEVICE);
 179
 180        return status;
 181}
 182
 183static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 184                        unsigned n, u8 byte)
 185{
 186        u8 *cp = host->data->status;
 187        unsigned long start = jiffies;
 188
 189        while (1) {
 190                int             status;
 191                unsigned        i;
 192
 193                status = mmc_spi_readbytes(host, n);
 194                if (status < 0)
 195                        return status;
 196
 197                for (i = 0; i < n; i++) {
 198                        if (cp[i] != byte)
 199                                return cp[i];
 200                }
 201
 202                if (time_is_before_jiffies(start + timeout))
 203                        break;
 204
 205                /* If we need long timeouts, we may release the CPU.
 206                 * We use jiffies here because we want to have a relation
 207                 * between elapsed time and the blocking of the scheduler.
 208                 */
 209                if (time_is_before_jiffies(start + 1))
 210                        schedule();
 211        }
 212        return -ETIMEDOUT;
 213}
 214
 215static inline int
 216mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 217{
 218        return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 219}
 220
 221static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 222{
 223        return mmc_spi_skip(host, timeout, 1, 0xff);
 224}
 225
 226
 227/*
 228 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 229 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 230 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 231 *
 232 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 233 * newer cards R7 (IF_COND).
 234 */
 235
 236static char *maptype(struct mmc_command *cmd)
 237{
 238        switch (mmc_spi_resp_type(cmd)) {
 239        case MMC_RSP_SPI_R1:    return "R1";
 240        case MMC_RSP_SPI_R1B:   return "R1B";
 241        case MMC_RSP_SPI_R2:    return "R2/R5";
 242        case MMC_RSP_SPI_R3:    return "R3/R4/R7";
 243        default:                return "?";
 244        }
 245}
 246
 247/* return zero, else negative errno after setting cmd->error */
 248static int mmc_spi_response_get(struct mmc_spi_host *host,
 249                struct mmc_command *cmd, int cs_on)
 250{
 251        u8      *cp = host->data->status;
 252        u8      *end = cp + host->t.len;
 253        int     value = 0;
 254        int     bitshift;
 255        u8      leftover = 0;
 256        unsigned short rotator;
 257        int     i;
 258        char    tag[32];
 259
 260        snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 261                cmd->opcode, maptype(cmd));
 262
 263        /* Except for data block reads, the whole response will already
 264         * be stored in the scratch buffer.  It's somewhere after the
 265         * command and the first byte we read after it.  We ignore that
 266         * first byte.  After STOP_TRANSMISSION command it may include
 267         * two data bits, but otherwise it's all ones.
 268         */
 269        cp += 8;
 270        while (cp < end && *cp == 0xff)
 271                cp++;
 272
 273        /* Data block reads (R1 response types) may need more data... */
 274        if (cp == end) {
 275                cp = host->data->status;
 276                end = cp+1;
 277
 278                /* Card sends N(CR) (== 1..8) bytes of all-ones then one
 279                 * status byte ... and we already scanned 2 bytes.
 280                 *
 281                 * REVISIT block read paths use nasty byte-at-a-time I/O
 282                 * so it can always DMA directly into the target buffer.
 283                 * It'd probably be better to memcpy() the first chunk and
 284                 * avoid extra i/o calls...
 285                 *
 286                 * Note we check for more than 8 bytes, because in practice,
 287                 * some SD cards are slow...
 288                 */
 289                for (i = 2; i < 16; i++) {
 290                        value = mmc_spi_readbytes(host, 1);
 291                        if (value < 0)
 292                                goto done;
 293                        if (*cp != 0xff)
 294                                goto checkstatus;
 295                }
 296                value = -ETIMEDOUT;
 297                goto done;
 298        }
 299
 300checkstatus:
 301        bitshift = 0;
 302        if (*cp & 0x80) {
 303                /* Houston, we have an ugly card with a bit-shifted response */
 304                rotator = *cp++ << 8;
 305                /* read the next byte */
 306                if (cp == end) {
 307                        value = mmc_spi_readbytes(host, 1);
 308                        if (value < 0)
 309                                goto done;
 310                        cp = host->data->status;
 311                        end = cp+1;
 312                }
 313                rotator |= *cp++;
 314                while (rotator & 0x8000) {
 315                        bitshift++;
 316                        rotator <<= 1;
 317                }
 318                cmd->resp[0] = rotator >> 8;
 319                leftover = rotator;
 320        } else {
 321                cmd->resp[0] = *cp++;
 322        }
 323        cmd->error = 0;
 324
 325        /* Status byte: the entire seven-bit R1 response.  */
 326        if (cmd->resp[0] != 0) {
 327                if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 328                                & cmd->resp[0])
 329                        value = -EFAULT; /* Bad address */
 330                else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 331                        value = -ENOSYS; /* Function not implemented */
 332                else if (R1_SPI_COM_CRC & cmd->resp[0])
 333                        value = -EILSEQ; /* Illegal byte sequence */
 334                else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 335                                & cmd->resp[0])
 336                        value = -EIO;    /* I/O error */
 337                /* else R1_SPI_IDLE, "it's resetting" */
 338        }
 339
 340        switch (mmc_spi_resp_type(cmd)) {
 341
 342        /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 343         * and less-common stuff like various erase operations.
