1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/dma-mapping.h>
40#include <linux/dmaengine.h>
41#include <linux/mmc/card.h>
42#include <linux/mmc/core.h>
43#include <linux/mmc/host.h>
44#include <linux/mmc/mmc.h>
45#include <linux/mmc/sdio.h>
46#include <linux/mmc/sh_mmcif.h>
47#include <linux/mmc/slot-gpio.h>
48#include <linux/mod_devicetable.h>
49#include <linux/mutex.h>
50#include <linux/of_device.h>
51#include <linux/pagemap.h>
52#include <linux/platform_device.h>
53#include <linux/pm_qos.h>
54#include <linux/pm_runtime.h>
55#include <linux/sh_dma.h>
56#include <linux/spinlock.h>
57#include <linux/module.h>
58
59#define DRIVER_NAME "sh_mmcif"
60
61
62#define CMD_MASK 0x3f000000
63#define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
64#define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22))
65#define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22))
66#define CMD_SET_RBSY (1 << 21)
67#define CMD_SET_CCSEN (1 << 20)
68#define CMD_SET_WDAT (1 << 19)
69#define CMD_SET_DWEN (1 << 18)
70#define CMD_SET_CMLTE (1 << 17)
71#define CMD_SET_CMD12EN (1 << 16)
72#define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14))
73#define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14))
74#define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14))
75#define CMD_SET_CRC7C ((0 << 13) | (0 << 12))
76#define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12))
77#define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12))
78#define CMD_SET_CRC16C (1 << 10)
79#define CMD_SET_CRCSTE (1 << 8)
80#define CMD_SET_TBIT (1 << 7)
81#define CMD_SET_OPDM (1 << 6)
82#define CMD_SET_CCSH (1 << 5)
83#define CMD_SET_DARS (1 << 2)
84#define CMD_SET_DATW_1 ((0 << 1) | (0 << 0))
85#define CMD_SET_DATW_4 ((0 << 1) | (1 << 0))
86#define CMD_SET_DATW_8 ((1 << 1) | (0 << 0))
87
88
89#define CMD_CTRL_BREAK (1 << 0)
90
91
92#define BLOCK_SIZE_MASK 0x0000ffff
93
94
95#define INT_CCSDE (1 << 29)
96#define INT_CMD12DRE (1 << 26)
97#define INT_CMD12RBE (1 << 25)
98#define INT_CMD12CRE (1 << 24)
99#define INT_DTRANE (1 << 23)
100#define INT_BUFRE (1 << 22)
101#define INT_BUFWEN (1 << 21)
102#define INT_BUFREN (1 << 20)
103#define INT_CCSRCV (1 << 19)
104#define INT_RBSYE (1 << 17)
105#define INT_CRSPE (1 << 16)
106#define INT_CMDVIO (1 << 15)
107#define INT_BUFVIO (1 << 14)
108#define INT_WDATERR (1 << 11)
109#define INT_RDATERR (1 << 10)
110#define INT_RIDXERR (1 << 9)
111#define INT_RSPERR (1 << 8)
112#define INT_CCSTO (1 << 5)
113#define INT_CRCSTO (1 << 4)
114#define INT_WDATTO (1 << 3)
115#define INT_RDATTO (1 << 2)
116#define INT_RBSYTO (1 << 1)
117#define INT_RSPTO (1 << 0)
118#define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
119 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
120 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
121 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122
123#define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
124 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
125 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126
127#define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128
129
130#define MASK_ALL 0x00000000
131#define MASK_MCCSDE (1 << 29)
132#define MASK_MCMD12DRE (1 << 26)
133#define MASK_MCMD12RBE (1 << 25)
134#define MASK_MCMD12CRE (1 << 24)
135#define MASK_MDTRANE (1 << 23)
136#define MASK_MBUFRE (1 << 22)
137#define MASK_MBUFWEN (1 << 21)
138#define MASK_MBUFREN (1 << 20)
139#define MASK_MCCSRCV (1 << 19)
140#define MASK_MRBSYE (1 << 17)
141#define MASK_MCRSPE (1 << 16)
142#define MASK_MCMDVIO (1 << 15)
143#define MASK_MBUFVIO (1 << 14)
144#define MASK_MWDATERR (1 << 11)
145#define MASK_MRDATERR (1 << 10)
146#define MASK_MRIDXERR (1 << 9)
147#define MASK_MRSPERR (1 << 8)
148#define MASK_MCCSTO (1 << 5)
149#define MASK_MCRCSTO (1 << 4)
150#define MASK_MWDATTO (1 << 3)
151#define MASK_MRDATTO (1 << 2)
152#define MASK_MRBSYTO (1 << 1)
153#define MASK_MRSPTO (1 << 0)
154
155#define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
156 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
157 MASK_MCRCSTO | MASK_MWDATTO | \
158 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159
160#define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
161 MASK_MBUFREN | MASK_MBUFWEN | \
162 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
163 MASK_MCMD12RBE | MASK_MCMD12CRE)
164
165
166#define STS1_CMDSEQ (1 << 31)
167
168
169#define STS2_CRCSTE (1 << 31)
170#define STS2_CRC16E (1 << 30)
171#define STS2_AC12CRCE (1 << 29)
172#define STS2_RSPCRC7E (1 << 28)
173#define STS2_CRCSTEBE (1 << 27)
174#define STS2_RDATEBE (1 << 26)
175#define STS2_AC12REBE (1 << 25)
176#define STS2_RSPEBE (1 << 24)
177#define STS2_AC12IDXE (1 << 23)
178#define STS2_RSPIDXE (1 << 22)
179#define STS2_CCSTO (1 << 15)
180#define STS2_RDATTO (1 << 14)
181#define STS2_DATBSYTO (1 << 13)
182#define STS2_CRCSTTO (1 << 12)
183#define STS2_AC12BSYTO (1 << 11)
184#define STS2_RSPBSYTO (1 << 10)
185#define STS2_AC12RSPTO (1 << 9)
186#define STS2_RSPTO (1 << 8)
187#define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
188 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
189#define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
