linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/delay.h>
  36#include "cxgb4.h"
  37#include "t4_regs.h"
  38#include "t4_values.h"
  39#include "t4fw_api.h"
  40#include "t4fw_version.h"
  41
  42/**
  43 *      t4_wait_op_done_val - wait until an operation is completed
  44 *      @adapter: the adapter performing the operation
  45 *      @reg: the register to check for completion
  46 *      @mask: a single-bit field within @reg that indicates completion
  47 *      @polarity: the value of the field when the operation is completed
  48 *      @attempts: number of check iterations
  49 *      @delay: delay in usecs between iterations
  50 *      @valp: where to store the value of the register at completion time
  51 *
  52 *      Wait until an operation is completed by checking a bit in a register
  53 *      up to @attempts times.  If @valp is not NULL the value of the register
  54 *      at the time it indicated completion is stored there.  Returns 0 if the
  55 *      operation completes and -EAGAIN otherwise.
  56 */
  57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  58                               int polarity, int attempts, int delay, u32 *valp)
  59{
  60        while (1) {
  61                u32 val = t4_read_reg(adapter, reg);
  62
  63                if (!!(val & mask) == polarity) {
  64                        if (valp)
  65                                *valp = val;
  66                        return 0;
  67                }
  68                if (--attempts == 0)
  69                        return -EAGAIN;
  70                if (delay)
  71                        udelay(delay);
  72        }
  73}
  74
  75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  76                                  int polarity, int attempts, int delay)
  77{
  78        return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  79                                   delay, NULL);
  80}
  81
  82/**
  83 *      t4_set_reg_field - set a register field to a value
  84 *      @adapter: the adapter to program
  85 *      @addr: the register address
  86 *      @mask: specifies the portion of the register to modify
  87 *      @val: the new value for the register field
  88 *
  89 *      Sets a register field specified by the supplied mask to the
  90 *      given value.
  91 */
  92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  93                      u32 val)
  94{
  95        u32 v = t4_read_reg(adapter, addr) & ~mask;
  96
  97        t4_write_reg(adapter, addr, v | val);
  98        (void) t4_read_reg(adapter, addr);      /* flush */
  99}
 100
 101/**
 102 *      t4_read_indirect - read indirectly addressed registers
 103 *      @adap: the adapter
 104 *      @addr_reg: register holding the indirect address
 105 *      @data_reg: register holding the value of the indirect register
 106 *      @vals: where the read register values are stored
 107 *      @nregs: how many indirect registers to read
 108 *      @start_idx: index of first indirect register to read
 109 *
 110 *      Reads registers that are accessed indirectly through an address/data
 111 *      register pair.
 112 */
 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
 114                             unsigned int data_reg, u32 *vals,
 115                             unsigned int nregs, unsigned int start_idx)
 116{
 117        while (nregs--) {
 118                t4_write_reg(adap, addr_reg, start_idx);
 119                *vals++ = t4_read_reg(adap, data_reg);
 120                start_idx++;
 121        }
 122}
 123
 124/**
 125 *      t4_write_indirect - write indirectly addressed registers
 126 *      @adap: the adapter
 127 *      @addr_reg: register holding the indirect addresses
 128 *      @data_reg: register holding the value for the indirect registers
 129 *      @vals: values to write
 130 *      @nregs: how many indirect registers to write
 131 *      @start_idx: address of first indirect register to write
 132 *
 133 *      Writes a sequential block of registers that are accessed indirectly
 134 *      through an address/data register pair.
 135 */
 136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
 137                       unsigned int data_reg, const u32 *vals,
 138                       unsigned int nregs, unsigned int start_idx)
 139{
 140        while (nregs--) {
 141                t4_write_reg(adap, addr_reg, start_idx++);
 142                t4_write_reg(adap, data_reg, *vals++);
 143        }
 144}
 145
 146/*
 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 148 * mechanism.  This guarantees that we get the real value even if we're
 149 * operating within a Virtual Machine and the Hypervisor is trapping our
 150 * Configuration Space accesses.
 151 */
 152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
 153{
 154        u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
 155
 156        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
 157                req |= ENABLE_F;
 158        else
 159                req |= T6_ENABLE_F;
 160
 161        if (is_t4(adap->params.chip))
 162                req |= LOCALCFG_F;
 163
 164        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
 165        *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
 166
 167        /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
 168         * Configuration Space read.  (None of the other fields matter when
 169         * ENABLE is 0 so a simple register write is easier than a
 170         * read-modify-write via t4_set_reg_field().)
 171         */
 172        t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
 173}
 174
 175/*
 176 * t4_report_fw_error - report firmware error
 177 * @adap: the adapter
 178 *
 179 * The adapter firmware can indicate error conditions to the host.
 180 * If the firmware has indicated an error, print out the reason for
 181 * the firmware error.
 182 */
 183static void t4_report_fw_error(struct adapter *adap)
 184{
 185        static const char *const reason[] = {
 186                "Crash",                        /* PCIE_FW_EVAL_CRASH */
 187                "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
 188                "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
 189                "During Device Initialization", /* PCIE_FW_EVAL_INIT */
 190                "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
 191                "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
 192                "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
 193                "Reserved",                     /* reserved */
 194        };
 195        u32 pcie_fw;
 196
 197        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
 198        if (pcie_fw & PCIE_FW_ERR_F) {
 199                dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
 200                        reason[PCIE_FW_EVAL_G(pcie_fw)]);
 201                adap->flags &= ~CXGB4_FW_OK;
 202        }
 203}
 204
 205/*
 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 207 */
 208static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
 209                         u32 mbox_addr)
 210{
 211        for ( ; nflit; nflit--, mbox_addr += 8)
 212                *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
 213}
 214
 215/*
 216 * Handle a FW assertion reported in a mailbox.
 217 */
 218static void fw_asrt(struct adapter *adap, u32 mbox_addr)
 219{
 220        struct fw_debug_cmd asrt;
 221
 222        get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
 223        dev_alert(adap->pdev_dev,
 224                  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
 225                  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
 226                  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
 227}
 228
 229/**
 230 *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
 231 *      @adapter: the adapter
 232 *      @cmd: the Firmware Mailbox Command or Reply
 233 *      @size: command length in bytes
 234 *      @access: the time (ms) needed to access the Firmware Mailbox
 235 *      @execute: the time (ms) the command spent being executed
 236 */
 237static void t4_record_mbox(struct adapter *adapter,
 238                           const __be64 *cmd, unsigned int size,
 239                           int access, int execute)
 240{
 241        struct mbox_cmd_log *log = adapter->mbox_log;
 242        struct mbox_cmd *entry;
 243        int i;
 244
 245        entry = mbox_cmd_log_entry(log, log->cursor++);
 246        if (log->cursor == log->size)
 247                log->cursor = 0;
 248
 249        for (i = 0; i < size / 8; i++)
 250                entry->cmd[i] = be64_to_cpu(cmd[i]);
 251        while (i < MBOX_LEN / 8)
 252                entry->cmd[i++] = 0;
 253        entry->timestamp = jiffies;
 254        entry->seqno = log->seqno++;
 255        entry->access = access;
 256        entry->execute = execute;
 257}
 258
 259/**
 260 *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
 261 *      @adap: the adapter
 262 *      @mbox: index of the mailbox to use
 263 *      @cmd: the command to write
 264 *      @size: command length in bytes
 265 *      @rpl: where to optionally store the reply
 266 *      @sleep_ok: if true we may sleep while awaiting command completion
 267 *      @timeout: time to wait for command to finish before timing out
 268 *
 269 *      Sends the given command to FW through the selected mailbox and waits
 270 *      for the FW to execute the command.  If @rpl is not %NULL it is used to
 271 *      store the FW's reply to the command.  The command and its optional
 272 *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 273 *      to respond.  @sleep_ok determines whether we may sleep while awaiting
 274 *      the response.  If sleeping is allowed we use progressive backoff
 275 *      otherwise we spin.
 276 *
 277 *      The return value is 0 on success or a negative errno on failure.  A
 278 *      failure can happen either because we are not able to execute the
 279 *      command or FW executes it but signals an error.  In the latter case
 280 *      the return value is the error code indicated by FW (negated).
 281 */
 282int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
 283                            int size, void *rpl, bool sleep_ok, int timeout)
 284{
 285        static const int delay[] = {
 286                1, 1, 3, 5, 10, 10, 20, 50, 100, 200
 287        };
 288
 289        struct mbox_list entry;
 290        u16 access = 0;
 291        u16 execute = 0;
 292        u32 v;
 293        u64 res;
 294        int i, ms, delay_idx, ret;
 295        const __be64 *p = cmd;
 296        u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
 297        u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
 298        __be64 cmd_rpl[MBOX_LEN / 8];
 299        u32 pcie_fw;
 300
 301        if ((size & 15) || size > MBOX_LEN)
 302                return -EINVAL;
 303
 304        /*
 305         * If the device is off-line, as in EEH, commands will time out.
 306         * Fail them early so we don't waste time waiting.
 307         */
 308        if (adap->pdev->error_state != pci_channel_io_normal)
 309                return -EIO;
 310
 311        /* If we have a negative timeout, that implies that we can't sleep. */
 312        if (timeout < 0) {
 313                sleep_ok = false;
 314                timeout = -timeout;
 315        }
 316
 317        /* Queue ourselves onto the mailbox access list.  When our entry is at
 318         * the front of the list, we have rights to access the mailbox.  So we
 319         * wait [for a while] till we're at the front [or bail out with an
 320         * EBUSY] ...
 321         */
 322        spin_lock_bh(&adap->mbox_lock);
 323        list_add_tail(&entry.list, &adap->mlist.list);
 324        spin_unlock_bh(&adap->mbox_lock);
 325
 326        delay_idx = 0;
 327        ms = delay[0];
 328
 329        for (i = 0; ; i += ms) {
 330                /* If we've waited too long, return a busy indication.  This
 331                 * really ought to be based on our initial position in the
 332                 * mailbox access list but this is a start.  We very rarely
 333                 * contend on access to the mailbox ...
 334                 */
 335                pcie_fw = t4_read_reg(adap, PCIE_FW_A);
 336                if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
 337                        spin_lock_bh(&adap->mbox_lock);
 338                        list_del(&entry.list);
 339                        spin_unlock_bh(&adap->mbox_lock);
 340                        ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
 341                        t4_record_mbox(adap, cmd, size, access, ret);
 342                        return ret;
 343                }
 344
 345                /* If we're at the head, break out and start the mailbox
 346                 * protocol.
 347                 */
 348                if (list_first_entry(&adap->mlist.list, struct mbox_list,
 349                                     list) == &entry)
 350                        break;
 351
 352                /* Delay for a bit before checking again ... */
 353                if (sleep_ok) {
 354                        ms = delay[delay_idx];  /* last element may repeat */
 355                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 356                                delay_idx++;
 357                        msleep(ms);
 358                } else {
 359                        mdelay(ms);
 360                }
 361        }
 362
 363        /* Loop trying to get ownership of the mailbox.  Return an error
 364         * if we can't gain ownership.
 365         */
 366        v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 367        for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 368                v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
 369        if (v != MBOX_OWNER_DRV) {
 370                spin_lock_bh(&adap->mbox_lock);
 371                list_del(&entry.list);
 372                spin_unlock_bh(&adap->mbox_lock);
 373                ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 374                t4_record_mbox(adap, cmd, size, access, ret);
 375                return ret;
 376        }
 377
 378        /* Copy in the new mailbox command and send it on its way ... */
 379        t4_record_mbox(adap, cmd, size, access, 0);
 380        for (i = 0; i < size; i += 8)
 381                t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
 382
 383        t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 384        t4_read_reg(adap, ctl_reg);          /* flush write */
 385
 386        delay_idx = 0;
 387        ms = delay[0];
 388
 389        for (i = 0;
 390             !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
 391             i < timeout;
 392             i += ms) {
 393                if (sleep_ok) {
 394                        ms = delay[delay_idx];  /* last element may repeat */
 395                        if (delay_idx < ARRAY_SIZE(delay) - 1)
 396                                delay_idx++;
 397                        msleep(ms);
 398                } else
 399                        mdelay(ms);
 400
 401                v = t4_read_reg(adap, ctl_reg);
 402                if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 403                        if (!(v & MBMSGVALID_F)) {
 404                                t4_write_reg(adap, ctl_reg, 0);
 405                                continue;
 406                        }
 407
 408                        get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
 409                        res = be64_to_cpu(cmd_rpl[0]);
 410
 411                        if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
 412                                fw_asrt(adap, data_reg);
 413                                res = FW_CMD_RETVAL_V(EIO);
 414                        } else if (rpl) {
 415                                memcpy(rpl, cmd_rpl, size);
 416                        }
 417
 418                        t4_write_reg(adap, ctl_reg, 0);
 419
 420                        execute = i + ms;
 421                        t4_record_mbox(adap, cmd_rpl,
 422                                       MBOX_LEN, access, execute);
 423                        spin_lock_bh(&adap->mbox_lock);
 424                        list_del(&entry.list);
 425                        spin_unlock_bh(&adap->mbox_lock);
 426                        return -FW_CMD_RETVAL_G((int)res);
 427                }
 428        }
 429
 430        ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
 431        t4_record_mbox(adap, cmd, size, access, ret);
 432        dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
 433                *(const u8 *)cmd, mbox);
 434        t4_report_fw_error(adap);
 435        spin_lock_bh(&adap->mbox_lock);
 436        list_del(&entry.list);
 437        spin_unlock_bh(&adap->mbox_lock);
 438        t4_fatal_err(adap);
 439        return ret;
 440}
 441
 442int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
 443                    void *rpl, bool sleep_ok)
 444{
 445        return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
 446                                       FW_CMD_MAX_TIMEOUT);
 447}
 448
 449static int t4_edc_err_read(struct adapter *adap, int idx)
 450{
 451        u32 edc_ecc_err_addr_reg;
 452        u32 rdata_reg;
 453
 454        if (is_t4(adap->params.chip)) {
 455                CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
 456                return 0;
 457        }
 458        if (idx != 0 && idx != 1) {
 459                CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
 460                return 0;
 461        }
 462
 463        edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
 464        rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
 465
 466        CH_WARN(adap,
 467                "edc%d err addr 0x%x: 0x%x.\n",
 468                idx, edc_ecc_err_addr_reg,
 469                t4_read_reg(adap, edc_ecc_err_addr_reg));
 470        CH_WARN(adap,
 471                "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
 472                rdata_reg,
 473                (unsigned long long)t4_read_reg64(adap, rdata_reg),
 474                (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
 475                (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
 476                (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
 477                (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
 478                (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
 479                (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
 480                (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
 481                (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
 482
 483        return 0;
 484}
 485
 486/**
 487 * t4_memory_rw_init - Get memory window relative offset, base, and size.
 488 * @adap: the adapter
 489 * @win: PCI-E Memory Window to use
 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
 491 * @mem_off: memory relative offset with respect to @mtype.
 492 * @mem_base: configured memory base address.
 493 * @mem_aperture: configured memory window aperture.
 494 *
 495 * Get the configured memory window's relative offset, base, and size.
 496 */
 497int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
 498                      u32 *mem_base, u32 *mem_aperture)
 499{
 500        u32 edc_size, mc_size, mem_reg;
 501
 502        /* Offset into the region of memory which is being accessed
 503         * MEM_EDC0 = 0
 504         * MEM_EDC1 = 1
 505         * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
 506         * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
 507         * MEM_HMA  = 4
 508         */
 509        edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
 510        if (mtype == MEM_HMA) {
 511                *mem_off = 2 * (edc_size * 1024 * 1024);
 512        } else if (mtype != MEM_MC1) {
 513                *mem_off = (mtype * (edc_size * 1024 * 1024));
 514        } else {
 515                mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
 516                                                      MA_EXT_MEMORY0_BAR_A));
 517                *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
 518        }
 519
 520        /* Each PCI-E Memory Window is programmed with a window size -- or
 521         * "aperture" -- which controls the granularity of its mapping onto
 522         * adapter memory.  We need to grab that aperture in order to know
 523         * how to use the specified window.  The window is also programmed
 524         * with the base address of the Memory Window in BAR0's address
 525         * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
 526         * the address is relative to BAR0.
 527         */
 528        mem_reg = t4_read_reg(adap,
 529                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
 530                                                  win));
 531        /* a dead adapter will return 0xffffffff for PIO reads */
 532        if (mem_reg == 0xffffffff)
 533                return -ENXIO;
 534
 535        *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
 536        *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
 537        if (is_t4(adap->params.chip))
 538                *mem_base -= adap->t4_bar0;
 539
 540        return 0;
 541}
 542
 543/**
 544 * t4_memory_update_win - Move memory window to specified address.
 545 * @adap: the adapter
 546 * @win: PCI-E Memory Window to use
 547 * @addr: location to move.
 548 *
 549 * Move memory window to specified address.
 550 */
 551void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
 552{
 553        t4_write_reg(adap,
 554                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
 555                     addr);
 556        /* Read it back to ensure that changes propagate before we
 557         * attempt to use the new value.
 558         */
 559        t4_read_reg(adap,
 560                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
 561}
 562
 563/**
 564 * t4_memory_rw_residual - Read/Write residual data.
 565 * @adap: the adapter
 566 * @off: relative offset within residual to start read/write.
 567 * @addr: address within indicated memory type.
 568 * @buf: host memory buffer
 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
 570 *
 571 * Read/Write residual data less than 32-bits.
 572 */
 573void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
 574                           int dir)
 575{
 576        union {
 577                u32 word;
 578                char byte[4];
 579        } last;
 580        unsigned char *bp;
 581        int i;
 582
 583        if (dir == T4_MEMORY_READ) {
 584                last.word = le32_to_cpu((__force __le32)
 585                                        t4_read_reg(adap, addr));
 586                for (bp = (unsigned char *)buf, i = off; i < 4; i++)
 587                        bp[i] = last.byte[i];
 588        } else {
 589                last.word = *buf;
 590                for (i = off; i < 4; i++)
 591                        last.byte[i] = 0;
 592                t4_write_reg(adap, addr,
 593                             (__force u32)cpu_to_le32(last.word));
 594        }
 595}
 596
 597/**
 598 *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 599 *      @adap: the adapter
 600 *      @win: PCI-E Memory Window to use
 601 *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 602 *      @addr: address within indicated memory type
 603 *      @len: amount of memory to transfer
 604 *      @hbuf: host memory buffer
 605 *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
 606 *
 607 *      Reads/writes an [almost] arbitrary memory region in the firmware: the
 608 *      firmware memory address and host buffer must be aligned on 32-bit
 609 *      boundaries; the length may be arbitrary.  The memory is transferred as
 610 *      a raw byte sequence from/to the firmware's memory.  If this memory
 611 *      contains data structures which contain multi-byte integers, it's the
 612 *      caller's responsibility to perform appropriate byte order conversions.
 613 */
 614int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
 615                 u32 len, void *hbuf, int dir)
 616{
 617        u32 pos, offset, resid, memoffset;
 618        u32 win_pf, mem_aperture, mem_base;
 619        u32 *buf;
 620        int ret;
 621
 622        /* Argument sanity checks ...
 623         */
 624        if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
 625                return -EINVAL;
 626        buf = (u32 *)hbuf;
 627
 628        /* It's convenient to be able to handle lengths which aren't a
 629         * multiple of 32-bits because we often end up transferring files to
 630         * the firmware.  So we'll handle that by normalizing the length here
 631         * and then handling any residual transfer at the end.
 632         */
 633        resid = len & 0x3;
 634        len -= resid;
 635
 636        ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
 637                                &mem_aperture);
 638        if (ret)
 639                return ret;
 640
 641        /* Determine the PCIE_MEM_ACCESS_OFFSET */
 642        addr = addr + memoffset;
 643
 644        win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
 645
 646        /* Calculate our initial PCI-E Memory Window Position and Offset into
 647         * that Window.
 648         */
 649        pos = addr & ~(mem_aperture - 1);
 650        offset = addr - pos;
 651
 652        /* Set up initial PCI-E Memory Window to cover the start of our
 653         * transfer.
 654         */
 655        t4_memory_update_win(adap, win, pos | win_pf);
 656
 657        /* Transfer data to/from the adapter as long as there's an integral
 658         * number of 32-bit transfers to complete.
 659         *
 660         * A note on Endianness issues:
 661         *
 662         * The "register" reads and writes below from/to the PCI-E Memory
 663         * Window invoke the standard adapter Big-Endian to PCI-E Link
 664         * Little-Endian "swizzel."  As a result, if we have the following
 665         * data in adapter memory:
 666         *
 667         *     Memory:  ... | b0 | b1 | b2 | b3 | ...
 668         *     Address:      i+0  i+1  i+2  i+3
 669         *
 670         * Then a read of the adapter memory via the PCI-E Memory Window
 671         * will yield:
 672         *
 673         *     x = readl(i)
 674         *         31                  0
 675         *         [ b3 | b2 | b1 | b0 ]
 676         *
 677         * If this value is stored into local memory on a Little-Endian system
 678         * it will show up correctly in local memory as:
 679         *
 680         *     ( ..., b0, b1, b2, b3, ... )
 681         *
 682         * But on a Big-Endian system, the store will show up in memory
 683         * incorrectly swizzled as:
 684         *
 685         *     ( ..., b3, b2, b1, b0, ... )
 686         *
 687         * So we need to account for this in the reads and writes to the
 688         * PCI-E Memory Window below by undoing the register read/write
 689         * swizzels.
 690         */
 691        while (len > 0) {
 692                if (dir == T4_MEMORY_READ)
 693                        *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
 694                                                mem_base + offset));
 695                else
 696                        t4_write_reg(adap, mem_base + offset,
 697                                     (__force u32)cpu_to_le32(*buf++));
 698                offset += sizeof(__be32);
 699                len -= sizeof(__be32);
 700
 701                /* If we've reached the end of our current window aperture,
 702                 * move the PCI-E Memory Window on to the next.  Note that
 703                 * doing this here after "len" may be 0 allows us to set up
 704                 * the PCI-E Memory Window for a possible final residual
 705                 * transfer below ...
 706                 */
 707                if (offset == mem_aperture) {
 708                        pos += mem_aperture;
 709                        offset = 0;
 710                        t4_memory_update_win(adap, win, pos | win_pf);
 711                }
 712        }
 713
 714        /* If the original transfer had a length which wasn't a multiple of
 715         * 32-bits, now's where we need to finish off the transfer of the
 716         * residual amount.  The PCI-E Memory Window has already been moved
 717         * above (if necessary) to cover this final transfer.
 718         */
 719        if (resid)
 720                t4_memory_rw_residual(adap, resid, mem_base + offset,
 721                                      (u8 *)buf, dir);
 722
 723        return 0;
 724}
 725
 726/* Return the specified PCI-E Configuration Space register from our Physical
 727 * Function.  We try first via a Firmware LDST Command since we prefer to let
 728 * the firmware own all of these registers, but if that fails we go for it
 729 * directly ourselves.
 730 */
 731u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
 732{
 733        u32 val, ldst_addrspace;
 734
 735        /* If fw_attach != 0, construct and send the Firmware LDST Command to
 736         * retrieve the specified PCI-E Configuration Space register.
 737         */
 738        struct fw_ldst_cmd ldst_cmd;
 739        int ret;
 740
 741        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
 742        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
 743        ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
 744                                               FW_CMD_REQUEST_F |
 745                                               FW_CMD_READ_F |
 746                                               ldst_addrspace);
 747        ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
 748        ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
 749        ldst_cmd.u.pcie.ctrl_to_fn =
 750                (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
 751        ldst_cmd.u.pcie.r = reg;
 752
 753        /* If the LDST Command succeeds, return the result, otherwise
 754         * fall through to reading it directly ourselves ...
 755         */
 756        ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
 757                         &ldst_cmd);
 758        if (ret == 0)
 759                val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
 760        else
 761                /* Read the desired Configuration Space register via the PCI-E
 762                 * Backdoor mechanism.
 763                 */
 764                t4_hw_pci_read_cfg4(adap, reg, &val);
 765        return val;
 766}
 767
 768/* Get the window based on base passed to it.
 769 * Window aperture is currently unhandled, but there is no use case for it
 770 * right now
 771 */
 772static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
 773                         u32 memwin_base)
 774{
 775        u32 ret;
 776
 777        if (is_t4(adap->params.chip)) {
 778                u32 bar0;
 779
 780                /* Truncation intentional: we only read the bottom 32-bits of
 781                 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
 782                 * mechanism to read BAR0 instead of using
 783                 * pci_resource_start() because we could be operating from
 784                 * within a Virtual Machine which is trapping our accesses to
 785                 * our Configuration Space and we need to set up the PCI-E
 786                 * Memory Window decoders with the actual addresses which will
 787                 * be coming across the PCI-E link.
 788                 */
 789                bar0 = t4_read_pcie_cfg4(adap, pci_base);
 790                bar0 &= pci_mask;
 791                adap->t4_bar0 = bar0;
 792
 793                ret = bar0 + memwin_base;
 794        } else {
 795                /* For T5, only relative offset inside the PCIe BAR is passed */
 796                ret = memwin_base;
 797        }
 798        return ret;
 799}
 800
 801/* Get the default utility window (win0) used by everyone */
 802u32 t4_get_util_window(struct adapter *adap)
 803{
 804        return t4_get_window(adap, PCI_BASE_ADDRESS_0,
 805                             PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
 806}
 807
 808/* Set up memory window for accessing adapter memory ranges.  (Read
 809 * back MA register to ensure that changes propagate before we attempt
 810 * to use the new values.)
 811 */
 812void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
 813{
 814        t4_write_reg(adap,
 815                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
 816                     memwin_base | BIR_V(0) |
 817                     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
 818        t4_read_reg(adap,
 819                    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
 820}
 821
 822/**
 823 *      t4_get_regs_len - return the size of the chips register set
 824 *      @adapter: the adapter
 825 *
 826 *      Returns the size of the chip's BAR0 register space.
 827 */
 828unsigned int t4_get_regs_len(struct adapter *adapter)
 829{
 830        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
 831
 832        switch (chip_version) {
 833        case CHELSIO_T4:
 834                return T4_REGMAP_SIZE;
 835
 836        case CHELSIO_T5:
 837        case CHELSIO_T6:
 838                return T5_REGMAP_SIZE;
 839        }
 840
 841        dev_err(adapter->pdev_dev,
 842                "Unsupported chip version %d\n", chip_version);
 843        return 0;
 844}
 845
 846/**
 847 *      t4_get_regs - read chip registers into provided buffer
 848 *      @adap: the adapter
 849 *      @buf: register buffer
 850 *      @buf_size: size (in bytes) of register buffer
 851 *
 852 *      If the provided register buffer isn't large enough for the chip's
 853 *      full register range, the register dump will be truncated to the
 854 *      register buffer's size.
 855 */
 856void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
 857{
 858        static const unsigned int t4_reg_ranges[] = {
 859                0x1008, 0x1108,
 860                0x1180, 0x1184,
 861                0x1190, 0x1194,
 862                0x11a0, 0x11a4,
 863                0x11b0, 0x11b4,
 864                0x11fc, 0x123c,
 865                0x1300, 0x173c,
 866                0x1800, 0x18fc,
 867                0x3000, 0x30d8,
 868                0x30e0, 0x30e4,
 869                0x30ec, 0x5910,
 870                0x5920, 0x5924,
 871                0x5960, 0x5960,
 872                0x5968, 0x5968,
 873                0x5970, 0x5970,
 874                0x5978, 0x5978,
 875                0x5980, 0x5980,
 876                0x5988, 0x5988,
 877                0x5990, 0x5990,
 878                0x5998, 0x5998,
 879                0x59a0, 0x59d4,
 880                0x5a00, 0x5ae0,
 881                0x5ae8, 0x5ae8,
 882                0x5af0, 0x5af0,
 883                0x5af8, 0x5af8,
 884                0x6000, 0x6098,
 885                0x6100, 0x6150,
 886                0x6200, 0x6208,
 887                0x6240, 0x6248,
 888                0x6280, 0x62b0,
 889                0x62c0, 0x6338,
 890                0x6370, 0x638c,
 891                0x6400, 0x643c,
 892                0x6500, 0x6524,
 893                0x6a00, 0x6a04,
 894                0x6a14, 0x6a38,
 895                0x6a60, 0x6a70,
 896                0x6a78, 0x6a78,
 897                0x6b00, 0x6b0c,
 898                0x6b1c, 0x6b84,
 899                0x6bf0, 0x6bf8,
 900                0x6c00, 0x6c0c,
 901                0x6c1c, 0x6c84,
 902                0x6cf0, 0x6cf8,
 903                0x6d00, 0x6d0c,
 904                0x6d1c, 0x6d84,
 905                0x6df0, 0x6df8,
 906                0x6e00, 0x6e0c,
 907                0x6e1c, 0x6e84,
 908                0x6ef0, 0x6ef8,
 909                0x6f00, 0x6f0c,
 910                0x6f1c, 0x6f84,
 911                0x6ff0, 0x6ff8,
 912                0x7000, 0x700c,
 913                0x701c, 0x7084,
 914                0x70f0, 0x70f8,
 915                0x7100, 0x710c,
 916                0x711c, 0x7184,
 917                0x71f0, 0x71f8,
 918                0x7200, 0x720c,
 919                0x721c, 0x7284,
 920                0x72f0, 0x72f8,
 921                0x7300, 0x730c,
 922                0x731c, 0x7384,
 923                0x73f0, 0x73f8,
 924                0x7400, 0x7450,
 925                0x7500, 0x7530,
 926                0x7600, 0x760c,
 927                0x7614, 0x761c,
 928                0x7680, 0x76cc,
 929                0x7700, 0x7798,
 930                0x77c0, 0x77fc,
 931                0x7900, 0x79fc,
 932                0x7b00, 0x7b58,
 933                0x7b60, 0x7b84,
 934                0x7b8c, 0x7c38,
 935                0x7d00, 0x7d38,
 936                0x7d40, 0x7d80,
 937                0x7d8c, 0x7ddc,
 938                0x7de4, 0x7e04,
 939                0x7e10, 0x7e1c,
 940                0x7e24, 0x7e38,
 941                0x7e40, 0x7e44,
 942                0x7e4c, 0x7e78,
 943                0x7e80, 0x7ea4,
 944                0x7eac, 0x7edc,
 945                0x7ee8, 0x7efc,
 946                0x8dc0, 0x8e04,
 947                0x8e10, 0x8e1c,
 948                0x8e30, 0x8e78,
 949                0x8ea0, 0x8eb8,
 950                0x8ec0, 0x8f6c,
 951                0x8fc0, 0x9008,
 952                0x9010, 0x9058,
 953                0x9060, 0x9060,
 954                0x9068, 0x9074,
 955                0x90fc, 0x90fc,
 956                0x9400, 0x9408,
 957                0x9410, 0x9458,
 958                0x9600, 0x9600,
 959                0x9608, 0x9638,
 960                0x9640, 0x96bc,
 961                0x9800, 0x9808,
 962                0x9820, 0x983c,
 963                0x9850, 0x9864,
 964                0x9c00, 0x9c6c,
 965                0x9c80, 0x9cec,
 966                0x9d00, 0x9d6c,
 967                0x9d80, 0x9dec,
 968                0x9e00, 0x9e6c,
 969                0x9e80, 0x9eec,
 970                0x9f00, 0x9f6c,
 971                0x9f80, 0x9fec,
 972                0xd004, 0xd004,
 973                0xd010, 0xd03c,
 974                0xdfc0, 0xdfe0,
 975                0xe000, 0xea7c,
 976                0xf000, 0x11110,
 977                0x11118, 0x11190,
 978                0x19040, 0x1906c,
 979                0x19078, 0x19080,
 980                0x1908c, 0x190e4,
 981                0x190f0, 0x190f8,
 982                0x19100, 0x19110,
 983                0x19120, 0x19124,
 984                0x19150, 0x19194,
 985                0x1919c, 0x191b0,
 986                0x191d0, 0x191e8,
 987                0x19238, 0x1924c,
 988                0x193f8, 0x1943c,
 989                0x1944c, 0x19474,
 990                0x19490, 0x194e0,
 991                0x194f0, 0x194f8,
 992                0x19800, 0x19c08,
 993                0x19c10, 0x19c90,
 994                0x19ca0, 0x19ce4,
 995                0x19cf0, 0x19d40,
 996                0x19d50, 0x19d94,
 997                0x19da0, 0x19de8,
 998                0x19df0, 0x19e40,
 999                0x19e50, 0x19e90,
1000                0x19ea0, 0x19f4c,
1001                0x1a000, 0x1a004,
1002                0x1a010, 0x1a06c,
1003                0x1a0b0, 0x1a0e4,
1004                0x1a0ec, 0x1a0f4,
1005                0x1a100, 0x1a108,
1006                0x1a114, 0x1a120,
1007                0x1a128, 0x1a130,
1008                0x1a138, 0x1a138,
1009                0x1a190, 0x1a1c4,
1010                0x1a1fc, 0x1a1fc,
1011                0x1e040, 0x1e04c,
1012                0x1e284, 0x1e28c,
1013                0x1e2c0, 0x1e2c0,
1014                0x1e2e0, 0x1e2e0,
1015                0x1e300, 0x1e384,
1016                0x1e3c0, 0x1e3c8,
1017                0x1e440, 0x1e44c,
1018                0x1e684, 0x1e68c,
1019                0x1e6c0, 0x1e6c0,
1020                0x1e6e0, 0x1e6e0,
1021                0x1e700, 0x1e784,
1022                0x1e7c0, 0x1e7c8,
1023                0x1e840, 0x1e84c,
1024                0x1ea84, 0x1ea8c,
1025                0x1eac0, 0x1eac0,
1026                0x1eae0, 0x1eae0,
1027                0x1eb00, 0x1eb84,
1028                0x1ebc0, 0x1ebc8,
1029                0x1ec40, 0x1ec4c,
1030                0x1ee84, 0x1ee8c,
1031                0x1eec0, 0x1eec0,
1032                0x1eee0, 0x1eee0,
1033                0x1ef00, 0x1ef84,
1034                0x1efc0, 0x1efc8,
1035                0x1f040, 0x1f04c,
1036                0x1f284, 0x1f28c,
1037                0x1f2c0, 0x1f2c0,
1038                0x1f2e0, 0x1f2e0,
1039                0x1f300, 0x1f384,
1040                0x1f3c0, 0x1f3c8,
1041                0x1f440, 0x1f44c,
1042                0x1f684, 0x1f68c,
1043                0x1f6c0, 0x1f6c0,
1044                0x1f6e0, 0x1f6e0,
1045                0x1f700, 0x1f784,
1046                0x1f7c0, 0x1f7c8,
1047                0x1f840, 0x1f84c,
1048                0x1fa84, 0x1fa8c,
1049                0x1fac0, 0x1fac0,
1050                0x1fae0, 0x1fae0,
1051                0x1fb00, 0x1fb84,
1052                0x1fbc0, 0x1fbc8,
1053                0x1fc40, 0x1fc4c,
1054                0x1fe84, 0x1fe8c,
1055                0x1fec0, 0x1fec0,
1056                0x1fee0, 0x1fee0,
1057                0x1ff00, 0x1ff84,
1058                0x1ffc0, 0x1ffc8,
1059                0x20000, 0x2002c,
1060                0x20100, 0x2013c,
1061                0x20190, 0x201a0,
1062                0x201a8, 0x201b8,
1063                0x201c4, 0x201c8,
1064                0x20200, 0x20318,
1065                0x20400, 0x204b4,
1066                0x204c0, 0x20528,
1067                0x20540, 0x20614,
1068                0x21000, 0x21040,
1069                0x2104c, 0x21060,
1070                0x210c0, 0x210ec,
1071                0x21200, 0x21268,
1072                0x21270, 0x21284,
1073                0x212fc, 0x21388,
1074                0x21400, 0x21404,
1075                0x21500, 0x21500,
1076                0x21510, 0x21518,
1077                0x2152c, 0x21530,
1078                0x2153c, 0x2153c,
1079                0x21550, 0x21554,
1080                0x21600, 0x21600,
1081                0x21608, 0x2161c,
1082                0x21624, 0x21628,
1083                0x21630, 0x21634,
1084                0x2163c, 0x2163c,
1085                0x21700, 0x2171c,
1086                0x21780, 0x2178c,
1087                0x21800, 0x21818,
1088                0x21820, 0x21828,
1089                0x21830, 0x21848,
1090                0x21850, 0x21854,
1091                0x21860, 0x21868,
1092                0x21870, 0x21870,
1093                0x21878, 0x21898,
1094                0x218a0, 0x218a8,
1095                0x218b0, 0x218c8,
1096                0x218d0, 0x218d4,
1097                0x218e0, 0x218e8,
1098                0x218f0, 0x218f0,
1099                0x218f8, 0x21a18,
1100                0x21a20, 0x21a28,
1101                0x21a30, 0x21a48,
1102                0x21a50, 0x21a54,
1103                0x21a60, 0x21a68,
1104                0x21a70, 0x21a70,
1105                0x21a78, 0x21a98,
1106                0x21aa0, 0x21aa8,
1107                0x21ab0, 0x21ac8,
1108                0x21ad0, 0x21ad4,
1109                0x21ae0, 0x21ae8,
1110                0x21af0, 0x21af0,
1111                0x21af8, 0x21c18,
1112                0x21c20, 0x21c20,
1113                0x21c28, 0x21c30,
1114                0x21c38, 0x21c38,
1115                0x21c80, 0x21c98,
1116                0x21ca0, 0x21ca8,
1117                0x21cb0, 0x21cc8,
1118                0x21cd0, 0x21cd4,
1119                0x21ce0, 0x21ce8,
1120                0x21cf0, 0x21cf0,
1121                0x21cf8, 0x21d7c,
1122                0x21e00, 0x21e04,
1123                0x22000, 0x2202c,
1124                0x22100, 0x2213c,
1125                0x22190, 0x221a0,
1126                0x221a8, 0x221b8,
1127                0x221c4, 0x221c8,
1128                0x22200, 0x22318,
1129                0x22400, 0x224b4,
1130                0x224c0, 0x22528,
1131                0x22540, 0x22614,
1132                0x23000, 0x23040,
1133                0x2304c, 0x23060,
1134                0x230c0, 0x230ec,
1135                0x23200, 0x23268,
1136                0x23270, 0x23284,
1137                0x232fc, 0x23388,
1138                0x23400, 0x23404,
1139                0x23500, 0x23500,
1140                0x23510, 0x23518,
1141                0x2352c, 0x23530,
1142                0x2353c, 0x2353c,
1143                0x23550, 0x23554,
1144                0x23600, 0x23600,
1145                0x23608, 0x2361c,
1146                0x23624, 0x23628,
1147                0x23630, 0x23634,
1148                0x2363c, 0x2363c,
1149                0x23700, 0x2371c,
1150                0x23780, 0x2378c,
1151                0x23800, 0x23818,
1152                0x23820, 0x23828,
1153                0x23830, 0x23848,
1154                0x23850, 0x23854,
1155                0x23860, 0x23868,
1156                0x23870, 0x23870,
1157                0x23878, 0x23898,
1158                0x238a0, 0x238a8,
1159                0x238b0, 0x238c8,
1160                0x238d0, 0x238d4,
1161                0x238e0, 0x238e8,
1162                0x238f0, 0x238f0,
1163                0x238f8, 0x23a18,
1164                0x23a20, 0x23a28,
1165                0x23a30, 0x23a48,
1166                0x23a50, 0x23a54,
1167                0x23a60, 0x23a68,
1168                0x23a70, 0x23a70,
1169                0x23a78, 0x23a98,
1170                0x23aa0, 0x23aa8,
1171                0x23ab0, 0x23ac8,
