linux/drivers/net/ethernet/freescale/gianfar.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61#define DEBUG
  62
  63#include <linux/kernel.h>
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
  79#include <linux/of_platform.h>
  80#include <linux/ip.h>
  81#include <linux/tcp.h>
  82#include <linux/udp.h>
  83#include <linux/in.h>
  84#include <linux/net_tstamp.h>
  85
  86#include <asm/io.h>
  87#ifdef CONFIG_PPC
  88#include <asm/reg.h>
  89#include <asm/mpc85xx.h>
  90#endif
  91#include <asm/irq.h>
  92#include <linux/uaccess.h>
  93#include <linux/module.h>
  94#include <linux/dma-mapping.h>
  95#include <linux/crc32.h>
  96#include <linux/mii.h>
  97#include <linux/phy.h>
  98#include <linux/phy_fixed.h>
  99#include <linux/of.h>
 100#include <linux/of_net.h>
 101
 102#include "gianfar.h"
 103
 104#define TX_TIMEOUT      (5*HZ)
 105
 106MODULE_AUTHOR("Freescale Semiconductor, Inc");
 107MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 108MODULE_LICENSE("GPL");
 109
 110static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 111                            dma_addr_t buf)
 112{
 113        u32 lstatus;
 114
 115        bdp->bufPtr = cpu_to_be32(buf);
 116
 117        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 118        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 119                lstatus |= BD_LFLAG(RXBD_WRAP);
 120
 121        gfar_wmb();
 122
 123        bdp->lstatus = cpu_to_be32(lstatus);
 124}
 125
 126static void gfar_init_tx_rx_base(struct gfar_private *priv)
 127{
 128        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 129        u32 __iomem *baddr;
 130        int i;
 131
 132        baddr = &regs->tbase0;
 133        for (i = 0; i < priv->num_tx_queues; i++) {
 134                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 135                baddr += 2;
 136        }
 137
 138        baddr = &regs->rbase0;
 139        for (i = 0; i < priv->num_rx_queues; i++) {
 140                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 141                baddr += 2;
 142        }
 143}
 144
 145static void gfar_init_rqprm(struct gfar_private *priv)
 146{
 147        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 148        u32 __iomem *baddr;
 149        int i;
 150
 151        baddr = &regs->rqprm0;
 152        for (i = 0; i < priv->num_rx_queues; i++) {
 153                gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 154                           (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 155                baddr++;
 156        }
 157}
 158
 159static void gfar_rx_offload_en(struct gfar_private *priv)
 160{
 161        /* set this when rx hw offload (TOE) functions are being used */
 162        priv->uses_rxfcb = 0;
 163
 164        if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 165                priv->uses_rxfcb = 1;
 166
 167        if (priv->hwts_rx_en || priv->rx_filer_enable)
 168                priv->uses_rxfcb = 1;
 169}
 170
 171static void gfar_mac_rx_config(struct gfar_private *priv)
 172{
 173        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 174        u32 rctrl = 0;
 175
 176        if (priv->rx_filer_enable) {
 177                rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 178                /* Program the RIR0 reg with the required distribution */
 179                if (priv->poll_mode == GFAR_SQ_POLLING)
 180                        gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 181                else /* GFAR_MQ_POLLING */
 182                        gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 183        }
 184
 185        /* Restore PROMISC mode */
 186        if (priv->ndev->flags & IFF_PROMISC)
 187                rctrl |= RCTRL_PROM;
 188
 189        if (priv->ndev->features & NETIF_F_RXCSUM)
 190                rctrl |= RCTRL_CHECKSUMMING;
 191
 192        if (priv->extended_hash)
 193                rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 194
 195        if (priv->padding) {
 196                rctrl &= ~RCTRL_PAL_MASK;
 197                rctrl |= RCTRL_PADDING(priv->padding);
 198        }
 199
 200        /* Enable HW time stamping if requested from user space */
 201        if (priv->hwts_rx_en)
 202                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 203
 204        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 205                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 206
 207        /* Clear the LFC bit */
 208        gfar_write(&regs->rctrl, rctrl);
 209        /* Init flow control threshold values */
 210        gfar_init_rqprm(priv);
 211        gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 212        rctrl |= RCTRL_LFC;
 213
 214        /* Init rctrl based on our settings */
 215        gfar_write(&regs->rctrl, rctrl);
 216}
 217
 218static void gfar_mac_tx_config(struct gfar_private *priv)
 219{
 220        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 221        u32 tctrl = 0;
 222
 223        if (priv->ndev->features & NETIF_F_IP_CSUM)
 224                tctrl |= TCTRL_INIT_CSUM;
 225
 226        if (priv->prio_sched_en)
 227                tctrl |= TCTRL_TXSCHED_PRIO;
 228        else {
 229                tctrl |= TCTRL_TXSCHED_WRRS;
 230                gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 231                gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 232        }
 233
 234        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 235                tctrl |= TCTRL_VLINS;
 236
 237        gfar_write(&regs->tctrl, tctrl);
 238}
 239
 240static void gfar_configure_coalescing(struct gfar_private *priv,
 241                               unsigned long tx_mask, unsigned long rx_mask)
 242{
 243        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 244        u32 __iomem *baddr;
 245
 246        if (priv->mode == MQ_MG_MODE) {
 247                int i = 0;
 248
 249                baddr = &regs->txic0;
 250                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 251                        gfar_write(baddr + i, 0);
 252                        if (likely(priv->tx_queue[i]->txcoalescing))
 253                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
 254                }
 255
 256                baddr = &regs->rxic0;
 257                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 258                        gfar_write(baddr + i, 0);
 259                        if (likely(priv->rx_queue[i]->rxcoalescing))
 260                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 261                }
 262        } else {
 263                /* Backward compatible case -- even if we enable
 264                 * multiple queues, there's only single reg to program
 265                 */
 266                gfar_write(&regs->txic, 0);
 267                if (likely(priv->tx_queue[0]->txcoalescing))
 268                        gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 269
 270                gfar_write(&regs->rxic, 0);
 271                if (unlikely(priv->rx_queue[0]->rxcoalescing))
 272                        gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 273        }
 274}
 275
 276static void gfar_configure_coalescing_all(struct gfar_private *priv)
 277{
 278        gfar_configure_coalescing(priv, 0xFF, 0xFF);
 279}
 280
 281static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 282{
 283        struct gfar_private *priv = netdev_priv(dev);
 284        unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 285        unsigned long tx_packets = 0, tx_bytes = 0;
 286        int i;
 287
 288        for (i = 0; i < priv->num_rx_queues; i++) {
 289                rx_packets += priv->rx_queue[i]->stats.rx_packets;
 290                rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 291                rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 292        }
 293
 294        dev->stats.rx_packets = rx_packets;
 295        dev->stats.rx_bytes   = rx_bytes;
 296        dev->stats.rx_dropped = rx_dropped;
 297
 298        for (i = 0; i < priv->num_tx_queues; i++) {
 299                tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 300                tx_packets += priv->tx_queue[i]->stats.tx_packets;
 301        }
 302
 303        dev->stats.tx_bytes   = tx_bytes;
 304        dev->stats.tx_packets = tx_packets;
 305
 306        return &dev->stats;
 307}
 308
 309/* Set the appropriate hash bit for the given addr */
 310/* The algorithm works like so:
 311 * 1) Take the Destination Address (ie the multicast address), and
 312 * do a CRC on it (little endian), and reverse the bits of the
 313 * result.