190 STS2_DATBSYTO | STS2_CRCSTTO | \
191 STS2_AC12BSYTO | STS2_RSPBSYTO | \
192 STS2_AC12RSPTO | STS2_RSPTO)
193
194#define CLKDEV_EMMC_DATA 52000000
195#define CLKDEV_MMC_DATA 20000000
196#define CLKDEV_INIT 400000
197
198enum sh_mmcif_state {
199 STATE_IDLE,
200 STATE_REQUEST,
201 STATE_IOS,
202 STATE_TIMEOUT,
203};
204
205enum sh_mmcif_wait_for {
206 MMCIF_WAIT_FOR_REQUEST,
207 MMCIF_WAIT_FOR_CMD,
208 MMCIF_WAIT_FOR_MREAD,
209 MMCIF_WAIT_FOR_MWRITE,
210 MMCIF_WAIT_FOR_READ,
211 MMCIF_WAIT_FOR_WRITE,
212 MMCIF_WAIT_FOR_READ_END,
213 MMCIF_WAIT_FOR_WRITE_END,
214 MMCIF_WAIT_FOR_STOP,
215};
216
217
218
219
220struct sh_mmcif_host {
221 struct mmc_host *mmc;
222 struct mmc_request *mrq;
223 struct platform_device *pd;
224 struct clk *clk;
225 int bus_width;
226 unsigned char timing;
227 bool sd_error;
228 bool dying;
229 long timeout;
230 void __iomem *addr;
231 u32 *pio_ptr;
232 spinlock_t lock;
233 enum sh_mmcif_state state;
234 enum sh_mmcif_wait_for wait_for;
235 struct delayed_work timeout_work;
236 size_t blocksize;
237 int sg_idx;
238 int sg_blkidx;
239 bool power;
240 bool ccs_enable;
241 bool clk_ctrl2_enable;
242 struct mutex thread_lock;
243 u32 clkdiv_map;
244
245
246 struct dma_chan *chan_rx;
247 struct dma_chan *chan_tx;
248 struct completion dma_complete;
249 bool dma_active;
250};
251
252static const struct of_device_id sh_mmcif_of_match[] = {
253 { .compatible = "renesas,sh-mmcif" },
254 { }
255};
256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
257
258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
259
260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
262{
263 writel(val | readl(host->addr + reg), host->addr + reg);
264}
265
266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
268{
269 writel(~val & readl(host->addr + reg), host->addr + reg);
270}
271
272static void sh_mmcif_dma_complete(void *arg)
273{
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
276 struct device *dev = sh_mmcif_host_to_dev(host);
277
278 dev_dbg(dev, "Command completed\n");
279
280 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
281 dev_name(dev)))
282 return;
283
284 complete(&host->dma_complete);
285}
286
287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288{
289 struct mmc_data *data = host->mrq->data;
290 struct scatterlist *sg = data->sg;
291 struct dma_async_tx_descriptor *desc = NULL;
292 struct dma_chan *chan = host->chan_rx;
293 struct device *dev = sh_mmcif_host_to_dev(host);
294 dma_cookie_t cookie = -EINVAL;
295 int ret;
296
297 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
298 DMA_FROM_DEVICE);
299 if (ret > 0) {
300 host->dma_active = true;
301 desc = dmaengine_prep_slave_sg(chan, sg, ret,
302 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303 }
304
305 if (desc) {
306 desc->callback = sh_mmcif_dma_complete;
307 desc->callback_param = host;
308 cookie = dmaengine_submit(desc);
309 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
310 dma_async_issue_pending(chan);
311 }
312 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
313 __func__, data->sg_len, ret, cookie);
314
315 if (!desc) {
316
317 if (ret >= 0)
318 ret = -EIO;
319 host->chan_rx = NULL;
320 host->dma_active = false;
321 dma_release_channel(chan);
322
323 chan = host->chan_tx;
324 if (chan) {
325 host->chan_tx = NULL;
326 dma_release_channel(chan);
327 }
328 dev_warn(dev,
329 "DMA failed: %d, falling back to PIO\n", ret);
330 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331 }
332
333 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
334 desc, cookie, data->sg_len);
335}
336
337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
338{
339 struct mmc_data *data = host->mrq->data;
340 struct scatterlist *sg = data->sg;
341 struct dma_async_tx_descriptor *desc = NULL;
342 struct dma_chan *chan = host->chan_tx;
343 struct device *dev = sh_mmcif_host_to_dev(host);
344 dma_cookie_t cookie = -EINVAL;
345 int ret;
346
347 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
348 DMA_TO_DEVICE);
349 if (ret > 0) {
350 host->dma_active = true;
351 desc = dmaengine_prep_slave_sg(chan, sg, ret,
352 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
353 }
354
355 if (desc) {
356 desc->callback = sh_mmcif_dma_complete;
357 desc->callback_param = host;
358 cookie = dmaengine_submit(desc);
359 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
360 dma_async_issue_pending(chan);
361 }
362 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
363 __func__, data->sg_len, ret, cookie);
364
365 if (!desc) {
366
367 if (ret >= 0)
368 ret = -EIO;
369 host->chan_tx = NULL;
370 host->dma_active = false;
371 dma_release_channel(chan);
372
373 chan = host->chan_rx;
374 if (chan) {
375 host->chan_rx = NULL;
376 dma_release_channel(chan);
377 }
378 dev_warn(dev,
379 "DMA failed: %d, falling back to PIO\n", ret);
380 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
381 }
382
383 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
384 desc, cookie);
385}
386
387static struct dma_chan *
388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
389{
390 dma_cap_mask_t mask;
391
392 dma_cap_zero(mask);
393 dma_cap_set(DMA_SLAVE, mask);