1172                0x23ad0, 0x23ad4,
1173                0x23ae0, 0x23ae8,
1174                0x23af0, 0x23af0,
1175                0x23af8, 0x23c18,
1176                0x23c20, 0x23c20,
1177                0x23c28, 0x23c30,
1178                0x23c38, 0x23c38,
1179                0x23c80, 0x23c98,
1180                0x23ca0, 0x23ca8,
1181                0x23cb0, 0x23cc8,
1182                0x23cd0, 0x23cd4,
1183                0x23ce0, 0x23ce8,
1184                0x23cf0, 0x23cf0,
1185                0x23cf8, 0x23d7c,
1186                0x23e00, 0x23e04,
1187                0x24000, 0x2402c,
1188                0x24100, 0x2413c,
1189                0x24190, 0x241a0,
1190                0x241a8, 0x241b8,
1191                0x241c4, 0x241c8,
1192                0x24200, 0x24318,
1193                0x24400, 0x244b4,
1194                0x244c0, 0x24528,
1195                0x24540, 0x24614,
1196                0x25000, 0x25040,
1197                0x2504c, 0x25060,
1198                0x250c0, 0x250ec,
1199                0x25200, 0x25268,
1200                0x25270, 0x25284,
1201                0x252fc, 0x25388,
1202                0x25400, 0x25404,
1203                0x25500, 0x25500,
1204                0x25510, 0x25518,
1205                0x2552c, 0x25530,
1206                0x2553c, 0x2553c,
1207                0x25550, 0x25554,
1208                0x25600, 0x25600,
1209                0x25608, 0x2561c,
1210                0x25624, 0x25628,
1211                0x25630, 0x25634,
1212                0x2563c, 0x2563c,
1213                0x25700, 0x2571c,
1214                0x25780, 0x2578c,
1215                0x25800, 0x25818,
1216                0x25820, 0x25828,
1217                0x25830, 0x25848,
1218                0x25850, 0x25854,
1219                0x25860, 0x25868,
1220                0x25870, 0x25870,
1221                0x25878, 0x25898,
1222                0x258a0, 0x258a8,
1223                0x258b0, 0x258c8,
1224                0x258d0, 0x258d4,
1225                0x258e0, 0x258e8,
1226                0x258f0, 0x258f0,
1227                0x258f8, 0x25a18,
1228                0x25a20, 0x25a28,
1229                0x25a30, 0x25a48,
1230                0x25a50, 0x25a54,
1231                0x25a60, 0x25a68,
1232                0x25a70, 0x25a70,
1233                0x25a78, 0x25a98,
1234                0x25aa0, 0x25aa8,
1235                0x25ab0, 0x25ac8,
1236                0x25ad0, 0x25ad4,
1237                0x25ae0, 0x25ae8,
1238                0x25af0, 0x25af0,
1239                0x25af8, 0x25c18,
1240                0x25c20, 0x25c20,
1241                0x25c28, 0x25c30,
1242                0x25c38, 0x25c38,
1243                0x25c80, 0x25c98,
1244                0x25ca0, 0x25ca8,
1245                0x25cb0, 0x25cc8,
1246                0x25cd0, 0x25cd4,
1247                0x25ce0, 0x25ce8,
1248                0x25cf0, 0x25cf0,
1249                0x25cf8, 0x25d7c,
1250                0x25e00, 0x25e04,
1251                0x26000, 0x2602c,
1252                0x26100, 0x2613c,
1253                0x26190, 0x261a0,
1254                0x261a8, 0x261b8,
1255                0x261c4, 0x261c8,
1256                0x26200, 0x26318,
1257                0x26400, 0x264b4,
1258                0x264c0, 0x26528,
1259                0x26540, 0x26614,
1260                0x27000, 0x27040,
1261                0x2704c, 0x27060,
1262                0x270c0, 0x270ec,
1263                0x27200, 0x27268,
1264                0x27270, 0x27284,
1265                0x272fc, 0x27388,
1266                0x27400, 0x27404,
1267                0x27500, 0x27500,
1268                0x27510, 0x27518,
1269                0x2752c, 0x27530,
1270                0x2753c, 0x2753c,
1271                0x27550, 0x27554,
1272                0x27600, 0x27600,
1273                0x27608, 0x2761c,
1274                0x27624, 0x27628,
1275                0x27630, 0x27634,
1276                0x2763c, 0x2763c,
1277                0x27700, 0x2771c,
1278                0x27780, 0x2778c,
1279                0x27800, 0x27818,
1280                0x27820, 0x27828,
1281                0x27830, 0x27848,
1282                0x27850, 0x27854,
1283                0x27860, 0x27868,
1284                0x27870, 0x27870,
1285                0x27878, 0x27898,
1286                0x278a0, 0x278a8,
1287                0x278b0, 0x278c8,
1288                0x278d0, 0x278d4,
1289                0x278e0, 0x278e8,
1290                0x278f0, 0x278f0,
1291                0x278f8, 0x27a18,
1292                0x27a20, 0x27a28,
1293                0x27a30, 0x27a48,
1294                0x27a50, 0x27a54,
1295                0x27a60, 0x27a68,
1296                0x27a70, 0x27a70,
1297                0x27a78, 0x27a98,
1298                0x27aa0, 0x27aa8,
1299                0x27ab0, 0x27ac8,
1300                0x27ad0, 0x27ad4,
1301                0x27ae0, 0x27ae8,
1302                0x27af0, 0x27af0,
1303                0x27af8, 0x27c18,
1304                0x27c20, 0x27c20,
1305                0x27c28, 0x27c30,
1306                0x27c38, 0x27c38,
1307                0x27c80, 0x27c98,
1308                0x27ca0, 0x27ca8,
1309                0x27cb0, 0x27cc8,
1310                0x27cd0, 0x27cd4,
1311                0x27ce0, 0x27ce8,
1312                0x27cf0, 0x27cf0,
1313                0x27cf8, 0x27d7c,
1314                0x27e00, 0x27e04,
1315        };
1316
1317        static const unsigned int t5_reg_ranges[] = {
1318                0x1008, 0x10c0,
1319                0x10cc, 0x10f8,
1320                0x1100, 0x1100,
1321                0x110c, 0x1148,
1322                0x1180, 0x1184,
1323                0x1190, 0x1194,
1324                0x11a0, 0x11a4,
1325                0x11b0, 0x11b4,
1326                0x11fc, 0x123c,
1327                0x1280, 0x173c,
1328                0x1800, 0x18fc,
1329                0x3000, 0x3028,
1330                0x3060, 0x30b0,
1331                0x30b8, 0x30d8,
1332                0x30e0, 0x30fc,
1333                0x3140, 0x357c,
1334                0x35a8, 0x35cc,
1335                0x35ec, 0x35ec,
1336                0x3600, 0x5624,
1337                0x56cc, 0x56ec,
1338                0x56f4, 0x5720,
1339                0x5728, 0x575c,
1340                0x580c, 0x5814,
1341                0x5890, 0x589c,
1342                0x58a4, 0x58ac,
1343                0x58b8, 0x58bc,
1344                0x5940, 0x59c8,
1345                0x59d0, 0x59dc,
1346                0x59fc, 0x5a18,
1347                0x5a60, 0x5a70,
1348                0x5a80, 0x5a9c,
1349                0x5b94, 0x5bfc,
1350                0x6000, 0x6020,
1351                0x6028, 0x6040,
1352                0x6058, 0x609c,
1353                0x60a8, 0x614c,
1354                0x7700, 0x7798,
1355                0x77c0, 0x78fc,
1356                0x7b00, 0x7b58,
1357                0x7b60, 0x7b84,
1358                0x7b8c, 0x7c54,
1359                0x7d00, 0x7d38,
1360                0x7d40, 0x7d80,
1361                0x7d8c, 0x7ddc,
1362                0x7de4, 0x7e04,
1363                0x7e10, 0x7e1c,
1364                0x7e24, 0x7e38,
1365                0x7e40, 0x7e44,
1366                0x7e4c, 0x7e78,
1367                0x7e80, 0x7edc,
1368                0x7ee8, 0x7efc,
1369                0x8dc0, 0x8de0,
1370                0x8df8, 0x8e04,
1371                0x8e10, 0x8e84,
1372                0x8ea0, 0x8f84,
1373                0x8fc0, 0x9058,
1374                0x9060, 0x9060,
1375                0x9068, 0x90f8,
1376                0x9400, 0x9408,
1377                0x9410, 0x9470,
1378                0x9600, 0x9600,
1379                0x9608, 0x9638,
1380                0x9640, 0x96f4,
1381                0x9800, 0x9808,
1382                0x9810, 0x9864,
1383                0x9c00, 0x9c6c,
1384                0x9c80, 0x9cec,
1385                0x9d00, 0x9d6c,
1386                0x9d80, 0x9dec,
1387                0x9e00, 0x9e6c,
1388                0x9e80, 0x9eec,
1389                0x9f00, 0x9f6c,
1390                0x9f80, 0xa020,
1391                0xd000, 0xd004,
1392                0xd010, 0xd03c,
1393                0xdfc0, 0xdfe0,
1394                0xe000, 0x1106c,
1395                0x11074, 0x11088,
1396                0x1109c, 0x1117c,
1397                0x11190, 0x11204,
1398                0x19040, 0x1906c,
1399                0x19078, 0x19080,
1400                0x1908c, 0x190e8,
1401                0x190f0, 0x190f8,
1402                0x19100, 0x19110,
1403                0x19120, 0x19124,
1404                0x19150, 0x19194,
1405                0x1919c, 0x191b0,
1406                0x191d0, 0x191e8,
1407                0x19238, 0x19290,
1408                0x193f8, 0x19428,
1409                0x19430, 0x19444,
1410                0x1944c, 0x1946c,
1411                0x19474, 0x19474,
1412                0x19490, 0x194cc,
1413                0x194f0, 0x194f8,
1414                0x19c00, 0x19c08,
1415                0x19c10, 0x19c60,
1416                0x19c94, 0x19ce4,
1417                0x19cf0, 0x19d40,
1418                0x19d50, 0x19d94,
1419                0x19da0, 0x19de8,
1420                0x19df0, 0x19e10,
1421                0x19e50, 0x19e90,
1422                0x19ea0, 0x19f24,
1423                0x19f34, 0x19f34,
1424                0x19f40, 0x19f50,
1425                0x19f90, 0x19fb4,
1426                0x19fc4, 0x19fe4,
1427                0x1a000, 0x1a004,
1428                0x1a010, 0x1a06c,
1429                0x1a0b0, 0x1a0e4,
1430                0x1a0ec, 0x1a0f8,
1431                0x1a100, 0x1a108,
1432                0x1a114, 0x1a130,
1433                0x1a138, 0x1a1c4,
1434                0x1a1fc, 0x1a1fc,
1435                0x1e008, 0x1e00c,
1436                0x1e040, 0x1e044,
1437                0x1e04c, 0x1e04c,
1438                0x1e284, 0x1e290,
1439                0x1e2c0, 0x1e2c0,
1440                0x1e2e0, 0x1e2e0,
1441                0x1e300, 0x1e384,
1442                0x1e3c0, 0x1e3c8,
1443                0x1e408, 0x1e40c,
1444                0x1e440, 0x1e444,
1445                0x1e44c, 0x1e44c,
1446                0x1e684, 0x1e690,
1447                0x1e6c0, 0x1e6c0,
1448                0x1e6e0, 0x1e6e0,
1449                0x1e700, 0x1e784,
1450                0x1e7c0, 0x1e7c8,
1451                0x1e808, 0x1e80c,
1452                0x1e840, 0x1e844,
1453                0x1e84c, 0x1e84c,
1454                0x1ea84, 0x1ea90,
1455                0x1eac0, 0x1eac0,
1456                0x1eae0, 0x1eae0,
1457                0x1eb00, 0x1eb84,
1458                0x1ebc0, 0x1ebc8,
1459                0x1ec08, 0x1ec0c,
1460                0x1ec40, 0x1ec44,
1461                0x1ec4c, 0x1ec4c,
1462                0x1ee84, 0x1ee90,
1463                0x1eec0, 0x1eec0,
1464                0x1eee0, 0x1eee0,
1465                0x1ef00, 0x1ef84,
1466                0x1efc0, 0x1efc8,
1467                0x1f008, 0x1f00c,
1468                0x1f040, 0x1f044,
1469                0x1f04c, 0x1f04c,
1470                0x1f284, 0x1f290,
1471                0x1f2c0, 0x1f2c0,
1472                0x1f2e0, 0x1f2e0,
1473                0x1f300, 0x1f384,
1474                0x1f3c0, 0x1f3c8,
1475                0x1f408, 0x1f40c,
1476                0x1f440, 0x1f444,
1477                0x1f44c, 0x1f44c,
1478                0x1f684, 0x1f690,
1479                0x1f6c0, 0x1f6c0,
1480                0x1f6e0, 0x1f6e0,
1481                0x1f700, 0x1f784,
1482                0x1f7c0, 0x1f7c8,
1483                0x1f808, 0x1f80c,
1484                0x1f840, 0x1f844,
1485                0x1f84c, 0x1f84c,
1486                0x1fa84, 0x1fa90,
1487                0x1fac0, 0x1fac0,
1488                0x1fae0, 0x1fae0,
1489                0x1fb00, 0x1fb84,
1490                0x1fbc0, 0x1fbc8,
1491                0x1fc08, 0x1fc0c,
1492                0x1fc40, 0x1fc44,
1493                0x1fc4c, 0x1fc4c,
1494                0x1fe84, 0x1fe90,
1495                0x1fec0, 0x1fec0,
1496                0x1fee0, 0x1fee0,
1497                0x1ff00, 0x1ff84,
1498                0x1ffc0, 0x1ffc8,
1499                0x30000, 0x30030,
1500                0x30100, 0x30144,
1501                0x30190, 0x301a0,
1502                0x301a8, 0x301b8,
1503                0x301c4, 0x301c8,
1504                0x301d0, 0x301d0,
1505                0x30200, 0x30318,
1506                0x30400, 0x304b4,
1507                0x304c0, 0x3052c,
1508                0x30540, 0x3061c,
1509                0x30800, 0x30828,
1510                0x30834, 0x30834,
1511                0x308c0, 0x30908,
1512                0x30910, 0x309ac,
1513                0x30a00, 0x30a14,
1514                0x30a1c, 0x30a2c,
1515                0x30a44, 0x30a50,
1516                0x30a74, 0x30a74,
1517                0x30a7c, 0x30afc,
1518                0x30b08, 0x30c24,
1519                0x30d00, 0x30d00,
1520                0x30d08, 0x30d14,
1521                0x30d1c, 0x30d20,
1522                0x30d3c, 0x30d3c,
1523                0x30d48, 0x30d50,
1524                0x31200, 0x3120c,
1525                0x31220, 0x31220,
1526                0x31240, 0x31240,
1527                0x31600, 0x3160c,
1528                0x31a00, 0x31a1c,
1529                0x31e00, 0x31e20,
1530                0x31e38, 0x31e3c,
1531                0x31e80, 0x31e80,
1532                0x31e88, 0x31ea8,
1533                0x31eb0, 0x31eb4,
1534                0x31ec8, 0x31ed4,
1535                0x31fb8, 0x32004,
1536                0x32200, 0x32200,
1537                0x32208, 0x32240,
1538                0x32248, 0x32280,
1539                0x32288, 0x322c0,
1540                0x322c8, 0x322fc,
1541                0x32600, 0x32630,
1542                0x32a00, 0x32abc,
1543                0x32b00, 0x32b10,
1544                0x32b20, 0x32b30,
1545                0x32b40, 0x32b50,
1546                0x32b60, 0x32b70,
1547                0x33000, 0x33028,
1548                0x33030, 0x33048,
1549                0x33060, 0x33068,
1550                0x33070, 0x3309c,
1551                0x330f0, 0x33128,
1552                0x33130, 0x33148,
1553                0x33160, 0x33168,
1554                0x33170, 0x3319c,
1555                0x331f0, 0x33238,
1556                0x33240, 0x33240,
1557                0x33248, 0x33250,
1558                0x3325c, 0x33264,
1559                0x33270, 0x332b8,
1560                0x332c0, 0x332e4,
1561                0x332f8, 0x33338,
1562                0x33340, 0x33340,
1563                0x33348, 0x33350,
1564                0x3335c, 0x33364,
1565                0x33370, 0x333b8,
1566                0x333c0, 0x333e4,
1567                0x333f8, 0x33428,
1568                0x33430, 0x33448,
1569                0x33460, 0x33468,
1570                0x33470, 0x3349c,
1571                0x334f0, 0x33528,
1572                0x33530, 0x33548,
1573                0x33560, 0x33568,
1574                0x33570, 0x3359c,
1575                0x335f0, 0x33638,
1576                0x33640, 0x33640,
1577                0x33648, 0x33650,
1578                0x3365c, 0x33664,
1579                0x33670, 0x336b8,
1580                0x336c0, 0x336e4,
1581                0x336f8, 0x33738,
1582                0x33740, 0x33740,
1583                0x33748, 0x33750,
1584                0x3375c, 0x33764,
1585                0x33770, 0x337b8,
1586                0x337c0, 0x337e4,
1587                0x337f8, 0x337fc,
1588                0x33814, 0x33814,
1589                0x3382c, 0x3382c,
1590                0x33880, 0x3388c,
1591                0x338e8, 0x338ec,
1592                0x33900, 0x33928,
1593                0x33930, 0x33948,
1594                0x33960, 0x33968,
1595                0x33970, 0x3399c,
1596                0x339f0, 0x33a38,
1597                0x33a40, 0x33a40,
1598                0x33a48, 0x33a50,
1599                0x33a5c, 0x33a64,
1600                0x33a70, 0x33ab8,
1601                0x33ac0, 0x33ae4,
1602                0x33af8, 0x33b10,
1603                0x33b28, 0x33b28,
1604                0x33b3c, 0x33b50,
1605                0x33bf0, 0x33c10,
1606                0x33c28, 0x33c28,
1607                0x33c3c, 0x33c50,
1608                0x33cf0, 0x33cfc,
1609                0x34000, 0x34030,
1610                0x34100, 0x34144,
1611                0x34190, 0x341a0,
1612                0x341a8, 0x341b8,
1613                0x341c4, 0x341c8,
1614                0x341d0, 0x341d0,
1615                0x34200, 0x34318,
1616                0x34400, 0x344b4,
1617                0x344c0, 0x3452c,
1618                0x34540, 0x3461c,
1619                0x34800, 0x34828,
1620                0x34834, 0x34834,
1621                0x348c0, 0x34908,
1622                0x34910, 0x349ac,
1623                0x34a00, 0x34a14,
1624                0x34a1c, 0x34a2c,
1625                0x34a44, 0x34a50,
1626                0x34a74, 0x34a74,
1627                0x34a7c, 0x34afc,
1628                0x34b08, 0x34c24,
1629                0x34d00, 0x34d00,
1630                0x34d08, 0x34d14,
1631                0x34d1c, 0x34d20,
1632                0x34d3c, 0x34d3c,
1633                0x34d48, 0x34d50,
1634                0x35200, 0x3520c,
1635                0x35220, 0x35220,
1636                0x35240, 0x35240,
1637                0x35600, 0x3560c,
1638                0x35a00, 0x35a1c,
1639                0x35e00, 0x35e20,
1640                0x35e38, 0x35e3c,
1641                0x35e80, 0x35e80,
1642                0x35e88, 0x35ea8,
1643                0x35eb0, 0x35eb4,
1644                0x35ec8, 0x35ed4,
1645                0x35fb8, 0x36004,
1646                0x36200, 0x36200,
1647                0x36208, 0x36240,
1648                0x36248, 0x36280,
1649                0x36288, 0x362c0,
1650                0x362c8, 0x362fc,
1651                0x36600, 0x36630,
1652                0x36a00, 0x36abc,
1653                0x36b00, 0x36b10,
1654                0x36b20, 0x36b30,
1655                0x36b40, 0x36b50,
1656                0x36b60, 0x36b70,
1657                0x37000, 0x37028,
1658                0x37030, 0x37048,
1659                0x37060, 0x37068,
1660                0x37070, 0x3709c,
1661                0x370f0, 0x37128,
1662                0x37130, 0x37148,
1663                0x37160, 0x37168,
1664                0x37170, 0x3719c,
1665                0x371f0, 0x37238,
1666                0x37240, 0x37240,
1667                0x37248, 0x37250,
1668                0x3725c, 0x37264,
1669                0x37270, 0x372b8,
1670                0x372c0, 0x372e4,
1671                0x372f8, 0x37338,
1672                0x37340, 0x37340,
1673                0x37348, 0x37350,
1674                0x3735c, 0x37364,
1675                0x37370, 0x373b8,
1676                0x373c0, 0x373e4,
1677                0x373f8, 0x37428,
1678                0x37430, 0x37448,
1679                0x37460, 0x37468,
1680                0x37470, 0x3749c,
1681                0x374f0, 0x37528,
1682                0x37530, 0x37548,
1683                0x37560, 0x37568,
1684                0x37570, 0x3759c,
1685                0x375f0, 0x37638,
1686                0x37640, 0x37640,
1687                0x37648, 0x37650,
1688                0x3765c, 0x37664,
1689                0x37670, 0x376b8,
1690                0x376c0, 0x376e4,
1691                0x376f8, 0x37738,
1692                0x37740, 0x37740,
1693                0x37748, 0x37750,
1694                0x3775c, 0x37764,
1695                0x37770, 0x377b8,
1696                0x377c0, 0x377e4,
1697                0x377f8, 0x377fc,
1698                0x37814, 0x37814,
1699                0x3782c, 0x3782c,
1700                0x37880, 0x3788c,
1701                0x378e8, 0x378ec,
1702                0x37900, 0x37928,
1703                0x37930, 0x37948,
1704                0x37960, 0x37968,
1705                0x37970, 0x3799c,
1706                0x379f0, 0x37a38,
1707                0x37a40, 0x37a40,
1708                0x37a48, 0x37a50,
1709                0x37a5c, 0x37a64,
1710                0x37a70, 0x37ab8,
1711                0x37ac0, 0x37ae4,
1712                0x37af8, 0x37b10,
1713                0x37b28, 0x37b28,
1714                0x37b3c, 0x37b50,
1715                0x37bf0, 0x37c10,
1716                0x37c28, 0x37c28,
1717                0x37c3c, 0x37c50,
1718                0x37cf0, 0x37cfc,
1719                0x38000, 0x38030,
1720                0x38100, 0x38144,
1721                0x38190, 0x381a0,
1722                0x381a8, 0x381b8,
1723                0x381c4, 0x381c8,
1724                0x381d0, 0x381d0,
1725                0x38200, 0x38318,
1726                0x38400, 0x384b4,
1727                0x384c0, 0x3852c,
1728                0x38540, 0x3861c,
1729                0x38800, 0x38828,
1730                0x38834, 0x38834,
1731                0x388c0, 0x38908,
1732                0x38910, 0x389ac,
1733                0x38a00, 0x38a14,
1734                0x38a1c, 0x38a2c,
1735                0x38a44, 0x38a50,
1736                0x38a74, 0x38a74,
1737                0x38a7c, 0x38afc,
1738                0x38b08, 0x38c24,
1739                0x38d00, 0x38d00,
1740                0x38d08, 0x38d14,
1741                0x38d1c, 0x38d20,
1742                0x38d3c, 0x38d3c,
1743                0x38d48, 0x38d50,
1744                0x39200, 0x3920c,
1745                0x39220, 0x39220,
1746                0x39240, 0x39240,
1747                0x39600, 0x3960c,
1748                0x39a00, 0x39a1c,
1749                0x39e00, 0x39e20,
1750                0x39e38, 0x39e3c,
1751                0x39e80, 0x39e80,
1752                0x39e88, 0x39ea8,
1753                0x39eb0, 0x39eb4,
1754                0x39ec8, 0x39ed4,
1755                0x39fb8, 0x3a004,
1756                0x3a200, 0x3a200,
1757                0x3a208, 0x3a240,
1758                0x3a248, 0x3a280,
1759                0x3a288, 0x3a2c0,
1760                0x3a2c8, 0x3a2fc,
1761                0x3a600, 0x3a630,
1762                0x3aa00, 0x3aabc,
1763                0x3ab00, 0x3ab10,
1764                0x3ab20, 0x3ab30,
1765                0x3ab40, 0x3ab50,
1766                0x3ab60, 0x3ab70,
1767                0x3b000, 0x3b028,
1768                0x3b030, 0x3b048,
1769                0x3b060, 0x3b068,
1770                0x3b070, 0x3b09c,
1771                0x3b0f0, 0x3b128,
1772                0x3b130, 0x3b148,
1773                0x3b160, 0x3b168,
1774                0x3b170, 0x3b19c,
1775                0x3b1f0, 0x3b238,
1776                0x3b240, 0x3b240,
1777                0x3b248, 0x3b250,
1778                0x3b25c, 0x3b264,
1779                0x3b270, 0x3b2b8,
1780                0x3b2c0, 0x3b2e4,
1781                0x3b2f8, 0x3b338,
1782                0x3b340, 0x3b340,
1783                0x3b348, 0x3b350,
1784                0x3b35c, 0x3b364,
1785                0x3b370, 0x3b3b8,
1786                0x3b3c0, 0x3b3e4,
1787                0x3b3f8, 0x3b428,
1788                0x3b430, 0x3b448,
1789                0x3b460, 0x3b468,
1790                0x3b470, 0x3b49c,
1791                0x3b4f0, 0x3b528,
1792                0x3b530, 0x3b548,
1793                0x3b560, 0x3b568,
1794                0x3b570, 0x3b59c,
1795                0x3b5f0, 0x3b638,
1796                0x3b640, 0x3b640,
1797                0x3b648, 0x3b650,
1798                0x3b65c, 0x3b664,
1799                0x3b670, 0x3b6b8,
1800                0x3b6c0, 0x3b6e4,
1801                0x3b6f8, 0x3b738,
1802                0x3b740, 0x3b740,
1803                0x3b748, 0x3b750,
1804                0x3b75c, 0x3b764,
1805                0x3b770, 0x3b7b8,
1806                0x3b7c0, 0x3b7e4,
1807                0x3b7f8, 0x3b7fc,
1808                0x3b814, 0x3b814,
1809                0x3b82c, 0x3b82c,
1810                0x3b880, 0x3b88c,
1811                0x3b8e8, 0x3b8ec,
1812                0x3b900, 0x3b928,
1813                0x3b930, 0x3b948,
1814                0x3b960, 0x3b968,
1815                0x3b970, 0x3b99c,
1816                0x3b9f0, 0x3ba38,
1817                0x3ba40, 0x3ba40,
1818                0x3ba48, 0x3ba50,
1819                0x3ba5c, 0x3ba64,
1820                0x3ba70, 0x3bab8,
1821                0x3bac0, 0x3bae4,
1822                0x3baf8, 0x3bb10,
1823                0x3bb28, 0x3bb28,
1824                0x3bb3c, 0x3bb50,
1825                0x3bbf0, 0x3bc10,
1826                0x3bc28, 0x3bc28,
1827                0x3bc3c, 0x3bc50,
1828                0x3bcf0, 0x3bcfc,
1829                0x3c000, 0x3c030,
1830                0x3c100, 0x3c144,
1831                0x3c190, 0x3c1a0,
1832                0x3c1a8, 0x3c1b8,
1833                0x3c1c4, 0x3c1c8,
1834                0x3c1d0, 0x3c1d0,
1835                0x3c200, 0x3c318,
1836                0x3c400, 0x3c4b4,
1837                0x3c4c0, 0x3c52c,
1838                0x3c540, 0x3c61c,
1839                0x3c800, 0x3c828,
1840                0x3c834, 0x3c834,
1841                0x3c8c0, 0x3c908,
1842                0x3c910, 0x3c9ac,
1843                0x3ca00, 0x3ca14,
1844                0x3ca1c, 0x3ca2c,
1845                0x3ca44, 0x3ca50,
1846                0x3ca74, 0x3ca74,
1847                0x3ca7c, 0x3cafc,
1848                0x3cb08, 0x3cc24,
1849                0x3cd00, 0x3cd00,
1850                0x3cd08, 0x3cd14,
1851                0x3cd1c, 0x3cd20,
1852                0x3cd3c, 0x3cd3c,
1853                0x3cd48, 0x3cd50,
1854                0x3d200, 0x3d20c,
1855                0x3d220, 0x3d220,
1856                0x3d240, 0x3d240,
1857                0x3d600, 0x3d60c,
1858                0x3da00, 0x3da1c,
1859                0x3de00, 0x3de20,
1860                0x3de38, 0x3de3c,
1861                0x3de80, 0x3de80,
1862                0x3de88, 0x3dea8,
1863                0x3deb0, 0x3deb4,
1864                0x3dec8, 0x3ded4,
1865                0x3dfb8, 0x3e004,
1866                0x3e200, 0x3e200,
1867                0x3e208, 0x3e240,
1868                0x3e248, 0x3e280,
1869                0x3e288, 0x3e2c0,
1870                0x3e2c8, 0x3e2fc,
1871                0x3e600, 0x3e630,
1872                0x3ea00, 0x3eabc,
1873                0x3eb00, 0x3eb10,
1874                0x3eb20, 0x3eb30,
1875                0x3eb40, 0x3eb50,
1876                0x3eb60, 0x3eb70,
1877                0x3f000, 0x3f028,
1878                0x3f030, 0x3f048,
1879                0x3f060, 0x3f068,
1880                0x3f070, 0x3f09c,
1881                0x3f0f0, 0x3f128,
1882                0x3f130, 0x3f148,
1883                0x3f160, 0x3f168,
1884                0x3f170, 0x3f19c,
1885                0x3f1f0, 0x3f238,
1886                0x3f240, 0x3f240,
1887                0x3f248, 0x3f250,
1888                0x3f25c, 0x3f264,
1889                0x3f270, 0x3f2b8,
1890                0x3f2c0, 0x3f2e4,
1891                0x3f2f8, 0x3f338,
1892                0x3f340, 0x3f340,
1893                0x3f348, 0x3f350,
1894                0x3f35c, 0x3f364,
1895                0x3f370, 0x3f3b8,
1896                0x3f3c0, 0x3f3e4,
1897                0x3f3f8, 0x3f428,
1898                0x3f430, 0x3f448,
1899                0x3f460, 0x3f468,
1900                0x3f470, 0x3f49c,
1901                0x3f4f0, 0x3f528,
1902                0x3f530, 0x3f548,
1903                0x3f560, 0x3f568,
1904                0x3f570, 0x3f59c,
1905                0x3f5f0, 0x3f638,
1906                0x3f640, 0x3f640,
1907                0x3f648, 0x3f650,
1908                0x3f65c, 0x3f664,
1909                0x3f670, 0x3f6b8,
1910                0x3f6c0, 0x3f6e4,
1911                0x3f6f8, 0x3f738,
1912                0x3f740, 0x3f740,
1913                0x3f748, 0x3f750,
1914                0x3f75c, 0x3f764,
1915                0x3f770, 0x3f7b8,
1916                0x3f7c0, 0x3f7e4,
1917                0x3f7f8, 0x3f7fc,
1918                0x3f814, 0x3f814,
1919                0x3f82c, 0x3f82c,
1920                0x3f880, 0x3f88c,
1921                0x3f8e8, 0x3f8ec,
1922                0x3f900, 0x3f928,
1923                0x3f930, 0x3f948,
1924                0x3f960, 0x3f968,
1925                0x3f970, 0x3f99c,
1926                0x3f9f0, 0x3fa38,
1927                0x3fa40, 0x3fa40,
1928                0x3fa48, 0x3fa50,
1929                0x3fa5c, 0x3fa64,
1930                0x3fa70, 0x3fab8,
1931                0x3fac0, 0x3fae4,
1932                0x3faf8, 0x3fb10,
1933                0x3fb28, 0x3fb28,
1934                0x3fb3c, 0x3fb50,
1935                0x3fbf0, 0x3fc10,
1936                0x3fc28, 0x3fc28,
1937                0x3fc3c, 0x3fc50,
1938                0x3fcf0, 0x3fcfc,
1939                0x40000, 0x4000c,
1940                0x40040, 0x40050,
1941                0x40060, 0x40068,
1942                0x4007c, 0x4008c,
1943                0x40094, 0x400b0,
1944                0x400c0, 0x40144,
1945                0x40180, 0x4018c,
1946                0x40200, 0x40254,
1947                0x40260, 0x40264,
1948                0x40270, 0x40288,
1949                0x40290, 0x40298,
1950                0x402ac, 0x402c8,
1951                0x402d0, 0x402e0,
1952                0x402f0, 0x402f0,
1953                0x40300, 0x4033c,
1954                0x403f8, 0x403fc,
1955                0x41304, 0x413c4,
1956                0x41400, 0x4140c,
1957                0x41414, 0x4141c,
1958                0x41480, 0x414d0,
1959                0x44000, 0x44054,
1960                0x4405c, 0x44078,
1961                0x440c0, 0x44174,
1962                0x44180, 0x441ac,
1963                0x441b4, 0x441b8,
1964                0x441c0, 0x44254,
1965                0x4425c, 0x44278,
1966                0x442c0, 0x44374,
1967                0x44380, 0x443ac,
1968                0x443b4, 0x443b8,
1969                0x443c0, 0x44454,
1970                0x4445c, 0x44478,
1971                0x444c0, 0x44574,
1972                0x44580, 0x445ac,
1973                0x445b4, 0x445b8,
1974                0x445c0, 0x44654,
1975                0x4465c, 0x44678,
1976                0x446c0, 0x44774,
1977                0x44780, 0x447ac,
1978                0x447b4, 0x447b8,
1979                0x447c0, 0x44854,
1980                0x4485c, 0x44878,
1981                0x448c0, 0x44974,
1982                0x44980, 0x449ac,
1983                0x449b4, 0x449b8,
1984                0x449c0, 0x449fc,
1985                0x45000, 0x45004,
1986                0x45010, 0x45030,
1987                0x45040, 0x45060,
1988                0x45068, 0x45068,
1989                0x45080, 0x45084,
1990                0x450a0, 0x450b0,
1991                0x45200, 0x45204,
1992                0x45210, 0x45230,
1993                0x45240, 0x45260,
1994                0x45268, 0x45268,
1995                0x45280, 0x45284,
1996                0x452a0, 0x452b0,
1997                0x460c0, 0x460e4,
1998                0x47000, 0x4703c,
1999                0x47044, 0x4708c,
2000                0x47200, 0x47250,
2001                0x47400, 0x47408,
2002                0x47414, 0x47420,
2003                0x47600, 0x47618,
2004                0x47800, 0x47814,
2005                0x48000, 0x4800c,
2006                0x48040, 0x48050,
2007                0x48060, 0x48068,
2008                0x4807c, 0x4808c,
2009                0x48094, 0x480b0,
2010                0x480c0, 0x48144,
2011                0x48180, 0x4818c,
2012                0x48200, 0x48254,
2013                0x48260, 0x48264,
2014                0x48270, 0x48288,
2015                0x48290, 0x48298,
2016                0x482ac, 0x482c8,
2017                0x482d0, 0x482e0,
2018                0x482f0, 0x482f0,
2019                0x48300, 0x4833c,
2020                0x483f8, 0x483fc,
2021                0x49304, 0x493c4,
2022                0x49400, 0x4940c,
2023                0x49414, 0x4941c,
2024                0x49480, 0x494d0,
2025                0x4c000, 0x4c054,
2026                0x4c05c, 0x4c078,
2027                0x4c0c0, 0x4c174,
2028                0x4c180, 0x4c1ac,
2029                0x4c1b4, 0x4c1b8,
2030                0x4c1c0, 0x4c254,
2031                0x4c25c, 0x4c278,
2032                0x4c2c0, 0x4c374,
2033                0x4c380, 0x4c3ac,
2034                0x4c3b4, 0x4c3b8,
2035                0x4c3c0, 0x4c454,
2036                0x4c45c, 0x4c478,
2037                0x4c4c0, 0x4c574,
2038                0x4c580, 0x4c5ac,
2039                0x4c5b4, 0x4c5b8,
2040                0x4c5c0, 0x4c654,
2041                0x4c65c, 0x4c678,
2042                0x4c6c0, 0x4c774,
2043                0x4c780, 0x4c7ac,
2044                0x4c7b4, 0x4c7b8,
2045                0x4c7c0, 0x4c854,
2046                0x4c85c, 0x4c878,
2047                0x4c8c0, 0x4c974,
2048                0x4c980, 0x4c9ac,
2049                0x4c9b4, 0x4c9b8,
2050                0x4c9c0, 0x4c9fc,
2051                0x4d000, 0x4d004,
2052                0x4d010, 0x4d030,
2053                0x4d040, 0x4d060,
2054                0x4d068, 0x4d068,
2055                0x4d080, 0x4d084,
2056                0x4d0a0, 0x4d0b0,
2057                0x4d200, 0x4d204,
2058                0x4d210, 0x4d230,
2059                0x4d240, 0x4d260,
2060                0x4d268, 0x4d268,
2061                0x4d280, 0x4d284,
2062                0x4d2a0, 0x4d2b0,
2063                0x4e0c0, 0x4e0e4,
2064                0x4f000, 0x4f03c,
2065                0x4f044, 0x4f08c,
2066                0x4f200, 0x4f250,
2067                0x4f400, 0x4f408,
2068                0x4f414, 0x4f420,
2069                0x4f600, 0x4f618,
2070                0x4f800, 0x4f814,
2071                0x50000, 0x50084,
2072                0x50090, 0x500cc,
2073                0x50400, 0x50400,
2074                0x50800, 0x50884,
2075                0x50890, 0x508cc,
2076                0x50c00, 0x50c00,
2077                0x51000, 0x5101c,
2078                0x51300, 0x51308,
2079        };
2080
2081        static const unsigned int t6_reg_ranges[] = {
2082                0x1008, 0x101c,
2083                0x1024, 0x10a8,
2084                0x10b4, 0x10f8,
2085                0x1100, 0x1114,
2086                0x111c, 0x112c,
2087                0x1138, 0x113c,
2088                0x1144, 0x114c,
2089                0x1180, 0x1184,
2090                0x1190, 0x1194,
2091                0x11a0, 0x11a4,
2092                0x11b0, 0x11b4,
2093                0x11fc, 0x1274,
2094                0x1280, 0x133c,
2095                0x1800, 0x18fc,
2096                0x3000, 0x302c,
2097                0x3060, 0x30b0,
2098                0x30b8, 0x30d8,
2099                0x30e0, 0x30fc,
2100                0x3140, 0x357c,
2101                0x35a8, 0x35cc,
2102                0x35ec, 0x35ec,
2103                0x3600, 0x5624,
2104                0x56cc, 0x56ec,
2105                0x56f4, 0x5720,
2106                0x5728, 0x575c,
2107                0x580c, 0x5814,
2108                0x5890, 0x589c,
2109                0x58a4, 0x58ac,
2110                0x58b8, 0x58bc,
2111                0x5940, 0x595c,
2112                0x5980, 0x598c,
2113                0x59b0, 0x59c8,
2114                0x59d0, 0x59dc,
2115                0x59fc, 0x5a18,
2116                0x5a60, 0x5a6c,
2117                0x5a80, 0x5a8c,
2118                0x5a94, 0x5a9c,
2119                0x5b94, 0x5bfc,
2120                0x5c10, 0x5e48,
2121                0x5e50, 0x5e94,
2122                0x5ea0, 0x5eb0,
2123                0x5ec0, 0x5ec0,
2124                0x5ec8, 0x5ed0,
2125                0x5ee0, 0x5ee0,
2126                0x5ef0, 0x5ef0,
2127                0x5f00, 0x5f00,
2128                0x6000, 0x6020,
2129                0x6028, 0x6040,
2130                0x6058, 0x609c,
2131                0x60a8, 0x619c,
2132                0x7700, 0x7798,
2133                0x77c0, 0x7880,
2134                0x78cc, 0x78fc,
2135                0x7b00, 0x7b58,
2136                0x7b60, 0x7b84,
2137                0x7b8c, 0x7c54,
2138                0x7d00, 0x7d38,
2139                0x7d40, 0x7d84,
2140                0x7d8c, 0x7ddc,
2141                0x7de4, 0x7e04,
2142                0x7e10, 0x7e1c,
2143                0x7e24, 0x7e38,
2144                0x7e40, 0x7e44,
2145                0x7e4c, 0x7e78,
2146                0x7e80, 0x7edc,
2147                0x7ee8, 0x7efc,
2148                0x8dc0, 0x8de4,
2149                0x8df8, 0x8e04,
2150                0x8e10, 0x8e84,
2151                0x8ea0, 0x8f88,
2152                0x8fb8, 0x9058,
2153                0x9060, 0x9060,
2154                0x9068, 0x90f8,
2155                0x9100, 0x9124,
2156                0x9400, 0x9470,
2157                0x9600, 0x9600,
2158                0x9608, 0x9638,
2159                0x9640, 0x9704,
2160                0x9710, 0x971c,
2161                0x9800, 0x9808,
2162                0x9810, 0x9864,
2163                0x9c00, 0x9c6c,
2164                0x9c80, 0x9cec,
2165                0x9d00, 0x9d6c,
2166                0x9d80, 0x9dec,
2167                0x9e00, 0x9e6c,
2168                0x9e80, 0x9eec,
2169                0x9f00, 0x9f6c,
2170                0x9f80, 0xa020,
2171                0xd000, 0xd03c,
2172                0xd100, 0xd118,
2173                0xd200, 0xd214,
2174                0xd220, 0xd234,
2175                0xd240, 0xd254,
2176                0xd260, 0xd274,
2177                0xd280, 0xd294,
2178                0xd2a0, 0xd2b4,
2179                0xd2c0, 0xd2d4,
2180                0xd2e0, 0xd2f4,
2181                0xd300, 0xd31c,
2182                0xdfc0, 0xdfe0,
2183                0xe000, 0xf008,
2184                0xf010, 0xf018,
2185                0xf020, 0xf028,
2186                0x11000, 0x11014,
2187                0x11048, 0x1106c,
2188                0x11074, 0x11088,
2189                0x11098, 0x11120,
2190                0x1112c, 0x1117c,
2191                0x11190, 0x112e0,
2192                0x11300, 0x1130c,
2193                0x12000, 0x1206c,
2194                0x19040, 0x1906c,
2195                0x19078, 0x19080,
2196                0x1908c, 0x190e8,
2197                0x190f0, 0x190f8,
2198                0x19100, 0x19110,
2199                0x19120, 0x19124,
2200                0x19150, 0x19194,
2201                0x1919c, 0x191b0,
2202                0x191d0, 0x191e8,
2203                0x19238, 0x19290,
2204                0x192a4, 0x192b0,
2205                0x192bc, 0x192bc,
2206                0x19348, 0x1934c,
2207                0x193f8, 0x19418,
2208                0x19420, 0x19428,
2209                0x19430, 0x19444,
2210                0x1944c, 0x1946c,
2211                0x19474, 0x19474,
2212                0x19490, 0x194cc,
2213                0x194f0, 0x194f8,
2214                0x19c00, 0x19c48,
2215                0x19c50, 0x19c80,
2216                0x19c94, 0x19c98,
2217                0x19ca0, 0x19cbc,
2218                0x19ce4, 0x19ce4,
2219                0x19cf0, 0x19cf8,
2220                0x19d00, 0x19d28,
2221                0x19d50, 0x19d78,
2222                0x19d94, 0x19d98,
2223                0x19da0, 0x19dc8,
2224                0x19df0, 0x19e10,
2225                0x19e50, 0x19e6c,
2226                0x19ea0, 0x19ebc,
2227                0x19ec4, 0x19ef4,
2228                0x19f04, 0x19f2c,
2229                0x19f34, 0x19f34,
2230                0x19f40, 0x19f50,
2231                0x19f90, 0x19fac,
2232                0x19fc4, 0x19fc8,
2233                0x19fd0, 0x19fe4,
2234                0x1a000, 0x1a004,
2235                0x1a010, 0x1a06c,
2236                0x1a0b0, 0x1a0e4,
2237                0x1a0ec, 0x1a0f8,
2238                0x1a100, 0x1a108,
2239                0x1a114, 0x1a130,
2240                0x1a138, 0x1a1c4,
2241                0x1a1fc, 0x1a1fc,
2242                0x1e008, 0x1e00c,
2243                0x1e040, 0x1e044,
2244                0x1e04c, 0x1e04c,
2245                0x1e284, 0x1e290,
2246                0x1e2c0, 0x1e2c0,
2247                0x1e2e0, 0x1e2e0,
2248                0x1e300, 0x1e384,
2249                0x1e3c0, 0x1e3c8,
2250                0x1e408, 0x1e40c,
2251                0x1e440, 0x1e444,
2252                0x1e44c, 0x1e44c,
2253                0x1e684, 0x1e690,
2254                0x1e6c0, 0x1e6c0,
2255                0x1e6e0, 0x1e6e0,
2256                0x1e700, 0x1e784,
2257                0x1e7c0, 0x1e7c8,
2258                0x1e808, 0x1e80c,
2259                0x1e840, 0x1e844,
2260                0x1e84c, 0x1e84c,
2261                0x1ea84, 0x1ea90,
2262                0x1eac0, 0x1eac0,
2263                0x1eae0, 0x1eae0,
2264                0x1eb00, 0x1eb84,
2265                0x1ebc0, 0x1ebc8,
2266                0x1ec08, 0x1ec0c,
2267                0x1ec40, 0x1ec44,
2268                0x1ec4c, 0x1ec4c,
2269                0x1ee84, 0x1ee90,
2270                0x1eec0, 0x1eec0,
2271                0x1eee0, 0x1eee0,
2272                0x1ef00, 0x1ef84,
2273                0x1efc0, 0x1efc8,
2274                0x1f008, 0x1f00c,
2275                0x1f040, 0x1f044,
2276                0x1f04c, 0x1f04c,
2277                0x1f284, 0x1f290,
2278                0x1f2c0, 0x1f2c0,
2279                0x1f2e0, 0x1f2e0,
2280                0x1f300, 0x1f384,
2281                0x1f3c0, 0x1f3c8,
2282                0x1f408, 0x1f40c,
2283                0x1f440, 0x1f444,
2284                0x1f44c, 0x1f44c,
2285                0x1f684, 0x1f690,
2286                0x1f6c0, 0x1f6c0,
2287                0x1f6e0, 0x1f6e0,
2288                0x1f700, 0x1f784,
2289                0x1f7c0, 0x1f7c8,
2290                0x1f808, 0x1f80c,
2291                0x1f840, 0x1f844,
2292                0x1f84c, 0x1f84c,
2293                0x1fa84, 0x1fa90,
2294                0x1fac0, 0x1fac0,
2295                0x1fae0, 0x1fae0,
2296                0x1fb00, 0x1fb84,
2297                0x1fbc0, 0x1fbc8,
2298                0x1fc08, 0x1fc0c,
2299                0x1fc40, 0x1fc44,
2300                0x1fc4c, 0x1fc4c,
2301                0x1fe84, 0x1fe90,
2302                0x1fec0, 0x1fec0,
2303                0x1fee0, 0x1fee0,
2304                0x1ff00, 0x1ff84,
2305                0x1ffc0, 0x1ffc8,
2306                0x30000, 0x30030,
2307                0x30100, 0x30168,
2308                0x30190, 0x301a0,
2309                0x301a8, 0x301b8,
2310                0x301c4, 0x301c8,
2311                0x301d0, 0x301d0,
2312                0x30200, 0x30320,
2313                0x30400, 0x304b4,
2314                0x304c0, 0x3052c,
2315                0x30540, 0x3061c,
2316                0x30800, 0x308a0,
2317                0x308c0, 0x30908,
2318                0x30910, 0x309b8,
2319                0x30a00, 0x30a04,
2320                0x30a0c, 0x30a14,
2321                0x30a1c, 0x30a2c,
2322                0x30a44, 0x30a50,
2323                0x30a74, 0x30a74,
2324                0x30a7c, 0x30afc,
2325                0x30b08, 0x30c24,
2326                0x30d00, 0x30d14,
2327                0x30d1c, 0x30d3c,
2328                0x30d44, 0x30d4c,
2329                0x30d54, 0x30d74,
2330                0x30d7c, 0x30d7c,
2331                0x30de0, 0x30de0,
2332                0x30e00, 0x30ed4,
2333                0x30f00, 0x30fa4,
2334                0x30fc0, 0x30fc4,
2335                0x31000, 0x31004,
2336                0x31080, 0x310fc,
2337                0x31208, 0x31220,
2338                0x3123c, 0x31254,
2339                0x31300, 0x31300,
2340                0x31308, 0x3131c,
2341                0x31338, 0x3133c,
2342                0x31380, 0x31380,
2343                0x31388, 0x313a8,
2344                0x313b4, 0x313b4,
2345                0x31400, 0x31420,
2346                0x31438, 0x3143c,
2347                0x31480, 0x31480,
2348                0x314a8, 0x314a8,
2349                0x314b0, 0x314b4,
2350                0x314c8, 0x314d4,
2351                0x31a40, 0x31a4c,
2352                0x31af0, 0x31b20,
2353                0x31b38, 0x31b3c,
2354                0x31b80, 0x31b80,
2355                0x31ba8, 0x31ba8,
2356                0x31bb0, 0x31bb4,
2357                0x31bc8, 0x31bd4,
2358                0x32140, 0x3218c,
2359                0x321f0, 0x321f4,
2360                0x32200, 0x32200,
2361                0x32218, 0x32218,
2362                0x32400, 0x32400,
2363                0x32408, 0x3241c,
2364                0x32618, 0x32620,
2365                0x32664, 0x32664,
2366                0x326a8, 0x326a8,
2367                0x326ec, 0x326ec,
2368                0x32a00, 0x32abc,
2369                0x32b00, 0x32b18,
2370                0x32b20, 0x32b38,
2371                0x32b40, 0x32b58,
2372                0x32b60, 0x32b78,
2373                0x32c00, 0x32c00,
2374                0x32c08, 0x32c3c,
2375                0x33000, 0x3302c,
2376                0x33034, 0x33050,
2377                0x33058, 0x33058,
2378                0x33060, 0x3308c,
2379                0x3309c, 0x330ac,
2380                0x330c0, 0x330c0,
2381                0x330c8, 0x330d0,
2382                0x330d8, 0x330e0,
2383                0x330ec, 0x3312c,
2384                0x33134, 0x33150,
2385                0x33158, 0x33158,
2386                0x33160, 0x3318c,
2387                0x3319c, 0x331ac,
2388                0x331c0, 0x331c0,
2389                0x331c8, 0x331d0,
2390                0x331d8, 0x331e0,
2391                0x331ec, 0x33290,
2392                0x33298, 0x332c4,
2393                0x332e4, 0x33390,
2394                0x33398, 0x333c4,
2395                0x333e4, 0x3342c,
2396                0x33434, 0x33450,
2397                0x33458, 0x33458,
2398                0x33460, 0x3348c,
2399                0x3349c, 0x334ac,
2400                0x334c0, 0x334c0,