 314 * 2) Use the 8 most significant bits as a hash into a 256-entry
 315 * table.  The table is controlled through 8 32-bit registers:
 316 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 317 * gaddr7.  This means that the 3 most significant bits in the
 318 * hash index which gaddr register to use, and the 5 other bits
 319 * indicate which bit (assuming an IBM numbering scheme, which
 320 * for PowerPC (tm) is usually the case) in the register holds
 321 * the entry.
 322 */
 323static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 324{
 325        u32 tempval;
 326        struct gfar_private *priv = netdev_priv(dev);
 327        u32 result = ether_crc(ETH_ALEN, addr);
 328        int width = priv->hash_width;
 329        u8 whichbit = (result >> (32 - width)) & 0x1f;
 330        u8 whichreg = result >> (32 - width + 5);
 331        u32 value = (1 << (31-whichbit));
 332
 333        tempval = gfar_read(priv->hash_regs[whichreg]);
 334        tempval |= value;
 335        gfar_write(priv->hash_regs[whichreg], tempval);
 336}
 337
 338/* There are multiple MAC Address register pairs on some controllers
 339 * This function sets the numth pair to a given address
 340 */
 341static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 342                                  const u8 *addr)
 343{
 344        struct gfar_private *priv = netdev_priv(dev);
 345        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 346        u32 tempval;
 347        u32 __iomem *macptr = &regs->macstnaddr1;
 348
 349        macptr += num*2;
 350
 351        /* For a station address of 0x12345678ABCD in transmission
 352         * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 353         * MACnADDR2 is set to 0x34120000.
 354         */
 355        tempval = (addr[5] << 24) | (addr[4] << 16) |
 356                  (addr[3] << 8)  |  addr[2];
 357
 358        gfar_write(macptr, tempval);
 359
 360        tempval = (addr[1] << 24) | (addr[0] << 16);
 361
 362        gfar_write(macptr+1, tempval);
 363}
 364
 365static int gfar_set_mac_addr(struct net_device *dev, void *p)
 366{
 367        eth_mac_addr(dev, p);
 368
 369        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 370
 371        return 0;
 372}
 373
 374static void gfar_ints_disable(struct gfar_private *priv)
 375{
 376        int i;
 377        for (i = 0; i < priv->num_grps; i++) {
 378                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 379                /* Clear IEVENT */
 380                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 381
 382                /* Initialize IMASK */
 383                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 384        }
 385}
 386
 387static void gfar_ints_enable(struct gfar_private *priv)
 388{
 389        int i;
 390        for (i = 0; i < priv->num_grps; i++) {
 391                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 392                /* Unmask the interrupts we look for */
 393                gfar_write(&regs->imask, IMASK_DEFAULT);
 394        }
 395}
 396
 397static int gfar_alloc_tx_queues(struct gfar_private *priv)
 398{
 399        int i;
 400
 401        for (i = 0; i < priv->num_tx_queues; i++) {
 402                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 403                                            GFP_KERNEL);
 404                if (!priv->tx_queue[i])
 405                        return -ENOMEM;
 406
 407                priv->tx_queue[i]->tx_skbuff = NULL;
 408                priv->tx_queue[i]->qindex = i;
 409                priv->tx_queue[i]->dev = priv->ndev;
 410                spin_lock_init(&(priv->tx_queue[i]->txlock));
 411        }
 412        return 0;
 413}
 414
 415static int gfar_alloc_rx_queues(struct gfar_private *priv)
 416{
 417        int i;
 418
 419        for (i = 0; i < priv->num_rx_queues; i++) {
 420                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 421                                            GFP_KERNEL);
 422                if (!priv->rx_queue[i])
 423                        return -ENOMEM;
 424
 425                priv->rx_queue[i]->qindex = i;
 426                priv->rx_queue[i]->ndev = priv->ndev;
 427        }
 428        return 0;
 429}
 430
 431static void gfar_free_tx_queues(struct gfar_private *priv)
 432{
 433        int i;
 434
 435        for (i = 0; i < priv->num_tx_queues; i++)
 436                kfree(priv->tx_queue[i]);
 437}
 438
 439static void gfar_free_rx_queues(struct gfar_private *priv)
 440{
 441        int i;
 442
 443        for (i = 0; i < priv->num_rx_queues; i++)
 444                kfree(priv->rx_queue[i]);
 445}
 446
 447static void unmap_group_regs(struct gfar_private *priv)
 448{
 449        int i;
 450
 451        for (i = 0; i < MAXGROUPS; i++)
 452                if (priv->gfargrp[i].regs)
 453                        iounmap(priv->gfargrp[i].regs);
 454}
 455
 456static void free_gfar_dev(struct gfar_private *priv)
 457{
 458        int i, j;
 459
 460        for (i = 0; i < priv->num_grps; i++)
 461                for (j = 0; j < GFAR_NUM_IRQS; j++) {
 462                        kfree(priv->gfargrp[i].irqinfo[j]);
 463                        priv->gfargrp[i].irqinfo[j] = NULL;
 464                }
 465
 466        free_netdev(priv->ndev);
 467}
 468
 469static void disable_napi(struct gfar_private *priv)
 470{
 471        int i;
 472
 473        for (i = 0; i < priv->num_grps; i++) {
 474                napi_disable(&priv->gfargrp[i].napi_rx);
 475                napi_disable(&priv->gfargrp[i].napi_tx);
 476        }
 477}
 478
 479static void enable_napi(struct gfar_private *priv)
 480{
 481        int i;
 482
 483        for (i = 0; i < priv->num_grps; i++) {
 484                napi_enable(&priv->gfargrp[i].napi_rx);
 485                napi_enable(&priv->gfargrp[i].napi_tx);
 486        }
 487}
 488
 489static int gfar_parse_group(struct device_node *np,
 490                            struct gfar_private *priv, const char *model)
 491{
 492        struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 493        int i;
 494
 495        for (i = 0; i < GFAR_NUM_IRQS; i++) {
 496                grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 497                                          GFP_KERNEL);
 498                if (!grp->irqinfo[i])
 499                        return -ENOMEM;
 500        }
 501
 502        grp->regs = of_iomap(np, 0);
 503        if (!grp->regs)
 504                return -ENOMEM;
 505
 506        gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 507
 508        /* If we aren't the FEC we have multiple interrupts */
 509        if (model && strcasecmp(model, "FEC")) {
 510                gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 511                gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 512                if (!gfar_irq(grp, TX)->irq ||
 513                    !gfar_irq(grp, RX)->irq ||
 514                    !gfar_irq(grp, ER)->irq)
 515                        return -EINVAL;
 516        }
 517
 518        grp->priv = priv;
 519        spin_lock_init(&grp->grplock);
 520        if (priv->mode == MQ_MG_MODE) {
 521                u32 rxq_mask, txq_mask;
 522                int ret;
 523
 524                grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 525                grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 526
 527                ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 528                if (!ret) {
 529                        grp->rx_bit_map = rxq_mask ?
 530                        rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 531                }
 532
 533                ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 534                if (!ret) {
 535                        grp->tx_bit_map = txq_mask ?