 344         */
 345        case MMC_RSP_SPI_R1B:
 346                /* maybe we read all the busy tokens already */
 347                while (cp < end && *cp == 0)
 348                        cp++;
 349                if (cp == end)
 350                        mmc_spi_wait_unbusy(host, r1b_timeout);
 351                break;
 352
 353        /* SPI R2 == R1 + second status byte; SEND_STATUS
 354         * SPI R5 == R1 + data byte; IO_RW_DIRECT
 355         */
 356        case MMC_RSP_SPI_R2:
 357                /* read the next byte */
 358                if (cp == end) {
 359                        value = mmc_spi_readbytes(host, 1);
 360                        if (value < 0)
 361                                goto done;
 362                        cp = host->data->status;
 363                        end = cp+1;
 364                }
 365                if (bitshift) {
 366                        rotator = leftover << 8;
 367                        rotator |= *cp << bitshift;
 368                        cmd->resp[0] |= (rotator & 0xFF00);
 369                } else {
 370                        cmd->resp[0] |= *cp << 8;
 371                }
 372                break;
 373
 374        /* SPI R3, R4, or R7 == R1 + 4 bytes */
 375        case MMC_RSP_SPI_R3:
 376                rotator = leftover << 8;
 377                cmd->resp[1] = 0;
 378                for (i = 0; i < 4; i++) {
 379                        cmd->resp[1] <<= 8;
 380                        /* read the next byte */
 381                        if (cp == end) {
 382                                value = mmc_spi_readbytes(host, 1);
 383                                if (value < 0)
 384                                        goto done;
 385                                cp = host->data->status;
 386                                end = cp+1;
 387                        }
 388                        if (bitshift) {
 389                                rotator |= *cp++ << bitshift;
 390                                cmd->resp[1] |= (rotator >> 8);
 391                                rotator <<= 8;
 392                        } else {
 393                                cmd->resp[1] |= *cp++;
 394                        }
 395                }
 396                break;
 397
 398        /* SPI R1 == just one status byte */
 399        case MMC_RSP_SPI_R1:
 400                break;
 401
 402        default:
 403                dev_dbg(&host->spi->dev, "bad response type %04x\n",
 404                        mmc_spi_resp_type(cmd));
 405                if (value >= 0)
 406                        value = -EINVAL;
 407                goto done;
 408        }
 409
 410        if (value < 0)
 411                dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 412                        tag, cmd->resp[0], cmd->resp[1]);
 413
 414        /* disable chipselect on errors and some success cases */
 415        if (value >= 0 && cs_on)
 416                return value;
 417done:
 418        if (value < 0)
 419                cmd->error = value;
 420        mmc_cs_off(host);
 421        return value;
 422}
 423
 424/* Issue command and read its response.
 425 * Returns zero on success, negative for error.
 426 *
 427 * On error, caller must cope with mmc core retry mechanism.  That
 428 * means immediate low-level resubmit, which affects the bus lock...
 429 */
 430static int
 431mmc_spi_command_send(struct mmc_spi_host *host,
 432                struct mmc_request *mrq,
 433                struct mmc_command *cmd, int cs_on)
 434{
 435        struct scratch          *data = host->data;
 436        u8                      *cp = data->status;
 437        int                     status;
 438        struct spi_transfer     *t;
 439
 440        /* We can handle most commands (except block reads) in one full
 441         * duplex I/O operation before either starting the next transfer
 442         * (data block or command) or else deselecting the card.
 443         *
 444         * First, write 7 bytes:
 445         *  - an all-ones byte to ensure the card is ready
 446         *  - opcode byte (plus start and transmission bits)
 447         *  - four bytes of big-endian argument
 448         *  - crc7 (plus end bit) ... always computed, it's cheap
 449         *
 450         * We init the whole buffer to all-ones, which is what we need
 451         * to write while we're reading (later) response data.
 452         */
 453        memset(cp, 0xff, sizeof(data->status));
 454
 455        cp[1] = 0x40 | cmd->opcode;
 456        put_unaligned_be32(cmd->arg, cp + 2);
 457        cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
 458        cp += 7;
 459
 460        /* Then, read up to 13 bytes (while writing all-ones):
 461         *  - N(CR) (== 1..8) bytes of all-ones
 462         *  - status byte (for all response types)
 463         *  - the rest of the response, either:
 464         *      + nothing, for R1 or R1B responses
 465         *      + second status byte, for R2 responses
 466         *      + four data bytes, for R3 and R7 responses
 467         *
 468         * Finally, read some more bytes ... in the nice cases we know in
 469         * advance how many, and reading 1 more is always OK:
 470         *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 471         *  - N(RC) (== 1..N) bytes of all-ones, before next command
 472         *  - N(WR) (== 1..N) bytes of all-ones, before data write
 473         *
 474         * So in those cases one full duplex I/O of at most 21 bytes will
 475         * handle the whole command, leaving the card ready to receive a
 476         * data block or new command.  We do that whenever we can, shaving
 477         * CPU and IRQ costs (especially when using DMA or FIFOs).
 478         *
 479         * There are two other cases, where it's not generally practical
 480         * to rely on a single I/O:
 481         *
 482         *  - R1B responses need at least N(EC) bytes of all-zeroes.
 483         *
 484         *    In this case we can *try* to fit it into one I/O, then
 485         *    maybe read more data later.
 486         *
 487         *  - Data block reads are more troublesome, since a variable
 488         *    number of padding bytes precede the token and data.
 489         *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 490         *      + N(AC) (== 1..many) bytes of all-ones
 491         *
 492         *    In this case we currently only have minimal speedups here:
 493         *    when N(CR) == 1 we can avoid I/O in response_get().