2401                0x334c8, 0x334d0,
2402                0x334d8, 0x334e0,
2403                0x334ec, 0x3352c,
2404                0x33534, 0x33550,
2405                0x33558, 0x33558,
2406                0x33560, 0x3358c,
2407                0x3359c, 0x335ac,
2408                0x335c0, 0x335c0,
2409                0x335c8, 0x335d0,
2410                0x335d8, 0x335e0,
2411                0x335ec, 0x33690,
2412                0x33698, 0x336c4,
2413                0x336e4, 0x33790,
2414                0x33798, 0x337c4,
2415                0x337e4, 0x337fc,
2416                0x33814, 0x33814,
2417                0x33854, 0x33868,
2418                0x33880, 0x3388c,
2419                0x338c0, 0x338d0,
2420                0x338e8, 0x338ec,
2421                0x33900, 0x3392c,
2422                0x33934, 0x33950,
2423                0x33958, 0x33958,
2424                0x33960, 0x3398c,
2425                0x3399c, 0x339ac,
2426                0x339c0, 0x339c0,
2427                0x339c8, 0x339d0,
2428                0x339d8, 0x339e0,
2429                0x339ec, 0x33a90,
2430                0x33a98, 0x33ac4,
2431                0x33ae4, 0x33b10,
2432                0x33b24, 0x33b28,
2433                0x33b38, 0x33b50,
2434                0x33bf0, 0x33c10,
2435                0x33c24, 0x33c28,
2436                0x33c38, 0x33c50,
2437                0x33cf0, 0x33cfc,
2438                0x34000, 0x34030,
2439                0x34100, 0x34168,
2440                0x34190, 0x341a0,
2441                0x341a8, 0x341b8,
2442                0x341c4, 0x341c8,
2443                0x341d0, 0x341d0,
2444                0x34200, 0x34320,
2445                0x34400, 0x344b4,
2446                0x344c0, 0x3452c,
2447                0x34540, 0x3461c,
2448                0x34800, 0x348a0,
2449                0x348c0, 0x34908,
2450                0x34910, 0x349b8,
2451                0x34a00, 0x34a04,
2452                0x34a0c, 0x34a14,
2453                0x34a1c, 0x34a2c,
2454                0x34a44, 0x34a50,
2455                0x34a74, 0x34a74,
2456                0x34a7c, 0x34afc,
2457                0x34b08, 0x34c24,
2458                0x34d00, 0x34d14,
2459                0x34d1c, 0x34d3c,
2460                0x34d44, 0x34d4c,
2461                0x34d54, 0x34d74,
2462                0x34d7c, 0x34d7c,
2463                0x34de0, 0x34de0,
2464                0x34e00, 0x34ed4,
2465                0x34f00, 0x34fa4,
2466                0x34fc0, 0x34fc4,
2467                0x35000, 0x35004,
2468                0x35080, 0x350fc,
2469                0x35208, 0x35220,
2470                0x3523c, 0x35254,
2471                0x35300, 0x35300,
2472                0x35308, 0x3531c,
2473                0x35338, 0x3533c,
2474                0x35380, 0x35380,
2475                0x35388, 0x353a8,
2476                0x353b4, 0x353b4,
2477                0x35400, 0x35420,
2478                0x35438, 0x3543c,
2479                0x35480, 0x35480,
2480                0x354a8, 0x354a8,
2481                0x354b0, 0x354b4,
2482                0x354c8, 0x354d4,
2483                0x35a40, 0x35a4c,
2484                0x35af0, 0x35b20,
2485                0x35b38, 0x35b3c,
2486                0x35b80, 0x35b80,
2487                0x35ba8, 0x35ba8,
2488                0x35bb0, 0x35bb4,
2489                0x35bc8, 0x35bd4,
2490                0x36140, 0x3618c,
2491                0x361f0, 0x361f4,
2492                0x36200, 0x36200,
2493                0x36218, 0x36218,
2494                0x36400, 0x36400,
2495                0x36408, 0x3641c,
2496                0x36618, 0x36620,
2497                0x36664, 0x36664,
2498                0x366a8, 0x366a8,
2499                0x366ec, 0x366ec,
2500                0x36a00, 0x36abc,
2501                0x36b00, 0x36b18,
2502                0x36b20, 0x36b38,
2503                0x36b40, 0x36b58,
2504                0x36b60, 0x36b78,
2505                0x36c00, 0x36c00,
2506                0x36c08, 0x36c3c,
2507                0x37000, 0x3702c,
2508                0x37034, 0x37050,
2509                0x37058, 0x37058,
2510                0x37060, 0x3708c,
2511                0x3709c, 0x370ac,
2512                0x370c0, 0x370c0,
2513                0x370c8, 0x370d0,
2514                0x370d8, 0x370e0,
2515                0x370ec, 0x3712c,
2516                0x37134, 0x37150,
2517                0x37158, 0x37158,
2518                0x37160, 0x3718c,
2519                0x3719c, 0x371ac,
2520                0x371c0, 0x371c0,
2521                0x371c8, 0x371d0,
2522                0x371d8, 0x371e0,
2523                0x371ec, 0x37290,
2524                0x37298, 0x372c4,
2525                0x372e4, 0x37390,
2526                0x37398, 0x373c4,
2527                0x373e4, 0x3742c,
2528                0x37434, 0x37450,
2529                0x37458, 0x37458,
2530                0x37460, 0x3748c,
2531                0x3749c, 0x374ac,
2532                0x374c0, 0x374c0,
2533                0x374c8, 0x374d0,
2534                0x374d8, 0x374e0,
2535                0x374ec, 0x3752c,
2536                0x37534, 0x37550,
2537                0x37558, 0x37558,
2538                0x37560, 0x3758c,
2539                0x3759c, 0x375ac,
2540                0x375c0, 0x375c0,
2541                0x375c8, 0x375d0,
2542                0x375d8, 0x375e0,
2543                0x375ec, 0x37690,
2544                0x37698, 0x376c4,
2545                0x376e4, 0x37790,
2546                0x37798, 0x377c4,
2547                0x377e4, 0x377fc,
2548                0x37814, 0x37814,
2549                0x37854, 0x37868,
2550                0x37880, 0x3788c,
2551                0x378c0, 0x378d0,
2552                0x378e8, 0x378ec,
2553                0x37900, 0x3792c,
2554                0x37934, 0x37950,
2555                0x37958, 0x37958,
2556                0x37960, 0x3798c,
2557                0x3799c, 0x379ac,
2558                0x379c0, 0x379c0,
2559                0x379c8, 0x379d0,
2560                0x379d8, 0x379e0,
2561                0x379ec, 0x37a90,
2562                0x37a98, 0x37ac4,
2563                0x37ae4, 0x37b10,
2564                0x37b24, 0x37b28,
2565                0x37b38, 0x37b50,
2566                0x37bf0, 0x37c10,
2567                0x37c24, 0x37c28,
2568                0x37c38, 0x37c50,
2569                0x37cf0, 0x37cfc,
2570                0x40040, 0x40040,
2571                0x40080, 0x40084,
2572                0x40100, 0x40100,
2573                0x40140, 0x401bc,
2574                0x40200, 0x40214,
2575                0x40228, 0x40228,
2576                0x40240, 0x40258,
2577                0x40280, 0x40280,
2578                0x40304, 0x40304,
2579                0x40330, 0x4033c,
2580                0x41304, 0x413c8,
2581                0x413d0, 0x413dc,
2582                0x413f0, 0x413f0,
2583                0x41400, 0x4140c,
2584                0x41414, 0x4141c,
2585                0x41480, 0x414d0,
2586                0x44000, 0x4407c,
2587                0x440c0, 0x441ac,
2588                0x441b4, 0x4427c,
2589                0x442c0, 0x443ac,
2590                0x443b4, 0x4447c,
2591                0x444c0, 0x445ac,
2592                0x445b4, 0x4467c,
2593                0x446c0, 0x447ac,
2594                0x447b4, 0x4487c,
2595                0x448c0, 0x449ac,
2596                0x449b4, 0x44a7c,
2597                0x44ac0, 0x44bac,
2598                0x44bb4, 0x44c7c,
2599                0x44cc0, 0x44dac,
2600                0x44db4, 0x44e7c,
2601                0x44ec0, 0x44fac,
2602                0x44fb4, 0x4507c,
2603                0x450c0, 0x451ac,
2604                0x451b4, 0x451fc,
2605                0x45800, 0x45804,
2606                0x45810, 0x45830,
2607                0x45840, 0x45860,
2608                0x45868, 0x45868,
2609                0x45880, 0x45884,
2610                0x458a0, 0x458b0,
2611                0x45a00, 0x45a04,
2612                0x45a10, 0x45a30,
2613                0x45a40, 0x45a60,
2614                0x45a68, 0x45a68,
2615                0x45a80, 0x45a84,
2616                0x45aa0, 0x45ab0,
2617                0x460c0, 0x460e4,
2618                0x47000, 0x4703c,
2619                0x47044, 0x4708c,
2620                0x47200, 0x47250,
2621                0x47400, 0x47408,
2622                0x47414, 0x47420,
2623                0x47600, 0x47618,
2624                0x47800, 0x47814,
2625                0x47820, 0x4782c,
2626                0x50000, 0x50084,
2627                0x50090, 0x500cc,
2628                0x50300, 0x50384,
2629                0x50400, 0x50400,
2630                0x50800, 0x50884,
2631                0x50890, 0x508cc,
2632                0x50b00, 0x50b84,
2633                0x50c00, 0x50c00,
2634                0x51000, 0x51020,
2635                0x51028, 0x510b0,
2636                0x51300, 0x51324,
2637        };
2638
2639        u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640        const unsigned int *reg_ranges;
2641        int reg_ranges_size, range;
2642        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643
2644        /* Select the right set of register ranges to dump depending on the
2645         * adapter chip type.
2646         */
2647        switch (chip_version) {
2648        case CHELSIO_T4:
2649                reg_ranges = t4_reg_ranges;
2650                reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651                break;
2652
2653        case CHELSIO_T5:
2654                reg_ranges = t5_reg_ranges;
2655                reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656                break;
2657
2658        case CHELSIO_T6:
2659                reg_ranges = t6_reg_ranges;
2660                reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661                break;
2662
2663        default:
2664                dev_err(adap->pdev_dev,
2665                        "Unsupported chip version %d\n", chip_version);
2666                return;
2667        }
2668
2669        /* Clear the register buffer and insert the appropriate register
2670         * values selected by the above register ranges.
2671         */
2672        memset(buf, 0, buf_size);
2673        for (range = 0; range < reg_ranges_size; range += 2) {
2674                unsigned int reg = reg_ranges[range];
2675                unsigned int last_reg = reg_ranges[range + 1];
2676                u32 *bufp = (u32 *)((char *)buf + reg);
2677
2678                /* Iterate across the register range filling in the register
2679                 * buffer but don't write past the end of the register buffer.
2680                 */
2681                while (reg <= last_reg && bufp < buf_end) {
2682                        *bufp++ = t4_read_reg(adap, reg);
2683                        reg += sizeof(u32);
2684                }
2685        }
2686}
2687
2688#define EEPROM_STAT_ADDR   0x7bfc
2689#define VPD_BASE           0x400
2690#define VPD_BASE_OLD       0
2691#define VPD_LEN            1024
2692#define CHELSIO_VPD_UNIQUE_ID 0x82
2693
2694/**
2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696 * @phys_addr: the physical EEPROM address
2697 * @fn: the PCI function number
2698 * @sz: size of function-specific area
2699 *
2700 * Translate a physical EEPROM address to virtual.  The first 1K is
2701 * accessed through virtual addresses starting at 31K, the rest is
2702 * accessed through virtual addresses starting at 0.
2703 *
2704 * The mapping is as follows:
2705 * [0..1K) -> [31K..32K)
2706 * [1K..1K+A) -> [31K-A..31K)
2707 * [1K+A..ES) -> [0..ES-A-1K)
2708 *
2709 * where A = @fn * @sz, and ES = EEPROM size.
2710 */
2711int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712{
2713        fn *= sz;
2714        if (phys_addr < 1024)
2715                return phys_addr + (31 << 10);
2716        if (phys_addr < 1024 + fn)
2717                return 31744 - fn + phys_addr - 1024;
2718        if (phys_addr < EEPROMSIZE)
2719                return phys_addr - 1024 - fn;
2720        return -EINVAL;
2721}
2722
2723/**
2724 *      t4_seeprom_wp - enable/disable EEPROM write protection
2725 *      @adapter: the adapter
2726 *      @enable: whether to enable or disable write protection
2727 *
2728 *      Enables or disables write protection on the serial EEPROM.
2729 */
2730int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731{
2732        unsigned int v = enable ? 0xc : 0;
2733        int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734        return ret < 0 ? ret : 0;
2735}
2736
2737/**
2738 *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739 *      @adapter: adapter to read
2740 *      @p: where to store the parameters
2741 *
2742 *      Reads card parameters stored in VPD EEPROM.
2743 */
2744int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745{
2746        int i, ret = 0, addr;
2747        int ec, sn, pn, na;
2748        u8 *vpd, csum;
2749        unsigned int vpdr_len, kw_offset, id_len;
2750
2751        vpd = vmalloc(VPD_LEN);
2752        if (!vpd)
2753                return -ENOMEM;
2754
2755        /* Card information normally starts at VPD_BASE but early cards had
2756         * it at 0.
2757         */
2758        ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759        if (ret < 0)
2760                goto out;
2761
2762        /* The VPD shall have a unique identifier specified by the PCI SIG.
2763         * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764         * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765         * is expected to automatically put this entry at the
2766         * beginning of the VPD.
2767         */
2768        addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769
2770        ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771        if (ret < 0)
2772                goto out;
2773
2774        if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775                dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776                ret = -EINVAL;
2777                goto out;
2778        }
2779
2780        id_len = pci_vpd_lrdt_size(vpd);
2781        if (id_len > ID_LEN)
2782                id_len = ID_LEN;
2783
2784        i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785        if (i < 0) {
2786                dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787                ret = -EINVAL;
2788                goto out;
2789        }
2790
2791        vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792        kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793        if (vpdr_len + kw_offset > VPD_LEN) {
2794                dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795                ret = -EINVAL;
2796                goto out;
2797        }
2798
2799#define FIND_VPD_KW(var, name) do { \
2800        var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801        if (var < 0) { \
2802                dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803                ret = -EINVAL; \
2804                goto out; \
2805        } \
2806        var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807} while (0)
2808
2809        FIND_VPD_KW(i, "RV");
2810        for (csum = 0; i >= 0; i--)
2811                csum += vpd[i];
2812
2813        if (csum) {
2814                dev_err(adapter->pdev_dev,
2815                        "corrupted VPD EEPROM, actual csum %u\n", csum);
2816                ret = -EINVAL;
2817                goto out;
2818        }
2819
2820        FIND_VPD_KW(ec, "EC");
2821        FIND_VPD_KW(sn, "SN");
2822        FIND_VPD_KW(pn, "PN");
2823        FIND_VPD_KW(na, "NA");
2824#undef FIND_VPD_KW
2825
2826        memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827        strim(p->id);
2828        memcpy(p->ec, vpd + ec, EC_LEN);
2829        strim(p->ec);
2830        i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831        memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832        strim(p->sn);
2833        i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834        memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835        strim(p->pn);
2836        memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837        strim((char *)p->na);
2838
2839out:
2840        vfree(vpd);
2841        return ret < 0 ? ret : 0;
2842}
2843
2844/**
2845 *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846 *      @adapter: adapter to read
2847 *      @p: where to store the parameters
2848 *
2849 *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2850 *      Clock.  This can only be called after a connection to the firmware
2851 *      is established.
2852 */
2853int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854{
2855        u32 cclk_param, cclk_val;
2856        int ret;
2857
2858        /* Grab the raw VPD parameters.
2859         */
2860        ret = t4_get_raw_vpd_params(adapter, p);
2861        if (ret)
2862                return ret;
2863
2864        /* Ask firmware for the Core Clock since it knows how to translate the
2865         * Reference Clock ('V2') VPD field into a Core Clock value ...
2866         */
2867        cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870                              1, &cclk_param, &cclk_val);
2871
2872        if (ret)
2873                return ret;
2874        p->cclk = cclk_val;
2875
2876        return 0;
2877}
2878
2879/**
2880 *      t4_get_pfres - retrieve VF resource limits
2881 *      @adapter: the adapter
2882 *
2883 *      Retrieves configured resource limits and capabilities for a physical
2884 *      function.  The results are stored in @adapter->pfres.
2885 */
2886int t4_get_pfres(struct adapter *adapter)
2887{
2888        struct pf_resources *pfres = &adapter->params.pfres;
2889        struct fw_pfvf_cmd cmd, rpl;
2890        int v;
2891        u32 word;
2892
2893        /* Execute PFVF Read command to get VF resource limits; bail out early
2894         * with error on command failure.
2895         */
2896        memset(&cmd, 0, sizeof(cmd));
2897        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898                                    FW_CMD_REQUEST_F |
2899                                    FW_CMD_READ_F |
2900                                    FW_PFVF_CMD_PFN_V(adapter->pf) |
2901                                    FW_PFVF_CMD_VFN_V(0));
2902        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903        v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904        if (v != FW_SUCCESS)
2905                return v;
2906
2907        /* Extract PF resource limits and return success.
2908         */
2909        word = be32_to_cpu(rpl.niqflint_niq);
2910        pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911        pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912
2913        word = be32_to_cpu(rpl.type_to_neq);
2914        pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915        pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916
2917        word = be32_to_cpu(rpl.tc_to_nexactf);
2918        pfres->tc = FW_PFVF_CMD_TC_G(word);
2919        pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920        pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921
2922        word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923        pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924        pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925        pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926
2927        return 0;
2928}
2929
2930/* serial flash and firmware constants */
2931enum {
2932        SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933
2934        /* flash command opcodes */
2935        SF_PROG_PAGE    = 2,          /* program page */
2936        SF_WR_DISABLE   = 4,          /* disable writes */
2937        SF_RD_STATUS    = 5,          /* read status register */
2938        SF_WR_ENABLE    = 6,          /* enable writes */
2939        SF_RD_DATA_FAST = 0xb,        /* read flash */
2940        SF_RD_ID        = 0x9f,       /* read ID */
2941        SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942};
2943
2944/**
2945 *      sf1_read - read data from the serial flash
2946 *      @adapter: the adapter
2947 *      @byte_cnt: number of bytes to read
2948 *      @cont: whether another operation will be chained
2949 *      @lock: whether to lock SF for PL access only
2950 *      @valp: where to store the read data
2951 *
2952 *      Reads up to 4 bytes of data from the serial flash.  The location of
2953 *      the read needs to be specified prior to calling this by issuing the
2954 *      appropriate commands to the serial flash.
2955 */
2956static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957                    int lock, u32 *valp)
2958{
2959        int ret;
2960
2961        if (!byte_cnt || byte_cnt > 4)
2962                return -EINVAL;
2963        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964                return -EBUSY;
2965        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967        ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968        if (!ret)
2969                *valp = t4_read_reg(adapter, SF_DATA_A);
2970        return ret;
2971}
2972
2973/**
2974 *      sf1_write - write data to the serial flash
2975 *      @adapter: the adapter
2976 *      @byte_cnt: number of bytes to write
2977 *      @cont: whether another operation will be chained
2978 *      @lock: whether to lock SF for PL access only
2979 *      @val: value to write
2980 *
2981 *      Writes up to 4 bytes of data to the serial flash.  The location of
2982 *      the write needs to be specified prior to calling this by issuing the
2983 *      appropriate commands to the serial flash.
2984 */
2985static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986                     int lock, u32 val)
2987{
2988        if (!byte_cnt || byte_cnt > 4)
2989                return -EINVAL;
2990        if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991                return -EBUSY;
2992        t4_write_reg(adapter, SF_DATA_A, val);
2993        t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994                     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995        return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996}
2997
2998/**
2999 *      flash_wait_op - wait for a flash operation to complete
3000 *      @adapter: the adapter
3001 *      @attempts: max number of polls of the status register
3002 *      @delay: delay between polls in ms
3003 *
3004 *      Wait for a flash operation to complete by polling the status register.
3005 */
3006static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007{
3008        int ret;
3009        u32 status;
3010
3011        while (1) {
3012                if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013                    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014                        return ret;
3015                if (!(status & 1))
3016                        return 0;
3017                if (--attempts == 0)
3018                        return -EAGAIN;
3019                if (delay)
3020                        msleep(delay);
3021        }
3022}
3023
3024/**
3025 *      t4_read_flash - read words from serial flash
3026 *      @adapter: the adapter
3027 *      @addr: the start address for the read
3028 *      @nwords: how many 32-bit words to read
3029 *      @data: where to store the read data
3030 *      @byte_oriented: whether to store data as bytes or as words
3031 *
3032 *      Read the specified number of 32-bit words from the serial flash.
3033 *      If @byte_oriented is set the read data is stored as a byte array
3034 *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3035 *      natural endianness.
3036 */
3037int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038                  unsigned int nwords, u32 *data, int byte_oriented)
3039{
3040        int ret;
3041
3042        if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043                return -EINVAL;
3044
3045        addr = swab32(addr) | SF_RD_DATA_FAST;
3046
3047        if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048            (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049                return ret;
3050
3051        for ( ; nwords; nwords--, data++) {
3052                ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053                if (nwords == 1)
3054                        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055                if (ret)
3056                        return ret;
3057                if (byte_oriented)
3058                        *data = (__force __u32)(cpu_to_be32(*data));
3059        }
3060        return 0;
3061}
3062
3063/**
3064 *      t4_write_flash - write up to a page of data to the serial flash
3065 *      @adapter: the adapter
3066 *      @addr: the start address to write
3067 *      @n: length of data to write in bytes
3068 *      @data: the data to write
3069 *
3070 *      Writes up to a page of data (256 bytes) to the serial flash starting
3071 *      at the given address.  All the data must be written to the same page.
3072 */
3073static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074                          unsigned int n, const u8 *data)
3075{
3076        int ret;
3077        u32 buf[64];
3078        unsigned int i, c, left, val, offset = addr & 0xff;
3079
3080        if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081                return -EINVAL;
3082
3083        val = swab32(addr) | SF_PROG_PAGE;
3084
3085        if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086            (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087                goto unlock;
3088
3089        for (left = n; left; left -= c) {
3090                c = min(left, 4U);
3091                for (val = 0, i = 0; i < c; ++i)
3092                        val = (val << 8) + *data++;
3093
3094                ret = sf1_write(adapter, c, c != left, 1, val);
3095                if (ret)
3096                        goto unlock;
3097        }
3098        ret = flash_wait_op(adapter, 8, 1);
3099        if (ret)
3100                goto unlock;
3101
3102        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103
3104        /* Read the page to verify the write succeeded */
3105        ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106        if (ret)
3107                return ret;
3108
3109        if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110                dev_err(adapter->pdev_dev,
3111                        "failed to correctly write the flash page at %#x\n",
3112                        addr);
3113                return -EIO;
3114        }
3115        return 0;
3116
3117unlock:
3118        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119        return ret;
3120}
3121
3122/**
3123 *      t4_get_fw_version - read the firmware version
3124 *      @adapter: the adapter
3125 *      @vers: where to place the version
3126 *
3127 *      Reads the FW version from flash.
3128 */
3129int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130{
3131        return t4_read_flash(adapter, FLASH_FW_START +
3132                             offsetof(struct fw_hdr, fw_ver), 1,
3133                             vers, 0);
3134}
3135
3136/**
3137 *      t4_get_bs_version - read the firmware bootstrap version
3138 *      @adapter: the adapter
3139 *      @vers: where to place the version
3140 *
3141 *      Reads the FW Bootstrap version from flash.
3142 */
3143int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144{
3145        return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146                             offsetof(struct fw_hdr, fw_ver), 1,
3147                             vers, 0);
3148}
3149
3150/**
3151 *      t4_get_tp_version - read the TP microcode version
3152 *      @adapter: the adapter
3153 *      @vers: where to place the version
3154 *
3155 *      Reads the TP microcode version from flash.
3156 */
3157int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158{
3159        return t4_read_flash(adapter, FLASH_FW_START +
3160                             offsetof(struct fw_hdr, tp_microcode_ver),
3161                             1, vers, 0);
3162}
3163
3164/**
3165 *      t4_get_exprom_version - return the Expansion ROM version (if any)
3166 *      @adapter: the adapter
3167 *      @vers: where to place the version
3168 *
3169 *      Reads the Expansion ROM header from FLASH and returns the version
3170 *      number (if present) through the @vers return value pointer.  We return
3171 *      this in the Firmware Version Format since it's convenient.  Return
3172 *      0 on success, -ENOENT if no Expansion ROM is present.
3173 */
3174int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175{
3176        struct exprom_header {
3177                unsigned char hdr_arr[16];      /* must start with 0x55aa */
3178                unsigned char hdr_ver[4];       /* Expansion ROM version */
3179        } *hdr;
3180        u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181                                           sizeof(u32))];
3182        int ret;
3183
3184        ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185                            ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186                            0);
3187        if (ret)
3188                return ret;
3189
3190        hdr = (struct exprom_header *)exprom_header_buf;
3191        if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192                return -ENOENT;
3193
3194        *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195                 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196                 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197                 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198        return 0;
3199}
3200
3201/**
3202 *      t4_get_vpd_version - return the VPD version
3203 *      @adapter: the adapter
3204 *      @vers: where to place the version
3205 *
3206 *      Reads the VPD via the Firmware interface (thus this can only be called
3207 *      once we're ready to issue Firmware commands).  The format of the
3208 *      VPD version is adapter specific.  Returns 0 on success, an error on
3209 *      failure.
3210 *
3211 *      Note that early versions of the Firmware didn't include the ability
3212 *      to retrieve the VPD version, so we zero-out the return-value parameter
3213 *      in that case to avoid leaving it with garbage in it.
3214 *
3215 *      Also note that the Firmware will return its cached copy of the VPD
3216 *      Revision ID, not the actual Revision ID as written in the Serial
3217 *      EEPROM.  This is only an issue if a new VPD has been written and the
3218 *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219 *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220 *      if the Host Driver will be performing a full adapter initialization.
3221 */
3222int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223{
3224        u32 vpdrev_param;
3225        int ret;
3226
3227        vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228                        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230                              1, &vpdrev_param, vers);
3231        if (ret)
3232                *vers = 0;
3233        return ret;
3234}
3235
3236/**
3237 *      t4_get_scfg_version - return the Serial Configuration version
3238 *      @adapter: the adapter
3239 *      @vers: where to place the version
3240 *
3241 *      Reads the Serial Configuration Version via the Firmware interface
3242 *      (thus this can only be called once we're ready to issue Firmware
3243 *      commands).  The format of the Serial Configuration version is
3244 *      adapter specific.  Returns 0 on success, an error on failure.
3245 *
3246 *      Note that early versions of the Firmware didn't include the ability
3247 *      to retrieve the Serial Configuration version, so we zero-out the
3248 *      return-value parameter in that case to avoid leaving it with
3249 *      garbage in it.
3250 *
3251 *      Also note that the Firmware will return its cached copy of the Serial
3252 *      Initialization Revision ID, not the actual Revision ID as written in
3253 *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254 *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255 *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256 *      been issued if the Host Driver will be performing a full adapter
3257 *      initialization.
3258 */
3259int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260{
3261        u32 scfgrev_param;
3262        int ret;
3263
3264        scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266        ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267                              1, &scfgrev_param, vers);
3268        if (ret)
3269                *vers = 0;
3270        return ret;
3271}
3272
3273/**
3274 *      t4_get_version_info - extract various chip/firmware version information
3275 *      @adapter: the adapter
3276 *
3277 *      Reads various chip/firmware version numbers and stores them into the
3278 *      adapter Adapter Parameters structure.  If any of the efforts fails
3279 *      the first failure will be returned, but all of the version numbers
3280 *      will be read.
3281 */
3282int t4_get_version_info(struct adapter *adapter)
3283{
3284        int ret = 0;
3285
3286        #define FIRST_RET(__getvinfo) \
3287        do { \
3288                int __ret = __getvinfo; \
3289                if (__ret && !ret) \
3290                        ret = __ret; \
3291        } while (0)
3292
3293        FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294        FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295        FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296        FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297        FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298        FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299
3300        #undef FIRST_RET
3301        return ret;
3302}
3303
3304/**
3305 *      t4_dump_version_info - dump all of the adapter configuration IDs
3306 *      @adapter: the adapter
3307 *
3308 *      Dumps all of the various bits of adapter configuration version/revision
3309 *      IDs information.  This is typically called at some point after
3310 *      t4_get_version_info() has been called.
3311 */
3312void t4_dump_version_info(struct adapter *adapter)
3313{
3314        /* Device information */
3315        dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316                 adapter->params.vpd.id,
3317                 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318        dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319                 adapter->params.vpd.sn, adapter->params.vpd.pn);
3320
3321        /* Firmware Version */
3322        if (!adapter->params.fw_vers)
3323                dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324        else
3325                dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326                         FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327                         FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328                         FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329                         FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330
3331        /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332         * Firmware, so dev_info() is more appropriate here.)
3333         */
3334        if (!adapter->params.bs_vers)
3335                dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336        else
3337                dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338                         FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339                         FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340                         FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341                         FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342
3343        /* TP Microcode Version */
3344        if (!adapter->params.tp_vers)
3345                dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346        else
3347                dev_info(adapter->pdev_dev,
3348                         "TP Microcode version: %u.%u.%u.%u\n",
3349                         FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350                         FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351                         FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352                         FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353
3354        /* Expansion ROM version */
3355        if (!adapter->params.er_vers)
3356                dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357        else
3358                dev_info(adapter->pdev_dev,
3359                         "Expansion ROM version: %u.%u.%u.%u\n",
3360                         FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361                         FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362                         FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363                         FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364
3365        /* Serial Configuration version */
3366        dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367                 adapter->params.scfg_vers);
3368
3369        /* VPD Version */
3370        dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371                 adapter->params.vpd_vers);
3372}
3373
3374/**
3375 *      t4_check_fw_version - check if the FW is supported with this driver
3376 *      @adap: the adapter
3377 *
3378 *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3379 *      if there's exact match, a negative error if the version could not be
3380 *      read or there's a major version mismatch
3381 */
3382int t4_check_fw_version(struct adapter *adap)
3383{
3384        int i, ret, major, minor, micro;
3385        int exp_major, exp_minor, exp_micro;
3386        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387
3388        ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389        /* Try multiple times before returning error */
3390        for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392
3393        if (ret)
3394                return ret;
3395
3396        major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397        minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398        micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399
3400        switch (chip_version) {
3401        case CHELSIO_T4:
3402                exp_major = T4FW_MIN_VERSION_MAJOR;
3403                exp_minor = T4FW_MIN_VERSION_MINOR;
3404                exp_micro = T4FW_MIN_VERSION_MICRO;
3405                break;
3406        case CHELSIO_T5:
3407                exp_major = T5FW_MIN_VERSION_MAJOR;
3408                exp_minor = T5FW_MIN_VERSION_MINOR;
3409                exp_micro = T5FW_MIN_VERSION_MICRO;
3410                break;
3411        case CHELSIO_T6:
3412                exp_major = T6FW_MIN_VERSION_MAJOR;
3413                exp_minor = T6FW_MIN_VERSION_MINOR;
3414                exp_micro = T6FW_MIN_VERSION_MICRO;
3415                break;
3416        default:
3417                dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418                        adap->chip);
3419                return -EINVAL;
3420        }
3421
3422        if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423            (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424                dev_err(adap->pdev_dev,
3425                        "Card has firmware version %u.%u.%u, minimum "
3426                        "supported firmware is %u.%u.%u.\n", major, minor,
3427                        micro, exp_major, exp_minor, exp_micro);
3428                return -EFAULT;
3429        }
3430        return 0;
3431}
3432
3433/* Is the given firmware API compatible with the one the driver was compiled
3434 * with?
3435 */
3436static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437{
3438
3439        /* short circuit if it's the exact same firmware version */
3440        if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441                return 1;
3442
3443#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444        if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445            SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446                return 1;
3447#undef SAME_INTF
3448
3449        return 0;
3450}
3451
3452/* The firmware in the filesystem is usable, but should it be installed?
3453 * This routine explains itself in detail if it indicates the filesystem
3454 * firmware should be installed.
3455 */
3456static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457                                int k, int c)
3458{
3459        const char *reason;
3460
3461        if (!card_fw_usable) {
3462                reason = "incompatible or unusable";
3463                goto install;
3464        }
3465
3466        if (k > c) {
3467                reason = "older than the version supported with this driver";
3468                goto install;
3469        }
3470
3471        return 0;
3472
3473install:
3474        dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475                "installing firmware %u.%u.%u.%u on card.\n",
3476                FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477                FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478                FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479                FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480
3481        return 1;
3482}
3483
3484int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485               const u8 *fw_data, unsigned int fw_size,
3486               struct fw_hdr *card_fw, enum dev_state state,
3487               int *reset)
3488{
3489        int ret, card_fw_usable, fs_fw_usable;
3490        const struct fw_hdr *fs_fw;
3491        const struct fw_hdr *drv_fw;
3492
3493        drv_fw = &fw_info->fw_hdr;
3494
3495        /* Read the header of the firmware on the card */
3496        ret = -t4_read_flash(adap, FLASH_FW_START,
3497                            sizeof(*card_fw) / sizeof(uint32_t),
3498                            (uint32_t *)card_fw, 1);
3499        if (ret == 0) {
3500                card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501        } else {
3502                dev_err(adap->pdev_dev,
3503                        "Unable to read card's firmware header: %d\n", ret);
3504                card_fw_usable = 0;
3505        }
3506
3507        if (fw_data != NULL) {
3508                fs_fw = (const void *)fw_data;
3509                fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510        } else {
3511                fs_fw = NULL;
3512                fs_fw_usable = 0;
3513        }
3514
3515        if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516            (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517                /* Common case: the firmware on the card is an exact match and
3518                 * the filesystem one is an exact match too, or the filesystem
3519                 * one is absent/incompatible.
3520                 */
3521        } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522                   should_install_fs_fw(adap, card_fw_usable,
3523                                        be32_to_cpu(fs_fw->fw_ver),
3524                                        be32_to_cpu(card_fw->fw_ver))) {
3525                ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3526                                     fw_size, 0);
3527                if (ret != 0) {
3528                        dev_err(adap->pdev_dev,
3529                                "failed to install firmware: %d\n", ret);
3530                        goto bye;
3531                }
3532
3533                /* Installed successfully, update the cached header too. */
3534                *card_fw = *fs_fw;
3535                card_fw_usable = 1;
3536                *reset = 0;     /* already reset as part of load_fw */
3537        }
3538
3539        if (!card_fw_usable) {
3540                uint32_t d, c, k;
3541
3542                d = be32_to_cpu(drv_fw->fw_ver);
3543                c = be32_to_cpu(card_fw->fw_ver);
3544                k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545
3546                dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547                        "chip state %d, "
3548                        "driver compiled with %d.%d.%d.%d, "
3549                        "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550                        state,
3551                        FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552                        FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553                        FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554                        FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555                        FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556                        FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557                ret = EINVAL;
3558                goto bye;
3559        }
3560
3561        /* We're using whatever's on the card and it's known to be good. */
3562        adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563        adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564
3565bye:
3566        return ret;
3567}
3568
3569/**
3570 *      t4_flash_erase_sectors - erase a range of flash sectors
3571 *      @adapter: the adapter
3572 *      @start: the first sector to erase
3573 *      @end: the last sector to erase
3574 *
3575 *      Erases the sectors in the given inclusive range.