 536                        txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 537                }
 538
 539                if (priv->poll_mode == GFAR_SQ_POLLING) {
 540                        /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 541                        grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 542                        grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 543                }
 544        } else {
 545                grp->rx_bit_map = 0xFF;
 546                grp->tx_bit_map = 0xFF;
 547        }
 548
 549        /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 550         * right to left, so we need to revert the 8 bits to get the q index
 551         */
 552        grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 553        grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 554
 555        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 556         * also assign queues to groups
 557         */
 558        for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 559                if (!grp->rx_queue)
 560                        grp->rx_queue = priv->rx_queue[i];
 561                grp->num_rx_queues++;
 562                grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 563                priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 564                priv->rx_queue[i]->grp = grp;
 565        }
 566
 567        for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 568                if (!grp->tx_queue)
 569                        grp->tx_queue = priv->tx_queue[i];
 570                grp->num_tx_queues++;
 571                grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 572                priv->tqueue |= (TQUEUE_EN0 >> i);
 573                priv->tx_queue[i]->grp = grp;
 574        }
 575
 576        priv->num_grps++;
 577
 578        return 0;
 579}
 580
 581static int gfar_of_group_count(struct device_node *np)
 582{
 583        struct device_node *child;
 584        int num = 0;
 585
 586        for_each_available_child_of_node(np, child)
 587                if (of_node_name_eq(child, "queue-group"))
 588                        num++;
 589
 590        return num;
 591}
 592
 593/* Reads the controller's registers to determine what interface
 594 * connects it to the PHY.
 595 */
 596static phy_interface_t gfar_get_interface(struct net_device *dev)
 597{
 598        struct gfar_private *priv = netdev_priv(dev);
 599        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 600        u32 ecntrl;
 601
 602        ecntrl = gfar_read(&regs->ecntrl);
 603
 604        if (ecntrl & ECNTRL_SGMII_MODE)
 605                return PHY_INTERFACE_MODE_SGMII;
 606
 607        if (ecntrl & ECNTRL_TBI_MODE) {
 608                if (ecntrl & ECNTRL_REDUCED_MODE)
 609                        return PHY_INTERFACE_MODE_RTBI;
 610                else
 611                        return PHY_INTERFACE_MODE_TBI;
 612        }
 613
 614        if (ecntrl & ECNTRL_REDUCED_MODE) {
 615                if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 616                        return PHY_INTERFACE_MODE_RMII;
 617                }
 618                else {
 619                        phy_interface_t interface = priv->interface;
 620
 621                        /* This isn't autodetected right now, so it must
 622                         * be set by the device tree or platform code.
 623                         */
 624                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 625                                return PHY_INTERFACE_MODE_RGMII_ID;
 626
 627                        return PHY_INTERFACE_MODE_RGMII;
 628                }
 629        }
 630
 631        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 632                return PHY_INTERFACE_MODE_GMII;
 633
 634        return PHY_INTERFACE_MODE_MII;
 635}
 636
 637static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 638{
 639        const char *model;
 640        const void *mac_addr;
 641        int err = 0, i;
 642        phy_interface_t interface;
 643        struct net_device *dev = NULL;
 644        struct gfar_private *priv = NULL;
 645        struct device_node *np = ofdev->dev.of_node;
 646        struct device_node *child = NULL;
 647        u32 stash_len = 0;
 648        u32 stash_idx = 0;
 649        unsigned int num_tx_qs, num_rx_qs;
 650        unsigned short mode, poll_mode;
 651
 652        if (!np)
 653                return -ENODEV;
 654
 655        if (of_device_is_compatible(np, "fsl,etsec2")) {
 656                mode = MQ_MG_MODE;
 657                poll_mode = GFAR_SQ_POLLING;
 658        } else {
 659                mode = SQ_SG_MODE;
 660                poll_mode = GFAR_SQ_POLLING;
 661        }
 662
 663        if (mode == SQ_SG_MODE) {
 664                num_tx_qs = 1;
 665                num_rx_qs = 1;
 666        } else { /* MQ_MG_MODE */
 667                /* get the actual number of supported groups */
 668                unsigned int num_grps = gfar_of_group_count(np);
 669
 670                if (num_grps == 0 || num_grps > MAXGROUPS) {
 671                        dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 672                                num_grps);
 673                        pr_err("Cannot do alloc_etherdev, aborting\n");
 674                        return -EINVAL;
 675                }
 676
 677                if (poll_mode == GFAR_SQ_POLLING) {
 678                        num_tx_qs = num_grps; /* one txq per int group */
 679                        num_rx_qs = num_grps; /* one rxq per int group */
 680                } else { /* GFAR_MQ_POLLING */
 681                        u32 tx_queues, rx_queues;
 682                        int ret;
 683
 684                        /* parse the num of HW tx and rx queues */
 685                        ret = of_property_read_u32(np, "fsl,num_tx_queues",
 686                                                   &tx_queues);
 687                        num_tx_qs = ret ? 1 : tx_queues;
 688
 689                        ret = of_property_read_u32(np, "fsl,num_rx_queues",
 690                                                   &rx_queues);
 691                        num_rx_qs = ret ? 1 : rx_queues;
 692                }
 693        }
 694
 695        if (num_tx_qs > MAX_TX_QS) {
 696                pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 697                       num_tx_qs, MAX_TX_QS);
 698                pr_err("Cannot do alloc_etherdev, aborting\n");
 699                return -EINVAL;
 700        }
 701
 702        if (num_rx_qs > MAX_RX_QS) {
 703                pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 704                       num_rx_qs, MAX_RX_QS);
 705                pr_err("Cannot do alloc_etherdev, aborting\n");
 706                return -EINVAL;
 707        }
 708
 709        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 710        dev = *pdev;
 711        if (NULL == dev)
 712                return -ENOMEM;
 713
 714        priv = netdev_priv(dev);
 715        priv->ndev = dev;
 716
 717        priv->mode = mode;
 718        priv->poll_mode = poll_mode;
 719
 720        priv->num_tx_queues = num_tx_qs;
 721        netif_set_real_num_rx_queues(dev, num_rx_qs);
 722        priv->num_rx_queues = num_rx_qs;
 723
 724        err = gfar_alloc_tx_queues(priv);
 725        if (err)
 726                goto tx_alloc_failed;
 727
 728        err = gfar_alloc_rx_queues(priv);
 729        if (err)
 730                goto rx_alloc_failed;
 731
 732        err = of_property_read_string(np, "model", &model);
 733        if (err) {
 734                pr_err("Device model property missing, aborting\n");
 735                goto rx_alloc_failed;
 736        }
 737
 738        /* Init Rx queue filer rule set linked list */
 739        INIT_LIST_HEAD(&priv->rx_list.list);
 740        priv->rx_list.count = 0;
 741        mutex_init(&priv->rx_queue_access);
 742
 743        for (i = 0; i < MAXGROUPS; i++)
 744                priv->gfargrp[i].regs = NULL;
 745
 746        /* Parse and initialize group specific information */
 747        if (priv->mode == MQ_MG_MODE) {
 748                for_each_available_child_of_node(np, child) {
 749                        if (!of_node_name_eq(child, "queue-group"))
 750                                continue;
 751
 752                        err = gfar_parse_group(child, priv, model);
 753                        if (err)
 754                                goto err_grp_init;
 755                }
 756        } else { /* SQ_SG_MODE */
 757                err = gfar_parse_group(np, priv, model);
 758                if (err)
 759                        goto err_grp_init;
 760        }
 761
 762        if (of_property_read_bool(np, "bd-stash")) {
 763                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 764                priv->bd_stash_en = 1;
 765        }
 766
 767        err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 768
 769        if (err == 0)
 770                priv->rx_stash_size = stash_len;
 771
 772        err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 773
 774        if (err == 0)
 775                priv->rx_stash_index = stash_idx;
 776
 777        if (stash_len || stash_idx)
 778                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 779
 780        mac_addr = of_get_mac_address(np);
 781
 782        if (!IS_ERR(mac_addr))
 783                ether_addr_copy(dev->dev_addr, mac_addr);
 784
 785        if (model && !strcasecmp(model, "TSEC"))
 786                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 787                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 788                                     FSL_GIANFAR_DEV_HAS_RMON |
 789                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 790
 791        if (model && !strcasecmp(model, "eTSEC"))
 792                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 793                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 794                                     FSL_GIANFAR_DEV_HAS_RMON |
 795                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 796                                     FSL_GIANFAR_DEV_HAS_CSUM |
 797                                     FSL_GIANFAR_DEV_HAS_VLAN |
 798                                     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 799                                     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 800                                     FSL_GIANFAR_DEV_HAS_TIMER |
 801                                     FSL_GIANFAR_DEV_HAS_RX_FILER;
 802
 803        /* Use PHY connection type from the DT node if one is specified there.