 494         */
 495        if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 496                cp += 2;        /* min(N(CR)) + status */
 497                /* R1 */
 498        } else {
 499                cp += 10;       /* max(N(CR)) + status + min(N(RC),N(WR)) */
 500                if (cmd->flags & MMC_RSP_SPI_S2)        /* R2/R5 */
 501                        cp++;
 502                else if (cmd->flags & MMC_RSP_SPI_B4)   /* R3/R4/R7 */
 503                        cp += 4;
 504                else if (cmd->flags & MMC_RSP_BUSY)     /* R1B */
 505                        cp = data->status + sizeof(data->status);
 506                /* else:  R1 (most commands) */
 507        }
 508
 509        dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 510                cmd->opcode, maptype(cmd));
 511
 512        /* send command, leaving chipselect active */
 513        spi_message_init(&host->m);
 514
 515        t = &host->t;
 516        memset(t, 0, sizeof(*t));
 517        t->tx_buf = t->rx_buf = data->status;
 518        t->tx_dma = t->rx_dma = host->data_dma;
 519        t->len = cp - data->status;
 520        t->cs_change = 1;
 521        spi_message_add_tail(t, &host->m);
 522
 523        if (host->dma_dev) {
 524                host->m.is_dma_mapped = 1;
 525                dma_sync_single_for_device(host->dma_dev,
 526                                host->data_dma, sizeof(*host->data),
 527                                DMA_BIDIRECTIONAL);
 528        }
 529        status = spi_sync_locked(host->spi, &host->m);
 530
 531        if (host->dma_dev)
 532                dma_sync_single_for_cpu(host->dma_dev,
 533                                host->data_dma, sizeof(*host->data),
 534                                DMA_BIDIRECTIONAL);
 535        if (status < 0) {
 536                dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 537                cmd->error = status;
 538                return status;
 539        }
 540
 541        /* after no-data commands and STOP_TRANSMISSION, chipselect off */
 542        return mmc_spi_response_get(host, cmd, cs_on);
 543}
 544
 545/* Build data message with up to four separate transfers.  For TX, we
 546 * start by writing the data token.  And in most cases, we finish with
 547 * a status transfer.
 548 *
 549 * We always provide TX data for data and CRC.  The MMC/SD protocol
 550 * requires us to write ones; but Linux defaults to writing zeroes;
 551 * so we explicitly initialize it to all ones on RX paths.
 552 *
 553 * We also handle DMA mapping, so the underlying SPI controller does
 554 * not need to (re)do it for each message.
 555 */
 556static void
 557mmc_spi_setup_data_message(
 558        struct mmc_spi_host     *host,
 559        int                     multiple,
 560        enum dma_data_direction direction)
 561{
 562        struct spi_transfer     *t;
 563        struct scratch          *scratch = host->data;
 564        dma_addr_t              dma = host->data_dma;
 565
 566        spi_message_init(&host->m);
 567        if (dma)
 568                host->m.is_dma_mapped = 1;
 569
 570        /* for reads, readblock() skips 0xff bytes before finding
 571         * the token; for writes, this transfer issues that token.
 572         */
 573        if (direction == DMA_TO_DEVICE) {
 574                t = &host->token;
 575                memset(t, 0, sizeof(*t));
 576                t->len = 1;
 577                if (multiple)
 578                        scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 579                else
 580                        scratch->data_token = SPI_TOKEN_SINGLE;
 581                t->tx_buf = &scratch->data_token;
 582                if (dma)
 583                        t->tx_dma = dma + offsetof(struct scratch, data_token);
 584                spi_message_add_tail(t, &host->m);
 585        }
 586
 587        /* Body of transfer is buffer, then CRC ...
 588         * either TX-only, or RX with TX-ones.
 589         */
 590        t = &host->t;
 591        memset(t, 0, sizeof(*t));
 592        t->tx_buf = host->ones;
 593        t->tx_dma = host->ones_dma;
 594        /* length and actual buffer info are written later */
 595        spi_message_add_tail(t, &host->m);
 596
 597        t = &host->crc;
 598        memset(t, 0, sizeof(*t));
 599        t->len = 2;
 600        if (direction == DMA_TO_DEVICE) {
 601                /* the actual CRC may get written later */
 602                t->tx_buf = &scratch->crc_val;
 603                if (dma)
 604                        t->tx_dma = dma + offsetof(struct scratch, crc_val);
 605        } else {
 606                t->tx_buf = host->ones;
 607                t->tx_dma = host->ones_dma;
 608                t->rx_buf = &scratch->crc_val;
 609                if (dma)
 610                        t->rx_dma = dma + offsetof(struct scratch, crc_val);
 611        }
 612        spi_message_add_tail(t, &host->m);
 613
 614        /*
 615         * A single block read is followed by N(EC) [0+] all-ones bytes
 616         * before deselect ... don't bother.
 617         *
 618         * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 619         * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 620         * collect that single byte, so readblock() doesn't need to.
 621         *
 622         * For a write, the one-byte data response follows immediately, then
 623         * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 624         * Then single block reads may deselect, and multiblock ones issue
 625         * the next token (next data block, or STOP_TRAN).  We can try to
 626         * minimize I/O ops by using a single read to collect end-of-busy.
 627         */
 628        if (multiple || direction == DMA_TO_DEVICE) {
 629                t = &host->early_status;
 630                memset(t, 0, sizeof(*t));
 631                t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
 632                t->tx_buf = host->ones;
 633                t->tx_dma = host->ones_dma;
 634                t->rx_buf = scratch->status;
 635                if (dma)
 636                        t->rx_dma = dma + offsetof(struct scratch, status);
 637                t->cs_change = 1;
 638                spi_message_add_tail(t, &host->m);
 639        }
 640}
 641
 642/*
 643 * Write one block:
 644 *  - caller handled preceding N(WR) [1+] all-ones bytes
 645 *  - data block
 646 *      + token
 647 *      + data bytes
 648 *      + crc16
 649 *  - an all-ones byte ... card writes a data-response byte
 650 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 651 *
 652 * Return negative errno, else success.
 653 */
 654static int
 655mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 656        unsigned long timeout)
 657{
 658        struct spi_device       *spi = host->spi;
 659        int                     status, i;
 660        struct scratch          *scratch = host->data;
 661        u32                     pattern;
 662
 663        if (host->mmc->use_spi_crc)
 664                scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
 665        if (host->dma_dev)
 666                dma_sync_single_for_device(host->dma_dev,
 667                                host->data_dma, sizeof(*scratch),
 668                                DMA_BIDIRECTIONAL);
 669
 670        status = spi_sync_locked(spi, &host->m);
 671
 672        if (status != 0) {
 673                dev_dbg(&spi->dev, "write error (%d)\n", status);
 674                return status;
 675        }
 676
 677        if (host->dma_dev)
 678                dma_sync_single_for_cpu(host->dma_dev,
 679                                host->data_dma, sizeof(*scratch),
 680                                DMA_BIDIRECTIONAL);
 681
 682        /*
 683         * Get the transmission data-response reply.  It must follow
 684         * immediately after the data block we transferred.  This reply
 685         * doesn't necessarily tell whether the write operation succeeded;
 686         * it just says if the transmission was ok and whether *earlier*
 687         * writes succeeded; see the standard.