3576 */
3577static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578{
3579        int ret = 0;
3580
3581        if (end >= adapter->params.sf_nsec)
3582                return -EINVAL;
3583
3584        while (start <= end) {
3585                if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586                    (ret = sf1_write(adapter, 4, 0, 1,
3587                                     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588                    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589                        dev_err(adapter->pdev_dev,
3590                                "erase of flash sector %d failed, error %d\n",
3591                                start, ret);
3592                        break;
3593                }
3594                start++;
3595        }
3596        t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597        return ret;
3598}
3599
3600/**
3601 *      t4_flash_cfg_addr - return the address of the flash configuration file
3602 *      @adapter: the adapter
3603 *
3604 *      Return the address within the flash where the Firmware Configuration
3605 *      File is stored.
3606 */
3607unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608{
3609        if (adapter->params.sf_size == 0x100000)
3610                return FLASH_FPGA_CFG_START;
3611        else
3612                return FLASH_CFG_START;
3613}
3614
3615/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617 * and emit an error message for mismatched firmware to save our caller the
3618 * effort ...
3619 */
3620static bool t4_fw_matches_chip(const struct adapter *adap,
3621                               const struct fw_hdr *hdr)
3622{
3623        /* The expression below will return FALSE for any unsupported adapter
3624         * which will keep us "honest" in the future ...
3625         */
3626        if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627            (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628            (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629                return true;
3630
3631        dev_err(adap->pdev_dev,
3632                "FW image (%d) is not suitable for this adapter (%d)\n",
3633                hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634        return false;
3635}
3636
3637/**
3638 *      t4_load_fw - download firmware
3639 *      @adap: the adapter
3640 *      @fw_data: the firmware image to write
3641 *      @size: image size
3642 *
3643 *      Write the supplied firmware image to the card's serial flash.
3644 */
3645int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646{
3647        u32 csum;
3648        int ret, addr;
3649        unsigned int i;
3650        u8 first_page[SF_PAGE_SIZE];
3651        const __be32 *p = (const __be32 *)fw_data;
3652        const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654        unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655        unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656        unsigned int fw_start = FLASH_FW_START;
3657
3658        if (!size) {
3659                dev_err(adap->pdev_dev, "FW image has no data\n");
3660                return -EINVAL;
3661        }
3662        if (size & 511) {
3663                dev_err(adap->pdev_dev,
3664                        "FW image size not multiple of 512 bytes\n");
3665                return -EINVAL;
3666        }
3667        if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668                dev_err(adap->pdev_dev,
3669                        "FW image size differs from size in FW header\n");
3670                return -EINVAL;
3671        }
3672        if (size > fw_size) {
3673                dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674                        fw_size);
3675                return -EFBIG;
3676        }
3677        if (!t4_fw_matches_chip(adap, hdr))
3678                return -EINVAL;
3679
3680        for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681                csum += be32_to_cpu(p[i]);
3682
3683        if (csum != 0xffffffff) {
3684                dev_err(adap->pdev_dev,
3685                        "corrupted firmware image, checksum %#x\n", csum);
3686                return -EINVAL;
3687        }
3688
3689        i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690        ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691        if (ret)
3692                goto out;
3693
3694        /*
3695         * We write the correct version at the end so the driver can see a bad
3696         * version if the FW write fails.  Start by writing a copy of the
3697         * first page with a bad version.
3698         */
3699        memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700        ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701        ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702        if (ret)
3703                goto out;
3704
3705        addr = fw_start;
3706        for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707                addr += SF_PAGE_SIZE;
3708                fw_data += SF_PAGE_SIZE;
3709                ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710                if (ret)
3711                        goto out;
3712        }
3713
3714        ret = t4_write_flash(adap,
3715                             fw_start + offsetof(struct fw_hdr, fw_ver),
3716                             sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717out:
3718        if (ret)
3719                dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720                        ret);
3721        else
3722                ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723        return ret;
3724}
3725
3726/**
3727 *      t4_phy_fw_ver - return current PHY firmware version
3728 *      @adap: the adapter
3729 *      @phy_fw_ver: return value buffer for PHY firmware version
3730 *
3731 *      Returns the current version of external PHY firmware on the
3732 *      adapter.
3733 */
3734int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735{
3736        u32 param, val;
3737        int ret;
3738
3739        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744                              &param, &val);
3745        if (ret)
3746                return ret;
3747        *phy_fw_ver = val;
3748        return 0;
3749}
3750
3751/**
3752 *      t4_load_phy_fw - download port PHY firmware
3753 *      @adap: the adapter
3754 *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3755 *      @win_lock: the lock to use to guard the memory copy
3756 *      @phy_fw_version: function to check PHY firmware versions
3757 *      @phy_fw_data: the PHY firmware image to write
3758 *      @phy_fw_size: image size
3759 *
3760 *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3761 *      @phy_fw_version is supplied, then it will be used to determine if
3762 *      it's necessary to perform the transfer by comparing the version
3763 *      of any existing adapter PHY firmware with that of the passed in
3764 *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3765 *      around the call to t4_memory_rw() which transfers the PHY firmware
3766 *      to the adapter.
3767 *
3768 *      A negative error number will be returned if an error occurs.  If
3769 *      version number support is available and there's no need to upgrade
3770 *      the firmware, 0 will be returned.  If firmware is successfully
3771 *      transferred to the adapter, 1 will be returned.
3772 *
3773 *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3774 *      a result, a RESET of the adapter would cause that RAM to lose its
3775 *      contents.  Thus, loading PHY firmware on such adapters must happen
3776 *      after any FW_RESET_CMDs ...
3777 */
3778int t4_load_phy_fw(struct adapter *adap,
3779                   int win, spinlock_t *win_lock,
3780                   int (*phy_fw_version)(const u8 *, size_t),
3781                   const u8 *phy_fw_data, size_t phy_fw_size)
3782{
3783        unsigned long mtype = 0, maddr = 0;
3784        u32 param, val;
3785        int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3786        int ret;
3787
3788        /* If we have version number support, then check to see if the adapter
3789         * already has up-to-date PHY firmware loaded.
3790         */
3791        if (phy_fw_version) {
3792                new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3793                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3794                if (ret < 0)
3795                        return ret;
3796
3797                if (cur_phy_fw_ver >= new_phy_fw_vers) {
3798                        CH_WARN(adap, "PHY Firmware already up-to-date, "
3799                                "version %#x\n", cur_phy_fw_ver);
3800                        return 0;
3801                }
3802        }
3803
3804        /* Ask the firmware where it wants us to copy the PHY firmware image.
3805         * The size of the file requires a special version of the READ command
3806         * which will pass the file size via the values field in PARAMS_CMD and
3807         * retrieve the return value from firmware and place it in the same
3808         * buffer values
3809         */
3810        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3811                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3812                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3813                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3814        val = phy_fw_size;
3815        ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3816                                 &param, &val, 1, true);
3817        if (ret < 0)
3818                return ret;
3819        mtype = val >> 8;
3820        maddr = (val & 0xff) << 16;
3821
3822        /* Copy the supplied PHY Firmware image to the adapter memory location
3823         * allocated by the adapter firmware.
3824         */
3825        if (win_lock)
3826                spin_lock_bh(win_lock);
3827        ret = t4_memory_rw(adap, win, mtype, maddr,
3828                           phy_fw_size, (__be32 *)phy_fw_data,
3829                           T4_MEMORY_WRITE);
3830        if (win_lock)
3831                spin_unlock_bh(win_lock);
3832        if (ret)
3833                return ret;
3834
3835        /* Tell the firmware that the PHY firmware image has been written to
3836         * RAM and it can now start copying it over to the PHYs.  The chip
3837         * firmware will RESET the affected PHYs as part of this operation
3838         * leaving them running the new PHY firmware image.
3839         */
3840        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3841                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3842                 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3843                 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3844        ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3845                                    &param, &val, 30000);
3846
3847        /* If we have version number support, then check to see that the new
3848         * firmware got loaded properly.
3849         */
3850        if (phy_fw_version) {
3851                ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3852                if (ret < 0)
3853                        return ret;
3854
3855                if (cur_phy_fw_ver != new_phy_fw_vers) {
3856                        CH_WARN(adap, "PHY Firmware did not update: "
3857                                "version on adapter %#x, "
3858                                "version flashed %#x\n",
3859                                cur_phy_fw_ver, new_phy_fw_vers);
3860                        return -ENXIO;
3861                }
3862        }
3863
3864        return 1;
3865}
3866
3867/**
3868 *      t4_fwcache - firmware cache operation
3869 *      @adap: the adapter
3870 *      @op  : the operation (flush or flush and invalidate)
3871 */
3872int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3873{
3874        struct fw_params_cmd c;
3875
3876        memset(&c, 0, sizeof(c));
3877        c.op_to_vfn =
3878                cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3879                            FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3880                            FW_PARAMS_CMD_PFN_V(adap->pf) |
3881                            FW_PARAMS_CMD_VFN_V(0));
3882        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3883        c.param[0].mnem =
3884                cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3885                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3886        c.param[0].val = cpu_to_be32(op);
3887
3888        return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3889}
3890
3891void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3892                        unsigned int *pif_req_wrptr,
3893                        unsigned int *pif_rsp_wrptr)
3894{
3895        int i, j;
3896        u32 cfg, val, req, rsp;
3897
3898        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3899        if (cfg & LADBGEN_F)
3900                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3901
3902        val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3903        req = POLADBGWRPTR_G(val);
3904        rsp = PILADBGWRPTR_G(val);
3905        if (pif_req_wrptr)
3906                *pif_req_wrptr = req;
3907        if (pif_rsp_wrptr)
3908                *pif_rsp_wrptr = rsp;
3909
3910        for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3911                for (j = 0; j < 6; j++) {
3912                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3913                                     PILADBGRDPTR_V(rsp));
3914                        *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3915                        *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3916                        req++;
3917                        rsp++;
3918                }
3919                req = (req + 2) & POLADBGRDPTR_M;
3920                rsp = (rsp + 2) & PILADBGRDPTR_M;
3921        }
3922        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3923}
3924
3925void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3926{
3927        u32 cfg;
3928        int i, j, idx;
3929
3930        cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3931        if (cfg & LADBGEN_F)
3932                t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3933
3934        for (i = 0; i < CIM_MALA_SIZE; i++) {
3935                for (j = 0; j < 5; j++) {
3936                        idx = 8 * i + j;
3937                        t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3938                                     PILADBGRDPTR_V(idx));
3939                        *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3940                        *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3941                }
3942        }
3943        t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3944}
3945
3946void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3947{
3948        unsigned int i, j;
3949
3950        for (i = 0; i < 8; i++) {
3951                u32 *p = la_buf + i;
3952
3953                t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3954                j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3955                t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3956                for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3957                        *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3958        }
3959}
3960
3961/* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3962 * Capabilities which we control with separate controls -- see, for instance,
3963 * Pause Frames and Forward Error Correction.  In order to determine what the
3964 * full set of Advertised Port Capabilities are, the base Advertised Port
3965 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3966 * Port Capabilities associated with those other controls.  See
3967 * t4_link_acaps() for how this is done.
3968 */
3969#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3970                     FW_PORT_CAP32_ANEG)
3971
3972/**
3973 *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3974 *      @caps16: a 16-bit Port Capabilities value
3975 *
3976 *      Returns the equivalent 32-bit Port Capabilities value.
3977 */
3978static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3979{
3980        fw_port_cap32_t caps32 = 0;
3981
3982        #define CAP16_TO_CAP32(__cap) \
3983                do { \
3984                        if (caps16 & FW_PORT_CAP_##__cap) \
3985                                caps32 |= FW_PORT_CAP32_##__cap; \
3986                } while (0)
3987
3988        CAP16_TO_CAP32(SPEED_100M);
3989        CAP16_TO_CAP32(SPEED_1G);
3990        CAP16_TO_CAP32(SPEED_25G);
3991        CAP16_TO_CAP32(SPEED_10G);
3992        CAP16_TO_CAP32(SPEED_40G);
3993        CAP16_TO_CAP32(SPEED_100G);
3994        CAP16_TO_CAP32(FC_RX);
3995        CAP16_TO_CAP32(FC_TX);
3996        CAP16_TO_CAP32(ANEG);
3997        CAP16_TO_CAP32(FORCE_PAUSE);
3998        CAP16_TO_CAP32(MDIAUTO);
3999        CAP16_TO_CAP32(MDISTRAIGHT);
4000        CAP16_TO_CAP32(FEC_RS);
4001        CAP16_TO_CAP32(FEC_BASER_RS);
4002        CAP16_TO_CAP32(802_3_PAUSE);
4003        CAP16_TO_CAP32(802_3_ASM_DIR);
4004
4005        #undef CAP16_TO_CAP32
4006
4007        return caps32;
4008}
4009
4010/**
4011 *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4012 *      @caps32: a 32-bit Port Capabilities value
4013 *
4014 *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4015 *      not all 32-bit Port Capabilities can be represented in the 16-bit
4016 *      Port Capabilities and some fields/values may not make it.
4017 */
4018static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4019{
4020        fw_port_cap16_t caps16 = 0;
4021
4022        #define CAP32_TO_CAP16(__cap) \
4023                do { \
4024                        if (caps32 & FW_PORT_CAP32_##__cap) \
4025                                caps16 |= FW_PORT_CAP_##__cap; \
4026                } while (0)
4027
4028        CAP32_TO_CAP16(SPEED_100M);
4029        CAP32_TO_CAP16(SPEED_1G);
4030        CAP32_TO_CAP16(SPEED_10G);
4031        CAP32_TO_CAP16(SPEED_25G);
4032        CAP32_TO_CAP16(SPEED_40G);
4033        CAP32_TO_CAP16(SPEED_100G);
4034        CAP32_TO_CAP16(FC_RX);
4035        CAP32_TO_CAP16(FC_TX);
4036        CAP32_TO_CAP16(802_3_PAUSE);
4037        CAP32_TO_CAP16(802_3_ASM_DIR);
4038        CAP32_TO_CAP16(ANEG);
4039        CAP32_TO_CAP16(FORCE_PAUSE);
4040        CAP32_TO_CAP16(MDIAUTO);
4041        CAP32_TO_CAP16(MDISTRAIGHT);
4042        CAP32_TO_CAP16(FEC_RS);
4043        CAP32_TO_CAP16(FEC_BASER_RS);
4044
4045        #undef CAP32_TO_CAP16
4046
4047        return caps16;
4048}
4049
4050/* Translate Firmware Port Capabilities Pause specification to Common Code */
4051static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4052{
4053        enum cc_pause cc_pause = 0;
4054
4055        if (fw_pause & FW_PORT_CAP32_FC_RX)
4056                cc_pause |= PAUSE_RX;
4057        if (fw_pause & FW_PORT_CAP32_FC_TX)
4058                cc_pause |= PAUSE_TX;
4059
4060        return cc_pause;
4061}
4062
4063/* Translate Common Code Pause specification into Firmware Port Capabilities */
4064static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4065{
4066        /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4067         * commands, etc.
4068         */
4069        fw_port_cap32_t fw_pause = 0;
4070
4071        if (cc_pause & PAUSE_RX)
4072                fw_pause |= FW_PORT_CAP32_FC_RX;
4073        if (cc_pause & PAUSE_TX)
4074                fw_pause |= FW_PORT_CAP32_FC_TX;
4075        if (!(cc_pause & PAUSE_AUTONEG))
4076                fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4077
4078        /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4079         * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4080         * Note that these bits are ignored in L1 Configure commands.
4081         */
4082        if (cc_pause & PAUSE_RX) {
4083                if (cc_pause & PAUSE_TX)
4084                        fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4085                else
4086                        fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4087                                    FW_PORT_CAP32_802_3_PAUSE;
4088        } else if (cc_pause & PAUSE_TX) {
4089                fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4090        }
4091
4092        return fw_pause;
4093}
4094
4095/* Translate Firmware Forward Error Correction specification to Common Code */
4096static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4097{
4098        enum cc_fec cc_fec = 0;
4099
4100        if (fw_fec & FW_PORT_CAP32_FEC_RS)
4101                cc_fec |= FEC_RS;
4102        if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4103                cc_fec |= FEC_BASER_RS;
4104
4105        return cc_fec;
4106}
4107
4108/* Translate Common Code Forward Error Correction specification to Firmware */
4109static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4110{
4111        fw_port_cap32_t fw_fec = 0;
4112
4113        if (cc_fec & FEC_RS)
4114                fw_fec |= FW_PORT_CAP32_FEC_RS;
4115        if (cc_fec & FEC_BASER_RS)
4116                fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4117
4118        return fw_fec;
4119}
4120
4121/**
4122 *      t4_link_acaps - compute Link Advertised Port Capabilities
4123 *      @adapter: the adapter
4124 *      @port: the Port ID
4125 *      @lc: the Port's Link Configuration
4126 *
4127 *      Synthesize the Advertised Port Capabilities we'll be using based on
4128 *      the base Advertised Port Capabilities (which have been filtered by
4129 *      ADVERT_MASK) plus the individual controls for things like Pause
4130 *      Frames, Forward Error Correction, MDI, etc.
4131 */
4132fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4133                              struct link_config *lc)
4134{
4135        fw_port_cap32_t fw_fc, fw_fec, acaps;
4136        unsigned int fw_mdi;
4137        char cc_fec;
4138
4139        fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4140
4141        /* Convert driver coding of Pause Frame Flow Control settings into the
4142         * Firmware's API.
4143         */
4144        fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4145
4146        /* Convert Common Code Forward Error Control settings into the
4147         * Firmware's API.  If the current Requested FEC has "Automatic"
4148         * (IEEE 802.3) specified, then we use whatever the Firmware
4149         * sent us as part of its IEEE 802.3-based interpretation of
4150         * the Transceiver Module EPROM FEC parameters.  Otherwise we
4151         * use whatever is in the current Requested FEC settings.
4152         */
4153        if (lc->requested_fec & FEC_AUTO)
4154                cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4155        else
4156                cc_fec = lc->requested_fec;
4157        fw_fec = cc_to_fwcap_fec(cc_fec);
4158
4159        /* Figure out what our Requested Port Capabilities are going to be.
4160         * Note parallel structure in t4_handle_get_port_info() and
4161         * init_link_config().
4162         */
4163        if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4164                acaps = lc->acaps | fw_fc | fw_fec;
4165                lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4166                lc->fec = cc_fec;
4167        } else if (lc->autoneg == AUTONEG_DISABLE) {
4168                acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4169                lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4170                lc->fec = cc_fec;
4171        } else {
4172                acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4173        }
4174
4175        /* Some Requested Port Capabilities are trivially wrong if they exceed
4176         * the Physical Port Capabilities.  We can check that here and provide
4177         * moderately useful feedback in the system log.
4178         *
4179         * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4180         * we need to exclude this from this check in order to maintain
4181         * compatibility ...
4182         */
4183        if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4184                dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4185                        acaps, lc->pcaps);
4186                return -EINVAL;
4187        }
4188
4189        return acaps;
4190}
4191
4192/**
4193 *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4194 *      @adapter: the adapter
4195 *      @mbox: the Firmware Mailbox to use
4196 *      @port: the Port ID
4197 *      @lc: the Port's Link Configuration
4198 *      @sleep_ok: if true we may sleep while awaiting command completion
4199 *      @timeout: time to wait for command to finish before timing out
4200 *              (negative implies @sleep_ok=false)
4201 *
4202 *      Set up a port's MAC and PHY according to a desired link configuration.
4203 *      - If the PHY can auto-negotiate first decide what to advertise, then
4204 *        enable/disable auto-negotiation as desired, and reset.
4205 *      - If the PHY does not auto-negotiate just reset it.
4206 *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4207 *        otherwise do it later based on the outcome of auto-negotiation.
4208 */
4209int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4210                       unsigned int port, struct link_config *lc,
4211                       u8 sleep_ok, int timeout)
4212{
4213        unsigned int fw_caps = adapter->params.fw_caps_support;
4214        struct fw_port_cmd cmd;
4215        fw_port_cap32_t rcap;
4216        int ret;
4217
4218        if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4219            lc->autoneg == AUTONEG_ENABLE) {
4220                return -EINVAL;
4221        }
4222
4223        /* Compute our Requested Port Capabilities and send that on to the
4224         * Firmware.
4225         */
4226        rcap = t4_link_acaps(adapter, port, lc);
4227        memset(&cmd, 0, sizeof(cmd));
4228        cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4229                                       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4230                                       FW_PORT_CMD_PORTID_V(port));
4231        cmd.action_to_len16 =
4232                cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4233                                                 ? FW_PORT_ACTION_L1_CFG
4234                                                 : FW_PORT_ACTION_L1_CFG32) |
4235                                                 FW_LEN16(cmd));
4236        if (fw_caps == FW_CAPS16)
4237                cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4238        else
4239                cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4240
4241        ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4242                                      sleep_ok, timeout);
4243
4244        /* Unfortunately, even if the Requested Port Capabilities "fit" within
4245         * the Physical Port Capabilities, some combinations of features may
4246         * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4247         * Error Correction.  So if the Firmware rejects the L1 Configure
4248         * request, flag that here.
4249         */
4250        if (ret) {
4251                dev_err(adapter->pdev_dev,
4252                        "Requested Port Capabilities %#x rejected, error %d\n",
4253                        rcap, -ret);
4254                return ret;
4255        }
4256        return 0;
4257}
4258
4259/**
4260 *      t4_restart_aneg - restart autonegotiation
4261 *      @adap: the adapter
4262 *      @mbox: mbox to use for the FW command
4263 *      @port: the port id
4264 *
4265 *      Restarts autonegotiation for the selected port.
4266 */
4267int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4268{
4269        unsigned int fw_caps = adap->params.fw_caps_support;
4270        struct fw_port_cmd c;
4271
4272        memset(&c, 0, sizeof(c));
4273        c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4274                                     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4275                                     FW_PORT_CMD_PORTID_V(port));
4276        c.action_to_len16 =
4277                cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4278                                                 ? FW_PORT_ACTION_L1_CFG
4279                                                 : FW_PORT_ACTION_L1_CFG32) |
4280                            FW_LEN16(c));
4281        if (fw_caps == FW_CAPS16)
4282                c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4283        else
4284                c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4285        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4286}
4287
4288typedef void (*int_handler_t)(struct adapter *adap);
4289
4290struct intr_info {
4291        unsigned int mask;       /* bits to check in interrupt status */
4292        const char *msg;         /* message to print or NULL */
4293        short stat_idx;          /* stat counter to increment or -1 */
4294        unsigned short fatal;    /* whether the condition reported is fatal */
4295        int_handler_t int_handler; /* platform-specific int handler */
4296};
4297
4298/**
4299 *      t4_handle_intr_status - table driven interrupt handler
4300 *      @adapter: the adapter that generated the interrupt
4301 *      @reg: the interrupt status register to process
4302 *      @acts: table of interrupt actions
4303 *
4304 *      A table driven interrupt handler that applies a set of masks to an
4305 *      interrupt status word and performs the corresponding actions if the
4306 *      interrupts described by the mask have occurred.  The actions include
4307 *      optionally emitting a warning or alert message.  The table is terminated
4308 *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4309 *      conditions.
4310 */
4311static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4312                                 const struct intr_info *acts)
4313{
4314        int fatal = 0;
4315        unsigned int mask = 0;
4316        unsigned int status = t4_read_reg(adapter, reg);
4317
4318        for ( ; acts->mask; ++acts) {
4319                if (!(status & acts->mask))
4320                        continue;
4321                if (acts->fatal) {
4322                        fatal++;
4323                        dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4324                                  status & acts->mask);
4325                } else if (acts->msg && printk_ratelimit())
4326                        dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4327                                 status & acts->mask);
4328                if (acts->int_handler)
4329                        acts->int_handler(adapter);
4330                mask |= acts->mask;
4331        }
4332        status &= mask;
4333        if (status)                           /* clear processed interrupts */
4334                t4_write_reg(adapter, reg, status);
4335        return fatal;
4336}
4337
4338/*
4339 * Interrupt handler for the PCIE module.
4340 */
4341static void pcie_intr_handler(struct adapter *adapter)
4342{
4343        static const struct intr_info sysbus_intr_info[] = {
4344                { RNPP_F, "RXNP array parity error", -1, 1 },
4345                { RPCP_F, "RXPC array parity error", -1, 1 },
4346                { RCIP_F, "RXCIF array parity error", -1, 1 },
4347                { RCCP_F, "Rx completions control array parity error", -1, 1 },
4348                { RFTP_F, "RXFT array parity error", -1, 1 },
4349                { 0 }
4350        };
4351        static const struct intr_info pcie_port_intr_info[] = {
4352                { TPCP_F, "TXPC array parity error", -1, 1 },
4353                { TNPP_F, "TXNP array parity error", -1, 1 },
4354                { TFTP_F, "TXFT array parity error", -1, 1 },
4355                { TCAP_F, "TXCA array parity error", -1, 1 },
4356                { TCIP_F, "TXCIF array parity error", -1, 1 },
4357                { RCAP_F, "RXCA array parity error", -1, 1 },
4358                { OTDD_F, "outbound request TLP discarded", -1, 1 },
4359                { RDPE_F, "Rx data parity error", -1, 1 },
4360                { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4361                { 0 }
4362        };
4363        static const struct intr_info pcie_intr_info[] = {
4364                { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4365                { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4366                { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4367                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4368                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4369                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4370                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4371                { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4372                { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4373                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4374                { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4375                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4376                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4377                { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4378                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4379                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4380                { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4381                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4382                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4383                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4384                { FIDPERR_F, "PCI FID parity error", -1, 1 },
4385                { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4386                { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4387                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4388                { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4389                { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4390                { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4391                { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4392                { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4393                { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4394                  -1, 0 },
4395                { 0 }
4396        };
4397
4398        static struct intr_info t5_pcie_intr_info[] = {
4399                { MSTGRPPERR_F, "Master Response Read Queue parity error",
4400                  -1, 1 },
4401                { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4402                { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4403                { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4404                { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4405                { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4406                { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4407                { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4408                  -1, 1 },
4409                { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4410                  -1, 1 },
4411                { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4412                { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4413                { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4414                { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4415                { DREQWRPERR_F, "PCI DMA channel write request parity error",
4416                  -1, 1 },
4417                { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4418                { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4419                { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4420                { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4421                { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4422                { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4423                { FIDPERR_F, "PCI FID parity error", -1, 1 },
4424                { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4425                { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4426                { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4427                { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4428                  -1, 1 },
4429                { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4430                  -1, 1 },
4431                { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4432                { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4433                { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4434                { READRSPERR_F, "Outbound read error", -1, 0 },
4435                { 0 }
4436        };
4437
4438        int fat;
4439
4440        if (is_t4(adapter->params.chip))
4441                fat = t4_handle_intr_status(adapter,
4442                                PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4443                                sysbus_intr_info) +
4444                        t4_handle_intr_status(adapter,
4445                                        PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4446                                        pcie_port_intr_info) +
4447                        t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4448                                              pcie_intr_info);
4449        else
4450                fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4451                                            t5_pcie_intr_info);
4452
4453        if (fat)
4454                t4_fatal_err(adapter);
4455}
4456
4457/*
4458 * TP interrupt handler.
4459 */
4460static void tp_intr_handler(struct adapter *adapter)
4461{
4462        static const struct intr_info tp_intr_info[] = {
4463                { 0x3fffffff, "TP parity error", -1, 1 },
4464                { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4465                { 0 }
4466        };
4467
4468        if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4469                t4_fatal_err(adapter);
4470}
4471
4472/*
4473 * SGE interrupt handler.
4474 */
4475static void sge_intr_handler(struct adapter *adapter)
4476{
4477        u32 v = 0, perr;
4478        u32 err;
4479
4480        static const struct intr_info sge_intr_info[] = {
4481                { ERR_CPL_EXCEED_IQE_SIZE_F,
4482                  "SGE received CPL exceeding IQE size", -1, 1 },
4483                { ERR_INVALID_CIDX_INC_F,
4484                  "SGE GTS CIDX increment too large", -1, 0 },
4485                { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4486                { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4487                { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4488                  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4489                { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4490                  0 },
4491                { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4492                  0 },
4493                { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4494                  0 },
4495                { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4496                  0 },
4497                { ERR_ING_CTXT_PRIO_F,
4498                  "SGE too many priority ingress contexts", -1, 0 },
4499                { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4500                { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4501                { 0 }
4502        };
4503
4504        static struct intr_info t4t5_sge_intr_info[] = {
4505                { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4506                { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4507                { ERR_EGR_CTXT_PRIO_F,
4508                  "SGE too many priority egress contexts", -1, 0 },
4509                { 0 }
4510        };
4511
4512        perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4513        if (perr) {
4514                v |= perr;
4515                dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4516                          perr);
4517        }
4518
4519        perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4520        if (perr) {
4521                v |= perr;
4522                dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4523                          perr);
4524        }
4525
4526        if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4527                perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4528                /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4529                perr &= ~ERR_T_RXCRC_F;
4530                if (perr) {
4531                        v |= perr;
4532                        dev_alert(adapter->pdev_dev,
4533                                  "SGE Cause5 Parity Error %#x\n", perr);
4534                }
4535        }
4536
4537        v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4538        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4539                v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4540                                           t4t5_sge_intr_info);
4541
4542        err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4543        if (err & ERROR_QID_VALID_F) {
4544                dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4545                        ERROR_QID_G(err));
4546                if (err & UNCAPTURED_ERROR_F)
4547                        dev_err(adapter->pdev_dev,
4548                                "SGE UNCAPTURED_ERROR set (clearing)\n");
4549                t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4550                             UNCAPTURED_ERROR_F);
4551        }
4552
4553        if (v != 0)
4554                t4_fatal_err(adapter);
4555}
4556
4557#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4558                      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4559#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4560                      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4561
4562/*
4563 * CIM interrupt handler.
4564 */
4565static void cim_intr_handler(struct adapter *adapter)
4566{
4567        static const struct intr_info cim_intr_info[] = {
4568                { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4569                { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4570                { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4571                { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4572                { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4573                { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4574                { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4575                { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4576                { 0 }
4577        };
4578        static const struct intr_info cim_upintr_info[] = {
4579                { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4580                { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4581                { ILLWRINT_F, "CIM illegal write", -1, 1 },
4582                { ILLRDINT_F, "CIM illegal read", -1, 1 },
4583                { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4584                { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4585                { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4586                { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4587                { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4588                { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4589                { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4590                { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4591                { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4592                { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4593                { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4594                { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4595                { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4596                { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4597                { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4598                { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4599                { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4600                { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4601                { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4602                { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4603                { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4604                { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4605                { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4606                { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4607                { 0 }
4608        };
4609
4610        u32 val, fw_err;
4611        int fat;
4612
4613        fw_err = t4_read_reg(adapter, PCIE_FW_A);
4614        if (fw_err & PCIE_FW_ERR_F)
4615                t4_report_fw_error(adapter);
4616
4617        /* When the Firmware detects an internal error which normally
4618         * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4619         * in order to make sure the Host sees the Firmware Crash.  So
4620         * if we have a Timer0 interrupt and don't see a Firmware Crash,
4621         * ignore the Timer0 interrupt.
4622         */
4623
4624        val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4625        if (val & TIMER0INT_F)
4626                if (!(fw_err & PCIE_FW_ERR_F) ||
4627                    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4628                        t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4629                                     TIMER0INT_F);
4630
4631        fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4632                                    cim_intr_info) +
4633              t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4634                                    cim_upintr_info);
4635        if (fat)
4636                t4_fatal_err(adapter);
4637}
4638
4639/*
4640 * ULP RX interrupt handler.
4641 */
4642static void ulprx_intr_handler(struct adapter *adapter)
4643{
4644        static const struct intr_info ulprx_intr_info[] = {
4645                { 0x1800000, "ULPRX context error", -1, 1 },
4646                { 0x7fffff, "ULPRX parity error", -1, 1 },
4647                { 0 }
4648        };
4649
4650        if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4651                t4_fatal_err(adapter);
4652}
4653
4654/*
4655 * ULP TX interrupt handler.
4656 */
4657static void ulptx_intr_handler(struct adapter *adapter)
4658{
4659        static const struct intr_info ulptx_intr_info[] = {
4660                { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4661                  0 },
4662                { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4663                  0 },
4664                { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4665                  0 },
4666                { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4667                  0 },
4668                { 0xfffffff, "ULPTX parity error", -1, 1 },
4669                { 0 }
4670        };
4671
4672        if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4673                t4_fatal_err(adapter);
4674}
4675
4676/*
4677 * PM TX interrupt handler.
4678 */
4679static void pmtx_intr_handler(struct adapter *adapter)
4680{
4681        static const struct intr_info pmtx_intr_info[] = {
4682                { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4683                { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4684                { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4685                { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4686                { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4687                { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4688                { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4689                  -1, 1 },
4690                { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4691                { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4692                { 0 }
4693        };
4694
4695        if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4696                t4_fatal_err(adapter);
4697}
4698
4699/*
4700 * PM RX interrupt handler.
4701 */
4702static void pmrx_intr_handler(struct adapter *adapter)
4703{
4704        static const struct intr_info pmrx_intr_info[] = {
4705                { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4706                { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4707                { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4708                { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4709                  -1, 1 },
4710                { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4711                { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4712                { 0 }
4713        };
4714
4715        if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4716                t4_fatal_err(adapter);
4717}
4718
4719/*
4720 * CPL switch interrupt handler.
4721 */
4722static void cplsw_intr_handler(struct adapter *adapter)
4723{
4724        static const struct intr_info cplsw_intr_info[] = {
4725                { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4726                { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4727                { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4728                { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4729                { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4730                { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4731                { 0 }
4732        };
4733
4734        if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4735                t4_fatal_err(adapter);
4736}
4737
4738/*
4739 * LE interrupt handler.
4740 */
4741static void le_intr_handler(struct adapter *adap)
4742{
4743        enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4744        static const struct intr_info le_intr_info[] = {
4745                { LIPMISS_F, "LE LIP miss", -1, 0 },
4746                { LIP0_F, "LE 0 LIP error", -1, 0 },
4747                { PARITYERR_F, "LE parity error", -1, 1 },
4748                { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4749                { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4750                { 0 }
4751        };
4752
4753        static struct intr_info t6_le_intr_info[] = {
4754                { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4755                { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4756                { TCAMINTPERR_F, "LE parity error", -1, 1 },
4757                { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4758                { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4759                { 0 }
4760        };
4761
4762        if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4763                                  (chip <= CHELSIO_T5) ?
4764                                  le_intr_info : t6_le_intr_info))
4765                t4_fatal_err(adap);
4766}
4767
4768/*
4769 * MPS interrupt handler.
4770 */
4771static void mps_intr_handler(struct adapter *adapter)
4772{
4773        static const struct intr_info mps_rx_intr_info[] = {
4774                { 0xffffff, "MPS Rx parity error", -1, 1 },
4775                { 0 }
4776        };
4777        static const struct intr_info mps_tx_intr_info[] = {
4778                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4779                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4780                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4781                  -1, 1 },
4782                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4783                  -1, 1 },
4784                { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4785                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4786                { FRMERR_F, "MPS Tx framing error", -1, 1 },
4787                { 0 }
4788        };
4789        static const struct intr_info t6_mps_tx_intr_info[] = {
4790                { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4791                { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4792                { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4793                  -1, 1 },
4794                { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4795                  -1, 1 },
4796                /* MPS Tx Bubble is normal for T6 */
4797                { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4798                { FRMERR_F, "MPS Tx framing error", -1, 1 },
4799                { 0 }
4800        };
4801        static const struct intr_info mps_trc_intr_info[] = {
4802                { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4803                { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4804                  -1, 1 },
4805                { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4806                { 0 }
4807        };
4808        static const struct intr_info mps_stat_sram_intr_info[] = {
4809                { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4810                { 0 }
4811        };
4812        static const struct intr_info mps_stat_tx_intr_info[] = {
4813                { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4814                { 0 }
4815        };
4816        static const struct intr_info mps_stat_rx_intr_info[] = {
4817                { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4818                { 0 }
4819        };
4820        static const struct intr_info mps_cls_intr_info[] = {
4821                { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4822                { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4823                { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4824                { 0 }
4825        };
4826
4827        int fat;
4828
4829        fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4830                                    mps_rx_intr_info) +
4831              t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4832                                    is_t6(adapter->params.chip)
4833                                    ? t6_mps_tx_intr_info
4834                                    : mps_tx_intr_info) +
4835              t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4836                                    mps_trc_intr_info) +
4837              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4838                                    mps_stat_sram_intr_info) +
4839              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4840                                    mps_stat_tx_intr_info) +
4841              t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4842                                    mps_stat_rx_intr_info) +
4843              t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4844                                    mps_cls_intr_info);
4845
4846        t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4847        t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4848        if (fat)
4849                t4_fatal_err(adapter);
4850}
4851
4852#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4853                      ECC_UE_INT_CAUSE_F)
4854
4855/*
4856 * EDC/MC interrupt handler.
4857 */
4858static void mem_intr_handler(struct adapter *adapter, int idx)
4859{
4860        static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4861
4862        unsigned int addr, cnt_addr, v;
4863
4864        if (idx <= MEM_EDC1) {
4865                addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4866                cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4867        } else if (idx == MEM_MC) {
4868                if (is_t4(adapter->params.chip)) {
4869                        addr = MC_INT_CAUSE_A;
4870                        cnt_addr = MC_ECC_STATUS_A;
4871                } else {
4872                        addr = MC_P_INT_CAUSE_A;
4873                        cnt_addr = MC_P_ECC_STATUS_A;
4874                }
4875        } else {
4876                addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4877                cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4878        }
4879
4880        v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4881        if (v & PERR_INT_CAUSE_F)
4882                dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4883                          name[idx]);
4884        if (v & ECC_CE_INT_CAUSE_F) {
4885                u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4886
4887                t4_edc_err_read(adapter, idx);
4888
4889                t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4890                if (printk_ratelimit())
4891                        dev_warn(adapter->pdev_dev,
4892                                 "%u %s correctable ECC data error%s\n",
4893                                 cnt, name[idx], cnt > 1 ? "s" : "");
4894        }
4895        if (v & ECC_UE_INT_CAUSE_F)
4896                dev_alert(adapter->pdev_dev,
4897                          "%s uncorrectable ECC data error\n", name[idx]);
4898
4899        t4_write_reg(adapter, addr, v);
4900        if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4901                t4_fatal_err(adapter);
4902}
4903
4904/*
4905 * MA interrupt handler.
4906 */
4907static void ma_intr_handler(struct adapter *adap)
4908{
4909        u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4910
4911        if (status & MEM_PERR_INT_CAUSE_F) {
4912                dev_alert(adap->pdev_dev,
4913                          "MA parity error, parity status %#x\n",
4914                          t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4915                if (is_t5(adap->params.chip))
4916                        dev_alert(adap->pdev_dev,
4917                                  "MA parity error, parity status %#x\n",
4918                                  t4_read_reg(adap,
4919                                              MA_PARITY_ERROR_STATUS2_A));
4920        }
4921        if (status & MEM_WRAP_INT_CAUSE_F) {
4922                v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4923                dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4924                          "client %u to address %#x\n",
4925                          MEM_WRAP_CLIENT_NUM_G(v),
4926                          MEM_WRAP_ADDRESS_G(v) << 4);
4927        }
4928        t4_write_reg(adap, MA_INT_CAUSE_A, status);
4929        t4_fatal_err(adap);
4930}
4931
4932/*
4933 * SMB interrupt handler.
4934 */
4935static void smb_intr_handler(struct adapter *adap)
4936{
4937        static const struct intr_info smb_intr_info[] = {
4938                { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4939                { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4940                { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4941                { 0 }
4942        };
4943
4944        if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4945                t4_fatal_err(adap);
4946}
4947
4948/*
4949 * NC-SI interrupt handler.
4950 */
4951static void ncsi_intr_handler(struct adapter *adap)
4952{
4953        static const struct intr_info ncsi_intr_info[] = {
4954                { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4955                { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4956                { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4957                { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4958                { 0 }
4959        };
4960
4961        if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4962                t4_fatal_err(adap);
4963}
4964
4965/*
4966 * XGMAC interrupt handler.
4967 */
4968static void xgmac_intr_handler(struct adapter *adap, int port)
4969{
4970        u32 v, int_cause_reg;
4971
4972        if (is_t4(adap->params.chip))
4973                int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4974        else
4975                int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4976
4977        v = t4_read_reg(adap, int_cause_reg);
4978
4979        v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4980        if (!v)
4981                return;
4982
4983        if (v & TXFIFO_PRTY_ERR_F)
4984                dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4985                          port);
4986        if (v & RXFIFO_PRTY_ERR_F)
4987                dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4988                          port);
4989        t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4990        t4_fatal_err(adap);
4991}
4992
4993/*
4994 * PL interrupt handler.
4995 */
4996static void pl_intr_handler(struct adapter *adap)
4997{
4998        static const struct intr_info pl_intr_info[] = {
4999                { FATALPERR_F, "T4 fatal parity error", -1, 1 },
5000                { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
5001                { 0 }
5002        };
5003
5004        if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
5005                t4_fatal_err(adap);
5006}
5007
5008#define PF_INTR_MASK (PFSW_F)
5009#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5010                EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5011                CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5012
5013/**
5014 *      t4_slow_intr_handler - control path interrupt handler
5015 *      @adapter: the adapter
5016 *
5017 *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5018 *      The designation 'slow' is because it involves register reads, while
5019 *      data interrupts typically don't involve any MMIOs.
5020 */
5021int t4_slow_intr_handler(struct adapter *adapter)
5022{
5023        /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5024         * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5025         * easiest just to mask that case here.