 804         * rgmii-id really needs to be specified. Other types can be
 805         * detected by hardware
 806         */
 807        err = of_get_phy_mode(np, &interface);
 808        if (!err)
 809                priv->interface = interface;
 810        else
 811                priv->interface = gfar_get_interface(dev);
 812
 813        if (of_find_property(np, "fsl,magic-packet", NULL))
 814                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 815
 816        if (of_get_property(np, "fsl,wake-on-filer", NULL))
 817                priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 818
 819        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 820
 821        /* In the case of a fixed PHY, the DT node associated
 822         * to the PHY is the Ethernet MAC DT node.
 823         */
 824        if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 825                err = of_phy_register_fixed_link(np);
 826                if (err)
 827                        goto err_grp_init;
 828
 829                priv->phy_node = of_node_get(np);
 830        }
 831
 832        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 833        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 834
 835        return 0;
 836
 837err_grp_init:
 838        unmap_group_regs(priv);
 839rx_alloc_failed:
 840        gfar_free_rx_queues(priv);
 841tx_alloc_failed:
 842        gfar_free_tx_queues(priv);
 843        free_gfar_dev(priv);
 844        return err;
 845}
 846
 847static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 848                                   u32 class)
 849{
 850        u32 rqfpr = FPR_FILER_MASK;
 851        u32 rqfcr = 0x0;
 852
 853        rqfar--;
 854        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 855        priv->ftp_rqfpr[rqfar] = rqfpr;
 856        priv->ftp_rqfcr[rqfar] = rqfcr;
 857        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 858
 859        rqfar--;
 860        rqfcr = RQFCR_CMP_NOMATCH;
 861        priv->ftp_rqfpr[rqfar] = rqfpr;
 862        priv->ftp_rqfcr[rqfar] = rqfcr;
 863        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 864
 865        rqfar--;
 866        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 867        rqfpr = class;
 868        priv->ftp_rqfcr[rqfar] = rqfcr;
 869        priv->ftp_rqfpr[rqfar] = rqfpr;
 870        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 871
 872        rqfar--;
 873        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 874        rqfpr = class;
 875        priv->ftp_rqfcr[rqfar] = rqfcr;
 876        priv->ftp_rqfpr[rqfar] = rqfpr;
 877        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 878
 879        return rqfar;
 880}
 881
 882static void gfar_init_filer_table(struct gfar_private *priv)
 883{
 884        int i = 0x0;
 885        u32 rqfar = MAX_FILER_IDX;
 886        u32 rqfcr = 0x0;
 887        u32 rqfpr = FPR_FILER_MASK;
 888
 889        /* Default rule */
 890        rqfcr = RQFCR_CMP_MATCH;
 891        priv->ftp_rqfcr[rqfar] = rqfcr;
 892        priv->ftp_rqfpr[rqfar] = rqfpr;
 893        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 894
 895        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 896        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 897        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 898        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 899        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 900        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 901
 902        /* cur_filer_idx indicated the first non-masked rule */
 903        priv->cur_filer_idx = rqfar;
 904
 905        /* Rest are masked rules */
 906        rqfcr = RQFCR_CMP_NOMATCH;
 907        for (i = 0; i < rqfar; i++) {
 908                priv->ftp_rqfcr[i] = rqfcr;
 909                priv->ftp_rqfpr[i] = rqfpr;
 910                gfar_write_filer(priv, i, rqfcr, rqfpr);
 911        }
 912}
 913
 914#ifdef CONFIG_PPC
 915static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 916{
 917        unsigned int pvr = mfspr(SPRN_PVR);
 918        unsigned int svr = mfspr(SPRN_SVR);
 919        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 920        unsigned int rev = svr & 0xffff;
 921
 922        /* MPC8313 Rev 2.0 and higher; All MPC837x */
 923        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 924            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 925                priv->errata |= GFAR_ERRATA_74;
 926
 927        /* MPC8313 and MPC837x all rev */
 928        if ((pvr == 0x80850010 && mod == 0x80b0) ||
 929            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 930                priv->errata |= GFAR_ERRATA_76;
 931
 932        /* MPC8313 Rev < 2.0 */
 933        if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 934                priv->errata |= GFAR_ERRATA_12;
 935}
 936
 937static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 938{
 939        unsigned int svr = mfspr(SPRN_SVR);
 940
 941        if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 942                priv->errata |= GFAR_ERRATA_12;
 943        /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 944        if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 945            ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 946            ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 947                priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 948}
 949#endif
 950
 951static void gfar_detect_errata(struct gfar_private *priv)
 952{
 953        struct device *dev = &priv->ofdev->dev;
 954
 955        /* no plans to fix */
 956        priv->errata |= GFAR_ERRATA_A002;
 957
 958#ifdef CONFIG_PPC
 959        if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 960                __gfar_detect_errata_85xx(priv);
 961        else /* non-mpc85xx parts, i.e. e300 core based */
 962                __gfar_detect_errata_83xx(priv);
 963#endif
 964
 965        if (priv->errata)
 966                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 967                         priv->errata);
 968}
 969
 970static void gfar_init_addr_hash_table(struct gfar_private *priv)
 971{
 972        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 973
 974        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 975                priv->extended_hash = 1;
 976                priv->hash_width = 9;
 977
 978                priv->hash_regs[0] = &regs->igaddr0;
 979                priv->hash_regs[1] = &regs->igaddr1;
 980                priv->hash_regs[2] = &regs->igaddr2;
 981                priv->hash_regs[3] = &regs->igaddr3;
 982                priv->hash_regs[4] = &regs->igaddr4;
 983                priv->hash_regs[5] = &regs->igaddr5;
 984                priv->hash_regs[6] = &regs->igaddr6;
 985                priv->hash_regs[7] = &regs->igaddr7;
 986                priv->hash_regs[8] = &regs->gaddr0;
 987                priv->hash_regs[9] = &regs->gaddr1;
 988                priv->hash_regs[10] = &regs->gaddr2;
 989                priv->hash_regs[11] = &regs->gaddr3;
 990                priv->hash_regs[12] = &regs->gaddr4;
 991                priv->hash_regs[13] = &regs->gaddr5;
 992                priv->hash_regs[14] = &regs->gaddr6;
 993                priv->hash_regs[15] = &regs->gaddr7;
 994
 995        } else {
 996                priv->extended_hash = 0;
 997                priv->hash_width = 8;
 998
 999                priv->hash_regs[0] = &regs->gaddr0;
1000                priv->hash_regs[1] = &regs->gaddr1;
1001                priv->hash_regs[2] = &regs->gaddr2;
1002                priv->hash_regs[3] = &regs->gaddr3;
1003                priv->hash_regs[4] = &regs->gaddr4;
1004                priv->hash_regs[5] = &regs->gaddr5;
1005                priv->hash_regs[6] = &regs->gaddr6;
1006                priv->hash_regs[7] = &regs->gaddr7;
1007        }
1008}
1009
1010static int __gfar_is_rx_idle(struct gfar_private *priv)
1011{
1012        u32 res;
1013
1014        /* Normaly TSEC should not hang on GRS commands, so we should
1015         * actually wait for IEVENT_GRSC flag.