 688         *
 689         * In practice, there are (even modern SDHC-)cards which are late
 690         * in sending the response, and miss the time frame by a few bits,
 691         * so we have to cope with this situation and check the response
 692         * bit-by-bit. Arggh!!!
 693         */
 694        pattern = get_unaligned_be32(scratch->status);
 695
 696        /* First 3 bit of pattern are undefined */
 697        pattern |= 0xE0000000;
 698
 699        /* left-adjust to leading 0 bit */
 700        while (pattern & 0x80000000)
 701                pattern <<= 1;
 702        /* right-adjust for pattern matching. Code is in bit 4..0 now. */
 703        pattern >>= 27;
 704
 705        switch (pattern) {
 706        case SPI_RESPONSE_ACCEPTED:
 707                status = 0;
 708                break;
 709        case SPI_RESPONSE_CRC_ERR:
 710                /* host shall then issue MMC_STOP_TRANSMISSION */
 711                status = -EILSEQ;
 712                break;
 713        case SPI_RESPONSE_WRITE_ERR:
 714                /* host shall then issue MMC_STOP_TRANSMISSION,
 715                 * and should MMC_SEND_STATUS to sort it out
 716                 */
 717                status = -EIO;
 718                break;
 719        default:
 720                status = -EPROTO;
 721                break;
 722        }
 723        if (status != 0) {
 724                dev_dbg(&spi->dev, "write error %02x (%d)\n",
 725                        scratch->status[0], status);
 726                return status;
 727        }
 728
 729        t->tx_buf += t->len;
 730        if (host->dma_dev)
 731                t->tx_dma += t->len;
 732
 733        /* Return when not busy.  If we didn't collect that status yet,
 734         * we'll need some more I/O.
 735         */
 736        for (i = 4; i < sizeof(scratch->status); i++) {
 737                /* card is non-busy if the most recent bit is 1 */
 738                if (scratch->status[i] & 0x01)
 739                        return 0;
 740        }
 741        return mmc_spi_wait_unbusy(host, timeout);
 742}
 743
 744/*
 745 * Read one block:
 746 *  - skip leading all-ones bytes ... either
 747 *      + N(AC) [1..f(clock,CSD)] usually, else
 748 *      + N(CX) [0..8] when reading CSD or CID
 749 *  - data block
 750 *      + token ... if error token, no data or crc
 751 *      + data bytes
 752 *      + crc16
 753 *
 754 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 755 * before dropping chipselect.
 756 *
 757 * For multiblock reads, caller either reads the next block or issues a
 758 * STOP_TRANSMISSION command.
 759 */
 760static int
 761mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 762        unsigned long timeout)
 763{
 764        struct spi_device       *spi = host->spi;
 765        int                     status;
 766        struct scratch          *scratch = host->data;
 767        unsigned int            bitshift;
 768        u8                      leftover;
 769
 770        /* At least one SD card sends an all-zeroes byte when N(CX)
 771         * applies, before the all-ones bytes ... just cope with that.
 772         */
 773        status = mmc_spi_readbytes(host, 1);
 774        if (status < 0)
 775                return status;
 776        status = scratch->status[0];
 777        if (status == 0xff || status == 0)
 778                status = mmc_spi_readtoken(host, timeout);
 779
 780        if (status < 0) {
 781                dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 782                return status;
 783        }
 784
 785        /* The token may be bit-shifted...
 786         * the first 0-bit precedes the data stream.
 787         */
 788        bitshift = 7;
 789        while (status & 0x80) {
 790                status <<= 1;
 791                bitshift--;
 792        }
 793        leftover = status << 1;
 794
 795        if (host->dma_dev) {
 796                dma_sync_single_for_device(host->dma_dev,
 797                                host->data_dma, sizeof(*scratch),
 798                                DMA_BIDIRECTIONAL);
 799                dma_sync_single_for_device(host->dma_dev,
 800                                t->rx_dma, t->len,
 801                                DMA_FROM_DEVICE);
 802        }
 803
 804        status = spi_sync_locked(spi, &host->m);
 805        if (status < 0) {
 806                dev_dbg(&spi->dev, "read error %d\n", status);
 807                return status;
 808        }
 809
 810        if (host->dma_dev) {
 811                dma_sync_single_for_cpu(host->dma_dev,
 812                                host->data_dma, sizeof(*scratch),
 813                                DMA_BIDIRECTIONAL);
 814                dma_sync_single_for_cpu(host->dma_dev,
 815                                t->rx_dma, t->len,
 816                                DMA_FROM_DEVICE);
 817        }
 818
 819        if (bitshift) {
 820                /* Walk through the data and the crc and do
 821                 * all the magic to get byte-aligned data.
 822                 */
 823                u8 *cp = t->rx_buf;
 824                unsigned int len;
 825                unsigned int bitright = 8 - bitshift;
 826                u8 temp;
 827                for (len = t->len; len; len--) {
 828                        temp = *cp;
 829                        *cp++ = leftover | (temp >> bitshift);
 830                        leftover = temp << bitright;
 831                }
 832                cp = (u8 *) &scratch->crc_val;
 833                temp = *cp;
 834                *cp++ = leftover | (temp >> bitshift);
 835                leftover = temp << bitright;
 836                temp = *cp;
 837                *cp = leftover | (temp >> bitshift);
 838        }
 839
 840        if (host->mmc->use_spi_crc) {
 841                u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 842
 843                be16_to_cpus(&scratch->crc_val);
 844                if (scratch->crc_val != crc) {
 845                        dev_dbg(&spi->dev,
 846                                "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
 847                                scratch->crc_val, crc, t->len);
 848                        return -EILSEQ;
 849                }
 850        }
 851
 852        t->rx_buf += t->len;
 853        if (host->dma_dev)
 854                t->rx_dma += t->len;
 855
 856        return 0;
 857}
 858
 859/*
 860 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 861 * and inline handshaking.  That handhaking makes it unlike most
 862 * other SPI protocol stacks.