5026         */
5027        u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5028        u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5029        u32 cause = raw_cause & enable;
5030
5031        if (!(cause & GLBL_INTR_MASK))
5032                return 0;
5033        if (cause & CIM_F)
5034                cim_intr_handler(adapter);
5035        if (cause & MPS_F)
5036                mps_intr_handler(adapter);
5037        if (cause & NCSI_F)
5038                ncsi_intr_handler(adapter);
5039        if (cause & PL_F)
5040                pl_intr_handler(adapter);
5041        if (cause & SMB_F)
5042                smb_intr_handler(adapter);
5043        if (cause & XGMAC0_F)
5044                xgmac_intr_handler(adapter, 0);
5045        if (cause & XGMAC1_F)
5046                xgmac_intr_handler(adapter, 1);
5047        if (cause & XGMAC_KR0_F)
5048                xgmac_intr_handler(adapter, 2);
5049        if (cause & XGMAC_KR1_F)
5050                xgmac_intr_handler(adapter, 3);
5051        if (cause & PCIE_F)
5052                pcie_intr_handler(adapter);
5053        if (cause & MC_F)
5054                mem_intr_handler(adapter, MEM_MC);
5055        if (is_t5(adapter->params.chip) && (cause & MC1_F))
5056                mem_intr_handler(adapter, MEM_MC1);
5057        if (cause & EDC0_F)
5058                mem_intr_handler(adapter, MEM_EDC0);
5059        if (cause & EDC1_F)
5060                mem_intr_handler(adapter, MEM_EDC1);
5061        if (cause & LE_F)
5062                le_intr_handler(adapter);
5063        if (cause & TP_F)
5064                tp_intr_handler(adapter);
5065        if (cause & MA_F)
5066                ma_intr_handler(adapter);
5067        if (cause & PM_TX_F)
5068                pmtx_intr_handler(adapter);
5069        if (cause & PM_RX_F)
5070                pmrx_intr_handler(adapter);
5071        if (cause & ULP_RX_F)
5072                ulprx_intr_handler(adapter);
5073        if (cause & CPL_SWITCH_F)
5074                cplsw_intr_handler(adapter);
5075        if (cause & SGE_F)
5076                sge_intr_handler(adapter);
5077        if (cause & ULP_TX_F)
5078                ulptx_intr_handler(adapter);
5079
5080        /* Clear the interrupts just processed for which we are the master. */
5081        t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5082        (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5083        return 1;
5084}
5085
5086/**
5087 *      t4_intr_enable - enable interrupts
5088 *      @adapter: the adapter whose interrupts should be enabled
5089 *
5090 *      Enable PF-specific interrupts for the calling function and the top-level
5091 *      interrupt concentrator for global interrupts.  Interrupts are already
5092 *      enabled at each module, here we just enable the roots of the interrupt
5093 *      hierarchies.
5094 *
5095 *      Note: this function should be called only when the driver manages
5096 *      non PF-specific interrupts from the various HW modules.  Only one PCI
5097 *      function at a time should be doing this.
5098 */
5099void t4_intr_enable(struct adapter *adapter)
5100{
5101        u32 val = 0;
5102        u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5103        u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5104                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5105
5106        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5107                val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5108        t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5109                     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5110                     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5111                     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5112                     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5113                     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5114                     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5115        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5116        t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5117}
5118
5119/**
5120 *      t4_intr_disable - disable interrupts
5121 *      @adapter: the adapter whose interrupts should be disabled
5122 *
5123 *      Disable interrupts.  We only disable the top-level interrupt
5124 *      concentrators.  The caller must be a PCI function managing global
5125 *      interrupts.
5126 */
5127void t4_intr_disable(struct adapter *adapter)
5128{
5129        u32 whoami, pf;
5130
5131        if (pci_channel_offline(adapter->pdev))
5132                return;
5133
5134        whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5135        pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5136                        SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5137
5138        t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5139        t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5140}
5141
5142unsigned int t4_chip_rss_size(struct adapter *adap)
5143{
5144        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5145                return RSS_NENTRIES;
5146        else
5147                return T6_RSS_NENTRIES;
5148}
5149
5150/**
5151 *      t4_config_rss_range - configure a portion of the RSS mapping table
5152 *      @adapter: the adapter
5153 *      @mbox: mbox to use for the FW command
5154 *      @viid: virtual interface whose RSS subtable is to be written
5155 *      @start: start entry in the table to write
5156 *      @n: how many table entries to write
5157 *      @rspq: values for the response queue lookup table
5158 *      @nrspq: number of values in @rspq
5159 *
5160 *      Programs the selected part of the VI's RSS mapping table with the
5161 *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5162 *      until the full table range is populated.
5163 *
5164 *      The caller must ensure the values in @rspq are in the range allowed for
5165 *      @viid.
5166 */
5167int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5168                        int start, int n, const u16 *rspq, unsigned int nrspq)
5169{
5170        int ret;
5171        const u16 *rsp = rspq;
5172        const u16 *rsp_end = rspq + nrspq;
5173        struct fw_rss_ind_tbl_cmd cmd;
5174
5175        memset(&cmd, 0, sizeof(cmd));
5176        cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5177                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5178                               FW_RSS_IND_TBL_CMD_VIID_V(viid));
5179        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5180
5181        /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5182        while (n > 0) {
5183                int nq = min(n, 32);
5184                __be32 *qp = &cmd.iq0_to_iq2;
5185
5186                cmd.niqid = cpu_to_be16(nq);
5187                cmd.startidx = cpu_to_be16(start);
5188
5189                start += nq;
5190                n -= nq;
5191
5192                while (nq > 0) {
5193                        unsigned int v;
5194
5195                        v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5196                        if (++rsp >= rsp_end)
5197                                rsp = rspq;
5198                        v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5199                        if (++rsp >= rsp_end)
5200                                rsp = rspq;
5201                        v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5202                        if (++rsp >= rsp_end)
5203                                rsp = rspq;
5204
5205                        *qp++ = cpu_to_be32(v);
5206                        nq -= 3;
5207                }
5208
5209                ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5210                if (ret)
5211                        return ret;
5212        }
5213        return 0;
5214}
5215
5216/**
5217 *      t4_config_glbl_rss - configure the global RSS mode
5218 *      @adapter: the adapter
5219 *      @mbox: mbox to use for the FW command
5220 *      @mode: global RSS mode
5221 *      @flags: mode-specific flags
5222 *
5223 *      Sets the global RSS mode.
5224 */
5225int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5226                       unsigned int flags)
5227{
5228        struct fw_rss_glb_config_cmd c;
5229
5230        memset(&c, 0, sizeof(c));
5231        c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5232                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5233        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5234        if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5235                c.u.manual.mode_pkd =
5236                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5237        } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5238                c.u.basicvirtual.mode_pkd =
5239                        cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5240                c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5241        } else
5242                return -EINVAL;
5243        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244}
5245
5246/**
5247 *      t4_config_vi_rss - configure per VI RSS settings
5248 *      @adapter: the adapter
5249 *      @mbox: mbox to use for the FW command
5250 *      @viid: the VI id
5251 *      @flags: RSS flags
5252 *      @defq: id of the default RSS queue for the VI.
5253 *
5254 *      Configures VI-specific RSS properties.
5255 */
5256int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5257                     unsigned int flags, unsigned int defq)
5258{
5259        struct fw_rss_vi_config_cmd c;
5260
5261        memset(&c, 0, sizeof(c));
5262        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5263                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5264                                   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5265        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5266        c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5267                                        FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5268        return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5269}
5270
5271/* Read an RSS table row */
5272static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5273{
5274        t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5275        return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5276                                   5, 0, val);
5277}
5278
5279/**
5280 *      t4_read_rss - read the contents of the RSS mapping table
5281 *      @adapter: the adapter
5282 *      @map: holds the contents of the RSS mapping table
5283 *
5284 *      Reads the contents of the RSS hash->queue mapping table.
5285 */
5286int t4_read_rss(struct adapter *adapter, u16 *map)
5287{
5288        int i, ret, nentries;
5289        u32 val;
5290
5291        nentries = t4_chip_rss_size(adapter);
5292        for (i = 0; i < nentries / 2; ++i) {
5293                ret = rd_rss_row(adapter, i, &val);
5294                if (ret)
5295                        return ret;
5296                *map++ = LKPTBLQUEUE0_G(val);
5297                *map++ = LKPTBLQUEUE1_G(val);
5298        }
5299        return 0;
5300}
5301
5302static unsigned int t4_use_ldst(struct adapter *adap)
5303{
5304        return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5305}
5306
5307/**
5308 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5309 * @adap: the adapter
5310 * @cmd: TP fw ldst address space type
5311 * @vals: where the indirect register values are stored/written
5312 * @nregs: how many indirect registers to read/write
5313 * @start_idx: index of first indirect register to read/write
5314 * @rw: Read (1) or Write (0)
5315 * @sleep_ok: if true we may sleep while awaiting command completion
5316 *
5317 * Access TP indirect registers through LDST
5318 */
5319static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5320                            unsigned int nregs, unsigned int start_index,
5321                            unsigned int rw, bool sleep_ok)
5322{
5323        int ret = 0;
5324        unsigned int i;
5325        struct fw_ldst_cmd c;
5326
5327        for (i = 0; i < nregs; i++) {
5328                memset(&c, 0, sizeof(c));
5329                c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5330                                                FW_CMD_REQUEST_F |
5331                                                (rw ? FW_CMD_READ_F :
5332                                                      FW_CMD_WRITE_F) |
5333                                                FW_LDST_CMD_ADDRSPACE_V(cmd));
5334                c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5335
5336                c.u.addrval.addr = cpu_to_be32(start_index + i);
5337                c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5338                ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5339                                      sleep_ok);
5340                if (ret)
5341                        return ret;
5342
5343                if (rw)
5344                        vals[i] = be32_to_cpu(c.u.addrval.val);
5345        }
5346        return 0;
5347}
5348
5349/**
5350 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5351 * @adap: the adapter
5352 * @reg_addr: Address Register
5353 * @reg_data: Data register
5354 * @buff: where the indirect register values are stored/written
5355 * @nregs: how many indirect registers to read/write
5356 * @start_index: index of first indirect register to read/write
5357 * @rw: READ(1) or WRITE(0)
5358 * @sleep_ok: if true we may sleep while awaiting command completion
5359 *
5360 * Read/Write TP indirect registers through LDST if possible.
5361 * Else, use backdoor access
5362 **/
5363static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5364                              u32 *buff, u32 nregs, u32 start_index, int rw,
5365                              bool sleep_ok)
5366{
5367        int rc = -EINVAL;
5368        int cmd;
5369
5370        switch (reg_addr) {
5371        case TP_PIO_ADDR_A:
5372                cmd = FW_LDST_ADDRSPC_TP_PIO;
5373                break;
5374        case TP_TM_PIO_ADDR_A:
5375                cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5376                break;
5377        case TP_MIB_INDEX_A:
5378                cmd = FW_LDST_ADDRSPC_TP_MIB;
5379                break;
5380        default:
5381                goto indirect_access;
5382        }
5383
5384        if (t4_use_ldst(adap))
5385                rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5386                                      sleep_ok);
5387
5388indirect_access:
5389
5390        if (rc) {
5391                if (rw)
5392                        t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5393                                         start_index);
5394                else
5395                        t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5396                                          start_index);
5397        }
5398}
5399
5400/**
5401 * t4_tp_pio_read - Read TP PIO registers
5402 * @adap: the adapter
5403 * @buff: where the indirect register values are written
5404 * @nregs: how many indirect registers to read
5405 * @start_index: index of first indirect register to read
5406 * @sleep_ok: if true we may sleep while awaiting command completion
5407 *
5408 * Read TP PIO Registers
5409 **/
5410void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5411                    u32 start_index, bool sleep_ok)
5412{
5413        t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5414                          start_index, 1, sleep_ok);
5415}
5416
5417/**
5418 * t4_tp_pio_write - Write TP PIO registers
5419 * @adap: the adapter
5420 * @buff: where the indirect register values are stored
5421 * @nregs: how many indirect registers to write
5422 * @start_index: index of first indirect register to write
5423 * @sleep_ok: if true we may sleep while awaiting command completion
5424 *
5425 * Write TP PIO Registers
5426 **/
5427static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5428                            u32 start_index, bool sleep_ok)
5429{
5430        t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5431                          start_index, 0, sleep_ok);
5432}
5433
5434/**
5435 * t4_tp_tm_pio_read - Read TP TM PIO registers
5436 * @adap: the adapter
5437 * @buff: where the indirect register values are written
5438 * @nregs: how many indirect registers to read
5439 * @start_index: index of first indirect register to read
5440 * @sleep_ok: if true we may sleep while awaiting command completion
5441 *
5442 * Read TP TM PIO Registers
5443 **/
5444void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5445                       u32 start_index, bool sleep_ok)
5446{
5447        t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5448                          nregs, start_index, 1, sleep_ok);
5449}
5450
5451/**
5452 * t4_tp_mib_read - Read TP MIB registers
5453 * @adap: the adapter
5454 * @buff: where the indirect register values are written
5455 * @nregs: how many indirect registers to read
5456 * @start_index: index of first indirect register to read
5457 * @sleep_ok: if true we may sleep while awaiting command completion
5458 *
5459 * Read TP MIB Registers
5460 **/
5461void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5462                    bool sleep_ok)
5463{
5464        t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5465                          start_index, 1, sleep_ok);
5466}
5467
5468/**
5469 *      t4_read_rss_key - read the global RSS key
5470 *      @adap: the adapter
5471 *      @key: 10-entry array holding the 320-bit RSS key
5472 *      @sleep_ok: if true we may sleep while awaiting command completion
5473 *
5474 *      Reads the global 320-bit RSS key.
5475 */
5476void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5477{
5478        t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5479}
5480
5481/**
5482 *      t4_write_rss_key - program one of the RSS keys
5483 *      @adap: the adapter
5484 *      @key: 10-entry array holding the 320-bit RSS key
5485 *      @idx: which RSS key to write
5486 *      @sleep_ok: if true we may sleep while awaiting command completion
5487 *
5488 *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5489 *      0..15 the corresponding entry in the RSS key table is written,
5490 *      otherwise the global RSS key is written.
5491 */
5492void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5493                      bool sleep_ok)
5494{
5495        u8 rss_key_addr_cnt = 16;
5496        u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5497
5498        /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5499         * allows access to key addresses 16-63 by using KeyWrAddrX
5500         * as index[5:4](upper 2) into key table
5501         */
5502        if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5503            (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5504                rss_key_addr_cnt = 32;
5505
5506        t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5507
5508        if (idx >= 0 && idx < rss_key_addr_cnt) {
5509                if (rss_key_addr_cnt > 16)
5510                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5511                                     KEYWRADDRX_V(idx >> 4) |
5512                                     T6_VFWRADDR_V(idx) | KEYWREN_F);
5513                else
5514                        t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5515                                     KEYWRADDR_V(idx) | KEYWREN_F);
5516        }
5517}
5518
5519/**
5520 *      t4_read_rss_pf_config - read PF RSS Configuration Table
5521 *      @adapter: the adapter
5522 *      @index: the entry in the PF RSS table to read
5523 *      @valp: where to store the returned value
5524 *      @sleep_ok: if true we may sleep while awaiting command completion
5525 *
5526 *      Reads the PF RSS Configuration Table at the specified index and returns
5527 *      the value found there.
5528 */
5529void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5530                           u32 *valp, bool sleep_ok)
5531{
5532        t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5533}
5534
5535/**
5536 *      t4_read_rss_vf_config - read VF RSS Configuration Table
5537 *      @adapter: the adapter
5538 *      @index: the entry in the VF RSS table to read
5539 *      @vfl: where to store the returned VFL
5540 *      @vfh: where to store the returned VFH
5541 *      @sleep_ok: if true we may sleep while awaiting command completion
5542 *
5543 *      Reads the VF RSS Configuration Table at the specified index and returns
5544 *      the (VFL, VFH) values found there.
5545 */
5546void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5547                           u32 *vfl, u32 *vfh, bool sleep_ok)
5548{
5549        u32 vrt, mask, data;
5550
5551        if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5552                mask = VFWRADDR_V(VFWRADDR_M);
5553                data = VFWRADDR_V(index);
5554        } else {
5555                 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5556                 data = T6_VFWRADDR_V(index);
5557        }
5558
5559        /* Request that the index'th VF Table values be read into VFL/VFH.
5560         */
5561        vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5562        vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5563        vrt |= data | VFRDEN_F;
5564        t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5565
5566        /* Grab the VFL/VFH values ...
5567         */
5568        t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5569        t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5570}
5571
5572/**
5573 *      t4_read_rss_pf_map - read PF RSS Map
5574 *      @adapter: the adapter
5575 *      @sleep_ok: if true we may sleep while awaiting command completion
5576 *
5577 *      Reads the PF RSS Map register and returns its value.
5578 */
5579u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5580{
5581        u32 pfmap;
5582
5583        t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5584        return pfmap;
5585}
5586
5587/**
5588 *      t4_read_rss_pf_mask - read PF RSS Mask
5589 *      @adapter: the adapter
5590 *      @sleep_ok: if true we may sleep while awaiting command completion
5591 *
5592 *      Reads the PF RSS Mask register and returns its value.
5593 */
5594u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5595{
5596        u32 pfmask;
5597
5598        t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5599        return pfmask;
5600}
5601
5602/**
5603 *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5604 *      @adap: the adapter
5605 *      @v4: holds the TCP/IP counter values
5606 *      @v6: holds the TCP/IPv6 counter values
5607 *      @sleep_ok: if true we may sleep while awaiting command completion
5608 *
5609 *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5610 *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5611 */
5612void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5613                         struct tp_tcp_stats *v6, bool sleep_ok)
5614{
5615        u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5616
5617#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5618#define STAT(x)     val[STAT_IDX(x)]
5619#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5620
5621        if (v4) {
5622                t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5623                               TP_MIB_TCP_OUT_RST_A, sleep_ok);
5624                v4->tcp_out_rsts = STAT(OUT_RST);
5625                v4->tcp_in_segs  = STAT64(IN_SEG);
5626                v4->tcp_out_segs = STAT64(OUT_SEG);
5627                v4->tcp_retrans_segs = STAT64(RXT_SEG);
5628        }
5629        if (v6) {
5630                t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5631                               TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5632                v6->tcp_out_rsts = STAT(OUT_RST);
5633                v6->tcp_in_segs  = STAT64(IN_SEG);
5634                v6->tcp_out_segs = STAT64(OUT_SEG);
5635                v6->tcp_retrans_segs = STAT64(RXT_SEG);
5636        }
5637#undef STAT64
5638#undef STAT
5639#undef STAT_IDX
5640}
5641
5642/**
5643 *      t4_tp_get_err_stats - read TP's error MIB counters
5644 *      @adap: the adapter
5645 *      @st: holds the counter values
5646 *      @sleep_ok: if true we may sleep while awaiting command completion
5647 *
5648 *      Returns the values of TP's error counters.
5649 */
5650void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5651                         bool sleep_ok)
5652{
5653        int nchan = adap->params.arch.nchan;
5654
5655        t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5656                       sleep_ok);
5657        t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5658                       sleep_ok);
5659        t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5660                       sleep_ok);
5661        t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5662                       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5663        t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5664                       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5665        t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5666                       sleep_ok);
5667        t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5668                       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5669        t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5670                       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5671        t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5672                       sleep_ok);
5673}
5674
5675/**
5676 *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5677 *      @adap: the adapter
5678 *      @st: holds the counter values
5679 *      @sleep_ok: if true we may sleep while awaiting command completion
5680 *
5681 *      Returns the values of TP's CPL counters.
5682 */
5683void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5684                         bool sleep_ok)
5685{
5686        int nchan = adap->params.arch.nchan;
5687
5688        t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5689
5690        t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5691}
5692
5693/**
5694 *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5695 *      @adap: the adapter
5696 *      @st: holds the counter values
5697 *      @sleep_ok: if true we may sleep while awaiting command completion
5698 *
5699 *      Returns the values of TP's RDMA counters.
5700 */
5701void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5702                          bool sleep_ok)
5703{
5704        t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5705                       sleep_ok);
5706}
5707
5708/**
5709 *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5710 *      @adap: the adapter
5711 *      @idx: the port index
5712 *      @st: holds the counter values
5713 *      @sleep_ok: if true we may sleep while awaiting command completion
5714 *
5715 *      Returns the values of TP's FCoE counters for the selected port.
5716 */
5717void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5718                       struct tp_fcoe_stats *st, bool sleep_ok)
5719{
5720        u32 val[2];
5721
5722        t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5723                       sleep_ok);
5724
5725        t4_tp_mib_read(adap, &st->frames_drop, 1,
5726                       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5727
5728        t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5729                       sleep_ok);
5730
5731        st->octets_ddp = ((u64)val[0] << 32) | val[1];
5732}
5733
5734/**
5735 *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5736 *      @adap: the adapter
5737 *      @st: holds the counter values
5738 *      @sleep_ok: if true we may sleep while awaiting command completion
5739 *
5740 *      Returns the values of TP's counters for non-TCP directly-placed packets.
5741 */
5742void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5743                      bool sleep_ok)
5744{
5745        u32 val[4];
5746
5747        t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5748        st->frames = val[0];
5749        st->drops = val[1];
5750        st->octets = ((u64)val[2] << 32) | val[3];
5751}
5752
5753/**
5754 *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5755 *      @adap: the adapter
5756 *      @mtus: where to store the MTU values
5757 *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5758 *
5759 *      Reads the HW path MTU table.
5760 */
5761void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5762{
5763        u32 v;
5764        int i;
5765
5766        for (i = 0; i < NMTUS; ++i) {
5767                t4_write_reg(adap, TP_MTU_TABLE_A,
5768                             MTUINDEX_V(0xff) | MTUVALUE_V(i));
5769                v = t4_read_reg(adap, TP_MTU_TABLE_A);
5770                mtus[i] = MTUVALUE_G(v);
5771                if (mtu_log)
5772                        mtu_log[i] = MTUWIDTH_G(v);
5773        }
5774}
5775
5776/**
5777 *      t4_read_cong_tbl - reads the congestion control table
5778 *      @adap: the adapter
5779 *      @incr: where to store the alpha values
5780 *
5781 *      Reads the additive increments programmed into the HW congestion
5782 *      control table.
5783 */
5784void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5785{
5786        unsigned int mtu, w;
5787
5788        for (mtu = 0; mtu < NMTUS; ++mtu)
5789                for (w = 0; w < NCCTRL_WIN; ++w) {
5790                        t4_write_reg(adap, TP_CCTRL_TABLE_A,
5791                                     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5792                        incr[mtu][w] = (u16)t4_read_reg(adap,
5793                                                TP_CCTRL_TABLE_A) & 0x1fff;
5794                }
5795}
5796
5797/**
5798 *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5799 *      @adap: the adapter
5800 *      @addr: the indirect TP register address
5801 *      @mask: specifies the field within the register to modify
5802 *      @val: new value for the field
5803 *
5804 *      Sets a field of an indirect TP register to the given value.
5805 */
5806void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5807                            unsigned int mask, unsigned int val)
5808{
5809        t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5810        val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5811        t4_write_reg(adap, TP_PIO_DATA_A, val);
5812}
5813
5814/**
5815 *      init_cong_ctrl - initialize congestion control parameters
5816 *      @a: the alpha values for congestion control
5817 *      @b: the beta values for congestion control
5818 *
5819 *      Initialize the congestion control parameters.
5820 */
5821static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5822{
5823        a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5824        a[9] = 2;
5825        a[10] = 3;
5826        a[11] = 4;
5827        a[12] = 5;
5828        a[13] = 6;
5829        a[14] = 7;
5830        a[15] = 8;
5831        a[16] = 9;
5832        a[17] = 10;
5833        a[18] = 14;
5834        a[19] = 17;
5835        a[20] = 21;
5836        a[21] = 25;
5837        a[22] = 30;
5838        a[23] = 35;
5839        a[24] = 45;
5840        a[25] = 60;
5841        a[26] = 80;
5842        a[27] = 100;
5843        a[28] = 200;
5844        a[29] = 300;
5845        a[30] = 400;
5846        a[31] = 500;
5847
5848        b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5849        b[9] = b[10] = 1;
5850        b[11] = b[12] = 2;
5851        b[13] = b[14] = b[15] = b[16] = 3;
5852        b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5853        b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5854        b[28] = b[29] = 6;
5855        b[30] = b[31] = 7;
5856}
5857
5858/* The minimum additive increment value for the congestion control table */
5859#define CC_MIN_INCR 2U
5860
5861/**
5862 *      t4_load_mtus - write the MTU and congestion control HW tables
5863 *      @adap: the adapter
5864 *      @mtus: the values for the MTU table
5865 *      @alpha: the values for the congestion control alpha parameter
5866 *      @beta: the values for the congestion control beta parameter
5867 *
5868 *      Write the HW MTU table with the supplied MTUs and the high-speed
5869 *      congestion control table with the supplied alpha, beta, and MTUs.
5870 *      We write the two tables together because the additive increments
5871 *      depend on the MTUs.
5872 */
5873void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5874                  const unsigned short *alpha, const unsigned short *beta)
5875{
5876        static const unsigned int avg_pkts[NCCTRL_WIN] = {
5877                2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5878                896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5879                28672, 40960, 57344, 81920, 114688, 163840, 229376
5880        };
5881
5882        unsigned int i, w;
5883
5884        for (i = 0; i < NMTUS; ++i) {
5885                unsigned int mtu = mtus[i];
5886                unsigned int log2 = fls(mtu);
5887
5888                if (!(mtu & ((1 << log2) >> 2)))     /* round */
5889                        log2--;
5890                t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5891                             MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5892
5893                for (w = 0; w < NCCTRL_WIN; ++w) {
5894                        unsigned int inc;
5895
5896                        inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5897                                  CC_MIN_INCR);
5898
5899                        t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5900                                     (w << 16) | (beta[w] << 13) | inc);
5901                }
5902        }
5903}
5904
5905/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5906 * clocks.  The formula is
5907 *
5908 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5909 *
5910 * which is equivalent to
5911 *
5912 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5913 */
5914static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5915{
5916        u64 v = bytes256 * adap->params.vpd.cclk;
5917
5918        return v * 62 + v / 2;
5919}
5920
5921/**
5922 *      t4_get_chan_txrate - get the current per channel Tx rates
5923 *      @adap: the adapter
5924 *      @nic_rate: rates for NIC traffic
5925 *      @ofld_rate: rates for offloaded traffic
5926 *
5927 *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5928 *      for each channel.
5929 */
5930void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5931{
5932        u32 v;
5933
5934        v = t4_read_reg(adap, TP_TX_TRATE_A);
5935        nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5936        nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5937        if (adap->params.arch.nchan == NCHAN) {
5938                nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5939                nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5940        }
5941
5942        v = t4_read_reg(adap, TP_TX_ORATE_A);
5943        ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5944        ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5945        if (adap->params.arch.nchan == NCHAN) {
5946                ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5947                ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5948        }
5949}
5950
5951/**
5952 *      t4_set_trace_filter - configure one of the tracing filters
5953 *      @adap: the adapter
5954 *      @tp: the desired trace filter parameters
5955 *      @idx: which filter to configure
5956 *      @enable: whether to enable or disable the filter
5957 *
5958 *      Configures one of the tracing filters available in HW.  If @enable is
5959 *      %0 @tp is not examined and may be %NULL. The user is responsible to
5960 *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5961 */
5962int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5963                        int idx, int enable)
5964{
5965        int i, ofst = idx * 4;
5966        u32 data_reg, mask_reg, cfg;
5967
5968        if (!enable) {
5969                t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5970                return 0;
5971        }
5972
5973        cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5974        if (cfg & TRCMULTIFILTER_F) {
5975                /* If multiple tracers are enabled, then maximum
5976                 * capture size is 2.5KB (FIFO size of a single channel)
5977                 * minus 2 flits for CPL_TRACE_PKT header.
5978                 */
5979                if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5980                        return -EINVAL;
5981        } else {
5982                /* If multiple tracers are disabled, to avoid deadlocks
5983                 * maximum packet capture size of 9600 bytes is recommended.
5984                 * Also in this mode, only trace0 can be enabled and running.
5985                 */
5986                if (tp->snap_len > 9600 || idx)
5987                        return -EINVAL;
5988        }
5989
5990        if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5991            tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5992            tp->min_len > TFMINPKTSIZE_M)
5993                return -EINVAL;
5994
5995        /* stop the tracer we'll be changing */
5996        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5997
5998        idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5999        data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
6000        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
6001
6002        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6003                t4_write_reg(adap, data_reg, tp->data[i]);
6004                t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6005        }
6006        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6007                     TFCAPTUREMAX_V(tp->snap_len) |
6008                     TFMINPKTSIZE_V(tp->min_len));
6009        t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6010                     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6011                     (is_t4(adap->params.chip) ?
6012                     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6013                     T5_TFPORT_V(tp->port) | T5_TFEN_F |
6014                     T5_TFINVERTMATCH_V(tp->invert)));
6015
6016        return 0;
6017}
6018
6019/**
6020 *      t4_get_trace_filter - query one of the tracing filters
6021 *      @adap: the adapter
6022 *      @tp: the current trace filter parameters
6023 *      @idx: which trace filter to query
6024 *      @enabled: non-zero if the filter is enabled
6025 *
6026 *      Returns the current settings of one of the HW tracing filters.
6027 */
6028void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6029                         int *enabled)
6030{
6031        u32 ctla, ctlb;
6032        int i, ofst = idx * 4;
6033        u32 data_reg, mask_reg;
6034
6035        ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6036        ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6037
6038        if (is_t4(adap->params.chip)) {
6039                *enabled = !!(ctla & TFEN_F);
6040                tp->port =  TFPORT_G(ctla);
6041                tp->invert = !!(ctla & TFINVERTMATCH_F);
6042        } else {
6043                *enabled = !!(ctla & T5_TFEN_F);
6044                tp->port = T5_TFPORT_G(ctla);
6045                tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6046        }
6047        tp->snap_len = TFCAPTUREMAX_G(ctlb);
6048        tp->min_len = TFMINPKTSIZE_G(ctlb);
6049        tp->skip_ofst = TFOFFSET_G(ctla);
6050        tp->skip_len = TFLENGTH_G(ctla);
6051
6052        ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6053        data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6054        mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6055
6056        for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6057                tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6058                tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6059        }
6060}
6061
6062/**
6063 *      t4_pmtx_get_stats - returns the HW stats from PMTX
6064 *      @adap: the adapter
6065 *      @cnt: where to store the count statistics
6066 *      @cycles: where to store the cycle statistics
6067 *
6068 *      Returns performance statistics from PMTX.
6069 */
6070void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6071{
6072        int i;
6073        u32 data[2];
6074
6075        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6076                t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6077                cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6078                if (is_t4(adap->params.chip)) {
6079                        cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6080                } else {
6081                        t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6082                                         PM_TX_DBG_DATA_A, data, 2,
6083                                         PM_TX_DBG_STAT_MSB_A);
6084                        cycles[i] = (((u64)data[0] << 32) | data[1]);
6085                }
6086        }
6087}
6088
6089/**
6090 *      t4_pmrx_get_stats - returns the HW stats from PMRX
6091 *      @adap: the adapter
6092 *      @cnt: where to store the count statistics
6093 *      @cycles: where to store the cycle statistics
6094 *
6095 *      Returns performance statistics from PMRX.
6096 */
6097void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6098{
6099        int i;
6100        u32 data[2];
6101
6102        for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6103                t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6104                cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6105                if (is_t4(adap->params.chip)) {
6106                        cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6107                } else {
6108                        t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6109                                         PM_RX_DBG_DATA_A, data, 2,
6110                                         PM_RX_DBG_STAT_MSB_A);
6111                        cycles[i] = (((u64)data[0] << 32) | data[1]);
6112                }
6113        }
6114}
6115
6116/**
6117 *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6118 *      @adap: the adapter
6119 *      @pidx: the port index
6120 *
6121 *      Computes and returns a bitmap indicating which MPS buffer groups are
6122 *      associated with the given Port.  Bit i is set if buffer group i is
6123 *      used by the Port.
6124 */
6125static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6126                                              int pidx)
6127{
6128        unsigned int chip_version, nports;
6129
6130        chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6131        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6132
6133        switch (chip_version) {
6134        case CHELSIO_T4:
6135        case CHELSIO_T5:
6136                switch (nports) {
6137                case 1: return 0xf;
6138                case 2: return 3 << (2 * pidx);
6139                case 4: return 1 << pidx;
6140                }
6141                break;
6142
6143        case CHELSIO_T6:
6144                switch (nports) {
6145                case 2: return 1 << (2 * pidx);
6146                }
6147                break;
6148        }
6149
6150        dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6151                chip_version, nports);
6152
6153        return 0;
6154}
6155
6156/**
6157 *      t4_get_mps_bg_map - return the buffer groups associated with a port
6158 *      @adapter: the adapter
6159 *      @pidx: the port index
6160 *
6161 *      Returns a bitmap indicating which MPS buffer groups are associated
6162 *      with the given Port.  Bit i is set if buffer group i is used by the
6163 *      Port.
6164 */
6165unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6166{
6167        u8 *mps_bg_map;
6168        unsigned int nports;
6169
6170        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6171        if (pidx >= nports) {
6172                CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6173                        pidx, nports);
6174                return 0;
6175        }
6176
6177        /* If we've already retrieved/computed this, just return the result.
6178         */
6179        mps_bg_map = adapter->params.mps_bg_map;
6180        if (mps_bg_map[pidx])
6181                return mps_bg_map[pidx];
6182
6183        /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6184         * If we're talking to such Firmware, let it tell us.  If the new
6185         * API isn't supported, revert back to old hardcoded way.  The value
6186         * obtained from Firmware is encoded in below format:
6187         *
6188         * val = (( MPSBGMAP[Port 3] << 24 ) |
6189         *        ( MPSBGMAP[Port 2] << 16 ) |
6190         *        ( MPSBGMAP[Port 1] <<  8 ) |
6191         *        ( MPSBGMAP[Port 0] <<  0 ))
6192         */
6193        if (adapter->flags & CXGB4_FW_OK) {
6194                u32 param, val;
6195                int ret;
6196
6197                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6198                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6199                ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6200                                         0, 1, &param, &val);
6201                if (!ret) {
6202                        int p;
6203
6204                        /* Store the BG Map for all of the Ports in order to
6205                         * avoid more calls to the Firmware in the future.
6206                         */
6207                        for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6208                                mps_bg_map[p] = val & 0xff;
6209
6210                        return mps_bg_map[pidx];
6211                }
6212        }
6213
6214        /* Either we're not talking to the Firmware or we're dealing with
6215         * older Firmware which doesn't support the new API to get the MPS
6216         * Buffer Group Map.  Fall back to computing it ourselves.
6217         */
6218        mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6219        return mps_bg_map[pidx];
6220}
6221
6222/**
6223 *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6224 *      @adapter: the adapter
6225 *      @pidx: the port index
6226 */
6227static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6228{
6229        unsigned int nports;
6230        u32 param, val = 0;
6231        int ret;
6232
6233        nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6234        if (pidx >= nports) {
6235                CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6236                        pidx, nports);
6237                return 0;
6238        }
6239
6240        /* FW version >= 1.16.44.0 can determine E2C channel map using
6241         * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6242         */
6243        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6244                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6245        ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6246                                 0, 1, &param, &val);
6247        if (!ret)
6248                return (val >> (8 * pidx)) & 0xff;
6249
6250        return 0;
6251}
6252
6253/**
6254 *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6255 *      @adapter: the adapter
6256 *      @pidx: the port index
6257 *
6258 *      Returns a bitmap indicating which TP Ingress Channels are associated
6259 *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6260 *      the Port.
6261 */
6262unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6263{
6264        unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6265        unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6266
6267        if (pidx >= nports) {
6268                dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6269                         pidx, nports);
6270                return 0;
6271        }
6272
6273        switch (chip_version) {
6274        case CHELSIO_T4:
6275        case CHELSIO_T5:
6276                /* Note that this happens to be the same values as the MPS
6277                 * Buffer Group Map for these Chips.  But we replicate the code
6278                 * here because they're really separate concepts.
6279                 */
6280                switch (nports) {
6281                case 1: return 0xf;
6282                case 2: return 3 << (2 * pidx);
6283                case 4: return 1 << pidx;
6284                }
6285                break;
6286
6287        case CHELSIO_T6:
6288                switch (nports) {
6289                case 1:
6290                case 2: return 1 << pidx;
6291                }
6292                break;
6293        }
6294
6295        dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6296                chip_version, nports);
6297        return 0;
6298}
6299
6300/**
6301 *      t4_get_port_type_description - return Port Type string description
6302 *      @port_type: firmware Port Type enumeration
6303 */
6304const char *t4_get_port_type_description(enum fw_port_type port_type)
6305{
6306        static const char *const port_type_description[] = {
6307                "Fiber_XFI",
6308                "Fiber_XAUI",
6309                "BT_SGMII",
6310                "BT_XFI",
6311                "BT_XAUI",
6312                "KX4",
6313                "CX4",
6314                "KX",
6315                "KR",
6316                "SFP",
6317                "BP_AP",
6318                "BP4_AP",
6319                "QSFP_10G",
6320                "QSA",
6321                "QSFP",
6322                "BP40_BA",
6323                "KR4_100G",
6324                "CR4_QSFP",
6325                "CR_QSFP",
6326                "CR2_QSFP",
6327                "SFP28",
6328                "KR_SFP28",
6329                "KR_XLAUI"
6330        };
6331
6332        if (port_type < ARRAY_SIZE(port_type_description))
6333                return port_type_description[port_type];
6334        return "UNKNOWN";
6335}
6336
6337/**
6338 *      t4_get_port_stats_offset - collect port stats relative to a previous
6339 *                                 snapshot
6340 *      @adap: The adapter
6341 *      @idx: The port
6342 *      @stats: Current stats to fill
6343 *      @offset: Previous stats snapshot
6344 */
6345void t4_get_port_stats_offset(struct adapter *adap, int idx,
6346                              struct port_stats *stats,
6347                              struct port_stats *offset)
6348{
6349        u64 *s, *o;
6350        int i;
6351
6352        t4_get_port_stats(adap, idx, stats);
6353        for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6354                        i < (sizeof(struct port_stats) / sizeof(u64));
6355                        i++, s++, o++)
6356                *s -= *o;
6357}
6358
6359/**
6360 *      t4_get_port_stats - collect port statistics
6361 *      @adap: the adapter
6362 *      @idx: the port index
6363 *      @p: the stats structure to fill
6364 *
6365 *      Collect statistics related to the given port from HW.
6366 */
6367void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6368{
6369        u32 bgmap = t4_get_mps_bg_map(adap, idx);
6370        u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6371
6372#define GET_STAT(name) \
6373        t4_read_reg64(adap, \
6374        (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6375        T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6376#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6377
6378        p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6379        p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6380        p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6381        p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6382        p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6383        p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6384        p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6385        p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6386        p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6387        p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6388        p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6389        p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6390        p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6391        p->tx_drop             = GET_STAT(TX_PORT_DROP);
6392        p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6393        p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6394        p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6395        p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6396        p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6397        p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6398        p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6399        p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6400        p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6401
6402        if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6403                if (stat_ctl & COUNTPAUSESTATTX_F)
6404                        p->tx_frames_64 -= p->tx_pause;
6405                if (stat_ctl & COUNTPAUSEMCTX_F)
6406                        p->tx_mcast_frames -= p->tx_pause;
6407        }
6408        p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6409        p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6410        p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6411        p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6412        p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6413        p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6414        p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6415        p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6416        p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6417        p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6418        p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6419        p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6420        p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6421        p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6422        p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6423        p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6424        p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6425        p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6426        p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6427        p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6428        p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6429        p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6430        p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6431        p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6432        p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6433        p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6434        p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6435
6436        if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6437                if (stat_ctl & COUNTPAUSESTATRX_F)
6438                        p->rx_frames_64 -= p->rx_pause;
6439                if (stat_ctl & COUNTPAUSEMCRX_F)
6440                        p->rx_mcast_frames -= p->rx_pause;
6441        }
6442
6443        p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6444        p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6445        p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6446        p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6447        p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6448        p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6449        p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6450        p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6451
6452#undef GET_STAT
6453#undef GET_STAT_COM
6454}
6455
6456/**
6457 *      t4_get_lb_stats - collect loopback port statistics
6458 *      @adap: the adapter
6459 *      @idx: the loopback port index
6460 *      @p: the stats structure to fill
6461 *
6462 *      Return HW statistics for the given loopback port.
6463 */
6464void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6465{
6466        u32 bgmap = t4_get_mps_bg_map(adap, idx);
6467
6468#define GET_STAT(name) \
6469        t4_read_reg64(adap, \
6470        (is_t4(adap->params.chip) ? \
6471        PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6472        T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6473#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6474
6475        p->octets           = GET_STAT(BYTES);
6476        p->frames           = GET_STAT(FRAMES);
6477        p->bcast_frames     = GET_STAT(BCAST);
6478        p->mcast_frames     = GET_STAT(MCAST);
6479        p->ucast_frames     = GET_STAT(UCAST);
6480        p->error_frames     = GET_STAT(ERROR);
6481
6482        p->frames_64        = GET_STAT(64B);
6483        p->frames_65_127    = GET_STAT(65B_127B);
6484        p->frames_128_255   = GET_STAT(128B_255B);
6485        p->frames_256_511   = GET_STAT(256B_511B);
6486        p->frames_512_1023  = GET_STAT(512B_1023B);
6487        p->frames_1024_1518 = GET_STAT(1024B_1518B);
6488        p->frames_1519_max  = GET_STAT(1519B_MAX);
6489        p->drop             = GET_STAT(DROP_FRAMES);
6490
6491        p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6492        p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6493        p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6494        p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6495        p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6496        p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6497        p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6498        p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6499
6500#undef GET_STAT
6501#undef GET_STAT_COM
6502}
6503
6504/*     t4_mk_filtdelwr - create a delete filter WR
6505 *     @ftid: the filter ID
6506 *     @wr: the filter work request to populate
6507 *     @qid: ingress queue to receive the delete notification
6508 *
6509 *     Creates a filter work request to delete the supplied filter.  If @qid is
6510 *     negative the delete notification is suppressed.