394 if (slave_id <= 0)
395 return NULL;
396
397 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
398}
399
400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
401 struct dma_chan *chan,
402 enum dma_transfer_direction direction)
403{
404 struct resource *res;
405 struct dma_slave_config cfg = { 0, };
406
407 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
408 cfg.direction = direction;
409
410 if (direction == DMA_DEV_TO_MEM) {
411 cfg.src_addr = res->start + MMCIF_CE_DATA;
412 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413 } else {
414 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416 }
417
418 return dmaengine_slave_config(chan, &cfg);
419}
420
421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422{
423 struct device *dev = sh_mmcif_host_to_dev(host);
424 host->dma_active = false;
425
426
427 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428 struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431 pdata->slave_id_tx);
432 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433 pdata->slave_id_rx);
434 } else {
435 host->chan_tx = dma_request_chan(dev, "tx");
436 if (IS_ERR(host->chan_tx))
437 host->chan_tx = NULL;
438 host->chan_rx = dma_request_chan(dev, "rx");
439 if (IS_ERR(host->chan_rx))
440 host->chan_rx = NULL;
441 }
442 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
443 host->chan_rx);
444
445 if (!host->chan_tx || !host->chan_rx ||
446 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
447 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
448 goto error;
449
450 return;
451
452error:
453 if (host->chan_tx)
454 dma_release_channel(host->chan_tx);
455 if (host->chan_rx)
456 dma_release_channel(host->chan_rx);
457 host->chan_tx = host->chan_rx = NULL;
458}
459
460static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
461{
462 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
463
464 if (host->chan_tx) {
465 struct dma_chan *chan = host->chan_tx;
466 host->chan_tx = NULL;
467 dma_release_channel(chan);
468 }
469 if (host->chan_rx) {
470 struct dma_chan *chan = host->chan_rx;
471 host->chan_rx = NULL;
472 dma_release_channel(chan);
473 }
474
475 host->dma_active = false;
476}
477
478static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
479{
480 struct device *dev = sh_mmcif_host_to_dev(host);
481 struct sh_mmcif_plat_data *p = dev->platform_data;
482 bool sup_pclk = p ? p->sup_pclk : false;
483 unsigned int current_clk = clk_get_rate(host->clk);
484 unsigned int clkdiv;
485
486 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
487 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
488
489 if (!clk)
490 return;
491
492 if (host->clkdiv_map) {
493 unsigned int freq, best_freq, myclk, div, diff_min, diff;
494 int i;
495
496 clkdiv = 0;
497 diff_min = ~0;
498 best_freq = 0;
499 for (i = 31; i >= 0; i--) {
500 if (!((1 << i) & host->clkdiv_map))
501 continue;
502
503
504
505
506
507
508 div = 1 << (i + 1);
509 freq = clk_round_rate(host->clk, clk * div);
510 myclk = freq / div;
511 diff = (myclk > clk) ? myclk - clk : clk - myclk;
512
513 if (diff <= diff_min) {
514 best_freq = freq;
515 clkdiv = i;
516 diff_min = diff;
517 }
518 }
519
520 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
521 (best_freq / (1 << (clkdiv + 1))), clk,
522 best_freq, clkdiv);
523
524 clk_set_rate(host->clk, best_freq);
525 clkdiv = clkdiv << 16;
526 } else if (sup_pclk && clk == current_clk) {
527 clkdiv = CLK_SUP_PCLK;
528 } else {
529 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
530 }
531
532 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
533 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
534}
535
536static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
537{
538 u32 tmp;
539
540 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
541
542 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
543 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
544 if (host->ccs_enable)
545 tmp |= SCCSTO_29;
546 if (host->clk_ctrl2_enable)
547 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
548 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
549 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
550
551 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
552}
553
554static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
555{
556 struct device *dev = sh_mmcif_host_to_dev(host);
557 u32 state1, state2;
558 int ret, timeout;
559
560 host->sd_error = false;
561
562 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
563 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
564 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
565 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
566
567 if (state1 & STS1_CMDSEQ) {
568 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
569 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
570 for (timeout = 10000; timeout; timeout--) {
571 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
572 & STS1_CMDSEQ))
573 break;
574 mdelay(1);
575 }
576 if (!timeout) {
577 dev_err(dev,
578 "Forced end of command sequence timeout err\n");
579 return -EIO;
580 }
581 sh_mmcif_sync_reset(host);
582 dev_dbg(dev, "Forced end of command sequence\n");