 863 */
 864static void
 865mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 866                struct mmc_data *data, u32 blk_size)
 867{
 868        struct spi_device       *spi = host->spi;
 869        struct device           *dma_dev = host->dma_dev;
 870        struct spi_transfer     *t;
 871        enum dma_data_direction direction;
 872        struct scatterlist      *sg;
 873        unsigned                n_sg;
 874        int                     multiple = (data->blocks > 1);
 875        u32                     clock_rate;
 876        unsigned long           timeout;
 877
 878        direction = mmc_get_dma_dir(data);
 879        mmc_spi_setup_data_message(host, multiple, direction);
 880        t = &host->t;
 881
 882        if (t->speed_hz)
 883                clock_rate = t->speed_hz;
 884        else
 885                clock_rate = spi->max_speed_hz;
 886
 887        timeout = data->timeout_ns +
 888                  data->timeout_clks * 1000000 / clock_rate;
 889        timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
 890
 891        /* Handle scatterlist segments one at a time, with synch for
 892         * each 512-byte block
 893         */
 894        for_each_sg(data->sg, sg, data->sg_len, n_sg) {
 895                int                     status = 0;
 896                dma_addr_t              dma_addr = 0;
 897                void                    *kmap_addr;
 898                unsigned                length = sg->length;
 899                enum dma_data_direction dir = direction;
 900
 901                /* set up dma mapping for controller drivers that might
 902                 * use DMA ... though they may fall back to PIO
 903                 */
 904                if (dma_dev) {
 905                        /* never invalidate whole *shared* pages ... */
 906                        if ((sg->offset != 0 || length != PAGE_SIZE)
 907                                        && dir == DMA_FROM_DEVICE)
 908                                dir = DMA_BIDIRECTIONAL;
 909
 910                        dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 911                                                PAGE_SIZE, dir);
 912                        if (dma_mapping_error(dma_dev, dma_addr)) {
 913                                data->error = -EFAULT;
 914                                break;
 915                        }
 916                        if (direction == DMA_TO_DEVICE)
 917                                t->tx_dma = dma_addr + sg->offset;
 918                        else
 919                                t->rx_dma = dma_addr + sg->offset;
 920                }
 921
 922                /* allow pio too; we don't allow highmem */
 923                kmap_addr = kmap(sg_page(sg));
 924                if (direction == DMA_TO_DEVICE)
 925                        t->tx_buf = kmap_addr + sg->offset;
 926                else
 927                        t->rx_buf = kmap_addr + sg->offset;
 928
 929                /* transfer each block, and update request status */
 930                while (length) {
 931                        t->len = min(length, blk_size);
 932
 933                        dev_dbg(&host->spi->dev,
 934                                "    mmc_spi: %s block, %d bytes\n",
 935                                (direction == DMA_TO_DEVICE) ? "write" : "read",
 936                                t->len);
 937
 938                        if (direction == DMA_TO_DEVICE)
 939                                status = mmc_spi_writeblock(host, t, timeout);
 940                        else
 941                                status = mmc_spi_readblock(host, t, timeout);
 942                        if (status < 0)
 943                                break;
 944
 945                        data->bytes_xfered += t->len;
 946                        length -= t->len;
 947
 948                        if (!multiple)
 949                                break;
 950                }
 951
 952                /* discard mappings */
 953                if (direction == DMA_FROM_DEVICE)
 954                        flush_kernel_dcache_page(sg_page(sg));
 955                kunmap(sg_page(sg));
 956                if (dma_dev)
 957                        dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 958
 959                if (status < 0) {
 960                        data->error = status;
 961                        dev_dbg(&spi->dev, "%s status %d\n",
 962                                (direction == DMA_TO_DEVICE) ? "write" : "read",
 963                                status);
 964                        break;
 965                }
 966        }
 967
 968        /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 969         * can be issued before multiblock writes.  Unlike its more widely
 970         * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 971         * that can affect the STOP_TRAN logic.   Complete (and current)
 972         * MMC specs should sort that out before Linux starts using CMD23.
 973         */
 974        if (direction == DMA_TO_DEVICE && multiple) {
 975                struct scratch  *scratch = host->data;
 976                int             tmp;
 977                const unsigned  statlen = sizeof(scratch->status);
 978
 979                dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
 980
 981                /* Tweak the per-block message we set up earlier by morphing
 982                 * it to hold single buffer with the token followed by some
 983                 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
 984                 * "not busy any longer" status, and leave chip selected.
 985                 */
 986                INIT_LIST_HEAD(&host->m.transfers);
 987                list_add(&host->early_status.transfer_list,
 988                                &host->m.transfers);
 989
 990                memset(scratch->status, 0xff, statlen);
 991                scratch->status[0] = SPI_TOKEN_STOP_TRAN;
 992
 993                host->early_status.tx_buf = host->early_status.rx_buf;
 994                host->early_status.tx_dma = host->early_status.rx_dma;
 995                host->early_status.len = statlen;
 996
 997                if (host->dma_dev)
 998                        dma_sync_single_for_device(host->dma_dev,
 999                                        host->data_dma, sizeof(*scratch),
1000                                        DMA_BIDIRECTIONAL);
1001
1002                tmp = spi_sync_locked(spi, &host->m);
1003
1004                if (host->dma_dev)
1005                        dma_sync_single_for_cpu(host->dma_dev,
1006                                        host->data_dma, sizeof(*scratch),
1007                                        DMA_BIDIRECTIONAL);
1008
1009                if (tmp < 0) {
1010                        if (!data->error)
1011                                data->error = tmp;
1012                        return;
1013                }
1014
1015                /* Ideally we collected "not busy" status with one I/O,
1016                 * avoiding wasteful byte-at-a-time scanning... but more
1017                 * I/O is often needed.