6511 */
6512void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6513{
6514        memset(wr, 0, sizeof(*wr));
6515        wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6516        wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6517        wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6518                                    FW_FILTER_WR_NOREPLY_V(qid < 0));
6519        wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6520        if (qid >= 0)
6521                wr->rx_chan_rx_rpl_iq =
6522                        cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6523}
6524
6525#define INIT_CMD(var, cmd, rd_wr) do { \
6526        (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6527                                        FW_CMD_REQUEST_F | \
6528                                        FW_CMD_##rd_wr##_F); \
6529        (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6530} while (0)
6531
6532int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6533                          u32 addr, u32 val)
6534{
6535        u32 ldst_addrspace;
6536        struct fw_ldst_cmd c;
6537
6538        memset(&c, 0, sizeof(c));
6539        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6540        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6541                                        FW_CMD_REQUEST_F |
6542                                        FW_CMD_WRITE_F |
6543                                        ldst_addrspace);
6544        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6545        c.u.addrval.addr = cpu_to_be32(addr);
6546        c.u.addrval.val = cpu_to_be32(val);
6547
6548        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6549}
6550
6551/**
6552 *      t4_mdio_rd - read a PHY register through MDIO
6553 *      @adap: the adapter
6554 *      @mbox: mailbox to use for the FW command
6555 *      @phy_addr: the PHY address
6556 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6557 *      @reg: the register to read
6558 *      @valp: where to store the value
6559 *
6560 *      Issues a FW command through the given mailbox to read a PHY register.
6561 */
6562int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6563               unsigned int mmd, unsigned int reg, u16 *valp)
6564{
6565        int ret;
6566        u32 ldst_addrspace;
6567        struct fw_ldst_cmd c;
6568
6569        memset(&c, 0, sizeof(c));
6570        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6571        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6572                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
6573                                        ldst_addrspace);
6574        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6575        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6576                                         FW_LDST_CMD_MMD_V(mmd));
6577        c.u.mdio.raddr = cpu_to_be16(reg);
6578
6579        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6580        if (ret == 0)
6581                *valp = be16_to_cpu(c.u.mdio.rval);
6582        return ret;
6583}
6584
6585/**
6586 *      t4_mdio_wr - write a PHY register through MDIO
6587 *      @adap: the adapter
6588 *      @mbox: mailbox to use for the FW command
6589 *      @phy_addr: the PHY address
6590 *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6591 *      @reg: the register to write
6592 *      @valp: value to write
6593 *
6594 *      Issues a FW command through the given mailbox to write a PHY register.
6595 */
6596int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6597               unsigned int mmd, unsigned int reg, u16 val)
6598{
6599        u32 ldst_addrspace;
6600        struct fw_ldst_cmd c;
6601
6602        memset(&c, 0, sizeof(c));
6603        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6604        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6605                                        FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6606                                        ldst_addrspace);
6607        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6608        c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6609                                         FW_LDST_CMD_MMD_V(mmd));
6610        c.u.mdio.raddr = cpu_to_be16(reg);
6611        c.u.mdio.rval = cpu_to_be16(val);
6612
6613        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6614}
6615
6616/**
6617 *      t4_sge_decode_idma_state - decode the idma state
6618 *      @adap: the adapter
6619 *      @state: the state idma is stuck in
6620 */
6621void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6622{
6623        static const char * const t4_decode[] = {
6624                "IDMA_IDLE",
6625                "IDMA_PUSH_MORE_CPL_FIFO",
6626                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6627                "Not used",
6628                "IDMA_PHYSADDR_SEND_PCIEHDR",
6629                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6630                "IDMA_PHYSADDR_SEND_PAYLOAD",
6631                "IDMA_SEND_FIFO_TO_IMSG",
6632                "IDMA_FL_REQ_DATA_FL_PREP",
6633                "IDMA_FL_REQ_DATA_FL",
6634                "IDMA_FL_DROP",
6635                "IDMA_FL_H_REQ_HEADER_FL",
6636                "IDMA_FL_H_SEND_PCIEHDR",
6637                "IDMA_FL_H_PUSH_CPL_FIFO",
6638                "IDMA_FL_H_SEND_CPL",
6639                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6640                "IDMA_FL_H_SEND_IP_HDR",
6641                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6642                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6643                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6644                "IDMA_FL_D_SEND_PCIEHDR",
6645                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6646                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6647                "IDMA_FL_SEND_PCIEHDR",
6648                "IDMA_FL_PUSH_CPL_FIFO",
6649                "IDMA_FL_SEND_CPL",
6650                "IDMA_FL_SEND_PAYLOAD_FIRST",
6651                "IDMA_FL_SEND_PAYLOAD",
6652                "IDMA_FL_REQ_NEXT_DATA_FL",
6653                "IDMA_FL_SEND_NEXT_PCIEHDR",
6654                "IDMA_FL_SEND_PADDING",
6655                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6656                "IDMA_FL_SEND_FIFO_TO_IMSG",
6657                "IDMA_FL_REQ_DATAFL_DONE",
6658                "IDMA_FL_REQ_HEADERFL_DONE",
6659        };
6660        static const char * const t5_decode[] = {
6661                "IDMA_IDLE",
6662                "IDMA_ALMOST_IDLE",
6663                "IDMA_PUSH_MORE_CPL_FIFO",
6664                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6665                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6666                "IDMA_PHYSADDR_SEND_PCIEHDR",
6667                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6668                "IDMA_PHYSADDR_SEND_PAYLOAD",
6669                "IDMA_SEND_FIFO_TO_IMSG",
6670                "IDMA_FL_REQ_DATA_FL",
6671                "IDMA_FL_DROP",
6672                "IDMA_FL_DROP_SEND_INC",
6673                "IDMA_FL_H_REQ_HEADER_FL",
6674                "IDMA_FL_H_SEND_PCIEHDR",
6675                "IDMA_FL_H_PUSH_CPL_FIFO",
6676                "IDMA_FL_H_SEND_CPL",
6677                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6678                "IDMA_FL_H_SEND_IP_HDR",
6679                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6680                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6681                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6682                "IDMA_FL_D_SEND_PCIEHDR",
6683                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6684                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6685                "IDMA_FL_SEND_PCIEHDR",
6686                "IDMA_FL_PUSH_CPL_FIFO",
6687                "IDMA_FL_SEND_CPL",
6688                "IDMA_FL_SEND_PAYLOAD_FIRST",
6689                "IDMA_FL_SEND_PAYLOAD",
6690                "IDMA_FL_REQ_NEXT_DATA_FL",
6691                "IDMA_FL_SEND_NEXT_PCIEHDR",
6692                "IDMA_FL_SEND_PADDING",
6693                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6694        };
6695        static const char * const t6_decode[] = {
6696                "IDMA_IDLE",
6697                "IDMA_PUSH_MORE_CPL_FIFO",
6698                "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6699                "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6700                "IDMA_PHYSADDR_SEND_PCIEHDR",
6701                "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6702                "IDMA_PHYSADDR_SEND_PAYLOAD",
6703                "IDMA_FL_REQ_DATA_FL",
6704                "IDMA_FL_DROP",
6705                "IDMA_FL_DROP_SEND_INC",
6706                "IDMA_FL_H_REQ_HEADER_FL",
6707                "IDMA_FL_H_SEND_PCIEHDR",
6708                "IDMA_FL_H_PUSH_CPL_FIFO",
6709                "IDMA_FL_H_SEND_CPL",
6710                "IDMA_FL_H_SEND_IP_HDR_FIRST",
6711                "IDMA_FL_H_SEND_IP_HDR",
6712                "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6713                "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6714                "IDMA_FL_H_SEND_IP_HDR_PADDING",
6715                "IDMA_FL_D_SEND_PCIEHDR",
6716                "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6717                "IDMA_FL_D_REQ_NEXT_DATA_FL",
6718                "IDMA_FL_SEND_PCIEHDR",
6719                "IDMA_FL_PUSH_CPL_FIFO",
6720                "IDMA_FL_SEND_CPL",
6721                "IDMA_FL_SEND_PAYLOAD_FIRST",
6722                "IDMA_FL_SEND_PAYLOAD",
6723                "IDMA_FL_REQ_NEXT_DATA_FL",
6724                "IDMA_FL_SEND_NEXT_PCIEHDR",
6725                "IDMA_FL_SEND_PADDING",
6726                "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6727        };
6728        static const u32 sge_regs[] = {
6729                SGE_DEBUG_DATA_LOW_INDEX_2_A,
6730                SGE_DEBUG_DATA_LOW_INDEX_3_A,
6731                SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6732        };
6733        const char **sge_idma_decode;
6734        int sge_idma_decode_nstates;
6735        int i;
6736        unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6737
6738        /* Select the right set of decode strings to dump depending on the
6739         * adapter chip type.
6740         */
6741        switch (chip_version) {
6742        case CHELSIO_T4:
6743                sge_idma_decode = (const char **)t4_decode;
6744                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6745                break;
6746
6747        case CHELSIO_T5:
6748                sge_idma_decode = (const char **)t5_decode;
6749                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6750                break;
6751
6752        case CHELSIO_T6:
6753                sge_idma_decode = (const char **)t6_decode;
6754                sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6755                break;
6756
6757        default:
6758                dev_err(adapter->pdev_dev,
6759                        "Unsupported chip version %d\n", chip_version);
6760                return;
6761        }
6762
6763        if (is_t4(adapter->params.chip)) {
6764                sge_idma_decode = (const char **)t4_decode;
6765                sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6766        } else {
6767                sge_idma_decode = (const char **)t5_decode;
6768                sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6769        }
6770
6771        if (state < sge_idma_decode_nstates)
6772                CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6773        else
6774                CH_WARN(adapter, "idma state %d unknown\n", state);
6775
6776        for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6777                CH_WARN(adapter, "SGE register %#x value %#x\n",
6778                        sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6779}
6780
6781/**
6782 *      t4_sge_ctxt_flush - flush the SGE context cache
6783 *      @adap: the adapter
6784 *      @mbox: mailbox to use for the FW command
6785 *      @ctx_type: Egress or Ingress
6786 *
6787 *      Issues a FW command through the given mailbox to flush the
6788 *      SGE context cache.
6789 */
6790int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6791{
6792        int ret;
6793        u32 ldst_addrspace;
6794        struct fw_ldst_cmd c;
6795
6796        memset(&c, 0, sizeof(c));
6797        ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6798                                                 FW_LDST_ADDRSPC_SGE_EGRC :
6799                                                 FW_LDST_ADDRSPC_SGE_INGC);
6800        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6801                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
6802                                        ldst_addrspace);
6803        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6804        c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6805
6806        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6807        return ret;
6808}
6809
6810/**
6811 *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6812 *      @adap - the adapter
6813 *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6814 *      @dbqtimers: SGE Doorbell Queue Timer table
6815 *
6816 *      Reads the SGE Doorbell Queue Timer values into the provided table.
6817 *      Returns 0 on success (Firmware and Hardware support this feature),
6818 *      an error on failure.
6819 */
6820int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6821                          u16 *dbqtimers)
6822{
6823        int ret, dbqtimerix;
6824
6825        ret = 0;
6826        dbqtimerix = 0;
6827        while (dbqtimerix < ndbqtimers) {
6828                int nparams, param;
6829                u32 params[7], vals[7];
6830
6831                nparams = ndbqtimers - dbqtimerix;
6832                if (nparams > ARRAY_SIZE(params))
6833                        nparams = ARRAY_SIZE(params);
6834
6835                for (param = 0; param < nparams; param++)
6836                        params[param] =
6837                          (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6838                           FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6839                           FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6840                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6841                                      nparams, params, vals);
6842                if (ret)
6843                        break;
6844
6845                for (param = 0; param < nparams; param++)
6846                        dbqtimers[dbqtimerix++] = vals[param];
6847        }
6848        return ret;
6849}
6850
6851/**
6852 *      t4_fw_hello - establish communication with FW
6853 *      @adap: the adapter
6854 *      @mbox: mailbox to use for the FW command
6855 *      @evt_mbox: mailbox to receive async FW events
6856 *      @master: specifies the caller's willingness to be the device master
6857 *      @state: returns the current device state (if non-NULL)
6858 *
6859 *      Issues a command to establish communication with FW.  Returns either
6860 *      an error (negative integer) or the mailbox of the Master PF.
6861 */
6862int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6863                enum dev_master master, enum dev_state *state)
6864{
6865        int ret;
6866        struct fw_hello_cmd c;
6867        u32 v;
6868        unsigned int master_mbox;
6869        int retries = FW_CMD_HELLO_RETRIES;
6870
6871retry:
6872        memset(&c, 0, sizeof(c));
6873        INIT_CMD(c, HELLO, WRITE);
6874        c.err_to_clearinit = cpu_to_be32(
6875                FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6876                FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6877                FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6878                                        mbox : FW_HELLO_CMD_MBMASTER_M) |
6879                FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6880                FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6881                FW_HELLO_CMD_CLEARINIT_F);
6882
6883        /*
6884         * Issue the HELLO command to the firmware.  If it's not successful
6885         * but indicates that we got a "busy" or "timeout" condition, retry
6886         * the HELLO until we exhaust our retry limit.  If we do exceed our
6887         * retry limit, check to see if the firmware left us any error
6888         * information and report that if so.
6889         */
6890        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6891        if (ret < 0) {
6892                if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6893                        goto retry;
6894                if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6895                        t4_report_fw_error(adap);
6896                return ret;
6897        }
6898
6899        v = be32_to_cpu(c.err_to_clearinit);
6900        master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6901        if (state) {
6902                if (v & FW_HELLO_CMD_ERR_F)
6903                        *state = DEV_STATE_ERR;
6904                else if (v & FW_HELLO_CMD_INIT_F)
6905                        *state = DEV_STATE_INIT;
6906                else
6907                        *state = DEV_STATE_UNINIT;
6908        }
6909
6910        /*
6911         * If we're not the Master PF then we need to wait around for the
6912         * Master PF Driver to finish setting up the adapter.
6913         *
6914         * Note that we also do this wait if we're a non-Master-capable PF and
6915         * there is no current Master PF; a Master PF may show up momentarily
6916         * and we wouldn't want to fail pointlessly.  (This can happen when an
6917         * OS loads lots of different drivers rapidly at the same time).  In
6918         * this case, the Master PF returned by the firmware will be
6919         * PCIE_FW_MASTER_M so the test below will work ...
6920         */
6921        if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6922            master_mbox != mbox) {
6923                int waiting = FW_CMD_HELLO_TIMEOUT;
6924
6925                /*
6926                 * Wait for the firmware to either indicate an error or
6927                 * initialized state.  If we see either of these we bail out
6928                 * and report the issue to the caller.  If we exhaust the
6929                 * "hello timeout" and we haven't exhausted our retries, try
6930                 * again.  Otherwise bail with a timeout error.
6931                 */
6932                for (;;) {
6933                        u32 pcie_fw;
6934
6935                        msleep(50);
6936                        waiting -= 50;
6937
6938                        /*
6939                         * If neither Error nor Initialized are indicated
6940                         * by the firmware keep waiting till we exhaust our
6941                         * timeout ... and then retry if we haven't exhausted
6942                         * our retries ...
6943                         */
6944                        pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6945                        if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6946                                if (waiting <= 0) {
6947                                        if (retries-- > 0)
6948                                                goto retry;
6949
6950                                        return -ETIMEDOUT;
6951                                }
6952                                continue;
6953                        }
6954
6955                        /*
6956                         * We either have an Error or Initialized condition
6957                         * report errors preferentially.
6958                         */
6959                        if (state) {
6960                                if (pcie_fw & PCIE_FW_ERR_F)
6961                                        *state = DEV_STATE_ERR;
6962                                else if (pcie_fw & PCIE_FW_INIT_F)
6963                                        *state = DEV_STATE_INIT;
6964                        }
6965
6966                        /*
6967                         * If we arrived before a Master PF was selected and
6968                         * there's not a valid Master PF, grab its identity
6969                         * for our caller.
6970                         */
6971                        if (master_mbox == PCIE_FW_MASTER_M &&
6972                            (pcie_fw & PCIE_FW_MASTER_VLD_F))
6973                                master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6974                        break;
6975                }
6976        }
6977
6978        return master_mbox;
6979}
6980
6981/**
6982 *      t4_fw_bye - end communication with FW
6983 *      @adap: the adapter
6984 *      @mbox: mailbox to use for the FW command
6985 *
6986 *      Issues a command to terminate communication with FW.
6987 */
6988int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6989{
6990        struct fw_bye_cmd c;
6991
6992        memset(&c, 0, sizeof(c));
6993        INIT_CMD(c, BYE, WRITE);
6994        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6995}
6996
6997/**
6998 *      t4_init_cmd - ask FW to initialize the device
6999 *      @adap: the adapter
7000 *      @mbox: mailbox to use for the FW command
7001 *
7002 *      Issues a command to FW to partially initialize the device.  This
7003 *      performs initialization that generally doesn't depend on user input.
7004 */
7005int t4_early_init(struct adapter *adap, unsigned int mbox)
7006{
7007        struct fw_initialize_cmd c;
7008
7009        memset(&c, 0, sizeof(c));
7010        INIT_CMD(c, INITIALIZE, WRITE);
7011        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7012}
7013
7014/**
7015 *      t4_fw_reset - issue a reset to FW
7016 *      @adap: the adapter
7017 *      @mbox: mailbox to use for the FW command
7018 *      @reset: specifies the type of reset to perform
7019 *
7020 *      Issues a reset command of the specified type to FW.
7021 */
7022int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7023{
7024        struct fw_reset_cmd c;
7025
7026        memset(&c, 0, sizeof(c));
7027        INIT_CMD(c, RESET, WRITE);
7028        c.val = cpu_to_be32(reset);
7029        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7030}
7031
7032/**
7033 *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7034 *      @adap: the adapter
7035 *      @mbox: mailbox to use for the FW RESET command (if desired)
7036 *      @force: force uP into RESET even if FW RESET command fails
7037 *
7038 *      Issues a RESET command to firmware (if desired) with a HALT indication
7039 *      and then puts the microprocessor into RESET state.  The RESET command
7040 *      will only be issued if a legitimate mailbox is provided (mbox <=
7041 *      PCIE_FW_MASTER_M).
7042 *
7043 *      This is generally used in order for the host to safely manipulate the
7044 *      adapter without fear of conflicting with whatever the firmware might
7045 *      be doing.  The only way out of this state is to RESTART the firmware
7046 *      ...
7047 */
7048static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7049{
7050        int ret = 0;
7051
7052        /*
7053         * If a legitimate mailbox is provided, issue a RESET command
7054         * with a HALT indication.
7055         */
7056        if (mbox <= PCIE_FW_MASTER_M) {
7057                struct fw_reset_cmd c;
7058
7059                memset(&c, 0, sizeof(c));
7060                INIT_CMD(c, RESET, WRITE);
7061                c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7062                c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7063                ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7064        }
7065
7066        /*
7067         * Normally we won't complete the operation if the firmware RESET
7068         * command fails but if our caller insists we'll go ahead and put the
7069         * uP into RESET.  This can be useful if the firmware is hung or even
7070         * missing ...  We'll have to take the risk of putting the uP into
7071         * RESET without the cooperation of firmware in that case.
7072         *
7073         * We also force the firmware's HALT flag to be on in case we bypassed
7074         * the firmware RESET command above or we're dealing with old firmware
7075         * which doesn't have the HALT capability.  This will serve as a flag
7076         * for the incoming firmware to know that it's coming out of a HALT
7077         * rather than a RESET ... if it's new enough to understand that ...
7078         */
7079        if (ret == 0 || force) {
7080                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7081                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7082                                 PCIE_FW_HALT_F);
7083        }
7084
7085        /*
7086         * And we always return the result of the firmware RESET command
7087         * even when we force the uP into RESET ...
7088         */
7089        return ret;
7090}
7091
7092/**
7093 *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7094 *      @adap: the adapter
7095 *      @reset: if we want to do a RESET to restart things
7096 *
7097 *      Restart firmware previously halted by t4_fw_halt().  On successful
7098 *      return the previous PF Master remains as the new PF Master and there
7099 *      is no need to issue a new HELLO command, etc.
7100 *
7101 *      We do this in two ways:
7102 *
7103 *       1. If we're dealing with newer firmware we'll simply want to take
7104 *          the chip's microprocessor out of RESET.  This will cause the
7105 *          firmware to start up from its start vector.  And then we'll loop
7106 *          until the firmware indicates it's started again (PCIE_FW.HALT
7107 *          reset to 0) or we timeout.
7108 *
7109 *       2. If we're dealing with older firmware then we'll need to RESET
7110 *          the chip since older firmware won't recognize the PCIE_FW.HALT
7111 *          flag and automatically RESET itself on startup.
7112 */
7113static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7114{
7115        if (reset) {
7116                /*
7117                 * Since we're directing the RESET instead of the firmware
7118                 * doing it automatically, we need to clear the PCIE_FW.HALT
7119                 * bit.
7120                 */
7121                t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7122
7123                /*
7124                 * If we've been given a valid mailbox, first try to get the
7125                 * firmware to do the RESET.  If that works, great and we can
7126                 * return success.  Otherwise, if we haven't been given a
7127                 * valid mailbox or the RESET command failed, fall back to
7128                 * hitting the chip with a hammer.
7129                 */
7130                if (mbox <= PCIE_FW_MASTER_M) {
7131                        t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7132                        msleep(100);
7133                        if (t4_fw_reset(adap, mbox,
7134                                        PIORST_F | PIORSTMODE_F) == 0)
7135                                return 0;
7136                }
7137
7138                t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7139                msleep(2000);
7140        } else {
7141                int ms;
7142
7143                t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7144                for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7145                        if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7146                                return 0;
7147                        msleep(100);
7148                        ms += 100;
7149                }
7150                return -ETIMEDOUT;
7151        }
7152        return 0;
7153}
7154
7155/**
7156 *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7157 *      @adap: the adapter
7158 *      @mbox: mailbox to use for the FW RESET command (if desired)
7159 *      @fw_data: the firmware image to write
7160 *      @size: image size
7161 *      @force: force upgrade even if firmware doesn't cooperate
7162 *
7163 *      Perform all of the steps necessary for upgrading an adapter's
7164 *      firmware image.  Normally this requires the cooperation of the
7165 *      existing firmware in order to halt all existing activities
7166 *      but if an invalid mailbox token is passed in we skip that step
7167 *      (though we'll still put the adapter microprocessor into RESET in
7168 *      that case).
7169 *
7170 *      On successful return the new firmware will have been loaded and
7171 *      the adapter will have been fully RESET losing all previous setup
7172 *      state.  On unsuccessful return the adapter may be completely hosed ...
7173 *      positive errno indicates that the adapter is ~probably~ intact, a
7174 *      negative errno indicates that things are looking bad ...
7175 */
7176int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7177                  const u8 *fw_data, unsigned int size, int force)
7178{
7179        const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7180        int reset, ret;
7181
7182        if (!t4_fw_matches_chip(adap, fw_hdr))
7183                return -EINVAL;
7184
7185        /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7186         * set wont be sent when we are flashing FW.
7187         */
7188        adap->flags &= ~CXGB4_FW_OK;
7189
7190        ret = t4_fw_halt(adap, mbox, force);
7191        if (ret < 0 && !force)
7192                goto out;
7193
7194        ret = t4_load_fw(adap, fw_data, size);
7195        if (ret < 0)
7196                goto out;
7197
7198        /*
7199         * If there was a Firmware Configuration File stored in FLASH,
7200         * there's a good chance that it won't be compatible with the new
7201         * Firmware.  In order to prevent difficult to diagnose adapter
7202         * initialization issues, we clear out the Firmware Configuration File
7203         * portion of the FLASH .  The user will need to re-FLASH a new
7204         * Firmware Configuration File which is compatible with the new
7205         * Firmware if that's desired.
7206         */
7207        (void)t4_load_cfg(adap, NULL, 0);
7208
7209        /*
7210         * Older versions of the firmware don't understand the new
7211         * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7212         * restart.  So for newly loaded older firmware we'll have to do the
7213         * RESET for it so it starts up on a clean slate.  We can tell if
7214         * the newly loaded firmware will handle this right by checking
7215         * its header flags to see if it advertises the capability.
7216         */
7217        reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7218        ret = t4_fw_restart(adap, mbox, reset);
7219
7220        /* Grab potentially new Firmware Device Log parameters so we can see
7221         * how healthy the new Firmware is.  It's okay to contact the new
7222         * Firmware for these parameters even though, as far as it's
7223         * concerned, we've never said "HELLO" to it ...
7224         */
7225        (void)t4_init_devlog_params(adap);
7226out:
7227        adap->flags |= CXGB4_FW_OK;
7228        return ret;
7229}
7230
7231/**
7232 *      t4_fl_pkt_align - return the fl packet alignment
7233 *      @adap: the adapter
7234 *
7235 *      T4 has a single field to specify the packing and padding boundary.
7236 *      T5 onwards has separate fields for this and hence the alignment for
7237 *      next packet offset is maximum of these two.
7238 *
7239 */
7240int t4_fl_pkt_align(struct adapter *adap)
7241{
7242        u32 sge_control, sge_control2;
7243        unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7244
7245        sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7246
7247        /* T4 uses a single control field to specify both the PCIe Padding and
7248         * Packing Boundary.  T5 introduced the ability to specify these
7249         * separately.  The actual Ingress Packet Data alignment boundary
7250         * within Packed Buffer Mode is the maximum of these two
7251         * specifications.  (Note that it makes no real practical sense to
7252         * have the Padding Boundary be larger than the Packing Boundary but you
7253         * could set the chip up that way and, in fact, legacy T4 code would
7254         * end doing this because it would initialize the Padding Boundary and
7255         * leave the Packing Boundary initialized to 0 (16 bytes).)
7256         * Padding Boundary values in T6 starts from 8B,
7257         * where as it is 32B for T4 and T5.
7258         */
7259        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7260                ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7261        else
7262                ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7263
7264        ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7265
7266        fl_align = ingpadboundary;
7267        if (!is_t4(adap->params.chip)) {
7268                /* T5 has a weird interpretation of one of the PCIe Packing
7269                 * Boundary values.  No idea why ...
7270                 */
7271                sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7272                ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7273                if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7274                        ingpackboundary = 16;
7275                else
7276                        ingpackboundary = 1 << (ingpackboundary +
7277                                                INGPACKBOUNDARY_SHIFT_X);
7278
7279                fl_align = max(ingpadboundary, ingpackboundary);
7280        }
7281        return fl_align;
7282}
7283
7284/**
7285 *      t4_fixup_host_params - fix up host-dependent parameters
7286 *      @adap: the adapter
7287 *      @page_size: the host's Base Page Size
7288 *      @cache_line_size: the host's Cache Line Size
7289 *
7290 *      Various registers in T4 contain values which are dependent on the
7291 *      host's Base Page and Cache Line Sizes.  This function will fix all of
7292 *      those registers with the appropriate values as passed in ...
7293 */
7294int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7295                         unsigned int cache_line_size)
7296{
7297        unsigned int page_shift = fls(page_size) - 1;
7298        unsigned int sge_hps = page_shift - 10;
7299        unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7300        unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7301        unsigned int fl_align_log = fls(fl_align) - 1;
7302
7303        t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7304                     HOSTPAGESIZEPF0_V(sge_hps) |
7305                     HOSTPAGESIZEPF1_V(sge_hps) |
7306                     HOSTPAGESIZEPF2_V(sge_hps) |
7307                     HOSTPAGESIZEPF3_V(sge_hps) |
7308                     HOSTPAGESIZEPF4_V(sge_hps) |
7309                     HOSTPAGESIZEPF5_V(sge_hps) |
7310                     HOSTPAGESIZEPF6_V(sge_hps) |
7311                     HOSTPAGESIZEPF7_V(sge_hps));
7312
7313        if (is_t4(adap->params.chip)) {
7314                t4_set_reg_field(adap, SGE_CONTROL_A,
7315                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7316                                 EGRSTATUSPAGESIZE_F,
7317                                 INGPADBOUNDARY_V(fl_align_log -
7318                                                  INGPADBOUNDARY_SHIFT_X) |
7319                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
7320        } else {
7321                unsigned int pack_align;
7322                unsigned int ingpad, ingpack;
7323
7324                /* T5 introduced the separation of the Free List Padding and
7325                 * Packing Boundaries.  Thus, we can select a smaller Padding
7326                 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7327                 * Bandwidth, and use a Packing Boundary which is large enough
7328                 * to avoid false sharing between CPUs, etc.
7329                 *
7330                 * For the PCI Link, the smaller the Padding Boundary the
7331                 * better.  For the Memory Controller, a smaller Padding
7332                 * Boundary is better until we cross under the Memory Line
7333                 * Size (the minimum unit of transfer to/from Memory).  If we
7334                 * have a Padding Boundary which is smaller than the Memory
7335                 * Line Size, that'll involve a Read-Modify-Write cycle on the
7336                 * Memory Controller which is never good.
7337                 */
7338
7339                /* We want the Packing Boundary to be based on the Cache Line
7340                 * Size in order to help avoid False Sharing performance
7341                 * issues between CPUs, etc.  We also want the Packing
7342                 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7343                 * get best performance when the Packing Boundary is a
7344                 * multiple of the Maximum Payload Size.
7345                 */
7346                pack_align = fl_align;
7347                if (pci_is_pcie(adap->pdev)) {
7348                        unsigned int mps, mps_log;
7349                        u16 devctl;
7350
7351                        /* The PCIe Device Control Maximum Payload Size field
7352                         * [bits 7:5] encodes sizes as powers of 2 starting at
7353                         * 128 bytes.
7354                         */
7355                        pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7356                                                  &devctl);
7357                        mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7358                        mps = 1 << mps_log;
7359                        if (mps > pack_align)
7360                                pack_align = mps;
7361                }
7362
7363                /* N.B. T5/T6 have a crazy special interpretation of the "0"
7364                 * value for the Packing Boundary.  This corresponds to 16
7365                 * bytes instead of the expected 32 bytes.  So if we want 32
7366                 * bytes, the best we can really do is 64 bytes ...
7367                 */
7368                if (pack_align <= 16) {
7369                        ingpack = INGPACKBOUNDARY_16B_X;
7370                        fl_align = 16;
7371                } else if (pack_align == 32) {
7372                        ingpack = INGPACKBOUNDARY_64B_X;
7373                        fl_align = 64;
7374                } else {
7375                        unsigned int pack_align_log = fls(pack_align) - 1;
7376
7377                        ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7378                        fl_align = pack_align;
7379                }
7380
7381                /* Use the smallest Ingress Padding which isn't smaller than
7382                 * the Memory Controller Read/Write Size.  We'll take that as
7383                 * being 8 bytes since we don't know of any system with a
7384                 * wider Memory Controller Bus Width.
7385                 */
7386                if (is_t5(adap->params.chip))
7387                        ingpad = INGPADBOUNDARY_32B_X;
7388                else
7389                        ingpad = T6_INGPADBOUNDARY_8B_X;
7390
7391                t4_set_reg_field(adap, SGE_CONTROL_A,
7392                                 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7393                                 EGRSTATUSPAGESIZE_F,
7394                                 INGPADBOUNDARY_V(ingpad) |
7395                                 EGRSTATUSPAGESIZE_V(stat_len != 64));
7396                t4_set_reg_field(adap, SGE_CONTROL2_A,
7397                                 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7398                                 INGPACKBOUNDARY_V(ingpack));
7399        }
7400        /*
7401         * Adjust various SGE Free List Host Buffer Sizes.
7402         *
7403         * This is something of a crock since we're using fixed indices into
7404         * the array which are also known by the sge.c code and the T4
7405         * Firmware Configuration File.  We need to come up with a much better
7406         * approach to managing this array.  For now, the first four entries
7407         * are:
7408         *
7409         *   0: Host Page Size
7410         *   1: 64KB
7411         *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7412         *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7413         *
7414         * For the single-MTU buffers in unpacked mode we need to include
7415         * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7416         * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7417         * Padding boundary.  All of these are accommodated in the Factory
7418         * Default Firmware Configuration File but we need to adjust it for
7419         * this host's cache line size.
7420         */
7421        t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7422        t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7423                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7424                     & ~(fl_align-1));
7425        t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7426                     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7427                     & ~(fl_align-1));
7428
7429        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7430
7431        return 0;
7432}
7433
7434/**
7435 *      t4_fw_initialize - ask FW to initialize the device
7436 *      @adap: the adapter
7437 *      @mbox: mailbox to use for the FW command
7438 *
7439 *      Issues a command to FW to partially initialize the device.  This
7440 *      performs initialization that generally doesn't depend on user input.
7441 */
7442int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7443{
7444        struct fw_initialize_cmd c;
7445
7446        memset(&c, 0, sizeof(c));
7447        INIT_CMD(c, INITIALIZE, WRITE);
7448        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7449}
7450
7451/**
7452 *      t4_query_params_rw - query FW or device parameters
7453 *      @adap: the adapter
7454 *      @mbox: mailbox to use for the FW command
7455 *      @pf: the PF
7456 *      @vf: the VF
7457 *      @nparams: the number of parameters
7458 *      @params: the parameter names
7459 *      @val: the parameter values
7460 *      @rw: Write and read flag
7461 *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7462 *
7463 *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7464 *      queried at once.
7465 */
7466int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7467                       unsigned int vf, unsigned int nparams, const u32 *params,
7468                       u32 *val, int rw, bool sleep_ok)
7469{
7470        int i, ret;
7471        struct fw_params_cmd c;
7472        __be32 *p = &c.param[0].mnem;
7473
7474        if (nparams > 7)
7475                return -EINVAL;
7476
7477        memset(&c, 0, sizeof(c));
7478        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7479                                  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7480                                  FW_PARAMS_CMD_PFN_V(pf) |
7481                                  FW_PARAMS_CMD_VFN_V(vf));
7482        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7483
7484        for (i = 0; i < nparams; i++) {
7485                *p++ = cpu_to_be32(*params++);
7486                if (rw)
7487                        *p = cpu_to_be32(*(val + i));
7488                p++;
7489        }
7490
7491        ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7492        if (ret == 0)
7493                for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7494                        *val++ = be32_to_cpu(*p);
7495        return ret;
7496}
7497
7498int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7499                    unsigned int vf, unsigned int nparams, const u32 *params,
7500                    u32 *val)
7501{
7502        return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7503                                  true);
7504}
7505
7506int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7507                       unsigned int vf, unsigned int nparams, const u32 *params,
7508                       u32 *val)
7509{
7510        return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7511                                  false);
7512}
7513
7514/**
7515 *      t4_set_params_timeout - sets FW or device parameters
7516 *      @adap: the adapter
7517 *      @mbox: mailbox to use for the FW command
7518 *      @pf: the PF
7519 *      @vf: the VF
7520 *      @nparams: the number of parameters
7521 *      @params: the parameter names
7522 *      @val: the parameter values
7523 *      @timeout: the timeout time
7524 *
7525 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7526 *      specified at once.
7527 */
7528int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7529                          unsigned int pf, unsigned int vf,
7530                          unsigned int nparams, const u32 *params,
7531                          const u32 *val, int timeout)
7532{
7533        struct fw_params_cmd c;
7534        __be32 *p = &c.param[0].mnem;
7535
7536        if (nparams > 7)
7537                return -EINVAL;
7538
7539        memset(&c, 0, sizeof(c));
7540        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7541                                  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7542                                  FW_PARAMS_CMD_PFN_V(pf) |
7543                                  FW_PARAMS_CMD_VFN_V(vf));
7544        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7545
7546        while (nparams--) {
7547                *p++ = cpu_to_be32(*params++);
7548                *p++ = cpu_to_be32(*val++);
7549        }
7550
7551        return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7552}
7553
7554/**
7555 *      t4_set_params - sets FW or device parameters
7556 *      @adap: the adapter
7557 *      @mbox: mailbox to use for the FW command
7558 *      @pf: the PF
7559 *      @vf: the VF
7560 *      @nparams: the number of parameters
7561 *      @params: the parameter names
7562 *      @val: the parameter values
7563 *
7564 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7565 *      specified at once.
7566 */
7567int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7568                  unsigned int vf, unsigned int nparams, const u32 *params,
7569                  const u32 *val)
7570{
7571        return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7572                                     FW_CMD_MAX_TIMEOUT);
7573}
7574
7575/**
7576 *      t4_cfg_pfvf - configure PF/VF resource limits
7577 *      @adap: the adapter
7578 *      @mbox: mailbox to use for the FW command
7579 *      @pf: the PF being configured
7580 *      @vf: the VF being configured
7581 *      @txq: the max number of egress queues
7582 *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7583 *      @rxqi: the max number of interrupt-capable ingress queues
7584 *      @rxq: the max number of interruptless ingress queues
7585 *      @tc: the PCI traffic class
7586 *      @vi: the max number of virtual interfaces
7587 *      @cmask: the channel access rights mask for the PF/VF
7588 *      @pmask: the port access rights mask for the PF/VF
7589 *      @nexact: the maximum number of exact MPS filters
7590 *      @rcaps: read capabilities
7591 *      @wxcaps: write/execute capabilities
7592 *
7593 *      Configures resource limits and capabilities for a physical or virtual
7594 *      function.
7595 */
7596int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7597                unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7598                unsigned int rxqi, unsigned int rxq, unsigned int tc,
7599                unsigned int vi, unsigned int cmask, unsigned int pmask,
7600                unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7601{
7602        struct fw_pfvf_cmd c;
7603
7604        memset(&c, 0, sizeof(c));
7605        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7606                                  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7607                                  FW_PFVF_CMD_VFN_V(vf));
7608        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7609        c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7610                                     FW_PFVF_CMD_NIQ_V(rxq));
7611        c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7612                                    FW_PFVF_CMD_PMASK_V(pmask) |
7613                                    FW_PFVF_CMD_NEQ_V(txq));
7614        c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7615                                      FW_PFVF_CMD_NVI_V(vi) |
7616                                      FW_PFVF_CMD_NEXACTF_V(nexact));
7617        c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7618                                        FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7619                                        FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7620        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7621}
7622
7623/**
7624 *      t4_alloc_vi - allocate a virtual interface
7625 *      @adap: the adapter
7626 *      @mbox: mailbox to use for the FW command
7627 *      @port: physical port associated with the VI
7628 *      @pf: the PF owning the VI
7629 *      @vf: the VF owning the VI
7630 *      @nmac: number of MAC addresses needed (1 to 5)
7631 *      @mac: the MAC addresses of the VI
7632 *      @rss_size: size of RSS table slice associated with this VI
7633 *
7634 *      Allocates a virtual interface for the given physical port.  If @mac is
7635 *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7636 *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7637 *      stored consecutively so the space needed is @nmac * 6 bytes.
7638 *      Returns a negative error number or the non-negative VI id.
7639 */
7640int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7641                unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7642                unsigned int *rss_size, u8 *vivld, u8 *vin)
7643{
7644        int ret;
7645        struct fw_vi_cmd c;
7646
7647        memset(&c, 0, sizeof(c));
7648        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7649                                  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7650                                  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7651        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7652        c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7653        c.nmac = nmac - 1;
7654
7655        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7656        if (ret)
7657                return ret;
7658
7659        if (mac) {
7660                memcpy(mac, c.mac, sizeof(c.mac));
7661                switch (nmac) {
7662                case 5:
7663                        memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7664                        /* Fall through */
7665                case 4:
7666                        memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7667                        /* Fall through */
7668                case 3:
7669                        memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7670                        /* Fall through */
7671                case 2:
7672                        memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7673                }
7674        }
7675        if (rss_size)
7676                *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7677
7678        if (vivld)
7679                *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7680
7681        if (vin)
7682                *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7683
7684        return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7685}
7686
7687/**
7688 *      t4_free_vi - free a virtual interface
7689 *      @adap: the adapter
7690 *      @mbox: mailbox to use for the FW command
7691 *      @pf: the PF owning the VI
7692 *      @vf: the VF owning the VI
7693 *      @viid: virtual interface identifiler
7694 *
7695 *      Free a previously allocated virtual interface.
7696 */
7697int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7698               unsigned int vf, unsigned int viid)
7699{
7700        struct fw_vi_cmd c;
7701
7702        memset(&c, 0, sizeof(c));
7703        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7704                                  FW_CMD_REQUEST_F |
7705                                  FW_CMD_EXEC_F |
7706                                  FW_VI_CMD_PFN_V(pf) |
7707                                  FW_VI_CMD_VFN_V(vf));
7708        c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7709        c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7710
7711        return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7712}
7713
7714/**
7715 *      t4_set_rxmode - set Rx properties of a virtual interface
7716 *      @adap: the adapter
7717 *      @mbox: mailbox to use for the FW command
7718 *      @viid: the VI id
7719 *      @mtu: the new MTU or -1
7720 *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7721 *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7722 *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7723 *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7724 *      @sleep_ok: if true we may sleep while awaiting command completion
7725 *
7726 *      Sets Rx properties of a virtual interface.
7727 */
7728int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7729                  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7730                  bool sleep_ok)
7731{
7732        struct fw_vi_rxmode_cmd c;
7733
7734        /* convert to FW values */
7735        if (mtu < 0)
7736                mtu = FW_RXMODE_MTU_NO_CHG;
7737        if (promisc < 0)
7738                promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7739        if (all_multi < 0)
7740                all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7741        if (bcast < 0)
7742                bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7743        if (vlanex < 0)
7744                vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7745
7746        memset(&c, 0, sizeof(c));
7747        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7748                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7749                                   FW_VI_RXMODE_CMD_VIID_V(viid));
7750        c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7751        c.mtu_to_vlanexen =
7752                cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7753                            FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7754                            FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7755                            FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7756                            FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7757        return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7758}
7759
7760/**
7761 *      t4_free_encap_mac_filt - frees MPS entry at given index
7762 *      @adap: the adapter
7763 *      @viid: the VI id
7764 *      @idx: index of MPS entry to be freed
7765 *      @sleep_ok: call is allowed to sleep
7766 *
7767 *      Frees the MPS entry at supplied index
7768 *
7769 *      Returns a negative error number or zero on success
7770 */
7771int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7772                           int idx, bool sleep_ok)
7773{
7774        struct fw_vi_mac_exact *p;
7775        u8 addr[] = {0, 0, 0, 0, 0, 0};
7776        struct fw_vi_mac_cmd c;
7777        int ret = 0;
7778        u32 exact;
7779
7780        memset(&c, 0, sizeof(c));
7781        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7782                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7783                                   FW_CMD_EXEC_V(0) |
7784                                   FW_VI_MAC_CMD_VIID_V(viid));
7785        exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7786        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7787                                          exact |
7788                                          FW_CMD_LEN16_V(1));
7789        p = c.u.exact;
7790        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7791                                      FW_VI_MAC_CMD_IDX_V(idx));
7792        memcpy(p->macaddr, addr, sizeof(p->macaddr));
7793        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7794        return ret;
7795}
7796
7797/**
7798 *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7799 *      @adap: the adapter
7800 *      @viid: the VI id
7801 *      @addr: the MAC address
7802 *      @mask: the mask
7803 *      @idx: index of the entry in mps tcam
7804 *      @lookup_type: MAC address for inner (1) or outer (0) header
7805 *      @port_id: the port index
7806 *      @sleep_ok: call is allowed to sleep
7807 *
7808 *      Removes the mac entry at the specified index using raw mac interface.