1016         */
1017        if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1018                return 0;
1019
1020        /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1021         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1022         * and the Rx can be safely reset.
1023         */
1024        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1025        res &= 0x7f807f80;
1026        if ((res & 0xffff) == (res >> 16))
1027                return 1;
1028
1029        return 0;
1030}
1031
1032/* Halt the receive and transmit queues */
1033static void gfar_halt_nodisable(struct gfar_private *priv)
1034{
1035        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1036        u32 tempval;
1037        unsigned int timeout;
1038        int stopped;
1039
1040        gfar_ints_disable(priv);
1041
1042        if (gfar_is_dma_stopped(priv))
1043                return;
1044
1045        /* Stop the DMA, and wait for it to stop */
1046        tempval = gfar_read(&regs->dmactrl);
1047        tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1048        gfar_write(&regs->dmactrl, tempval);
1049
1050retry:
1051        timeout = 1000;
1052        while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1053                cpu_relax();
1054                timeout--;
1055        }
1056
1057        if (!timeout)
1058                stopped = gfar_is_dma_stopped(priv);
1059
1060        if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1061            !__gfar_is_rx_idle(priv))
1062                goto retry;
1063}
1064
1065/* Halt the receive and transmit queues */
1066static void gfar_halt(struct gfar_private *priv)
1067{
1068        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1069        u32 tempval;
1070
1071        /* Dissable the Rx/Tx hw queues */
1072        gfar_write(&regs->rqueue, 0);
1073        gfar_write(&regs->tqueue, 0);
1074
1075        mdelay(10);
1076
1077        gfar_halt_nodisable(priv);
1078
1079        /* Disable Rx/Tx DMA */
1080        tempval = gfar_read(&regs->maccfg1);
1081        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1082        gfar_write(&regs->maccfg1, tempval);
1083}
1084
1085static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1086{
1087        struct txbd8 *txbdp;
1088        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1089        int i, j;
1090
1091        txbdp = tx_queue->tx_bd_base;
1092
1093        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1094                if (!tx_queue->tx_skbuff[i])
1095                        continue;
1096
1097                dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1098                                 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1099                txbdp->lstatus = 0;
1100                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1101                     j++) {
1102                        txbdp++;
1103                        dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104                                       be16_to_cpu(txbdp->length),
1105                                       DMA_TO_DEVICE);
1106                }
1107                txbdp++;
1108                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1109                tx_queue->tx_skbuff[i] = NULL;
1110        }
1111        kfree(tx_queue->tx_skbuff);
1112        tx_queue->tx_skbuff = NULL;
1113}
1114
1115static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1116{
1117        int i;
1118
1119        struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1120
1121        dev_kfree_skb(rx_queue->skb);
1122
1123        for (i = 0; i < rx_queue->rx_ring_size; i++) {
1124                struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1125
1126                rxbdp->lstatus = 0;
1127                rxbdp->bufPtr = 0;
1128                rxbdp++;
1129
1130                if (!rxb->page)
1131                        continue;
1132
1133                dma_unmap_page(rx_queue->dev, rxb->dma,
1134                               PAGE_SIZE, DMA_FROM_DEVICE);
1135                __free_page(rxb->page);
1136
1137                rxb->page = NULL;
1138        }
1139
1140        kfree(rx_queue->rx_buff);
1141        rx_queue->rx_buff = NULL;
1142}
1143
1144/* If there are any tx skbs or rx skbs still around, free them.
1145 * Then free tx_skbuff and rx_skbuff
1146 */
1147static void free_skb_resources(struct gfar_private *priv)
1148{
1149        struct gfar_priv_tx_q *tx_queue = NULL;
1150        struct gfar_priv_rx_q *rx_queue = NULL;
1151        int i;
1152
1153        /* Go through all the buffer descriptors and free their data buffers */
1154        for (i = 0; i < priv->num_tx_queues; i++) {
1155                struct netdev_queue *txq;
1156
1157                tx_queue = priv->tx_queue[i];
1158                txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1159                if (tx_queue->tx_skbuff)
1160                        free_skb_tx_queue(tx_queue);
1161                netdev_tx_reset_queue(txq);
1162        }
1163
1164        for (i = 0; i < priv->num_rx_queues; i++) {
1165                rx_queue = priv->rx_queue[i];
1166                if (rx_queue->rx_buff)
1167                        free_skb_rx_queue(rx_queue);
1168        }
1169
1170        dma_free_coherent(priv->dev,
1171                          sizeof(struct txbd8) * priv->total_tx_ring_size +
1172                          sizeof(struct rxbd8) * priv->total_rx_ring_size,
1173                          priv->tx_queue[0]->tx_bd_base,
1174                          priv->tx_queue[0]->tx_bd_dma_base);
1175}
1176
1177void stop_gfar(struct net_device *dev)
1178{
1179        struct gfar_private *priv = netdev_priv(dev);
1180
1181        netif_tx_stop_all_queues(dev);
1182
1183        smp_mb__before_atomic();
1184        set_bit(GFAR_DOWN, &priv->state);
1185        smp_mb__after_atomic();
1186
1187        disable_napi(priv);
1188
1189        /* disable ints and gracefully shut down Rx/Tx DMA */
1190        gfar_halt(priv);
1191
1192        phy_stop(dev->phydev);
1193
1194        free_skb_resources(priv);
1195}
1196
1197static void gfar_start(struct gfar_private *priv)
1198{
1199        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1200        u32 tempval;
1201        int i = 0;
1202
1203        /* Enable Rx/Tx hw queues */
1204        gfar_write(&regs->rqueue, priv->rqueue);
1205        gfar_write(&regs->tqueue, priv->tqueue);
1206
1207        /* Initialize DMACTRL to have WWR and WOP */
1208        tempval = gfar_read(&regs->dmactrl);
1209        tempval |= DMACTRL_INIT_SETTINGS;
1210        gfar_write(&regs->dmactrl, tempval);
1211
1212        /* Make sure we aren't stopped */
1213        tempval = gfar_read(&regs->dmactrl);
1214        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1215        gfar_write(&regs->dmactrl, tempval);
1216
1217        for (i = 0; i < priv->num_grps; i++) {
1218                regs = priv->gfargrp[i].regs;
1219                /* Clear THLT/RHLT, so that the DMA starts polling now */
1220                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1221                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1222        }
1223
1224        /* Enable Rx/Tx DMA */
1225        tempval = gfar_read(&regs->maccfg1);
1226        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1227        gfar_write(&regs->maccfg1, tempval);
1228
1229        gfar_ints_enable(priv);
1230
1231        netif_trans_update(priv->ndev); /* prevent tx timeout */
1232}
1233
1234static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1235{