583 return -EIO;
584 }
585
586 if (state2 & STS2_CRC_ERR) {
587 dev_err(dev, " CRC error: state %u, wait %u\n",
588 host->state, host->wait_for);
589 ret = -EIO;
590 } else if (state2 & STS2_TIMEOUT_ERR) {
591 dev_err(dev, " Timeout: state %u, wait %u\n",
592 host->state, host->wait_for);
593 ret = -ETIMEDOUT;
594 } else {
595 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
596 host->state, host->wait_for);
597 ret = -EIO;
598 }
599 return ret;
600}
601
602static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
603{
604 struct mmc_data *data = host->mrq->data;
605
606 host->sg_blkidx += host->blocksize;
607
608
609 BUG_ON(host->sg_blkidx > data->sg->length);
610
611 if (host->sg_blkidx == data->sg->length) {
612 host->sg_blkidx = 0;
613 if (++host->sg_idx < data->sg_len)
614 host->pio_ptr = sg_virt(++data->sg);
615 } else {
616 host->pio_ptr = p;
617 }
618
619 return host->sg_idx != data->sg_len;
620}
621
622static void sh_mmcif_single_read(struct sh_mmcif_host *host,
623 struct mmc_request *mrq)
624{
625 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
626 BLOCK_SIZE_MASK) + 3;
627
628 host->wait_for = MMCIF_WAIT_FOR_READ;
629
630
631 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
632}
633
634static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
635{
636 struct device *dev = sh_mmcif_host_to_dev(host);
637 struct mmc_data *data = host->mrq->data;
638 u32 *p = sg_virt(data->sg);
639 int i;
640
641 if (host->sd_error) {
642 data->error = sh_mmcif_error_manage(host);
643 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
644 return false;
645 }
646
647 for (i = 0; i < host->blocksize / 4; i++)
648 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
649
650
651 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
652 host->wait_for = MMCIF_WAIT_FOR_READ_END;
653
654 return true;
655}
656
657static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
658 struct mmc_request *mrq)
659{
660 struct mmc_data *data = mrq->data;
661
662 if (!data->sg_len || !data->sg->length)
663 return;
664
665 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
666 BLOCK_SIZE_MASK;
667
668 host->wait_for = MMCIF_WAIT_FOR_MREAD;
669 host->sg_idx = 0;
670 host->sg_blkidx = 0;
671 host->pio_ptr = sg_virt(data->sg);
672
673 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
674}
675
676static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
677{
678 struct device *dev = sh_mmcif_host_to_dev(host);
679 struct mmc_data *data = host->mrq->data;
680 u32 *p = host->pio_ptr;
681 int i;
682
683 if (host->sd_error) {
684 data->error = sh_mmcif_error_manage(host);
685 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
686 return false;
687 }
688
689 BUG_ON(!data->sg->length);
690
691 for (i = 0; i < host->blocksize / 4; i++)
692 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
693
694 if (!sh_mmcif_next_block(host, p))
695 return false;
696
697 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
698
699 return true;
700}
701
702static void sh_mmcif_single_write(struct sh_mmcif_host *host,
703 struct mmc_request *mrq)
704{
705 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
706 BLOCK_SIZE_MASK) + 3;
707
708 host->wait_for = MMCIF_WAIT_FOR_WRITE;
709
710
711 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
712}
713
714static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
715{
716 struct device *dev = sh_mmcif_host_to_dev(host);
717 struct mmc_data *data = host->mrq->data;
718 u32 *p = sg_virt(data->sg);
719 int i;
720
721 if (host->sd_error) {
722 data->error = sh_mmcif_error_manage(host);
723 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
724 return false;
725 }
726
727 for (i = 0; i < host->blocksize / 4; i++)
728 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729
730
731 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
732 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
733
734 return true;
735}
736
737static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
738 struct mmc_request *mrq)
739{
740 struct mmc_data *data = mrq->data;
741
742 if (!data->sg_len || !data->sg->length)
743 return;
744
745 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
746 BLOCK_SIZE_MASK;
747
748 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
749 host->sg_idx = 0;
750 host->sg_blkidx = 0;
751 host->pio_ptr = sg_virt(data->sg);
752
753 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
754}
755
756static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
757{
758 struct device *dev = sh_mmcif_host_to_dev(host);
759 struct mmc_data *data = host->mrq->data;
760 u32 *p = host->pio_ptr;
761 int i;
762
763 if (host->sd_error) {
764 data->error = sh_mmcif_error_manage(host);
765 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
766 return false;
767 }
768
769 BUG_ON(!data->sg->length);
770
771 for (i = 0; i < host->blocksize / 4; i++)
772 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
773
774 if (!sh_mmcif_next_block(host, p))
775 return false;
776
777 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
778
779 return true;
780}
781
782static void sh_mmcif_get_response(struct sh_mmcif_host *host,