7809 *
7810 *      Returns a negative error number on failure.
7811 */
7812int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7813                         const u8 *addr, const u8 *mask, unsigned int idx,
7814                         u8 lookup_type, u8 port_id, bool sleep_ok)
7815{
7816        struct fw_vi_mac_cmd c;
7817        struct fw_vi_mac_raw *p = &c.u.raw;
7818        u32 val;
7819
7820        memset(&c, 0, sizeof(c));
7821        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7822                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7823                                   FW_CMD_EXEC_V(0) |
7824                                   FW_VI_MAC_CMD_VIID_V(viid));
7825        val = FW_CMD_LEN16_V(1) |
7826              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7827        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7828                                          FW_CMD_LEN16_V(val));
7829
7830        p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7831                                     FW_VI_MAC_ID_BASED_FREE);
7832
7833        /* Lookup Type. Outer header: 0, Inner header: 1 */
7834        p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7835                                   DATAPORTNUM_V(port_id));
7836        /* Lookup mask and port mask */
7837        p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7838                                    DATAPORTNUM_V(DATAPORTNUM_M));
7839
7840        /* Copy the address and the mask */
7841        memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7842        memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7843
7844        return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7845}
7846
7847/**
7848 *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7849 *      @adap: the adapter
7850 *      @viid: the VI id
7851 *      @mac: the MAC address
7852 *      @mask: the mask
7853 *      @vni: the VNI id for the tunnel protocol
7854 *      @vni_mask: mask for the VNI id
7855 *      @dip_hit: to enable DIP match for the MPS entry
7856 *      @lookup_type: MAC address for inner (1) or outer (0) header
7857 *      @sleep_ok: call is allowed to sleep
7858 *
7859 *      Allocates an MPS entry with specified MAC address and VNI value.
7860 *
7861 *      Returns a negative error number or the allocated index for this mac.
7862 */
7863int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7864                            const u8 *addr, const u8 *mask, unsigned int vni,
7865                            unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7866                            bool sleep_ok)
7867{
7868        struct fw_vi_mac_cmd c;
7869        struct fw_vi_mac_vni *p = c.u.exact_vni;
7870        int ret = 0;
7871        u32 val;
7872
7873        memset(&c, 0, sizeof(c));
7874        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7875                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7876                                   FW_VI_MAC_CMD_VIID_V(viid));
7877        val = FW_CMD_LEN16_V(1) |
7878              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7879        c.freemacs_to_len16 = cpu_to_be32(val);
7880        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7881                                      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7882        memcpy(p->macaddr, addr, sizeof(p->macaddr));
7883        memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7884
7885        p->lookup_type_to_vni =
7886                cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7887                            FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7888                            FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7889        p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7890        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7891        if (ret == 0)
7892                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7893        return ret;
7894}
7895
7896/**
7897 *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7898 *      @adap: the adapter
7899 *      @viid: the VI id
7900 *      @mac: the MAC address
7901 *      @mask: the mask
7902 *      @idx: index at which to add this entry
7903 *      @port_id: the port index
7904 *      @lookup_type: MAC address for inner (1) or outer (0) header
7905 *      @sleep_ok: call is allowed to sleep
7906 *
7907 *      Adds the mac entry at the specified index using raw mac interface.
7908 *
7909 *      Returns a negative error number or the allocated index for this mac.
7910 */
7911int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7912                          const u8 *addr, const u8 *mask, unsigned int idx,
7913                          u8 lookup_type, u8 port_id, bool sleep_ok)
7914{
7915        int ret = 0;
7916        struct fw_vi_mac_cmd c;
7917        struct fw_vi_mac_raw *p = &c.u.raw;
7918        u32 val;
7919
7920        memset(&c, 0, sizeof(c));
7921        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7922                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7923                                   FW_VI_MAC_CMD_VIID_V(viid));
7924        val = FW_CMD_LEN16_V(1) |
7925              FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7926        c.freemacs_to_len16 = cpu_to_be32(val);
7927
7928        /* Specify that this is an inner mac address */
7929        p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7930
7931        /* Lookup Type. Outer header: 0, Inner header: 1 */
7932        p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7933                                   DATAPORTNUM_V(port_id));
7934        /* Lookup mask and port mask */
7935        p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7936                                    DATAPORTNUM_V(DATAPORTNUM_M));
7937
7938        /* Copy the address and the mask */
7939        memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7940        memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7941
7942        ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7943        if (ret == 0) {
7944                ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7945                if (ret != idx)
7946                        ret = -ENOMEM;
7947        }
7948
7949        return ret;
7950}
7951
7952/**
7953 *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7954 *      @adap: the adapter
7955 *      @mbox: mailbox to use for the FW command
7956 *      @viid: the VI id
7957 *      @free: if true any existing filters for this VI id are first removed
7958 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7959 *      @addr: the MAC address(es)
7960 *      @idx: where to store the index of each allocated filter
7961 *      @hash: pointer to hash address filter bitmap
7962 *      @sleep_ok: call is allowed to sleep
7963 *
7964 *      Allocates an exact-match filter for each of the supplied addresses and
7965 *      sets it to the corresponding address.  If @idx is not %NULL it should
7966 *      have at least @naddr entries, each of which will be set to the index of
7967 *      the filter allocated for the corresponding MAC address.  If a filter
7968 *      could not be allocated for an address its index is set to 0xffff.
7969 *      If @hash is not %NULL addresses that fail to allocate an exact filter
7970 *      are hashed and update the hash filter bitmap pointed at by @hash.
7971 *
7972 *      Returns a negative error number or the number of filters allocated.
7973 */
7974int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7975                      unsigned int viid, bool free, unsigned int naddr,
7976                      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7977{
7978        int offset, ret = 0;
7979        struct fw_vi_mac_cmd c;
7980        unsigned int nfilters = 0;
7981        unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7982        unsigned int rem = naddr;
7983
7984        if (naddr > max_naddr)
7985                return -EINVAL;
7986
7987        for (offset = 0; offset < naddr ; /**/) {
7988                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7989                                         rem : ARRAY_SIZE(c.u.exact));
7990                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7991                                                     u.exact[fw_naddr]), 16);
7992                struct fw_vi_mac_exact *p;
7993                int i;
7994
7995                memset(&c, 0, sizeof(c));
7996                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7997                                           FW_CMD_REQUEST_F |
7998                                           FW_CMD_WRITE_F |
7999                                           FW_CMD_EXEC_V(free) |
8000                                           FW_VI_MAC_CMD_VIID_V(viid));
8001                c.freemacs_to_len16 =
8002                        cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8003                                    FW_CMD_LEN16_V(len16));
8004
8005                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8006                        p->valid_to_idx =
8007                                cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8008                                            FW_VI_MAC_CMD_IDX_V(
8009                                                    FW_VI_MAC_ADD_MAC));
8010                        memcpy(p->macaddr, addr[offset + i],
8011                               sizeof(p->macaddr));
8012                }
8013
8014                /* It's okay if we run out of space in our MAC address arena.
8015                 * Some of the addresses we submit may get stored so we need
8016                 * to run through the reply to see what the results were ...
8017                 */
8018                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8019                if (ret && ret != -FW_ENOMEM)
8020                        break;
8021
8022                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8023                        u16 index = FW_VI_MAC_CMD_IDX_G(
8024                                        be16_to_cpu(p->valid_to_idx));
8025
8026                        if (idx)
8027                                idx[offset + i] = (index >= max_naddr ?
8028                                                   0xffff : index);
8029                        if (index < max_naddr)
8030                                nfilters++;
8031                        else if (hash)
8032                                *hash |= (1ULL <<
8033                                          hash_mac_addr(addr[offset + i]));
8034                }
8035
8036                free = false;
8037                offset += fw_naddr;
8038                rem -= fw_naddr;
8039        }
8040
8041        if (ret == 0 || ret == -FW_ENOMEM)
8042                ret = nfilters;
8043        return ret;
8044}
8045
8046/**
8047 *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8048 *      @adap: the adapter
8049 *      @mbox: mailbox to use for the FW command
8050 *      @viid: the VI id
8051 *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8052 *      @addr: the MAC address(es)
8053 *      @sleep_ok: call is allowed to sleep
8054 *
8055 *      Frees the exact-match filter for each of the supplied addresses
8056 *
8057 *      Returns a negative error number or the number of filters freed.
8058 */
8059int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8060                     unsigned int viid, unsigned int naddr,
8061                     const u8 **addr, bool sleep_ok)
8062{
8063        int offset, ret = 0;
8064        struct fw_vi_mac_cmd c;
8065        unsigned int nfilters = 0;
8066        unsigned int max_naddr = is_t4(adap->params.chip) ?
8067                                       NUM_MPS_CLS_SRAM_L_INSTANCES :
8068                                       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8069        unsigned int rem = naddr;
8070
8071        if (naddr > max_naddr)
8072                return -EINVAL;
8073
8074        for (offset = 0; offset < (int)naddr ; /**/) {
8075                unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8076                                         ? rem
8077                                         : ARRAY_SIZE(c.u.exact));
8078                size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8079                                                     u.exact[fw_naddr]), 16);
8080                struct fw_vi_mac_exact *p;
8081                int i;
8082
8083                memset(&c, 0, sizeof(c));
8084                c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8085                                     FW_CMD_REQUEST_F |
8086                                     FW_CMD_WRITE_F |
8087                                     FW_CMD_EXEC_V(0) |
8088                                     FW_VI_MAC_CMD_VIID_V(viid));
8089                c.freemacs_to_len16 =
8090                                cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8091                                            FW_CMD_LEN16_V(len16));
8092
8093                for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8094                        p->valid_to_idx = cpu_to_be16(
8095                                FW_VI_MAC_CMD_VALID_F |
8096                                FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8097                        memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8098                }
8099
8100                ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8101                if (ret)
8102                        break;
8103
8104                for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8105                        u16 index = FW_VI_MAC_CMD_IDX_G(
8106                                                be16_to_cpu(p->valid_to_idx));
8107
8108                        if (index < max_naddr)
8109                                nfilters++;
8110                }
8111
8112                offset += fw_naddr;
8113                rem -= fw_naddr;
8114        }
8115
8116        if (ret == 0)
8117                ret = nfilters;
8118        return ret;
8119}
8120
8121/**
8122 *      t4_change_mac - modifies the exact-match filter for a MAC address
8123 *      @adap: the adapter
8124 *      @mbox: mailbox to use for the FW command
8125 *      @viid: the VI id
8126 *      @idx: index of existing filter for old value of MAC address, or -1
8127 *      @addr: the new MAC address value
8128 *      @persist: whether a new MAC allocation should be persistent
8129 *      @add_smt: if true also add the address to the HW SMT
8130 *
8131 *      Modifies an exact-match filter and sets it to the new MAC address.
8132 *      Note that in general it is not possible to modify the value of a given
8133 *      filter so the generic way to modify an address filter is to free the one
8134 *      being used by the old address value and allocate a new filter for the
8135 *      new address value.  @idx can be -1 if the address is a new addition.
8136 *
8137 *      Returns a negative error number or the index of the filter with the new
8138 *      MAC value.
8139 */
8140int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8141                  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8142{
8143        int ret, mode;
8144        struct fw_vi_mac_cmd c;
8145        struct fw_vi_mac_exact *p = c.u.exact;
8146        unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8147
8148        if (idx < 0)                             /* new allocation */
8149                idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8150        mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8151
8152        memset(&c, 0, sizeof(c));
8153        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8154                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8155                                   FW_VI_MAC_CMD_VIID_V(viid));
8156        c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8157        p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8158                                      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8159                                      FW_VI_MAC_CMD_IDX_V(idx));
8160        memcpy(p->macaddr, addr, sizeof(p->macaddr));
8161
8162        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8163        if (ret == 0) {
8164                ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8165                if (ret >= max_mac_addr)
8166                        ret = -ENOMEM;
8167                if (smt_idx) {
8168                        if (adap->params.viid_smt_extn_support) {
8169                                *smt_idx = FW_VI_MAC_CMD_SMTID_G
8170                                                    (be32_to_cpu(c.op_to_viid));
8171                        } else {
8172                                /* In T4/T5, SMT contains 256 SMAC entries
8173                                 * organized in 128 rows of 2 entries each.
8174                                 * In T6, SMT contains 256 SMAC entries in
8175                                 * 256 rows.
8176                                 */
8177                                if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8178                                                                     CHELSIO_T5)
8179                                        *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8180                                else
8181                                        *smt_idx = (viid & FW_VIID_VIN_M);
8182                        }
8183                }
8184        }
8185        return ret;
8186}
8187
8188/**
8189 *      t4_set_addr_hash - program the MAC inexact-match hash filter
8190 *      @adap: the adapter
8191 *      @mbox: mailbox to use for the FW command
8192 *      @viid: the VI id
8193 *      @ucast: whether the hash filter should also match unicast addresses
8194 *      @vec: the value to be written to the hash filter
8195 *      @sleep_ok: call is allowed to sleep
8196 *
8197 *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8198 */
8199int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8200                     bool ucast, u64 vec, bool sleep_ok)
8201{
8202        struct fw_vi_mac_cmd c;
8203
8204        memset(&c, 0, sizeof(c));
8205        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8206                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8207                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8208        c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8209                                          FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8210                                          FW_CMD_LEN16_V(1));
8211        c.u.hash.hashvec = cpu_to_be64(vec);
8212        return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8213}
8214
8215/**
8216 *      t4_enable_vi_params - enable/disable a virtual interface
8217 *      @adap: the adapter
8218 *      @mbox: mailbox to use for the FW command
8219 *      @viid: the VI id
8220 *      @rx_en: 1=enable Rx, 0=disable Rx
8221 *      @tx_en: 1=enable Tx, 0=disable Tx
8222 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8223 *
8224 *      Enables/disables a virtual interface.  Note that setting DCB Enable
8225 *      only makes sense when enabling a Virtual Interface ...
8226 */
8227int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8228                        unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8229{
8230        struct fw_vi_enable_cmd c;
8231
8232        memset(&c, 0, sizeof(c));
8233        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8234                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8235                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8236        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8237                                     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8238                                     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8239                                     FW_LEN16(c));
8240        return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8241}
8242
8243/**
8244 *      t4_enable_vi - enable/disable a virtual interface
8245 *      @adap: the adapter
8246 *      @mbox: mailbox to use for the FW command
8247 *      @viid: the VI id
8248 *      @rx_en: 1=enable Rx, 0=disable Rx
8249 *      @tx_en: 1=enable Tx, 0=disable Tx
8250 *
8251 *      Enables/disables a virtual interface.
8252 */
8253int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8254                 bool rx_en, bool tx_en)
8255{
8256        return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8257}
8258
8259/**
8260 *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8261 *      @adap: the adapter
8262 *      @mbox: mailbox to use for the FW command
8263 *      @pi: the Port Information structure
8264 *      @rx_en: 1=enable Rx, 0=disable Rx
8265 *      @tx_en: 1=enable Tx, 0=disable Tx
8266 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8267 *
8268 *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8269 *      Enable only makes sense when enabling a Virtual Interface ...
8270 *      If the Virtual Interface enable/disable operation is successful,
8271 *      we notify the OS-specific code of a potential Link Status change
8272 *      via the OS Contract API t4_os_link_changed().
8273 */
8274int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8275                        struct port_info *pi,
8276                        bool rx_en, bool tx_en, bool dcb_en)
8277{
8278        int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8279                                      rx_en, tx_en, dcb_en);
8280        if (ret)
8281                return ret;
8282        t4_os_link_changed(adap, pi->port_id,
8283                           rx_en && tx_en && pi->link_cfg.link_ok);
8284        return 0;
8285}
8286
8287/**
8288 *      t4_identify_port - identify a VI's port by blinking its LED
8289 *      @adap: the adapter
8290 *      @mbox: mailbox to use for the FW command
8291 *      @viid: the VI id
8292 *      @nblinks: how many times to blink LED at 2.5 Hz
8293 *
8294 *      Identifies a VI's port by blinking its LED.
8295 */
8296int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8297                     unsigned int nblinks)
8298{
8299        struct fw_vi_enable_cmd c;
8300
8301        memset(&c, 0, sizeof(c));
8302        c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8303                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8304                                   FW_VI_ENABLE_CMD_VIID_V(viid));
8305        c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8306        c.blinkdur = cpu_to_be16(nblinks);
8307        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8308}
8309
8310/**
8311 *      t4_iq_stop - stop an ingress queue and its FLs
8312 *      @adap: the adapter
8313 *      @mbox: mailbox to use for the FW command
8314 *      @pf: the PF owning the queues
8315 *      @vf: the VF owning the queues
8316 *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8317 *      @iqid: ingress queue id
8318 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8319 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8320 *
8321 *      Stops an ingress queue and its associated FLs, if any.  This causes
8322 *      any current or future data/messages destined for these queues to be
8323 *      tossed.
8324 */
8325int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8326               unsigned int vf, unsigned int iqtype, unsigned int iqid,
8327               unsigned int fl0id, unsigned int fl1id)
8328{
8329        struct fw_iq_cmd c;
8330
8331        memset(&c, 0, sizeof(c));
8332        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8333                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8334                                  FW_IQ_CMD_VFN_V(vf));
8335        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8336        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8337        c.iqid = cpu_to_be16(iqid);
8338        c.fl0id = cpu_to_be16(fl0id);
8339        c.fl1id = cpu_to_be16(fl1id);
8340        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8341}
8342
8343/**
8344 *      t4_iq_free - free an ingress queue and its FLs
8345 *      @adap: the adapter
8346 *      @mbox: mailbox to use for the FW command
8347 *      @pf: the PF owning the queues
8348 *      @vf: the VF owning the queues
8349 *      @iqtype: the ingress queue type
8350 *      @iqid: ingress queue id
8351 *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8352 *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8353 *
8354 *      Frees an ingress queue and its associated FLs, if any.
8355 */
8356int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8357               unsigned int vf, unsigned int iqtype, unsigned int iqid,
8358               unsigned int fl0id, unsigned int fl1id)
8359{
8360        struct fw_iq_cmd c;
8361
8362        memset(&c, 0, sizeof(c));
8363        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8364                                  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8365                                  FW_IQ_CMD_VFN_V(vf));
8366        c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8367        c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8368        c.iqid = cpu_to_be16(iqid);
8369        c.fl0id = cpu_to_be16(fl0id);
8370        c.fl1id = cpu_to_be16(fl1id);
8371        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8372}
8373
8374/**
8375 *      t4_eth_eq_free - free an Ethernet egress queue
8376 *      @adap: the adapter
8377 *      @mbox: mailbox to use for the FW command
8378 *      @pf: the PF owning the queue
8379 *      @vf: the VF owning the queue
8380 *      @eqid: egress queue id
8381 *
8382 *      Frees an Ethernet egress queue.
8383 */
8384int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8385                   unsigned int vf, unsigned int eqid)
8386{
8387        struct fw_eq_eth_cmd c;
8388
8389        memset(&c, 0, sizeof(c));
8390        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8391                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8392                                  FW_EQ_ETH_CMD_PFN_V(pf) |
8393                                  FW_EQ_ETH_CMD_VFN_V(vf));
8394        c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8395        c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8396        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8397}
8398
8399/**
8400 *      t4_ctrl_eq_free - free a control egress queue
8401 *      @adap: the adapter
8402 *      @mbox: mailbox to use for the FW command
8403 *      @pf: the PF owning the queue
8404 *      @vf: the VF owning the queue
8405 *      @eqid: egress queue id
8406 *
8407 *      Frees a control egress queue.
8408 */
8409int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8410                    unsigned int vf, unsigned int eqid)
8411{
8412        struct fw_eq_ctrl_cmd c;
8413
8414        memset(&c, 0, sizeof(c));
8415        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8416                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8417                                  FW_EQ_CTRL_CMD_PFN_V(pf) |
8418                                  FW_EQ_CTRL_CMD_VFN_V(vf));
8419        c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8420        c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8421        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8422}
8423
8424/**
8425 *      t4_ofld_eq_free - free an offload egress queue
8426 *      @adap: the adapter
8427 *      @mbox: mailbox to use for the FW command
8428 *      @pf: the PF owning the queue
8429 *      @vf: the VF owning the queue
8430 *      @eqid: egress queue id
8431 *
8432 *      Frees a control egress queue.
8433 */
8434int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8435                    unsigned int vf, unsigned int eqid)
8436{
8437        struct fw_eq_ofld_cmd c;
8438
8439        memset(&c, 0, sizeof(c));
8440        c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8441                                  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8442                                  FW_EQ_OFLD_CMD_PFN_V(pf) |
8443                                  FW_EQ_OFLD_CMD_VFN_V(vf));
8444        c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8445        c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8446        return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8447}
8448
8449/**
8450 *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8451 *      @adap: the adapter
8452 *      @link_down_rc: Link Down Reason Code
8453 *
8454 *      Returns a string representation of the Link Down Reason Code.
8455 */
8456static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8457{
8458        static const char * const reason[] = {
8459                "Link Down",
8460                "Remote Fault",
8461                "Auto-negotiation Failure",
8462                "Reserved",
8463                "Insufficient Airflow",
8464                "Unable To Determine Reason",
8465                "No RX Signal Detected",
8466                "Reserved",
8467        };
8468
8469        if (link_down_rc >= ARRAY_SIZE(reason))
8470                return "Bad Reason Code";
8471
8472        return reason[link_down_rc];
8473}
8474
8475/**
8476 * Return the highest speed set in the port capabilities, in Mb/s.
8477 */
8478static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8479{
8480        #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8481                do { \
8482                        if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8483                                return __speed; \
8484                } while (0)
8485
8486        TEST_SPEED_RETURN(400G, 400000);
8487        TEST_SPEED_RETURN(200G, 200000);
8488        TEST_SPEED_RETURN(100G, 100000);
8489        TEST_SPEED_RETURN(50G,   50000);
8490        TEST_SPEED_RETURN(40G,   40000);
8491        TEST_SPEED_RETURN(25G,   25000);
8492        TEST_SPEED_RETURN(10G,   10000);
8493        TEST_SPEED_RETURN(1G,     1000);
8494        TEST_SPEED_RETURN(100M,    100);
8495
8496        #undef TEST_SPEED_RETURN
8497
8498        return 0;
8499}
8500
8501/**
8502 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8503 *      @acaps: advertised Port Capabilities
8504 *
8505 *      Get the highest speed for the port from the advertised Port
8506 *      Capabilities.  It will be either the highest speed from the list of
8507 *      speeds or whatever user has set using ethtool.
8508 */
8509static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8510{
8511        #define TEST_SPEED_RETURN(__caps_speed) \
8512                do { \
8513                        if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8514                                return FW_PORT_CAP32_SPEED_##__caps_speed; \
8515                } while (0)
8516
8517        TEST_SPEED_RETURN(400G);
8518        TEST_SPEED_RETURN(200G);
8519        TEST_SPEED_RETURN(100G);
8520        TEST_SPEED_RETURN(50G);
8521        TEST_SPEED_RETURN(40G);
8522        TEST_SPEED_RETURN(25G);
8523        TEST_SPEED_RETURN(10G);
8524        TEST_SPEED_RETURN(1G);
8525        TEST_SPEED_RETURN(100M);
8526
8527        #undef TEST_SPEED_RETURN
8528
8529        return 0;
8530}
8531
8532/**
8533 *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8534 *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8535 *
8536 *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8537 *      32-bit Port Capabilities value.
8538 */
8539static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8540{
8541        fw_port_cap32_t linkattr = 0;
8542
8543        /* Unfortunately the format of the Link Status in the old
8544         * 16-bit Port Information message isn't the same as the
8545         * 16-bit Port Capabilities bitfield used everywhere else ...
8546         */
8547        if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8548                linkattr |= FW_PORT_CAP32_FC_RX;
8549        if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8550                linkattr |= FW_PORT_CAP32_FC_TX;
8551        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8552                linkattr |= FW_PORT_CAP32_SPEED_100M;
8553        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8554                linkattr |= FW_PORT_CAP32_SPEED_1G;
8555        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8556                linkattr |= FW_PORT_CAP32_SPEED_10G;
8557        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8558                linkattr |= FW_PORT_CAP32_SPEED_25G;
8559        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8560                linkattr |= FW_PORT_CAP32_SPEED_40G;
8561        if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8562                linkattr |= FW_PORT_CAP32_SPEED_100G;
8563
8564        return linkattr;
8565}
8566
8567/**
8568 *      t4_handle_get_port_info - process a FW reply message
8569 *      @pi: the port info
8570 *      @rpl: start of the FW message
8571 *
8572 *      Processes a GET_PORT_INFO FW reply message.
8573 */
8574void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8575{
8576        const struct fw_port_cmd *cmd = (const void *)rpl;
8577        fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8578        struct link_config *lc = &pi->link_cfg;
8579        struct adapter *adapter = pi->adapter;
8580        unsigned int speed, fc, fec, adv_fc;
8581        enum fw_port_module_type mod_type;
8582        int action, link_ok, linkdnrc;
8583        enum fw_port_type port_type;
8584
8585        /* Extract the various fields from the Port Information message.
8586         */
8587        action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8588        switch (action) {
8589        case FW_PORT_ACTION_GET_PORT_INFO: {
8590                u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8591
8592                link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8593                linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8594                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8595                mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8596                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8597                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8598                lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8599                linkattr = lstatus_to_fwcap(lstatus);
8600                break;
8601        }
8602
8603        case FW_PORT_ACTION_GET_PORT_INFO32: {
8604                u32 lstatus32;
8605
8606                lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8607                link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8608                linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8609                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8610                mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8611                pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8612                acaps = be32_to_cpu(cmd->u.info32.acaps32);
8613                lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8614                linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8615                break;
8616        }
8617
8618        default:
8619                dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8620                        be32_to_cpu(cmd->action_to_len16));
8621                return;
8622        }
8623
8624        fec = fwcap_to_cc_fec(acaps);
8625        adv_fc = fwcap_to_cc_pause(acaps);
8626        fc = fwcap_to_cc_pause(linkattr);
8627        speed = fwcap_to_speed(linkattr);
8628
8629        /* Reset state for communicating new Transceiver Module status and
8630         * whether the OS-dependent layer wants us to redo the current
8631         * "sticky" L1 Configure Link Parameters.
8632         */
8633        lc->new_module = false;
8634        lc->redo_l1cfg = false;
8635
8636        if (mod_type != pi->mod_type) {
8637                /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8638                 * various fundamental Port Capabilities which used to be
8639                 * immutable can now change radically.  We can now have
8640                 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8641                 * all change based on what Transceiver Module is inserted.
8642                 * So we need to record the Physical "Port" Capabilities on
8643                 * every Transceiver Module change.
8644                 */
8645                lc->pcaps = pcaps;
8646
8647                /* When a new Transceiver Module is inserted, the Firmware
8648                 * will examine its i2c EPROM to determine its type and
8649                 * general operating parameters including things like Forward
8650                 * Error Control, etc.  Various IEEE 802.3 standards dictate
8651                 * how to interpret these i2c values to determine default
8652                 * "sutomatic" settings.  We record these for future use when
8653                 * the user explicitly requests these standards-based values.
8654                 */
8655                lc->def_acaps = acaps;
8656
8657                /* Some versions of the early T6 Firmware "cheated" when
8658                 * handling different Transceiver Modules by changing the
8659                 * underlaying Port Type reported to the Host Drivers.  As
8660                 * such we need to capture whatever Port Type the Firmware
8661                 * sends us and record it in case it's different from what we
8662                 * were told earlier.  Unfortunately, since Firmware is
8663                 * forever, we'll need to keep this code here forever, but in
8664                 * later T6 Firmware it should just be an assignment of the
8665                 * same value already recorded.
8666                 */
8667                pi->port_type = port_type;
8668
8669                /* Record new Module Type information.
8670                 */
8671                pi->mod_type = mod_type;
8672
8673                /* Let the OS-dependent layer know if we have a new
8674                 * Transceiver Module inserted.
8675                 */
8676                lc->new_module = t4_is_inserted_mod_type(mod_type);
8677
8678                t4_os_portmod_changed(adapter, pi->port_id);
8679        }
8680
8681        if (link_ok != lc->link_ok || speed != lc->speed ||
8682            fc != lc->fc || adv_fc != lc->advertised_fc ||
8683            fec != lc->fec) {
8684                /* something changed */
8685                if (!link_ok && lc->link_ok) {
8686                        lc->link_down_rc = linkdnrc;
8687                        dev_warn_ratelimited(adapter->pdev_dev,
8688                                             "Port %d link down, reason: %s\n",
8689                                             pi->tx_chan,
8690                                             t4_link_down_rc_str(linkdnrc));
8691                }
8692                lc->link_ok = link_ok;
8693                lc->speed = speed;
8694                lc->advertised_fc = adv_fc;
8695                lc->fc = fc;
8696                lc->fec = fec;
8697
8698                lc->lpacaps = lpacaps;
8699                lc->acaps = acaps & ADVERT_MASK;
8700
8701                /* If we're not physically capable of Auto-Negotiation, note
8702                 * this as Auto-Negotiation disabled.  Otherwise, we track
8703                 * what Auto-Negotiation settings we have.  Note parallel
8704                 * structure in t4_link_l1cfg_core() and init_link_config().
8705                 */
8706                if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8707                        lc->autoneg = AUTONEG_DISABLE;
8708                } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8709                        lc->autoneg = AUTONEG_ENABLE;
8710                } else {
8711                        /* When Autoneg is disabled, user needs to set
8712                         * single speed.
8713                         * Similar to cxgb4_ethtool.c: set_link_ksettings
8714                         */
8715                        lc->acaps = 0;
8716                        lc->speed_caps = fwcap_to_fwspeed(acaps);
8717                        lc->autoneg = AUTONEG_DISABLE;
8718                }
8719
8720                t4_os_link_changed(adapter, pi->port_id, link_ok);
8721        }
8722
8723        /* If we have a new Transceiver Module and the OS-dependent code has
8724         * told us that it wants us to redo whatever "sticky" L1 Configuration
8725         * Link Parameters are set, do that now.
8726         */
8727        if (lc->new_module && lc->redo_l1cfg) {
8728                struct link_config old_lc;
8729                int ret;
8730
8731                /* Save the current L1 Configuration and restore it if an
8732                 * error occurs.  We probably should fix the l1_cfg*()
8733                 * routines not to change the link_config when an error
8734                 * occurs ...
8735                 */
8736                old_lc = *lc;
8737                ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8738                if (ret) {
8739                        *lc = old_lc;
8740                        dev_warn(adapter->pdev_dev,
8741                                 "Attempt to update new Transceiver Module settings failed\n");
8742                }
8743        }
8744        lc->new_module = false;
8745        lc->redo_l1cfg = false;
8746}
8747
8748/**
8749 *      t4_update_port_info - retrieve and update port information if changed
8750 *      @pi: the port_info
8751 *
8752 *      We issue a Get Port Information Command to the Firmware and, if
8753 *      successful, we check to see if anything is different from what we
8754 *      last recorded and update things accordingly.
8755 */
8756int t4_update_port_info(struct port_info *pi)
8757{
8758        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8759        struct fw_port_cmd port_cmd;
8760        int ret;
8761
8762        memset(&port_cmd, 0, sizeof(port_cmd));
8763        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8764                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
8765                                            FW_PORT_CMD_PORTID_V(pi->tx_chan));
8766        port_cmd.action_to_len16 = cpu_to_be32(
8767                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8768                                     ? FW_PORT_ACTION_GET_PORT_INFO
8769                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
8770                FW_LEN16(port_cmd));
8771        ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8772                         &port_cmd, sizeof(port_cmd), &port_cmd);
8773        if (ret)
8774                return ret;
8775
8776        t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8777        return 0;
8778}
8779
8780/**
8781 *      t4_get_link_params - retrieve basic link parameters for given port
8782 *      @pi: the port
8783 *      @link_okp: value return pointer for link up/down
8784 *      @speedp: value return pointer for speed (Mb/s)
8785 *      @mtup: value return pointer for mtu
8786 *
8787 *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8788 *      and MTU for a specified port.  A negative error is returned on
8789 *      failure; 0 on success.
8790 */
8791int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8792                       unsigned int *speedp, unsigned int *mtup)
8793{
8794        unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8795        unsigned int action, link_ok, mtu;
8796        struct fw_port_cmd port_cmd;
8797        fw_port_cap32_t linkattr;
8798        int ret;
8799
8800        memset(&port_cmd, 0, sizeof(port_cmd));
8801        port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8802                                            FW_CMD_REQUEST_F | FW_CMD_READ_F |
8803                                            FW_PORT_CMD_PORTID_V(pi->tx_chan));
8804        action = (fw_caps == FW_CAPS16
8805                  ? FW_PORT_ACTION_GET_PORT_INFO
8806                  : FW_PORT_ACTION_GET_PORT_INFO32);
8807        port_cmd.action_to_len16 = cpu_to_be32(
8808                FW_PORT_CMD_ACTION_V(action) |
8809                FW_LEN16(port_cmd));
8810        ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8811                         &port_cmd, sizeof(port_cmd), &port_cmd);
8812        if (ret)
8813                return ret;
8814
8815        if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8816                u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8817
8818                link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8819                linkattr = lstatus_to_fwcap(lstatus);
8820                mtu = be16_to_cpu(port_cmd.u.info.mtu);
8821        } else {
8822                u32 lstatus32 =
8823                           be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8824
8825                link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8826                linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8827                mtu = FW_PORT_CMD_MTU32_G(
8828                        be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8829        }
8830
8831        if (link_okp)
8832                *link_okp = link_ok;
8833        if (speedp)
8834                *speedp = fwcap_to_speed(linkattr);
8835        if (mtup)
8836                *mtup = mtu;
8837
8838        return 0;
8839}
8840
8841/**
8842 *      t4_handle_fw_rpl - process a FW reply message
8843 *      @adap: the adapter
8844 *      @rpl: start of the FW message
8845 *
8846 *      Processes a FW message, such as link state change messages.
8847 */
8848int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8849{
8850        u8 opcode = *(const u8 *)rpl;
8851
8852        /* This might be a port command ... this simplifies the following
8853         * conditionals ...  We can get away with pre-dereferencing
8854         * action_to_len16 because it's in the first 16 bytes and all messages
8855         * will be at least that long.
8856         */
8857        const struct fw_port_cmd *p = (const void *)rpl;
8858        unsigned int action =
8859                FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8860
8861        if (opcode == FW_PORT_CMD &&
8862            (action == FW_PORT_ACTION_GET_PORT_INFO ||
8863             action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8864                int i;
8865                int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8866                struct port_info *pi = NULL;
8867
8868                for_each_port(adap, i) {
8869                        pi = adap2pinfo(adap, i);
8870                        if (pi->tx_chan == chan)
8871                                break;
8872                }
8873
8874                t4_handle_get_port_info(pi, rpl);
8875        } else {
8876                dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8877                         opcode);
8878                return -EINVAL;
8879        }
8880        return 0;
8881}
8882
8883static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8884{
8885        u16 val;
8886
8887        if (pci_is_pcie(adapter->pdev)) {
8888                pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8889                p->speed = val & PCI_EXP_LNKSTA_CLS;
8890                p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8891        }
8892}
8893
8894/**
8895 *      init_link_config - initialize a link's SW state
8896 *      @lc: pointer to structure holding the link state
8897 *      @pcaps: link Port Capabilities
8898 *      @acaps: link current Advertised Port Capabilities
8899 *
8900 *      Initializes the SW state maintained for each link, including the link's
8901 *      capabilities and default speed/flow-control/autonegotiation settings.
8902 */
8903static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8904                             fw_port_cap32_t acaps)
8905{
8906        lc->pcaps = pcaps;
8907        lc->def_acaps = acaps;
8908        lc->lpacaps = 0;
8909        lc->speed_caps = 0;
8910        lc->speed = 0;
8911        lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8912
8913        /* For Forward Error Control, we default to whatever the Firmware
8914         * tells us the Link is currently advertising.
8915         */
8916        lc->requested_fec = FEC_AUTO;
8917        lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8918
8919        /* If the Port is capable of Auto-Negtotiation, initialize it as
8920         * "enabled" and copy over all of the Physical Port Capabilities
8921         * to the Advertised Port Capabilities.  Otherwise mark it as
8922         * Auto-Negotiate disabled and select the highest supported speed
8923         * for the link.  Note parallel structure in t4_link_l1cfg_core()
8924         * and t4_handle_get_port_info().
8925         */
8926        if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8927                lc->acaps = lc->pcaps & ADVERT_MASK;
8928                lc->autoneg = AUTONEG_ENABLE;
8929                lc->requested_fc |= PAUSE_AUTONEG;
8930        } else {
8931                lc->acaps = 0;
8932                lc->autoneg = AUTONEG_DISABLE;
8933                lc->speed_caps = fwcap_to_fwspeed(acaps);
8934        }
8935}
8936
8937#define CIM_PF_NOACCESS 0xeeeeeeee
8938
8939int t4_wait_dev_ready(void __iomem *regs)
8940{
8941        u32 whoami;
8942
8943        whoami = readl(regs + PL_WHOAMI_A);
8944        if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8945                return 0;
8946
8947        msleep(500);
8948        whoami = readl(regs + PL_WHOAMI_A);
8949        return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8950}
8951
8952struct flash_desc {
8953        u32 vendor_and_model_id;
8954        u32 size_mb;
8955};
8956
8957static int t4_get_flash_params(struct adapter *adap)
8958{
8959        /* Table for non-Numonix supported flash parts.  Numonix parts are left
8960         * to the preexisting code.  All flash parts have 64KB sectors.
8961         */
8962        static struct flash_desc supported_flash[] = {
8963                { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8964        };
8965
8966        unsigned int part, manufacturer;
8967        unsigned int density, size = 0;
8968        u32 flashid = 0;
8969        int ret;
8970
8971        /* Issue a Read ID Command to the Flash part.  We decode supported
8972         * Flash parts and their sizes from this.  There's a newer Query
8973         * Command which can retrieve detailed geometry information but many
8974         * Flash parts don't support it.
8975         */
8976
8977        ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8978        if (!ret)
8979                ret = sf1_read(adap, 3, 0, 1, &flashid);
8980        t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8981        if (ret)
8982                return ret;
8983
8984        /* Check to see if it's one of our non-standard supported Flash parts.
8985         */
8986        for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8987                if (supported_flash[part].vendor_and_model_id == flashid) {
8988                        adap->params.sf_size = supported_flash[part].size_mb;
8989                        adap->params.sf_nsec =
8990                                adap->params.sf_size / SF_SEC_SIZE;
8991                        goto found;
8992                }
8993
8994        /* Decode Flash part size.  The code below looks repetitive with
8995         * common encodings, but that's not guaranteed in the JEDEC
8996         * specification for the Read JEDEC ID command.  The only thing that
8997         * we're guaranteed by the JEDEC specification is where the
8998         * Manufacturer ID is in the returned result.  After that each
8999         * Manufacturer ~could~ encode things completely differently.
9000         * Note, all Flash parts must have 64KB sectors.
9001         */
9002        manufacturer = flashid & 0xff;
9003        switch (manufacturer) {
9004        case 0x20: { /* Micron/Numonix */
9005                /* This Density -> Size decoding table is taken from Micron
9006                 * Data Sheets.
9007                 */
9008                density = (flashid >> 16) & 0xff;
9009                switch (density) {
9010                case 0x14: /* 1MB */
9011                        size = 1 << 20;
9012                        break;
9013                case 0x15: /* 2MB */
9014                        size = 1 << 21;
9015                        break;
9016                case 0x16: /* 4MB */
9017                        size = 1 << 22;
9018                        break;
9019                case 0x17: /* 8MB */
9020                        size = 1 << 23;
9021                        break;
9022                case 0x18: /* 16MB */
9023                        size = 1 << 24;
9024                        break;
9025                case 0x19: /* 32MB */
9026                        size = 1 << 25;
9027                        break;
9028                case 0x20: /* 64MB */
9029                        size = 1 << 26;
9030                        break;
9031                case 0x21: /* 128MB */
9032                        size = 1 << 27;
9033                        break;
9034                case 0x22: /* 256MB */
9035                        size = 1 << 28;
9036                        break;
9037                }
9038                break;
9039        }
9040        case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9041                /* This Density -> Size decoding table is taken from ISSI
9042                 * Data Sheets.
9043                 */
9044                density = (flashid >> 16) & 0xff;
9045                switch (density) {
9046                case 0x16: /* 32 MB */
9047                        size = 1 << 25;
9048                        break;
9049                case 0x17: /* 64MB */
9050                        size = 1 << 26;
9051                        break;
9052                }
9053                break;
9054        }
9055        case 0xc2: { /* Macronix */
9056                /* This Density -> Size decoding table is taken from Macronix
9057                 * Data Sheets.
9058                 */
9059                density = (flashid >> 16) & 0xff;
9060                switch (density) {
9061                case 0x17: /* 8MB */
9062                        size = 1 << 23;
9063                        break;
9064                case 0x18: /* 16MB */
9065                        size = 1 << 24;
9066                        break;
9067                }
9068                break;
9069        }
9070        case 0xef: { /* Winbond */
9071                /* This Density -> Size decoding table is taken from Winbond
9072                 * Data Sheets.