1018                 */
1019                for (tmp = 2; tmp < statlen; tmp++) {
1020                        if (scratch->status[tmp] != 0)
1021                                return;
1022                }
1023                tmp = mmc_spi_wait_unbusy(host, timeout);
1024                if (tmp < 0 && !data->error)
1025                        data->error = tmp;
1026        }
1027}
1028
1029/****************************************************************************/
1030
1031/*
1032 * MMC driver implementation -- the interface to the MMC stack
1033 */
1034
1035static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1036{
1037        struct mmc_spi_host     *host = mmc_priv(mmc);
1038        int                     status = -EINVAL;
1039        int                     crc_retry = 5;
1040        struct mmc_command      stop;
1041
1042#ifdef DEBUG
1043        /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1044        {
1045                struct mmc_command      *cmd;
1046                int                     invalid = 0;
1047
1048                cmd = mrq->cmd;
1049                if (!mmc_spi_resp_type(cmd)) {
1050                        dev_dbg(&host->spi->dev, "bogus command\n");
1051                        cmd->error = -EINVAL;
1052                        invalid = 1;
1053                }
1054
1055                cmd = mrq->stop;
1056                if (cmd && !mmc_spi_resp_type(cmd)) {
1057                        dev_dbg(&host->spi->dev, "bogus STOP command\n");
1058                        cmd->error = -EINVAL;
1059                        invalid = 1;
1060                }
1061
1062                if (invalid) {
1063                        dump_stack();
1064                        mmc_request_done(host->mmc, mrq);
1065                        return;
1066                }
1067        }
1068#endif
1069
1070        /* request exclusive bus access */
1071        spi_bus_lock(host->spi->master);
1072
1073crc_recover:
1074        /* issue command; then optionally data and stop */
1075        status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1076        if (status == 0 && mrq->data) {
1077                mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1078
1079                /*
1080                 * The SPI bus is not always reliable for large data transfers.
1081                 * If an occasional crc error is reported by the SD device with
1082                 * data read/write over SPI, it may be recovered by repeating
1083                 * the last SD command again. The retry count is set to 5 to
1084                 * ensure the driver passes stress tests.
1085                 */
1086                if (mrq->data->error == -EILSEQ && crc_retry) {
1087                        stop.opcode = MMC_STOP_TRANSMISSION;
1088                        stop.arg = 0;
1089                        stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1090                        status = mmc_spi_command_send(host, mrq, &stop, 0);
1091                        crc_retry--;
1092                        mrq->data->error = 0;
1093                        goto crc_recover;
1094                }
1095
1096                if (mrq->stop)
1097                        status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1098                else
1099                        mmc_cs_off(host);
1100        }
1101
1102        /* release the bus */
1103        spi_bus_unlock(host->spi->master);
1104
1105        mmc_request_done(host->mmc, mrq);
1106}
1107
1108/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1109 *
1110 * NOTE that here we can't know that the card has just been powered up;
1111 * not all MMC/SD sockets support power switching.
1112 *
1113 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1114 * this doesn't seem to do the right thing at all...
1115 */
1116static void mmc_spi_initsequence(struct mmc_spi_host *host)
1117{
1118        /* Try to be very sure any previous command has completed;
1119         * wait till not-busy, skip debris from any old commands.
1120         */
1121        mmc_spi_wait_unbusy(host, r1b_timeout);
1122        mmc_spi_readbytes(host, 10);
1123
1124        /*
1125         * Do a burst with chipselect active-high.  We need to do this to
1126         * meet the requirement of 74 clock cycles with both chipselect
1127         * and CMD (MOSI) high before CMD0 ... after the card has been
1128         * powered up to Vdd(min), and so is ready to take commands.
1129         *
1130         * Some cards are particularly needy of this (e.g. Viking "SD256")
1131         * while most others don't seem to care.
1132         *
1133         * Note that this is one of the places MMC/SD plays games with the
1134         * SPI protocol.  Another is that when chipselect is released while
1135         * the card returns BUSY status, the clock must issue several cycles
1136         * with chipselect high before the card will stop driving its output.
1137         *
1138         * SPI_CS_HIGH means "asserted" here. In some cases like when using
1139         * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1140         * inverted by gpiolib, so if we want to ascertain to drive it high
1141         * we should toggle the default with an XOR as we do here.
1142         */
1143        host->spi->mode ^= SPI_CS_HIGH;
1144        if (spi_setup(host->spi) != 0) {
1145                /* Just warn; most cards work without it. */
1146                dev_warn(&host->spi->dev,
1147                                "can't change chip-select polarity\n");
1148                host->spi->mode ^= SPI_CS_HIGH;
1149        } else {
1150                mmc_spi_readbytes(host, 18);
1151
1152                host->spi->mode ^= SPI_CS_HIGH;
1153                if (spi_setup(host->spi) != 0) {
1154                        /* Wot, we can't get the same setup we had before? */
1155                        dev_err(&host->spi->dev,
1156                                        "can't restore chip-select polarity\n");
1157                }
1158        }
1159}
1160
1161static char *mmc_powerstring(u8 power_mode)
1162{
1163        switch (power_mode) {
1164        case MMC_POWER_OFF: return "off";
1165        case MMC_POWER_UP:  return "up";
1166        case MMC_POWER_ON:  return "on";
1167        }
1168        return "?";
1169}
1170
1171static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1172{
1173        struct mmc_spi_host *host = mmc_priv(mmc);
1174
1175        if (host->power_mode != ios->power_mode) {
1176                int             canpower;
1177
1178                canpower = host->pdata && host->pdata->setpower;
1179
1180                dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1181                                mmc_powerstring(ios->power_mode),
1182                                ios->vdd,
1183                                canpower ? ", can switch" : "");
1184
1185                /* switch power on/off if possible, accounting for
1186                 * max 250msec powerup time if needed.