783 struct mmc_command *cmd)
784{
785 if (cmd->flags & MMC_RSP_136) {
786 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
787 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
788 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
789 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
790 } else
791 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
792}
793
794static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
795 struct mmc_command *cmd)
796{
797 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
798}
799
800static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
801 struct mmc_request *mrq)
802{
803 struct device *dev = sh_mmcif_host_to_dev(host);
804 struct mmc_data *data = mrq->data;
805 struct mmc_command *cmd = mrq->cmd;
806 u32 opc = cmd->opcode;
807 u32 tmp = 0;
808
809
810 switch (mmc_resp_type(cmd)) {
811 case MMC_RSP_NONE:
812 tmp |= CMD_SET_RTYP_NO;
813 break;
814 case MMC_RSP_R1:
815 case MMC_RSP_R3:
816 tmp |= CMD_SET_RTYP_6B;
817 break;
818 case MMC_RSP_R1B:
819 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
820 break;
821 case MMC_RSP_R2:
822 tmp |= CMD_SET_RTYP_17B;
823 break;
824 default:
825 dev_err(dev, "Unsupported response type.\n");
826 break;
827 }
828
829
830 if (data) {
831 tmp |= CMD_SET_WDAT;
832 switch (host->bus_width) {
833 case MMC_BUS_WIDTH_1:
834 tmp |= CMD_SET_DATW_1;
835 break;
836 case MMC_BUS_WIDTH_4:
837 tmp |= CMD_SET_DATW_4;
838 break;
839 case MMC_BUS_WIDTH_8:
840 tmp |= CMD_SET_DATW_8;
841 break;
842 default:
843 dev_err(dev, "Unsupported bus width.\n");
844 break;
845 }
846 switch (host->timing) {
847 case MMC_TIMING_MMC_DDR52:
848
849
850
851
852
853
854
855 tmp |= CMD_SET_DARS;
856 break;
857 }
858 }
859
860 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
861 tmp |= CMD_SET_DWEN;
862
863 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
864 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
865 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
866 data->blocks << 16);
867 }
868
869 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
870 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
871 tmp |= CMD_SET_RIDXC_BITS;
872
873 if (opc == MMC_SEND_OP_COND)
874 tmp |= CMD_SET_CRC7C_BITS;
875
876 if (opc == MMC_ALL_SEND_CID ||
877 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
878 tmp |= CMD_SET_CRC7C_INTERNAL;
879
880 return (opc << 24) | tmp;
881}
882
883static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
884 struct mmc_request *mrq, u32 opc)
885{
886 struct device *dev = sh_mmcif_host_to_dev(host);
887
888 switch (opc) {
889 case MMC_READ_MULTIPLE_BLOCK:
890 sh_mmcif_multi_read(host, mrq);
891 return 0;
892 case MMC_WRITE_MULTIPLE_BLOCK:
893 sh_mmcif_multi_write(host, mrq);
894 return 0;
895 case MMC_WRITE_BLOCK:
896 sh_mmcif_single_write(host, mrq);
897 return 0;
898 case MMC_READ_SINGLE_BLOCK:
899 case MMC_SEND_EXT_CSD:
900 sh_mmcif_single_read(host, mrq);
901 return 0;
902 default:
903 dev_err(dev, "Unsupported CMD%d\n", opc);
904 return -EINVAL;
905 }
906}
907
908static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
909 struct mmc_request *mrq)
910{
911 struct mmc_command *cmd = mrq->cmd;
912 u32 opc;
913 u32 mask = 0;
914 unsigned long flags;
915
916 if (cmd->flags & MMC_RSP_BUSY)
917 mask = MASK_START_CMD | MASK_MRBSYE;
918 else
919 mask = MASK_START_CMD | MASK_MCRSPE;
920
921 if (host->ccs_enable)
922 mask |= MASK_MCCSTO;
923
924 if (mrq->data) {
925 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
926 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
927 mrq->data->blksz);
928 }
929 opc = sh_mmcif_set_cmd(host, mrq);
930
931 if (host->ccs_enable)
932 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
933 else
934 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
935 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
936
937 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
938
939 spin_lock_irqsave(&host->lock, flags);
940 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
941
942 host->wait_for = MMCIF_WAIT_FOR_CMD;
943 schedule_delayed_work(&host->timeout_work, host->timeout);
944 spin_unlock_irqrestore(&host->lock, flags);
945}
946
947static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
948 struct mmc_request *mrq)
949{
950 struct device *dev = sh_mmcif_host_to_dev(host);
951
952 switch (mrq->cmd->opcode) {
953 case MMC_READ_MULTIPLE_BLOCK:
954 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
955 break;
956 case MMC_WRITE_MULTIPLE_BLOCK:
957 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
958 break;
959 default:
960 dev_err(dev, "unsupported stop cmd\n");
961 mrq->stop->error = sh_mmcif_error_manage(host);
962 return;
963 }
964
965 host->wait_for = MMCIF_WAIT_FOR_STOP;
966}
967
968static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
969{
970 struct sh_mmcif_host *host = mmc_priv(mmc);
971 struct device *dev = sh_mmcif_host_to_dev(host);
972 unsigned long flags;
973
974 spin_lock_irqsave(&host->lock, flags);
975 if (host->state != STATE_IDLE) {
976 dev_dbg(dev, "%s() rejected, state %u\n",
977 __func__, host->state);
978 spin_unlock_irqrestore(&host->lock, flags);
979 mrq->cmd->error = -EAGAIN;