9073                 */
9074                density = (flashid >> 16) & 0xff;
9075                switch (density) {
9076                case 0x17: /* 8MB */
9077                        size = 1 << 23;
9078                        break;
9079                case 0x18: /* 16MB */
9080                        size = 1 << 24;
9081                        break;
9082                }
9083                break;
9084        }
9085        }
9086
9087        /* If we didn't recognize the FLASH part, that's no real issue: the
9088         * Hardware/Software contract says that Hardware will _*ALWAYS*_
9089         * use a FLASH part which is at least 4MB in size and has 64KB
9090         * sectors.  The unrecognized FLASH part is likely to be much larger
9091         * than 4MB, but that's all we really need.
9092         */
9093        if (size == 0) {
9094                dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9095                         flashid);
9096                size = 1 << 22;
9097        }
9098
9099        /* Store decoded Flash size and fall through into vetting code. */
9100        adap->params.sf_size = size;
9101        adap->params.sf_nsec = size / SF_SEC_SIZE;
9102
9103found:
9104        if (adap->params.sf_size < FLASH_MIN_SIZE)
9105                dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9106                         flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9107        return 0;
9108}
9109
9110/**
9111 *      t4_prep_adapter - prepare SW and HW for operation
9112 *      @adapter: the adapter
9113 *      @reset: if true perform a HW reset
9114 *
9115 *      Initialize adapter SW state for the various HW modules, set initial
9116 *      values for some adapter tunables, take PHYs out of reset, and
9117 *      initialize the MDIO interface.
9118 */
9119int t4_prep_adapter(struct adapter *adapter)
9120{
9121        int ret, ver;
9122        uint16_t device_id;
9123        u32 pl_rev;
9124
9125        get_pci_mode(adapter, &adapter->params.pci);
9126        pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9127
9128        ret = t4_get_flash_params(adapter);
9129        if (ret < 0) {
9130                dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9131                return ret;
9132        }
9133
9134        /* Retrieve adapter's device ID
9135         */
9136        pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9137        ver = device_id >> 12;
9138        adapter->params.chip = 0;
9139        switch (ver) {
9140        case CHELSIO_T4:
9141                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9142                adapter->params.arch.sge_fl_db = DBPRIO_F;
9143                adapter->params.arch.mps_tcam_size =
9144                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
9145                adapter->params.arch.mps_rplc_size = 128;
9146                adapter->params.arch.nchan = NCHAN;
9147                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9148                adapter->params.arch.vfcount = 128;
9149                /* Congestion map is for 4 channels so that
9150                 * MPS can have 4 priority per port.
9151                 */
9152                adapter->params.arch.cng_ch_bits_log = 2;
9153                break;
9154        case CHELSIO_T5:
9155                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9156                adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9157                adapter->params.arch.mps_tcam_size =
9158                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9159                adapter->params.arch.mps_rplc_size = 128;
9160                adapter->params.arch.nchan = NCHAN;
9161                adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9162                adapter->params.arch.vfcount = 128;
9163                adapter->params.arch.cng_ch_bits_log = 2;
9164                break;
9165        case CHELSIO_T6:
9166                adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9167                adapter->params.arch.sge_fl_db = 0;
9168                adapter->params.arch.mps_tcam_size =
9169                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9170                adapter->params.arch.mps_rplc_size = 256;
9171                adapter->params.arch.nchan = 2;
9172                adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9173                adapter->params.arch.vfcount = 256;
9174                /* Congestion map will be for 2 channels so that
9175                 * MPS can have 8 priority per port.
9176                 */
9177                adapter->params.arch.cng_ch_bits_log = 3;
9178                break;
9179        default:
9180                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9181                        device_id);
9182                return -EINVAL;
9183        }
9184
9185        adapter->params.cim_la_size = CIMLA_SIZE;
9186        init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9187
9188        /*
9189         * Default port for debugging in case we can't reach FW.
9190         */
9191        adapter->params.nports = 1;
9192        adapter->params.portvec = 1;
9193        adapter->params.vpd.cclk = 50000;
9194
9195        /* Set PCIe completion timeout to 4 seconds. */
9196        pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9197                                           PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9198        return 0;
9199}
9200
9201/**
9202 *      t4_shutdown_adapter - shut down adapter, host & wire
9203 *      @adapter: the adapter
9204 *
9205 *      Perform an emergency shutdown of the adapter and stop it from
9206 *      continuing any further communication on the ports or DMA to the
9207 *      host.  This is typically used when the adapter and/or firmware
9208 *      have crashed and we want to prevent any further accidental
9209 *      communication with the rest of the world.  This will also force
9210 *      the port Link Status to go down -- if register writes work --
9211 *      which should help our peers figure out that we're down.
9212 */
9213int t4_shutdown_adapter(struct adapter *adapter)
9214{
9215        int port;
9216
9217        t4_intr_disable(adapter);
9218        t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9219        for_each_port(adapter, port) {
9220                u32 a_port_cfg = is_t4(adapter->params.chip) ?
9221                                       PORT_REG(port, XGMAC_PORT_CFG_A) :
9222                                       T5_PORT_REG(port, MAC_PORT_CFG_A);
9223
9224                t4_write_reg(adapter, a_port_cfg,
9225                             t4_read_reg(adapter, a_port_cfg)
9226                             & ~SIGNAL_DET_V(1));
9227        }
9228        t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9229
9230        return 0;
9231}
9232
9233/**
9234 *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9235 *      @adapter: the adapter
9236 *      @qid: the Queue ID
9237 *      @qtype: the Ingress or Egress type for @qid
9238 *      @user: true if this request is for a user mode queue
9239 *      @pbar2_qoffset: BAR2 Queue Offset
9240 *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9241 *
9242 *      Returns the BAR2 SGE Queue Registers information associated with the
9243 *      indicated Absolute Queue ID.  These are passed back in return value
9244 *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9245 *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9246 *
9247 *      This may return an error which indicates that BAR2 SGE Queue
9248 *      registers aren't available.  If an error is not returned, then the
9249 *      following values are returned:
9250 *
9251 *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9252 *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9253 *
9254 *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9255 *      require the "Inferred Queue ID" ability may be used.  E.g. the
9256 *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9257 *      then these "Inferred Queue ID" register may not be used.
9258 */
9259int t4_bar2_sge_qregs(struct adapter *adapter,
9260                      unsigned int qid,
9261                      enum t4_bar2_qtype qtype,
9262                      int user,
9263                      u64 *pbar2_qoffset,
9264                      unsigned int *pbar2_qid)
9265{
9266        unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9267        u64 bar2_page_offset, bar2_qoffset;
9268        unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9269
9270        /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9271        if (!user && is_t4(adapter->params.chip))
9272                return -EINVAL;
9273
9274        /* Get our SGE Page Size parameters.
9275         */
9276        page_shift = adapter->params.sge.hps + 10;
9277        page_size = 1 << page_shift;
9278
9279        /* Get the right Queues per Page parameters for our Queue.
9280         */
9281        qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9282                     ? adapter->params.sge.eq_qpp
9283                     : adapter->params.sge.iq_qpp);
9284        qpp_mask = (1 << qpp_shift) - 1;
9285
9286        /*  Calculate the basics of the BAR2 SGE Queue register area:
9287         *  o The BAR2 page the Queue registers will be in.
9288         *  o The BAR2 Queue ID.
9289         *  o The BAR2 Queue ID Offset into the BAR2 page.
9290         */
9291        bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9292        bar2_qid = qid & qpp_mask;
9293        bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9294
9295        /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9296         * hardware will infer the Absolute Queue ID simply from the writes to
9297         * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9298         * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9299         * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9300         * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9301         * from the BAR2 Page and BAR2 Queue ID.
9302         *
9303         * One important censequence of this is that some BAR2 SGE registers
9304         * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9305         * there.  But other registers synthesize the SGE Queue ID purely
9306         * from the writes to the registers -- the Write Combined Doorbell
9307         * Buffer is a good example.  These BAR2 SGE Registers are only
9308         * available for those BAR2 SGE Register areas where the SGE Absolute
9309         * Queue ID can be inferred from simple writes.
9310         */
9311        bar2_qoffset = bar2_page_offset;
9312        bar2_qinferred = (bar2_qid_offset < page_size);
9313        if (bar2_qinferred) {
9314                bar2_qoffset += bar2_qid_offset;
9315                bar2_qid = 0;
9316        }
9317
9318        *pbar2_qoffset = bar2_qoffset;
9319        *pbar2_qid = bar2_qid;
9320        return 0;
9321}
9322
9323/**
9324 *      t4_init_devlog_params - initialize adapter->params.devlog
9325 *      @adap: the adapter
9326 *
9327 *      Initialize various fields of the adapter's Firmware Device Log
9328 *      Parameters structure.
9329 */
9330int t4_init_devlog_params(struct adapter *adap)
9331{
9332        struct devlog_params *dparams = &adap->params.devlog;
9333        u32 pf_dparams;
9334        unsigned int devlog_meminfo;
9335        struct fw_devlog_cmd devlog_cmd;
9336        int ret;
9337
9338        /* If we're dealing with newer firmware, the Device Log Parameters
9339         * are stored in a designated register which allows us to access the
9340         * Device Log even if we can't talk to the firmware.
9341         */
9342        pf_dparams =
9343                t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9344        if (pf_dparams) {
9345                unsigned int nentries, nentries128;
9346
9347                dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9348                dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9349
9350                nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9351                nentries = (nentries128 + 1) * 128;
9352                dparams->size = nentries * sizeof(struct fw_devlog_e);
9353
9354                return 0;
9355        }
9356
9357        /* Otherwise, ask the firmware for it's Device Log Parameters.
9358         */
9359        memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9360        devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9361                                             FW_CMD_REQUEST_F | FW_CMD_READ_F);
9362        devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9363        ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9364                         &devlog_cmd);
9365        if (ret)
9366                return ret;
9367
9368        devlog_meminfo =
9369                be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9370        dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9371        dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9372        dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9373
9374        return 0;
9375}
9376
9377/**
9378 *      t4_init_sge_params - initialize adap->params.sge
9379 *      @adapter: the adapter
9380 *
9381 *      Initialize various fields of the adapter's SGE Parameters structure.
9382 */
9383int t4_init_sge_params(struct adapter *adapter)
9384{
9385        struct sge_params *sge_params = &adapter->params.sge;
9386        u32 hps, qpp;
9387        unsigned int s_hps, s_qpp;
9388
9389        /* Extract the SGE Page Size for our PF.
9390         */
9391        hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9392        s_hps = (HOSTPAGESIZEPF0_S +
9393                 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9394        sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9395
9396        /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9397         */
9398        s_qpp = (QUEUESPERPAGEPF0_S +
9399                (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9400        qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9401        sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9402        qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9403        sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9404
9405        return 0;
9406}
9407
9408/**
9409 *      t4_init_tp_params - initialize adap->params.tp
9410 *      @adap: the adapter
9411 *      @sleep_ok: if true we may sleep while awaiting command completion
9412 *
9413 *      Initialize various fields of the adapter's TP Parameters structure.
9414 */
9415int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9416{
9417        u32 param, val, v;
9418        int chan, ret;
9419
9420
9421        v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9422        adap->params.tp.tre = TIMERRESOLUTION_G(v);
9423        adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9424
9425        /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9426        for (chan = 0; chan < NCHAN; chan++)
9427                adap->params.tp.tx_modq[chan] = chan;
9428
9429        /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9430         * Configuration.
9431         */
9432        param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9433                 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9434                 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9435
9436        /* Read current value */
9437        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9438                              &param, &val);
9439        if (ret == 0) {
9440                dev_info(adap->pdev_dev,
9441                         "Current filter mode/mask 0x%x:0x%x\n",
9442                         FW_PARAMS_PARAM_FILTER_MODE_G(val),
9443                         FW_PARAMS_PARAM_FILTER_MASK_G(val));
9444                adap->params.tp.vlan_pri_map =
9445                        FW_PARAMS_PARAM_FILTER_MODE_G(val);
9446                adap->params.tp.filter_mask =
9447                        FW_PARAMS_PARAM_FILTER_MASK_G(val);
9448        } else {
9449                dev_info(adap->pdev_dev,
9450                         "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9451
9452                /* Incase of older-fw (which doesn't expose the api
9453                 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9454                 * the fw api) combination, fall-back to older method of reading
9455                 * the filter mode from indirect-register
9456                 */
9457                t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9458                               TP_VLAN_PRI_MAP_A, sleep_ok);
9459
9460                /* With the older-fw and newer-driver combination we might run
9461                 * into an issue when user wants to use hash filter region but
9462                 * the filter_mask is zero, in this case filter_mask validation
9463                 * is tough. To avoid that we set the filter_mask same as filter
9464                 * mode, which will behave exactly as the older way of ignoring
9465                 * the filter mask validation.
9466                 */
9467                adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9468        }
9469
9470        t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9471                       TP_INGRESS_CONFIG_A, sleep_ok);
9472
9473        /* For T6, cache the adapter's compressed error vector
9474         * and passing outer header info for encapsulated packets.
9475         */
9476        if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9477                v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9478                adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9479        }
9480
9481        /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9482         * shift positions of several elements of the Compressed Filter Tuple
9483         * for this adapter which we need frequently ...
9484         */
9485        adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9486        adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9487        adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9488        adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9489        adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9490        adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9491                                                               PROTOCOL_F);
9492        adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9493                                                                ETHERTYPE_F);
9494        adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9495                                                               MACMATCH_F);
9496        adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9497                                                                MPSHITTYPE_F);
9498        adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9499                                                           FRAGMENTATION_F);
9500
9501        /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9502         * represents the presence of an Outer VLAN instead of a VNIC ID.
9503         */
9504        if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9505                adap->params.tp.vnic_shift = -1;
9506
9507        v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9508        adap->params.tp.hash_filter_mask = v;
9509        v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9510        adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9511        return 0;
9512}
9513
9514/**
9515 *      t4_filter_field_shift - calculate filter field shift
9516 *      @adap: the adapter
9517 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9518 *
9519 *      Return the shift position of a filter field within the Compressed
9520 *      Filter Tuple.  The filter field is specified via its selection bit
9521 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9522 */
9523int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9524{
9525        unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9526        unsigned int sel;
9527        int field_shift;
9528
9529        if ((filter_mode & filter_sel) == 0)
9530                return -1;
9531
9532        for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9533                switch (filter_mode & sel) {
9534                case FCOE_F:
9535                        field_shift += FT_FCOE_W;
9536                        break;
9537                case PORT_F:
9538                        field_shift += FT_PORT_W;
9539                        break;
9540                case VNIC_ID_F:
9541                        field_shift += FT_VNIC_ID_W;
9542                        break;
9543                case VLAN_F:
9544                        field_shift += FT_VLAN_W;
9545                        break;
9546                case TOS_F:
9547                        field_shift += FT_TOS_W;
9548                        break;
9549                case PROTOCOL_F:
9550                        field_shift += FT_PROTOCOL_W;
9551                        break;
9552                case ETHERTYPE_F:
9553                        field_shift += FT_ETHERTYPE_W;
9554                        break;
9555                case MACMATCH_F:
9556                        field_shift += FT_MACMATCH_W;
9557                        break;
9558                case MPSHITTYPE_F:
9559                        field_shift += FT_MPSHITTYPE_W;
9560                        break;
9561                case FRAGMENTATION_F:
9562                        field_shift += FT_FRAGMENTATION_W;
9563                        break;
9564                }
9565        }
9566        return field_shift;
9567}
9568
9569int t4_init_rss_mode(struct adapter *adap, int mbox)
9570{
9571        int i, ret;
9572        struct fw_rss_vi_config_cmd rvc;
9573
9574        memset(&rvc, 0, sizeof(rvc));
9575
9576        for_each_port(adap, i) {
9577                struct port_info *p = adap2pinfo(adap, i);
9578
9579                rvc.op_to_viid =
9580                        cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9581                                    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9582                                    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9583                rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9584                ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9585                if (ret)
9586                        return ret;
9587                p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9588        }
9589        return 0;
9590}
9591
9592/**
9593 *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9594 *      @pi: the port_info
9595 *      @mbox: mailbox to use for the FW command
9596 *      @port: physical port associated with the VI
9597 *      @pf: the PF owning the VI
9598 *      @vf: the VF owning the VI
9599 *      @mac: the MAC address of the VI
9600 *
9601 *      Allocates a virtual interface for the given physical port.  If @mac is
9602 *      not %NULL it contains the MAC address of the VI as assigned by FW.
9603 *      @mac should be large enough to hold an Ethernet address.
9604 *      Returns < 0 on error.
9605 */
9606int t4_init_portinfo(struct port_info *pi, int mbox,
9607                     int port, int pf, int vf, u8 mac[])
9608{
9609        struct adapter *adapter = pi->adapter;
9610        unsigned int fw_caps = adapter->params.fw_caps_support;
9611        struct fw_port_cmd cmd;
9612        unsigned int rss_size;
9613        enum fw_port_type port_type;
9614        int mdio_addr;
9615        fw_port_cap32_t pcaps, acaps;
9616        u8 vivld = 0, vin = 0;
9617        int ret;
9618
9619        /* If we haven't yet determined whether we're talking to Firmware
9620         * which knows the new 32-bit Port Capabilities, it's time to find
9621         * out now.  This will also tell new Firmware to send us Port Status
9622         * Updates using the new 32-bit Port Capabilities version of the
9623         * Port Information message.
9624         */
9625        if (fw_caps == FW_CAPS_UNKNOWN) {
9626                u32 param, val;
9627
9628                param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9629                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9630                val = 1;
9631                ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9632                fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9633                adapter->params.fw_caps_support = fw_caps;
9634        }
9635
9636        memset(&cmd, 0, sizeof(cmd));
9637        cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9638                                       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9639                                       FW_PORT_CMD_PORTID_V(port));
9640        cmd.action_to_len16 = cpu_to_be32(
9641                FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9642                                     ? FW_PORT_ACTION_GET_PORT_INFO
9643                                     : FW_PORT_ACTION_GET_PORT_INFO32) |
9644                FW_LEN16(cmd));
9645        ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9646        if (ret)
9647                return ret;
9648
9649        /* Extract the various fields from the Port Information message.
9650         */
9651        if (fw_caps == FW_CAPS16) {
9652                u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9653
9654                port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9655                mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9656                             ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9657                             : -1);
9658                pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9659                acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9660        } else {
9661                u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9662
9663                port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9664                mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9665                             ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9666                             : -1);
9667                pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9668                acaps = be32_to_cpu(cmd.u.info32.acaps32);
9669        }
9670
9671        ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9672                          &vivld, &vin);
9673        if (ret < 0)
9674                return ret;
9675
9676        pi->viid = ret;
9677        pi->tx_chan = port;
9678        pi->lport = port;
9679        pi->rss_size = rss_size;
9680        pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9681
9682        /* If fw supports returning the VIN as part of FW_VI_CMD,
9683         * save the returned values.
9684         */
9685        if (adapter->params.viid_smt_extn_support) {
9686                pi->vivld = vivld;
9687                pi->vin = vin;
9688        } else {
9689                /* Retrieve the values from VIID */
9690                pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9691                pi->vin =  FW_VIID_VIN_G(pi->viid);
9692        }
9693
9694        pi->port_type = port_type;
9695        pi->mdio_addr = mdio_addr;
9696        pi->mod_type = FW_PORT_MOD_TYPE_NA;
9697
9698        init_link_config(&pi->link_cfg, pcaps, acaps);
9699        return 0;
9700}
9701
9702int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9703{
9704        u8 addr[6];
9705        int ret, i, j = 0;
9706
9707        for_each_port(adap, i) {
9708                struct port_info *pi = adap2pinfo(adap, i);
9709
9710                while ((adap->params.portvec & (1 << j)) == 0)
9711                        j++;
9712
9713                ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9714                if (ret)
9715                        return ret;
9716
9717                memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9718                j++;
9719        }
9720        return 0;
9721}
9722
9723/**
9724 *      t4_read_cimq_cfg - read CIM queue configuration
9725 *      @adap: the adapter
9726 *      @base: holds the queue base addresses in bytes
9727 *      @size: holds the queue sizes in bytes
9728 *      @thres: holds the queue full thresholds in bytes
9729 *
9730 *      Returns the current configuration of the CIM queues, starting with
9731 *      the IBQs, then the OBQs.
9732 */
9733void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9734{
9735        unsigned int i, v;
9736        int cim_num_obq = is_t4(adap->params.chip) ?
9737                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9738
9739        for (i = 0; i < CIM_NUM_IBQ; i++) {
9740                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9741                             QUENUMSELECT_V(i));
9742                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9743                /* value is in 256-byte units */
9744                *base++ = CIMQBASE_G(v) * 256;
9745                *size++ = CIMQSIZE_G(v) * 256;
9746                *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9747        }
9748        for (i = 0; i < cim_num_obq; i++) {
9749                t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9750                             QUENUMSELECT_V(i));
9751                v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9752                /* value is in 256-byte units */
9753                *base++ = CIMQBASE_G(v) * 256;
9754                *size++ = CIMQSIZE_G(v) * 256;
9755        }
9756}
9757
9758/**
9759 *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9760 *      @adap: the adapter
9761 *      @qid: the queue index
9762 *      @data: where to store the queue contents
9763 *      @n: capacity of @data in 32-bit words
9764 *
9765 *      Reads the contents of the selected CIM queue starting at address 0 up
9766 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9767 *      error and the number of 32-bit words actually read on success.
9768 */
9769int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9770{
9771        int i, err, attempts;
9772        unsigned int addr;
9773        const unsigned int nwords = CIM_IBQ_SIZE * 4;
9774
9775        if (qid > 5 || (n & 3))
9776                return -EINVAL;
9777
9778        addr = qid * nwords;
9779        if (n > nwords)
9780                n = nwords;
9781
9782        /* It might take 3-10ms before the IBQ debug read access is allowed.
9783         * Wait for 1 Sec with a delay of 1 usec.
9784         */
9785        attempts = 1000000;
9786
9787        for (i = 0; i < n; i++, addr++) {
9788                t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9789                             IBQDBGEN_F);
9790                err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9791                                      attempts, 1);
9792                if (err)
9793                        return err;
9794                *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9795        }
9796        t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9797        return i;
9798}
9799
9800/**
9801 *      t4_read_cim_obq - read the contents of a CIM outbound queue
9802 *      @adap: the adapter
9803 *      @qid: the queue index
9804 *      @data: where to store the queue contents
9805 *      @n: capacity of @data in 32-bit words
9806 *
9807 *      Reads the contents of the selected CIM queue starting at address 0 up
9808 *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9809 *      error and the number of 32-bit words actually read on success.
9810 */
9811int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9812{
9813        int i, err;
9814        unsigned int addr, v, nwords;
9815        int cim_num_obq = is_t4(adap->params.chip) ?
9816                                CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9817
9818        if ((qid > (cim_num_obq - 1)) || (n & 3))
9819                return -EINVAL;
9820
9821        t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9822                     QUENUMSELECT_V(qid));
9823        v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9824
9825        addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9826        nwords = CIMQSIZE_G(v) * 64;  /* same */
9827        if (n > nwords)
9828                n = nwords;
9829
9830        for (i = 0; i < n; i++, addr++) {
9831                t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9832                             OBQDBGEN_F);
9833                err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9834                                      2, 1);
9835                if (err)
9836                        return err;
9837                *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9838        }
9839        t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9840        return i;
9841}
9842
9843/**
9844 *      t4_cim_read - read a block from CIM internal address space
9845 *      @adap: the adapter
9846 *      @addr: the start address within the CIM address space
9847 *      @n: number of words to read
9848 *      @valp: where to store the result
9849 *
9850 *      Reads a block of 4-byte words from the CIM intenal address space.
9851 */
9852int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9853                unsigned int *valp)
9854{
9855        int ret = 0;
9856
9857        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9858                return -EBUSY;
9859
9860        for ( ; !ret && n--; addr += 4) {
9861                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9862                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9863                                      0, 5, 2);
9864                if (!ret)
9865                        *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9866        }
9867        return ret;
9868}
9869
9870/**
9871 *      t4_cim_write - write a block into CIM internal address space
9872 *      @adap: the adapter
9873 *      @addr: the start address within the CIM address space
9874 *      @n: number of words to write
9875 *      @valp: set of values to write
9876 *
9877 *      Writes a block of 4-byte words into the CIM intenal address space.
9878 */
9879int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9880                 const unsigned int *valp)
9881{
9882        int ret = 0;
9883
9884        if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9885                return -EBUSY;
9886
9887        for ( ; !ret && n--; addr += 4) {
9888                t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9889                t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9890                ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9891                                      0, 5, 2);
9892        }
9893        return ret;
9894}
9895
9896static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9897                         unsigned int val)
9898{
9899        return t4_cim_write(adap, addr, 1, &val);
9900}
9901
9902/**
9903 *      t4_cim_read_la - read CIM LA capture buffer
9904 *      @adap: the adapter
9905 *      @la_buf: where to store the LA data
9906 *      @wrptr: the HW write pointer within the capture buffer
9907 *
9908 *      Reads the contents of the CIM LA buffer with the most recent entry at
9909 *      the end of the returned data and with the entry at @wrptr first.
9910 *      We try to leave the LA in the running state we find it in.
9911 */
9912int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9913{
9914        int i, ret;
9915        unsigned int cfg, val, idx;
9916
9917        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9918        if (ret)
9919                return ret;
9920
9921        if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9922                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9923                if (ret)
9924                        return ret;
9925        }
9926
9927        ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9928        if (ret)
9929                goto restart;
9930
9931        idx = UPDBGLAWRPTR_G(val);
9932        if (wrptr)
9933                *wrptr = idx;
9934
9935        for (i = 0; i < adap->params.cim_la_size; i++) {
9936                ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9937                                    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9938                if (ret)
9939                        break;
9940                ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9941                if (ret)
9942                        break;
9943                if (val & UPDBGLARDEN_F) {
9944                        ret = -ETIMEDOUT;
9945                        break;
9946                }
9947                ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9948                if (ret)
9949                        break;
9950
9951                /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9952                 * identify the 32-bit portion of the full 312-bit data
9953                 */
9954                if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9955                        idx = (idx & 0xff0) + 0x10;
9956                else
9957                        idx++;
9958                /* address can't exceed 0xfff */
9959                idx &= UPDBGLARDPTR_M;
9960        }
9961restart:
9962        if (cfg & UPDBGLAEN_F) {
9963                int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9964                                      cfg & ~UPDBGLARDEN_F);
9965                if (!ret)
9966                        ret = r;
9967        }
9968        return ret;
9969}
9970
9971/**
9972 *      t4_tp_read_la - read TP LA capture buffer
9973 *      @adap: the adapter
9974 *      @la_buf: where to store the LA data
9975 *      @wrptr: the HW write pointer within the capture buffer
9976 *
9977 *      Reads the contents of the TP LA buffer with the most recent entry at
9978 *      the end of the returned data and with the entry at @wrptr first.
9979 *      We leave the LA in the running state we find it in.
9980 */
9981void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9982{
9983        bool last_incomplete;
9984        unsigned int i, cfg, val, idx;
9985
9986        cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9987        if (cfg & DBGLAENABLE_F)                        /* freeze LA */
9988                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9989                             adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9990
9991        val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9992        idx = DBGLAWPTR_G(val);
9993        last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9994        if (last_incomplete)
9995                idx = (idx + 1) & DBGLARPTR_M;
9996        if (wrptr)
9997                *wrptr = idx;
9998
9999        val &= 0xffff;
10000        val &= ~DBGLARPTR_V(DBGLARPTR_M);
10001        val |= adap->params.tp.la_mask;
10002
10003        for (i = 0; i < TPLA_SIZE; i++) {
10004                t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10005                la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10006                idx = (idx + 1) & DBGLARPTR_M;
10007        }
10008
10009        /* Wipe out last entry if it isn't valid */
10010        if (last_incomplete)
10011                la_buf[TPLA_SIZE - 1] = ~0ULL;
10012
10013        if (cfg & DBGLAENABLE_F)                    /* restore running state */
10014                t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10015                             cfg | adap->params.tp.la_mask);
10016}
10017
10018/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10019 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10020 * state for more than the Warning Threshold then we'll issue a warning about
10021 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10022 * appears to be hung every Warning Repeat second till the situation clears.
10023 * If the situation clears, we'll note that as well.
10024 */
10025#define SGE_IDMA_WARN_THRESH 1
10026#define SGE_IDMA_WARN_REPEAT 300
10027
10028/**
10029 *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10030 *      @adapter: the adapter
10031 *      @idma: the adapter IDMA Monitor state
10032 *
10033 *      Initialize the state of an SGE Ingress DMA Monitor.
10034 */
10035void t4_idma_monitor_init(struct adapter *adapter,
10036                          struct sge_idma_monitor_state *idma)
10037{
10038        /* Initialize the state variables for detecting an SGE Ingress DMA
10039         * hang.  The SGE has internal counters which count up on each clock
10040         * tick whenever the SGE finds its Ingress DMA State Engines in the
10041         * same state they were on the previous clock tick.  The clock used is
10042         * the Core Clock so we have a limit on the maximum "time" they can
10043         * record; typically a very small number of seconds.  For instance,
10044         * with a 600MHz Core Clock, we can only count up to a bit more than
10045         * 7s.  So we'll synthesize a larger counter in order to not run the
10046         * risk of having the "timers" overflow and give us the flexibility to
10047         * maintain a Hung SGE State Machine of our own which operates across
10048         * a longer time frame.
10049         */
10050        idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10051        idma->idma_stalled[0] = 0;
10052        idma->idma_stalled[1] = 0;
10053}
10054
10055/**
10056 *      t4_idma_monitor - monitor SGE Ingress DMA state
10057 *      @adapter: the adapter
10058 *      @idma: the adapter IDMA Monitor state
10059 *      @hz: number of ticks/second
10060 *      @ticks: number of ticks since the last IDMA Monitor call
10061 */
10062void t4_idma_monitor(struct adapter *adapter,
10063                     struct sge_idma_monitor_state *idma,
10064                     int hz, int ticks)
10065{
10066        int i, idma_same_state_cnt[2];
10067
10068         /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10069          * are counters inside the SGE which count up on each clock when the
10070          * SGE finds its Ingress DMA State Engines in the same states they
10071          * were in the previous clock.  The counters will peg out at
10072          * 0xffffffff without wrapping around so once they pass the 1s
10073          * threshold they'll stay above that till the IDMA state changes.
10074          */
10075        t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10076        idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10077        idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10078
10079        for (i = 0; i < 2; i++) {
10080                u32 debug0, debug11;
10081
10082                /* If the Ingress DMA Same State Counter ("timer") is less
10083                 * than 1s, then we can reset our synthesized Stall Timer and
10084                 * continue.  If we have previously emitted warnings about a
10085                 * potential stalled Ingress Queue, issue a note indicating
10086                 * that the Ingress Queue has resumed forward progress.
10087                 */
10088                if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10089                        if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10090                                dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10091                                         "resumed after %d seconds\n",
10092                                         i, idma->idma_qid[i],
10093                                         idma->idma_stalled[i] / hz);
10094                        idma->idma_stalled[i] = 0;
10095                        continue;
10096                }
10097
10098                /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10099                 * domain.  The first time we get here it'll be because we
10100                 * passed the 1s Threshold; each additional time it'll be
10101                 * because the RX Timer Callback is being fired on its regular
10102                 * schedule.
10103                 *
10104                 * If the stall is below our Potential Hung Ingress Queue
10105                 * Warning Threshold, continue.
10106                 */
10107                if (idma->idma_stalled[i] == 0) {
10108                        idma->idma_stalled[i] = hz;
10109                        idma->idma_warn[i] = 0;
10110                } else {
10111                        idma->idma_stalled[i] += ticks;
10112                        idma->idma_warn[i] -= ticks;
10113                }
10114
10115                if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10116                        continue;
10117
10118                /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10119                 */
10120                if (idma->idma_warn[i] > 0)
10121                        continue;
10122                idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10123
10124                /* Read and save the SGE IDMA State and Queue ID information.
10125                 * We do this every time in case it changes across time ...
10126                 * can't be too careful ...
10127                 */
10128                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10129                debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10130                idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10131
10132                t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10133                debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10134                idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10135
10136                dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10137                         "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10138                         i, idma->idma_qid[i], idma->idma_state[i],
10139                         idma->idma_stalled[i] / hz,
10140                         debug0, debug11);
10141                t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10142        }
10143}
10144
10145/**
10146 *      t4_load_cfg - download config file
10147 *      @adap: the adapter
10148 *      @cfg_data: the cfg text file to write
10149 *      @size: text file size
10150 *
10151 *      Write the supplied config text file to the card's serial flash.
10152 */
10153int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10154{
10155        int ret, i, n, cfg_addr;
10156        unsigned int addr;
10157        unsigned int flash_cfg_start_sec;
10158        unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10159
10160        cfg_addr = t4_flash_cfg_addr(adap);
10161        if (cfg_addr < 0)
10162                return cfg_addr;
10163
10164        addr = cfg_addr;
10165        flash_cfg_start_sec = addr / SF_SEC_SIZE;
10166
10167        if (size > FLASH_CFG_MAX_SIZE) {
10168                dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10169                        FLASH_CFG_MAX_SIZE);
10170                return -EFBIG;
10171        }
10172
10173        i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10174                         sf_sec_size);
10175        ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10176                                     flash_cfg_start_sec + i - 1);
10177        /* If size == 0 then we're simply erasing the FLASH sectors associated
10178         * with the on-adapter Firmware Configuration File.
10179         */
10180        if (ret || size == 0)
10181                goto out;
10182
10183        /* this will write to the flash up to SF_PAGE_SIZE at a time */
10184        for (i = 0; i < size; i += SF_PAGE_SIZE) {
10185                if ((size - i) <  SF_PAGE_SIZE)
10186                        n = size - i;
10187                else
10188                        n = SF_PAGE_SIZE;
10189                ret = t4_write_flash(adap, addr, n, cfg_data);
10190                if (ret)
10191                        goto out;
10192
10193                addr += SF_PAGE_SIZE;
10194                cfg_data += SF_PAGE_SIZE;
10195        }
10196
10197out:
10198        if (ret)
10199                dev_err(adap->pdev_dev, "config file %s failed %d\n",
10200                        (size == 0 ? "clear" : "download"), ret);
10201        return ret;
10202}
10203
10204/**
10205 *      t4_set_vf_mac - Set MAC address for the specified VF
10206 *      @adapter: The adapter
10207 *      @vf: one of the VFs instantiated by the specified PF
10208 *      @naddr: the number of MAC addresses
10209 *      @addr: the MAC address(es) to be set to the specified VF
10210 */
10211int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10212                      unsigned int naddr, u8 *addr)
10213{
10214        struct fw_acl_mac_cmd cmd;
10215
10216        memset(&cmd, 0, sizeof(cmd));
10217        cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10218                                    FW_CMD_REQUEST_F |
10219                                    FW_CMD_WRITE_F |
10220                                    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10221                                    FW_ACL_MAC_CMD_VFN_V(vf));
10222
10223        /* Note: Do not enable the ACL */
10224        cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10225        cmd.nmac = naddr;
10226
10227        switch (adapter->pf) {
10228        case 3:
10229                memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10230                break;
10231        case 2:
10232                memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10233                break;
10234        case 1:
10235                memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10236                break;
10237        case 0:
10238                memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10239                break;
10240        }
10241
10242        return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10243}
10244
10245/**
10246 * t4_read_pace_tbl - read the pace table
10247 * @adap: the adapter
10248 * @pace_vals: holds the returned values
10249 *
10250 * Returns the values of TP's pace table in microseconds.
10251 */
10252void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10253{
10254        unsigned int i, v;
10255
10256        for (i = 0; i < NTX_SCHED; i++) {
10257                t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10258                v = t4_read_reg(adap, TP_PACE_TABLE_A);
10259                pace_vals[i] = dack_ticks_to_usec(adap, v);
10260        }
10261}
10262
10263/**
10264 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10265 * @adap: the adapter
10266 * @sched: the scheduler index
10267 * @kbps: the byte rate in Kbps
10268 * @ipg: the interpacket delay in tenths of nanoseconds
10269 * @sleep_ok: if true we may sleep while awaiting command completion
10270 *
10271 * Return the current configuration of a HW Tx scheduler.
10272 */
10273void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10274                     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10275{
10276        unsigned int v, addr, bpt, cpt;
10277
10278        if (kbps) {
10279                addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10280                t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10281                if (sched & 1)
10282                        v >>= 16;
10283                bpt = (v >> 8) & 0xff;
10284                cpt = v & 0xff;
10285                if (!cpt) {
10286                        *kbps = 0;      /* scheduler disabled */
10287                } else {
10288                        v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10289                        *kbps = (v * bpt) / 125;
10290                }
10291        }
10292        if (ipg) {
10293                addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10294                t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10295                if (sched & 1)
10296                        v >>= 16;
10297                v &= 0xffff;
10298                *ipg = (10000 * v) / core_ticks_per_usec(adap);
10299        }
10300}
10301
10302/* t4_sge_ctxt_rd - read an SGE context through FW
10303 * @adap: the adapter
10304 * @mbox: mailbox to use for the FW command
10305 * @cid: the context id
10306 * @ctype: the context type
10307 * @data: where to store the context data
10308 *
10309 * Issues a FW command through the given mailbox to read an SGE context.
10310 */
10311int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10312                   enum ctxt_type ctype, u32 *data)
10313{
10314        struct fw_ldst_cmd c;
10315        int ret;
10316
10317        if (ctype == CTXT_FLM)
10318                ret = FW_LDST_ADDRSPC_SGE_FLMC;
10319        else
10320                ret = FW_LDST_ADDRSPC_SGE_CONMC;
10321
10322        memset(&c, 0, sizeof(c));
10323        c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10324                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
10325                                        FW_LDST_CMD_ADDRSPACE_V(ret));
10326        c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10327        c.u.idctxt.physid = cpu_to_be32(cid);
10328
10329        ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10330        if (ret == 0) {
10331                data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10332                data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10333                data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10334                data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10335                data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10336                data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10337        }
10338        return ret;
10339}
10340
10341/**
10342 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10343 * @adap: the adapter
10344 * @cid: the context id
10345 * @ctype: the context type
10346 * @data: where to store the context data
10347 *
10348 * Reads an SGE context directly, bypassing FW.  This is only for
10349 * debugging when FW is unavailable.
10350 */
10351int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10352                      enum ctxt_type ctype, u32 *data)
10353{
10354        int i, ret;
10355
10356        t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10357        ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10358        if (!ret)
10359                for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10360                        *data++ = t4_read_reg(adap, i);
10361        return ret;
10362}
10363
10364int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10365                    int rateunit, int ratemode, int channel, int class,
10366                    int minrate, int maxrate, int weight, int pktsize)
10367{
10368        struct fw_sched_cmd cmd;
10369
10370        memset(&cmd, 0, sizeof(cmd));
10371        cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10372                                      FW_CMD_REQUEST_F |
10373                                      FW_CMD_WRITE_F);
10374        cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10375
10376        cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10377        cmd.u.params.type = type;
10378        cmd.u.params.level = level;
10379        cmd.u.params.mode = mode;
10380        cmd.u.params.ch = channel;
10381        cmd.u.params.cl = class;
10382        cmd.u.params.unit = rateunit;
10383        cmd.u.params.rate = ratemode;
10384        cmd.u.params.min = cpu_to_be32(minrate);
10385        cmd.u.params.max = cpu_to_be32(maxrate);
10386        cmd.u.params.weight = cpu_to_be16(weight);
10387        cmd.u.params.pktsize = cpu_to_be16(pktsize);
10388
10389        return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10390                               NULL, 1);
10391}
10392
10393/**
10394 *      t4_i2c_rd - read I2C data from adapter
10395 *      @adap: the adapter
10396 *      @port: Port number if per-port device; <0 if not
10397 *      @devid: per-port device ID or absolute device ID
10398 *      @offset: byte offset into device I2C space
10399 *      @len: byte length of I2C space data
10400 *      @buf: buffer in which to return I2C data
10401 *
10402 *      Reads the I2C data from the indicated device and location.
10403 */
10404int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10405              unsigned int devid, unsigned int offset,
10406              unsigned int len, u8 *buf)
10407{
10408        struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10409        unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10410        int ret = 0;
10411
10412        if (len > I2C_PAGE_SIZE)
10413                return -EINVAL;
10414
10415        /* Dont allow reads that spans multiple pages */
10416        if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10417                return -EINVAL;
10418
10419        memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10420        ldst_cmd.op_to_addrspace =
10421                cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10422                            FW_CMD_REQUEST_F |
10423                            FW_CMD_READ_F |
10424                            FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10425        ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10426        ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10427        ldst_cmd.u.i2c.did = devid;
10428
10429        while (len > 0) {
10430                unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10431
10432                ldst_cmd.u.i2c.boffset = offset;
10433                ldst_cmd.u.i2c.blen = i2c_len;
10434
10435                ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10436                                 &ldst_rpl);
10437                if (ret)
10438                        break;
10439
10440                memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10441                offset += i2c_len;
10442                buf += i2c_len;
10443                len -= i2c_len;
10444        }
10445
10446        return ret;
10447}
10448
10449/**
10450 *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10451 *      @adapter: the adapter
10452 *      @mbox: mailbox to use for the FW command
10453 *      @vf: one of the VFs instantiated by the specified PF
10454 *      @vlan: The vlanid to be set
10455 */
10456int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10457                    u16 vlan)
10458{
10459        struct fw_acl_vlan_cmd vlan_cmd;
10460        unsigned int enable;
10461
10462        enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10463        memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10464        vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10465                                         FW_CMD_REQUEST_F |
10466                                         FW_CMD_WRITE_F |
10467                                         FW_CMD_EXEC_F |
10468                                         FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10469                                         FW_ACL_VLAN_CMD_VFN_V(vf));
10470        vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10471        /* Drop all packets that donot match vlan id */
10472        vlan_cmd.dropnovlan_fm = (enable
10473                                  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10474                                     FW_ACL_VLAN_CMD_FM_F) : 0);
10475        if (enable != 0) {
10476                vlan_cmd.nvlan = 1;
10477                vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10478        }
10479
10480        return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10481}
10482