1187                 */
1188                if (canpower) {
1189                        switch (ios->power_mode) {
1190                        case MMC_POWER_OFF:
1191                        case MMC_POWER_UP:
1192                                host->pdata->setpower(&host->spi->dev,
1193                                                ios->vdd);
1194                                if (ios->power_mode == MMC_POWER_UP)
1195                                        msleep(host->powerup_msecs);
1196                        }
1197                }
1198
1199                /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1200                if (ios->power_mode == MMC_POWER_ON)
1201                        mmc_spi_initsequence(host);
1202
1203                /* If powering down, ground all card inputs to avoid power
1204                 * delivery from data lines!  On a shared SPI bus, this
1205                 * will probably be temporary; 6.4.2 of the simplified SD
1206                 * spec says this must last at least 1msec.
1207                 *
1208                 *   - Clock low means CPOL 0, e.g. mode 0
1209                 *   - MOSI low comes from writing zero
1210                 *   - Chipselect is usually active low...
1211                 */
1212                if (canpower && ios->power_mode == MMC_POWER_OFF) {
1213                        int mres;
1214                        u8 nullbyte = 0;
1215
1216                        host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1217                        mres = spi_setup(host->spi);
1218                        if (mres < 0)
1219                                dev_dbg(&host->spi->dev,
1220                                        "switch to SPI mode 0 failed\n");
1221
1222                        if (spi_write(host->spi, &nullbyte, 1) < 0)
1223                                dev_dbg(&host->spi->dev,
1224                                        "put spi signals to low failed\n");
1225
1226                        /*
1227                         * Now clock should be low due to spi mode 0;
1228                         * MOSI should be low because of written 0x00;
1229                         * chipselect should be low (it is active low)
1230                         * power supply is off, so now MMC is off too!
1231                         *
1232                         * FIXME no, chipselect can be high since the
1233                         * device is inactive and SPI_CS_HIGH is clear...
1234                         */
1235                        msleep(10);
1236                        if (mres == 0) {
1237                                host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1238                                mres = spi_setup(host->spi);
1239                                if (mres < 0)
1240                                        dev_dbg(&host->spi->dev,
1241                                                "switch back to SPI mode 3 failed\n");
1242                        }
1243                }
1244
1245                host->power_mode = ios->power_mode;
1246        }
1247
1248        if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1249                int             status;
1250
1251                host->spi->max_speed_hz = ios->clock;
1252                status = spi_setup(host->spi);
1253                dev_dbg(&host->spi->dev,
1254                        "mmc_spi:  clock to %d Hz, %d\n",
1255                        host->spi->max_speed_hz, status);
1256        }
1257}
1258
1259static const struct mmc_host_ops mmc_spi_ops = {
1260        .request        = mmc_spi_request,
1261        .set_ios        = mmc_spi_set_ios,
1262        .get_ro         = mmc_gpio_get_ro,
1263        .get_cd         = mmc_gpio_get_cd,
1264};
1265
1266
1267/****************************************************************************/
1268
1269/*
1270 * SPI driver implementation
1271 */
1272
1273static irqreturn_t
1274mmc_spi_detect_irq(int irq, void *mmc)
1275{
1276        struct mmc_spi_host *host = mmc_priv(mmc);
1277        u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1278
1279        mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1280        return IRQ_HANDLED;
1281}
1282
1283static int mmc_spi_probe(struct spi_device *spi)
1284{
1285        void                    *ones;
1286        struct mmc_host         *mmc;
1287        struct mmc_spi_host     *host;
1288        int                     status;
1289        bool                    has_ro = false;
1290
1291        /* We rely on full duplex transfers, mostly to reduce
1292         * per-transfer overheads (by making fewer transfers).
1293         */
1294        if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1295                return -EINVAL;
1296
1297        /* MMC and SD specs only seem to care that sampling is on the
1298         * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1299         * should be legit.  We'll use mode 0 since the steady state is 0,
1300         * which is appropriate for hotplugging, unless the platform data
1301         * specify mode 3 (if hardware is not compatible to mode 0).
1302         */
1303        if (spi->mode != SPI_MODE_3)
1304                spi->mode = SPI_MODE_0;
1305        spi->bits_per_word = 8;
1306
1307        status = spi_setup(spi);
1308        if (status < 0) {
1309                dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1310                                spi->mode, spi->max_speed_hz / 1000,
1311                                status);
1312                return status;
1313        }
1314
1315        /* We need a supply of ones to transmit.  This is the only time
1316         * the CPU touches these, so cache coherency isn't a concern.
1317         *
1318         * NOTE if many systems use more than one MMC-over-SPI connector
1319         * it'd save some memory to share this.  That's evidently rare.
1320         */
1321        status = -ENOMEM;
1322        ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1323        if (!ones)
1324                goto nomem;
1325        memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1326
1327        mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1328        if (!mmc)
1329                goto nomem;
1330
1331        mmc->ops = &mmc_spi_ops;
1332        mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1333        mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1334        mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1335        mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1336
1337        mmc->caps = MMC_CAP_SPI;
1338
1339        /* SPI doesn't need the lowspeed device identification thing for
1340         * MMC or SD cards, since it never comes up in open drain mode.
1341         * That's good; some SPI masters can't handle very low speeds!
1342         *
1343         * However, low speed SDIO cards need not handle over 400 KHz;
1344         * that's the only reason not to use a few MHz for f_min (until
1345         * the upper layer reads the target frequency from the CSD).
1346         */
1347        mmc->f_min = 400000;
1348        mmc->f_max = spi->max_speed_hz;
1349
1350        host = mmc_priv(mmc);
1351        host->mmc = mmc;
1352        host->spi = spi;
1353
1354        host->ones = ones;
1355
1356        /* Platform data is used to hook up things like card sensing
1357         * and power switching gpios.