980 mmc_request_done(mmc, mrq);
981 return;
982 }
983
984 host->state = STATE_REQUEST;
985 spin_unlock_irqrestore(&host->lock, flags);
986
987 host->mrq = mrq;
988
989 sh_mmcif_start_cmd(host, mrq);
990}
991
992static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
993{
994 struct device *dev = sh_mmcif_host_to_dev(host);
995
996 if (host->mmc->f_max) {
997 unsigned int f_max, f_min = 0, f_min_old;
998
999 f_max = host->mmc->f_max;
1000 for (f_min_old = f_max; f_min_old > 2;) {
1001 f_min = clk_round_rate(host->clk, f_min_old / 2);
1002 if (f_min == f_min_old)
1003 break;
1004 f_min_old = f_min;
1005 }
1006
1007
1008
1009
1010 host->clkdiv_map = 0x3ff;
1011
1012 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1013 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1014 } else {
1015 unsigned int clk = clk_get_rate(host->clk);
1016
1017 host->mmc->f_max = clk / 2;
1018 host->mmc->f_min = clk / 512;
1019 }
1020
1021 dev_dbg(dev, "clk max/min = %d/%d\n",
1022 host->mmc->f_max, host->mmc->f_min);
1023}
1024
1025static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1026{
1027 struct sh_mmcif_host *host = mmc_priv(mmc);
1028 struct device *dev = sh_mmcif_host_to_dev(host);
1029 unsigned long flags;
1030
1031 spin_lock_irqsave(&host->lock, flags);
1032 if (host->state != STATE_IDLE) {
1033 dev_dbg(dev, "%s() rejected, state %u\n",
1034 __func__, host->state);
1035 spin_unlock_irqrestore(&host->lock, flags);
1036 return;
1037 }
1038
1039 host->state = STATE_IOS;
1040 spin_unlock_irqrestore(&host->lock, flags);
1041
1042 switch (ios->power_mode) {
1043 case MMC_POWER_UP:
1044 if (!IS_ERR(mmc->supply.vmmc))
1045 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1046 if (!host->power) {
1047 clk_prepare_enable(host->clk);
1048 pm_runtime_get_sync(dev);
1049 sh_mmcif_sync_reset(host);
1050 sh_mmcif_request_dma(host);
1051 host->power = true;
1052 }
1053 break;
1054 case MMC_POWER_OFF:
1055 if (!IS_ERR(mmc->supply.vmmc))
1056 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1057 if (host->power) {
1058 sh_mmcif_clock_control(host, 0);
1059 sh_mmcif_release_dma(host);
1060 pm_runtime_put(dev);
1061 clk_disable_unprepare(host->clk);
1062 host->power = false;
1063 }
1064 break;
1065 case MMC_POWER_ON:
1066 sh_mmcif_clock_control(host, ios->clock);
1067 break;
1068 }
1069
1070 host->timing = ios->timing;
1071 host->bus_width = ios->bus_width;
1072 host->state = STATE_IDLE;
1073}
1074
1075static const struct mmc_host_ops sh_mmcif_ops = {
1076 .request = sh_mmcif_request,
1077 .set_ios = sh_mmcif_set_ios,
1078 .get_cd = mmc_gpio_get_cd,
1079};
1080
1081static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1082{
1083 struct mmc_command *cmd = host->mrq->cmd;
1084 struct mmc_data *data = host->mrq->data;
1085 struct device *dev = sh_mmcif_host_to_dev(host);
1086 long time;
1087
1088 if (host->sd_error) {
1089 switch (cmd->opcode) {
1090 case MMC_ALL_SEND_CID:
1091 case MMC_SELECT_CARD:
1092 case MMC_APP_CMD:
1093 cmd->error = -ETIMEDOUT;
1094 break;
1095 default:
1096 cmd->error = sh_mmcif_error_manage(host);
1097 break;
1098 }
1099 dev_dbg(dev, "CMD%d error %d\n",
1100 cmd->opcode, cmd->error);
1101 host->sd_error = false;
1102 return false;
1103 }
1104 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1105 cmd->error = 0;
1106 return false;
1107 }
1108
1109 sh_mmcif_get_response(host, cmd);
1110
1111 if (!data)
1112 return false;
1113
1114
1115
1116
1117
1118 init_completion(&host->dma_complete);
1119
1120 if (data->flags & MMC_DATA_READ) {
1121 if (host->chan_rx)
1122 sh_mmcif_start_dma_rx(host);
1123 } else {
1124 if (host->chan_tx)
1125 sh_mmcif_start_dma_tx(host);
1126 }
1127
1128 if (!host->dma_active) {
1129 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1130 return !data->error;
1131 }
1132
1133
1134 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1135 host->timeout);
1136
1137 if (data->flags & MMC_DATA_READ)
1138 dma_unmap_sg(host->chan_rx->device->dev,
1139 data->sg, data->sg_len,
1140 DMA_FROM_DEVICE);
1141 else
1142 dma_unmap_sg(host->chan_tx->device->dev,
1143 data->sg, data->sg_len,
1144 DMA_TO_DEVICE);
1145
1146 if (host->sd_error) {
1147 dev_err(host->mmc->parent,
1148 "Error IRQ while waiting for DMA completion!\n");
1149
1150 data->error = sh_mmcif_error_manage(host);
1151 } else if (!time) {
1152 dev_err(host->mmc->parent, "DMA timeout!\n");
1153 data->error = -ETIMEDOUT;
1154 } else if (time < 0) {
1155 dev_err(host->mmc->parent,
1156 "wait_for_completion_...() error %ld!\n", time);
1157 data->error = time;
1158 }
1159 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1160 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1161 host->dma_active = false;
1162
1163 if (data->error) {
1164 data->bytes_xfered = 0;
1165
1166 if (data->flags & MMC_DATA_READ)
1167 dmaengine_terminate_all(host->chan_rx);
1168 else
1169 dmaengine_terminate_all(host->chan_tx);
1170 }
1171
1172 return false;
1173}
1174
1175static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1176{
1177 struct sh_mmcif_host *host = dev_id;
1178 struct mmc_request *mrq;
1179 struct device *dev = sh_mmcif_host_to_dev(host);
1180 bool wait = false;
1181 unsigned long flags;