1236        struct page *page;
1237        dma_addr_t addr;
1238
1239        page = dev_alloc_page();
1240        if (unlikely(!page))
1241                return false;
1242
1243        addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1244        if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1245                __free_page(page);
1246
1247                return false;
1248        }
1249
1250        rxb->dma = addr;
1251        rxb->page = page;
1252        rxb->page_offset = 0;
1253
1254        return true;
1255}
1256
1257static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1258{
1259        struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1260        struct gfar_extra_stats *estats = &priv->extra_stats;
1261
1262        netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1263        atomic64_inc(&estats->rx_alloc_err);
1264}
1265
1266static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1267                                int alloc_cnt)
1268{
1269        struct rxbd8 *bdp;
1270        struct gfar_rx_buff *rxb;
1271        int i;
1272
1273        i = rx_queue->next_to_use;
1274        bdp = &rx_queue->rx_bd_base[i];
1275        rxb = &rx_queue->rx_buff[i];
1276
1277        while (alloc_cnt--) {
1278                /* try reuse page */
1279                if (unlikely(!rxb->page)) {
1280                        if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1281                                gfar_rx_alloc_err(rx_queue);
1282                                break;
1283                        }
1284                }
1285
1286                /* Setup the new RxBD */
1287                gfar_init_rxbdp(rx_queue, bdp,
1288                                rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1289
1290                /* Update to the next pointer */
1291                bdp++;
1292                rxb++;
1293
1294                if (unlikely(++i == rx_queue->rx_ring_size)) {
1295                        i = 0;
1296                        bdp = rx_queue->rx_bd_base;
1297                        rxb = rx_queue->rx_buff;
1298                }
1299        }
1300
1301        rx_queue->next_to_use = i;
1302        rx_queue->next_to_alloc = i;
1303}
1304
1305static void gfar_init_bds(struct net_device *ndev)
1306{
1307        struct gfar_private *priv = netdev_priv(ndev);
1308        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1309        struct gfar_priv_tx_q *tx_queue = NULL;
1310        struct gfar_priv_rx_q *rx_queue = NULL;
1311        struct txbd8 *txbdp;
1312        u32 __iomem *rfbptr;
1313        int i, j;
1314
1315        for (i = 0; i < priv->num_tx_queues; i++) {
1316                tx_queue = priv->tx_queue[i];
1317                /* Initialize some variables in our dev structure */
1318                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1319                tx_queue->dirty_tx = tx_queue->tx_bd_base;
1320                tx_queue->cur_tx = tx_queue->tx_bd_base;
1321                tx_queue->skb_curtx = 0;
1322                tx_queue->skb_dirtytx = 0;
1323
1324                /* Initialize Transmit Descriptor Ring */
1325                txbdp = tx_queue->tx_bd_base;
1326                for (j = 0; j < tx_queue->tx_ring_size; j++) {
1327                        txbdp->lstatus = 0;
1328                        txbdp->bufPtr = 0;
1329                        txbdp++;
1330                }
1331
1332                /* Set the last descriptor in the ring to indicate wrap */
1333                txbdp--;
1334                txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1335                                            TXBD_WRAP);
1336        }
1337
1338        rfbptr = &regs->rfbptr0;
1339        for (i = 0; i < priv->num_rx_queues; i++) {
1340                rx_queue = priv->rx_queue[i];
1341
1342                rx_queue->next_to_clean = 0;
1343                rx_queue->next_to_use = 0;
1344                rx_queue->next_to_alloc = 0;
1345
1346                /* make sure next_to_clean != next_to_use after this
1347                 * by leaving at least 1 unused descriptor
1348                 */
1349                gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1350
1351                rx_queue->rfbptr = rfbptr;
1352                rfbptr += 2;
1353        }
1354}
1355
1356static int gfar_alloc_skb_resources(struct net_device *ndev)
1357{
1358        void *vaddr;
1359        dma_addr_t addr;
1360        int i, j;
1361        struct gfar_private *priv = netdev_priv(ndev);
1362        struct device *dev = priv->dev;
1363        struct gfar_priv_tx_q *tx_queue = NULL;
1364        struct gfar_priv_rx_q *rx_queue = NULL;
1365
1366        priv->total_tx_ring_size = 0;
1367        for (i = 0; i < priv->num_tx_queues; i++)
1368                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1369
1370        priv->total_rx_ring_size = 0;
1371        for (i = 0; i < priv->num_rx_queues; i++)
1372                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1373
1374        /* Allocate memory for the buffer descriptors */
1375        vaddr = dma_alloc_coherent(dev,
1376                                   (priv->total_tx_ring_size *
1377                                    sizeof(struct txbd8)) +
1378                                   (priv->total_rx_ring_size *
1379                                    sizeof(struct rxbd8)),
1380                                   &addr, GFP_KERNEL);
1381        if (!vaddr)
1382                return -ENOMEM;
1383
1384        for (i = 0; i < priv->num_tx_queues; i++) {
1385                tx_queue = priv->tx_queue[i];
1386                tx_queue->tx_bd_base = vaddr;
1387                tx_queue->tx_bd_dma_base = addr;
1388                tx_queue->dev = ndev;
1389                /* enet DMA only understands physical addresses */
1390                addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1391                vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1392        }
1393
1394        /* Start the rx descriptor ring where the tx ring leaves off */
1395        for (i = 0; i < priv->num_rx_queues; i++) {
1396                rx_queue = priv->rx_queue[i];
1397                rx_queue->rx_bd_base = vaddr;
1398                rx_queue->rx_bd_dma_base = addr;
1399                rx_queue->ndev = ndev;
1400                rx_queue->dev = dev;
1401                addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1402                vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1403        }
1404
1405        /* Setup the skbuff rings */
1406        for (i = 0; i < priv->num_tx_queues; i++) {
1407                tx_queue = priv->tx_queue[i];
1408                tx_queue->tx_skbuff =
1409                        kmalloc_array(tx_queue->tx_ring_size,
1410                                      sizeof(*tx_queue->tx_skbuff),
1411                                      GFP_KERNEL);
1412                if (!tx_queue->tx_skbuff)
1413                        goto cleanup;
1414
1415                for (j = 0; j < tx_queue->tx_ring_size; j++)
1416                        tx_queue->tx_skbuff[j] = NULL;
1417        }
1418
1419        for (i = 0; i < priv->num_rx_queues; i++) {
1420                rx_queue = priv->rx_queue[i];
1421                rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1422                                            sizeof(*rx_queue->rx_buff),
1423                                            GFP_KERNEL);
1424                if (!rx_queue->rx_buff)
1425                        goto cleanup;
1426        }