1358         */
1359        host->pdata = mmc_spi_get_pdata(spi);
1360        if (host->pdata)
1361                mmc->ocr_avail = host->pdata->ocr_mask;
1362        if (!mmc->ocr_avail) {
1363                dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1364                mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1365        }
1366        if (host->pdata && host->pdata->setpower) {
1367                host->powerup_msecs = host->pdata->powerup_msecs;
1368                if (!host->powerup_msecs || host->powerup_msecs > 250)
1369                        host->powerup_msecs = 250;
1370        }
1371
1372        dev_set_drvdata(&spi->dev, mmc);
1373
1374        /* preallocate dma buffers */
1375        host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1376        if (!host->data)
1377                goto fail_nobuf1;
1378
1379        if (spi->master->dev.parent->dma_mask) {
1380                struct device   *dev = spi->master->dev.parent;
1381
1382                host->dma_dev = dev;
1383                host->ones_dma = dma_map_single(dev, ones,
1384                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1385                if (dma_mapping_error(dev, host->ones_dma))
1386                        goto fail_ones_dma;
1387                host->data_dma = dma_map_single(dev, host->data,
1388                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1389                if (dma_mapping_error(dev, host->data_dma))
1390                        goto fail_data_dma;
1391
1392                dma_sync_single_for_cpu(host->dma_dev,
1393                                host->data_dma, sizeof(*host->data),
1394                                DMA_BIDIRECTIONAL);
1395        }
1396
1397        /* setup message for status/busy readback */
1398        spi_message_init(&host->readback);
1399        host->readback.is_dma_mapped = (host->dma_dev != NULL);
1400
1401        spi_message_add_tail(&host->status, &host->readback);
1402        host->status.tx_buf = host->ones;
1403        host->status.tx_dma = host->ones_dma;
1404        host->status.rx_buf = &host->data->status;
1405        host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1406        host->status.cs_change = 1;
1407
1408        /* register card detect irq */
1409        if (host->pdata && host->pdata->init) {
1410                status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1411                if (status != 0)
1412                        goto fail_glue_init;
1413        }
1414
1415        /* pass platform capabilities, if any */
1416        if (host->pdata) {
1417                mmc->caps |= host->pdata->caps;
1418                mmc->caps2 |= host->pdata->caps2;
1419        }
1420
1421        status = mmc_add_host(mmc);
1422        if (status != 0)
1423                goto fail_add_host;
1424
1425        /*
1426         * Index 0 is card detect
1427         * Old boardfiles were specifying 1 ms as debounce
1428         */
1429        status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1430        if (status == -EPROBE_DEFER)
1431                goto fail_add_host;
1432        if (!status) {
1433                /*
1434                 * The platform has a CD GPIO signal that may support
1435                 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1436                 * if polling is needed or not.
1437                 */
1438                mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1439                mmc_gpiod_request_cd_irq(mmc);
1440        }
1441        mmc_detect_change(mmc, 0);
1442
1443        /* Index 1 is write protect/read only */
1444        status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1445        if (status == -EPROBE_DEFER)
1446                goto fail_add_host;
1447        if (!status)
1448                has_ro = true;
1449
1450        dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1451                        dev_name(&mmc->class_dev),
1452                        host->dma_dev ? "" : ", no DMA",
1453                        has_ro ? "" : ", no WP",
1454                        (host->pdata && host->pdata->setpower)
1455                                ? "" : ", no poweroff",
1456                        (mmc->caps & MMC_CAP_NEEDS_POLL)
1457                                ? ", cd polling" : "");
1458        return 0;
1459
1460fail_add_host:
1461        mmc_remove_host(mmc);
1462fail_glue_init:
1463        if (host->dma_dev)
1464                dma_unmap_single(host->dma_dev, host->data_dma,
1465                                sizeof(*host->data), DMA_BIDIRECTIONAL);
1466fail_data_dma:
1467        if (host->dma_dev)
1468                dma_unmap_single(host->dma_dev, host->ones_dma,
1469                                MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1470fail_ones_dma:
1471        kfree(host->data);
1472
1473fail_nobuf1:
1474        mmc_free_host(mmc);
1475        mmc_spi_put_pdata(spi);
1476
1477nomem:
1478        kfree(ones);
1479        return status;
1480}
1481
1482
1483static int mmc_spi_remove(struct spi_device *spi)
1484{
1485        struct mmc_host         *mmc = dev_get_drvdata(&spi->dev);
1486        struct mmc_spi_host     *host = mmc_priv(mmc);
1487
1488        /* prevent new mmc_detect_change() calls */
1489        if (host->pdata && host->pdata->exit)
1490                host->pdata->exit(&spi->dev, mmc);
1491
1492        mmc_remove_host(mmc);
1493
1494        if (host->dma_dev) {
1495                dma_unmap_single(host->dma_dev, host->ones_dma,
1496                        MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1497                dma_unmap_single(host->dma_dev, host->data_dma,
1498                        sizeof(*host->data), DMA_BIDIRECTIONAL);
1499        }
1500
1501        kfree(host->data);
1502        kfree(host->ones);
1503
1504        spi->max_speed_hz = mmc->f_max;
1505        mmc_free_host(mmc);
1506        mmc_spi_put_pdata(spi);
1507        return 0;
1508}
1509
1510static const struct of_device_id mmc_spi_of_match_table[] = {
1511        { .compatible = "mmc-spi-slot", },
1512        {},
1513};
1514MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1515
1516static struct spi_driver mmc_spi_driver = {
1517        .driver = {
1518                .name =         "mmc_spi",
1519                .of_match_table = mmc_spi_of_match_table,
1520        },
1521        .probe =        mmc_spi_probe,
1522        .remove =       mmc_spi_remove,
1523};
1524
1525module_spi_driver(mmc_spi_driver);
1526
1527MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1528MODULE_DESCRIPTION("SPI SD/MMC host driver");
1529MODULE_LICENSE("GPL");
1530MODULE_ALIAS("spi:mmc_spi");
1531