1182 int wait_work;
1183
1184 spin_lock_irqsave(&host->lock, flags);
1185 wait_work = host->wait_for;
1186 spin_unlock_irqrestore(&host->lock, flags);
1187
1188 cancel_delayed_work_sync(&host->timeout_work);
1189
1190 mutex_lock(&host->thread_lock);
1191
1192 mrq = host->mrq;
1193 if (!mrq) {
1194 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1195 host->state, host->wait_for);
1196 mutex_unlock(&host->thread_lock);
1197 return IRQ_HANDLED;
1198 }
1199
1200
1201
1202
1203
1204 switch (wait_work) {
1205 case MMCIF_WAIT_FOR_REQUEST:
1206
1207 mutex_unlock(&host->thread_lock);
1208 return IRQ_HANDLED;
1209 case MMCIF_WAIT_FOR_CMD:
1210
1211 wait = sh_mmcif_end_cmd(host);
1212 break;
1213 case MMCIF_WAIT_FOR_MREAD:
1214
1215 wait = sh_mmcif_mread_block(host);
1216 break;
1217 case MMCIF_WAIT_FOR_READ:
1218
1219 wait = sh_mmcif_read_block(host);
1220 break;
1221 case MMCIF_WAIT_FOR_MWRITE:
1222
1223 wait = sh_mmcif_mwrite_block(host);
1224 break;
1225 case MMCIF_WAIT_FOR_WRITE:
1226
1227 wait = sh_mmcif_write_block(host);
1228 break;
1229 case MMCIF_WAIT_FOR_STOP:
1230 if (host->sd_error) {
1231 mrq->stop->error = sh_mmcif_error_manage(host);
1232 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1233 break;
1234 }
1235 sh_mmcif_get_cmd12response(host, mrq->stop);
1236 mrq->stop->error = 0;
1237 break;
1238 case MMCIF_WAIT_FOR_READ_END:
1239 case MMCIF_WAIT_FOR_WRITE_END:
1240 if (host->sd_error) {
1241 mrq->data->error = sh_mmcif_error_manage(host);
1242 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1243 }
1244 break;
1245 default:
1246 BUG();
1247 }
1248
1249 if (wait) {
1250 schedule_delayed_work(&host->timeout_work, host->timeout);
1251
1252 mutex_unlock(&host->thread_lock);
1253 return IRQ_HANDLED;
1254 }
1255
1256 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1257 struct mmc_data *data = mrq->data;
1258 if (!mrq->cmd->error && data && !data->error)
1259 data->bytes_xfered =
1260 data->blocks * data->blksz;
1261
1262 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1263 sh_mmcif_stop_cmd(host, mrq);
1264 if (!mrq->stop->error) {
1265 schedule_delayed_work(&host->timeout_work, host->timeout);
1266 mutex_unlock(&host->thread_lock);
1267 return IRQ_HANDLED;
1268 }
1269 }
1270 }
1271
1272 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1273 host->state = STATE_IDLE;
1274 host->mrq = NULL;
1275 mmc_request_done(host->mmc, mrq);
1276
1277 mutex_unlock(&host->thread_lock);
1278
1279 return IRQ_HANDLED;
1280}
1281
1282static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1283{
1284 struct sh_mmcif_host *host = dev_id;
1285 struct device *dev = sh_mmcif_host_to_dev(host);
1286 u32 state, mask;
1287
1288 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1289 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1290 if (host->ccs_enable)
1291 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1292 else
1293 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1294 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1295
1296 if (state & ~MASK_CLEAN)
1297 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1298 state);
1299
1300 if (state & INT_ERR_STS || state & ~INT_ALL) {
1301 host->sd_error = true;
1302 dev_dbg(dev, "int err state = 0x%08x\n", state);
1303 }
1304 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1305 if (!host->mrq)
1306 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1307 if (!host->dma_active)
1308 return IRQ_WAKE_THREAD;
1309 else if (host->sd_error)
1310 sh_mmcif_dma_complete(host);
1311 } else {
1312 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1313 }
1314
1315 return IRQ_HANDLED;
1316}
1317
1318static void sh_mmcif_timeout_work(struct work_struct *work)
1319{
1320 struct delayed_work *d = to_delayed_work(work);
1321 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1322 struct mmc_request *mrq = host->mrq;
1323 struct device *dev = sh_mmcif_host_to_dev(host);
1324 unsigned long flags;
1325
1326 if (host->dying)
1327
1328 return;
1329
1330 spin_lock_irqsave(&host->lock, flags);
1331 if (host->state == STATE_IDLE) {
1332 spin_unlock_irqrestore(&host->lock, flags);
1333 return;
1334 }
1335
1336 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1337 host->wait_for, mrq->cmd->opcode);
1338
1339 host->state = STATE_TIMEOUT;
1340 spin_unlock_irqrestore(&host->lock, flags);
1341
1342
1343
1344
1345
1346 switch (host->wait_for) {
1347 case MMCIF_WAIT_FOR_CMD:
1348 mrq->cmd->error = sh_mmcif_error_manage(host);
1349 break;
1350 case MMCIF_WAIT_FOR_STOP:
1351 mrq->stop->error = sh_mmcif_error_manage(host);
1352 break;
1353 case MMCIF_WAIT_FOR_MREAD:
1354 case MMCIF_WAIT_FOR_MWRITE:
1355 case MMCIF_WAIT_FOR_READ:
1356 case MMCIF_WAIT_FOR_WRITE:
1357 case MMCIF_WAIT_FOR_READ_END:
1358 case MMCIF_WAIT_FOR_WRITE_END:
1359 mrq->data->error = sh_mmcif_error_manage(host);
1360 break;
1361 default:
1362 BUG();
1363 }
1364
1365 host->state = STATE_IDLE;
1366 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1367 host->mrq = NULL;
1368 mmc_request_done(host->mmc, mrq);
1369}
1370
1371static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1372{
1373 struct device *dev = sh_mmcif_host_to_dev(host);