1427
1428        gfar_init_bds(ndev);
1429
1430        return 0;
1431
1432cleanup:
1433        free_skb_resources(priv);
1434        return -ENOMEM;
1435}
1436
1437/* Bring the controller up and running */
1438int startup_gfar(struct net_device *ndev)
1439{
1440        struct gfar_private *priv = netdev_priv(ndev);
1441        int err;
1442
1443        gfar_mac_reset(priv);
1444
1445        err = gfar_alloc_skb_resources(ndev);
1446        if (err)
1447                return err;
1448
1449        gfar_init_tx_rx_base(priv);
1450
1451        smp_mb__before_atomic();
1452        clear_bit(GFAR_DOWN, &priv->state);
1453        smp_mb__after_atomic();
1454
1455        /* Start Rx/Tx DMA and enable the interrupts */
1456        gfar_start(priv);
1457
1458        /* force link state update after mac reset */
1459        priv->oldlink = 0;
1460        priv->oldspeed = 0;
1461        priv->oldduplex = -1;
1462
1463        phy_start(ndev->phydev);
1464
1465        enable_napi(priv);
1466
1467        netif_tx_wake_all_queues(ndev);
1468
1469        return 0;
1470}
1471
1472static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1473{
1474        struct net_device *ndev = priv->ndev;
1475        struct phy_device *phydev = ndev->phydev;
1476        u32 val = 0;
1477
1478        if (!phydev->duplex)
1479                return val;
1480
1481        if (!priv->pause_aneg_en) {
1482                if (priv->tx_pause_en)
1483                        val |= MACCFG1_TX_FLOW;
1484                if (priv->rx_pause_en)
1485                        val |= MACCFG1_RX_FLOW;
1486        } else {
1487                u16 lcl_adv, rmt_adv;
1488                u8 flowctrl;
1489                /* get link partner capabilities */
1490                rmt_adv = 0;
1491                if (phydev->pause)
1492                        rmt_adv = LPA_PAUSE_CAP;
1493                if (phydev->asym_pause)
1494                        rmt_adv |= LPA_PAUSE_ASYM;
1495
1496                lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1497                flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1498                if (flowctrl & FLOW_CTRL_TX)
1499                        val |= MACCFG1_TX_FLOW;
1500                if (flowctrl & FLOW_CTRL_RX)
1501                        val |= MACCFG1_RX_FLOW;
1502        }
1503
1504        return val;
1505}
1506
1507static noinline void gfar_update_link_state(struct gfar_private *priv)
1508{
1509        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1510        struct net_device *ndev = priv->ndev;
1511        struct phy_device *phydev = ndev->phydev;
1512        struct gfar_priv_rx_q *rx_queue = NULL;
1513        int i;
1514
1515        if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1516                return;
1517
1518        if (phydev->link) {
1519                u32 tempval1 = gfar_read(&regs->maccfg1);
1520                u32 tempval = gfar_read(&regs->maccfg2);
1521                u32 ecntrl = gfar_read(&regs->ecntrl);
1522                u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1523
1524                if (phydev->duplex != priv->oldduplex) {
1525                        if (!(phydev->duplex))
1526                                tempval &= ~(MACCFG2_FULL_DUPLEX);
1527                        else
1528                                tempval |= MACCFG2_FULL_DUPLEX;
1529
1530                        priv->oldduplex = phydev->duplex;
1531                }
1532
1533                if (phydev->speed != priv->oldspeed) {
1534                        switch (phydev->speed) {
1535                        case 1000:
1536                                tempval =
1537                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1538
1539                                ecntrl &= ~(ECNTRL_R100);
1540                                break;
1541                        case 100:
1542                        case 10:
1543                                tempval =
1544                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1545
1546                                /* Reduced mode distinguishes
1547                                 * between 10 and 100
1548                                 */
1549                                if (phydev->speed == SPEED_100)
1550                                        ecntrl |= ECNTRL_R100;
1551                                else
1552                                        ecntrl &= ~(ECNTRL_R100);
1553                                break;
1554                        default:
1555                                netif_warn(priv, link, priv->ndev,
1556                                           "Ack!  Speed (%d) is not 10/100/1000!\n",
1557                                           phydev->speed);
1558                                break;
1559                        }
1560
1561                        priv->oldspeed = phydev->speed;
1562                }
1563
1564                tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1565                tempval1 |= gfar_get_flowctrl_cfg(priv);
1566
1567                /* Turn last free buffer recording on */
1568                if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1569                        for (i = 0; i < priv->num_rx_queues; i++) {
1570                                u32 bdp_dma;
1571
1572                                rx_queue = priv->rx_queue[i];
1573                                bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1574                                gfar_write(rx_queue->rfbptr, bdp_dma);
1575                        }
1576
1577                        priv->tx_actual_en = 1;
1578                }
1579
1580                if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1581                        priv->tx_actual_en = 0;
1582
1583                gfar_write(&regs->maccfg1, tempval1);
1584                gfar_write(&regs->maccfg2, tempval);
1585                gfar_write(&regs->ecntrl, ecntrl);
1586
1587                if (!priv->oldlink)
1588                        priv->oldlink = 1;
1589
1590        } else if (priv->oldlink) {
1591                priv->oldlink = 0;
1592                priv->oldspeed = 0;
1593                priv->oldduplex = -1;
1594        }
1595
1596        if (netif_msg_link(priv))
1597                phy_print_status(phydev);
1598}
1599
1600/* Called every time the controller might need to be made
1601 * aware of new link state.  The PHY code conveys this
1602 * information through variables in the phydev structure, and this
1603 * function converts those variables into the appropriate
1604 * register values, and can bring down the device if needed.
1605 */
1606static void adjust_link(struct net_device *dev)
1607{
1608        struct gfar_private *priv = netdev_priv(dev);
1609        struct phy_device *phydev = dev->phydev;
1610
1611        if (unlikely(phydev->link != priv->oldlink ||
1612                     (phydev->link && (phydev->duplex != priv->oldduplex ||
1613                                       phydev->speed != priv->oldspeed))))
1614                gfar_update_link_state(priv);
1615}
1616
1617/* Initialize TBI PHY interface for communicating with the
1618 * SERDES lynx PHY on the chip.  We communicate with this PHY
1619 * through the MDIO bus on each controller, treating it as a
1620 * "normal" PHY at the address found in the TBIPA register.  We assume
1621 * that the TBIPA register is valid.  Either the MDIO bus code will set
1622 * it to a value that doesn't conflict with other PHYs on the bus, or the
1623 * value doesn't matter, as there are no other PHYs on the bus.