1374 struct sh_mmcif_plat_data *pd = dev->platform_data;
1375 struct mmc_host *mmc = host->mmc;
1376
1377 mmc_regulator_get_supply(mmc);
1378
1379 if (!pd)
1380 return;
1381
1382 if (!mmc->ocr_avail)
1383 mmc->ocr_avail = pd->ocr;
1384 else if (pd->ocr)
1385 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1386}
1387
1388static int sh_mmcif_probe(struct platform_device *pdev)
1389{
1390 int ret = 0, irq[2];
1391 struct mmc_host *mmc;
1392 struct sh_mmcif_host *host;
1393 struct device *dev = &pdev->dev;
1394 struct sh_mmcif_plat_data *pd = dev->platform_data;
1395 void __iomem *reg;
1396 const char *name;
1397
1398 irq[0] = platform_get_irq(pdev, 0);
1399 irq[1] = platform_get_irq_optional(pdev, 1);
1400 if (irq[0] < 0)
1401 return -ENXIO;
1402
1403 reg = devm_platform_ioremap_resource(pdev, 0);
1404 if (IS_ERR(reg))
1405 return PTR_ERR(reg);
1406
1407 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1408 if (!mmc)
1409 return -ENOMEM;
1410
1411 ret = mmc_of_parse(mmc);
1412 if (ret < 0)
1413 goto err_host;
1414
1415 host = mmc_priv(mmc);
1416 host->mmc = mmc;
1417 host->addr = reg;
1418 host->timeout = msecs_to_jiffies(10000);
1419 host->ccs_enable = true;
1420 host->clk_ctrl2_enable = false;
1421
1422 host->pd = pdev;
1423
1424 spin_lock_init(&host->lock);
1425
1426 mmc->ops = &sh_mmcif_ops;
1427 sh_mmcif_init_ocr(host);
1428
1429 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1430 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1431 mmc->max_busy_timeout = 10000;
1432
1433 if (pd && pd->caps)
1434 mmc->caps |= pd->caps;
1435 mmc->max_segs = 32;
1436 mmc->max_blk_size = 512;
1437 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1438 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1439 mmc->max_seg_size = mmc->max_req_size;
1440
1441 platform_set_drvdata(pdev, host);
1442
1443 host->clk = devm_clk_get(dev, NULL);
1444 if (IS_ERR(host->clk)) {
1445 ret = PTR_ERR(host->clk);
1446 dev_err(dev, "cannot get clock: %d\n", ret);
1447 goto err_host;
1448 }
1449
1450 ret = clk_prepare_enable(host->clk);
1451 if (ret < 0)
1452 goto err_host;
1453
1454 sh_mmcif_clk_setup(host);
1455
1456 pm_runtime_enable(dev);
1457 host->power = false;
1458
1459 ret = pm_runtime_get_sync(dev);
1460 if (ret < 0)
1461 goto err_clk;
1462
1463 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1464
1465 sh_mmcif_sync_reset(host);
1466 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1467
1468 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1469 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1470 sh_mmcif_irqt, 0, name, host);
1471 if (ret) {
1472 dev_err(dev, "request_irq error (%s)\n", name);
1473 goto err_clk;
1474 }
1475 if (irq[1] >= 0) {
1476 ret = devm_request_threaded_irq(dev, irq[1],
1477 sh_mmcif_intr, sh_mmcif_irqt,
1478 0, "sh_mmc:int", host);
1479 if (ret) {
1480 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1481 goto err_clk;
1482 }
1483 }
1484
1485 mutex_init(&host->thread_lock);
1486
1487 ret = mmc_add_host(mmc);
1488 if (ret < 0)
1489 goto err_clk;
1490
1491 dev_pm_qos_expose_latency_limit(dev, 100);
1492
1493 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1494 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1495 clk_get_rate(host->clk) / 1000000UL);
1496
1497 pm_runtime_put(dev);
1498 clk_disable_unprepare(host->clk);
1499 return ret;
1500
1501err_clk:
1502 clk_disable_unprepare(host->clk);
1503 pm_runtime_put_sync(dev);
1504 pm_runtime_disable(dev);
1505err_host:
1506 mmc_free_host(mmc);
1507 return ret;
1508}
1509
1510static int sh_mmcif_remove(struct platform_device *pdev)
1511{
1512 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1513
1514 host->dying = true;
1515 clk_prepare_enable(host->clk);
1516 pm_runtime_get_sync(&pdev->dev);
1517
1518 dev_pm_qos_hide_latency_limit(&pdev->dev);
1519
1520 mmc_remove_host(host->mmc);
1521 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1522
1523
1524
1525
1526
1527
1528 cancel_delayed_work_sync(&host->timeout_work);
1529
1530 clk_disable_unprepare(host->clk);
1531 mmc_free_host(host->mmc);
1532 pm_runtime_put_sync(&pdev->dev);
1533 pm_runtime_disable(&pdev->dev);
1534
1535 return 0;
1536}
1537
1538#ifdef CONFIG_PM_SLEEP
1539static int sh_mmcif_suspend(struct device *dev)
1540{
1541 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1542
1543 pm_runtime_get_sync(dev);
1544 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1545 pm_runtime_put(dev);
1546
1547 return 0;
1548}
1549
1550static int sh_mmcif_resume(struct device *dev)
1551{
1552 return 0;
1553}
1554#endif
1555
1556static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1557 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1558};
1559
1560static struct platform_driver sh_mmcif_driver = {
1561 .probe = sh_mmcif_probe,
1562 .remove = sh_mmcif_remove,
1563 .driver = {
1564 .name = DRIVER_NAME,
1565 .pm = &sh_mmcif_dev_pm_ops,
1566 .of_match_table = sh_mmcif_of_match,
1567 },
1568};
1569
1570module_platform_driver(sh_mmcif_driver);
1571
1572MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1573MODULE_LICENSE("GPL v2");
1574MODULE_ALIAS("platform:" DRIVER_NAME);
1575MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1576