1624 */
1625static void gfar_configure_serdes(struct net_device *dev)
1626{
1627        struct gfar_private *priv = netdev_priv(dev);
1628        struct phy_device *tbiphy;
1629
1630        if (!priv->tbi_node) {
1631                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1632                                    "device tree specify a tbi-handle\n");
1633                return;
1634        }
1635
1636        tbiphy = of_phy_find_device(priv->tbi_node);
1637        if (!tbiphy) {
1638                dev_err(&dev->dev, "error: Could not get TBI device\n");
1639                return;
1640        }
1641
1642        /* If the link is already up, we must already be ok, and don't need to
1643         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1644         * everything for us?  Resetting it takes the link down and requires
1645         * several seconds for it to come back.
1646         */
1647        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1648                put_device(&tbiphy->mdio.dev);
1649                return;
1650        }
1651
1652        /* Single clk mode, mii mode off(for serdes communication) */
1653        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1654
1655        phy_write(tbiphy, MII_ADVERTISE,
1656                  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1657                  ADVERTISE_1000XPSE_ASYM);
1658
1659        phy_write(tbiphy, MII_BMCR,
1660                  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1661                  BMCR_SPEED1000);
1662
1663        put_device(&tbiphy->mdio.dev);
1664}
1665
1666/* Initializes driver's PHY state, and attaches to the PHY.
1667 * Returns 0 on success.
1668 */
1669static int init_phy(struct net_device *dev)
1670{
1671        __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1672        struct gfar_private *priv = netdev_priv(dev);
1673        phy_interface_t interface = priv->interface;
1674        struct phy_device *phydev;
1675        struct ethtool_eee edata;
1676
1677        linkmode_set_bit_array(phy_10_100_features_array,
1678                               ARRAY_SIZE(phy_10_100_features_array),
1679                               mask);
1680        linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1681        linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1682        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1683                linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1684
1685        priv->oldlink = 0;
1686        priv->oldspeed = 0;
1687        priv->oldduplex = -1;
1688
1689        phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1690                                interface);
1691        if (!phydev) {
1692                dev_err(&dev->dev, "could not attach to PHY\n");
1693                return -ENODEV;
1694        }
1695
1696        if (interface == PHY_INTERFACE_MODE_SGMII)
1697                gfar_configure_serdes(dev);
1698
1699        /* Remove any features not supported by the controller */
1700        linkmode_and(phydev->supported, phydev->supported, mask);
1701        linkmode_copy(phydev->advertising, phydev->supported);
1702
1703        /* Add support for flow control */
1704        phy_support_asym_pause(phydev);
1705
1706        /* disable EEE autoneg, EEE not supported by eTSEC */
1707        memset(&edata, 0, sizeof(struct ethtool_eee));
1708        phy_ethtool_set_eee(phydev, &edata);
1709
1710        return 0;
1711}
1712
1713static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1714{
1715        struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1716
1717        memset(fcb, 0, GMAC_FCB_LEN);
1718
1719        return fcb;
1720}
1721
1722static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1723                                    int fcb_length)
1724{
1725        /* If we're here, it's a IP packet with a TCP or UDP
1726         * payload.  We set it to checksum, using a pseudo-header
1727         * we provide
1728         */
1729        u8 flags = TXFCB_DEFAULT;
1730
1731        /* Tell the controller what the protocol is
1732         * And provide the already calculated phcs
1733         */
1734        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1735                flags |= TXFCB_UDP;
1736                fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1737        } else
1738                fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1739
1740        /* l3os is the distance between the start of the
1741         * frame (skb->data) and the start of the IP hdr.
1742         * l4os is the distance between the start of the
1743         * l3 hdr and the l4 hdr
1744         */
1745        fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1746        fcb->l4os = skb_network_header_len(skb);
1747
1748        fcb->flags = flags;
1749}
1750
1751static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1752{
1753        fcb->flags |= TXFCB_VLN;
1754        fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1755}
1756
1757static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1758                                      struct txbd8 *base, int ring_size)
1759{
1760        struct txbd8 *new_bd = bdp + stride;
1761
1762        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1763}
1764
1765static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1766                                      int ring_size)
1767{
1768        return skip_txbd(bdp, 1, base, ring_size);
1769}
1770
1771/* eTSEC12: csum generation not supported for some fcb offsets */
1772static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1773                                       unsigned long fcb_addr)
1774{
1775        return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1776               (fcb_addr % 0x20) > 0x18);
1777}
1778
1779/* eTSEC76: csum generation for frames larger than 2500 may
1780 * cause excess delays before start of transmission
1781 */
1782static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1783                                       unsigned int len)
1784{
1785        return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1786               (len > 2500));
1787}
1788
1789/* This is called by the kernel when a frame is ready for transmission.
1790 * It is pointed to by the dev->hard_start_xmit function pointer
1791 */
1792static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1793{
1794        struct gfar_private *priv = netdev_priv(dev);
1795        struct gfar_priv_tx_q *tx_queue = NULL;
1796        struct netdev_queue *txq;
1797        struct gfar __iomem *regs = NULL;
1798        struct txfcb *fcb = NULL;
1799        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1800        u32 lstatus;
1801        skb_frag_t *frag;
1802        int i, rq = 0;
1803        int do_tstamp, do_csum, do_vlan;
1804        u32 bufaddr;
1805        unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1806
1807        rq = skb->queue_mapping;
1808        tx_queue = priv->tx_queue[rq];
1809        txq = netdev_get_tx_queue(dev, rq);
1810        base = tx_queue->tx_bd_base;
1811        regs = tx_queue->grp->regs;
1812
1813        do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1814        do_vlan = skb_vlan_tag_present(skb);
1815        do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1816                    priv->hwts_tx_en;
1817
1818        if (do_csum || do_vlan)
1819                fcb_len = GMAC_FCB_LEN;
1820
1821        /* check if time stamp should be generated */
1822        if (unlikely(do_tstamp))
1823                fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1824
1825        /* make space for additional header when fcb is needed */
1826        if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1827                struct sk_buff *skb_new;
1828
1829                skb_new = skb_realloc_headroom(skb, fcb_len);
1830                if (!skb_new) {
1831                        dev->stats.tx_errors++;
1832                        dev_kfree_skb_any(skb);
1833                        return NETDEV_TX_OK;
1834                }
1835
1836                if (skb->sk)
1837                        skb_set_owner_w(skb_new, skb->sk);
1838                dev_consume_skb_any(skb);
1839                skb = skb_new;
1840        }
1841
1842        /* total number of fragments in the SKB */
1843        nr_frags = skb_shinfo(skb)->nr_frags;
1844
1845        /* calculate the required number of TxBDs for this skb */
1846        if (unlikely(do_tstamp))
1847                nr_txbds = nr_frags + 2;
1848        else
1849                nr_txbds = nr_frags + 1;
1850
1851        /* check if there is space to queue this packet */
1852        if (nr_txbds > tx_queue->num_txbdfree) {
1853                /* no space, stop the queue */
1854                netif_tx_stop_queue(txq);
1855                dev->stats.tx_fifo_errors++;
1856                return NETDEV_TX_BUSY;
1857        }
1858
1859        /* Update transmit stats */
1860        bytes_sent = skb->len;
1861        tx_queue->stats.tx_bytes += bytes_sent;
1862        /* keep Tx bytes on wire for BQL accounting */
1863        GFAR_CB(skb)->bytes_sent = bytes_sent;
1864        tx_queue->stats.tx_packets++;
1865
1866        txbdp = txbdp_start = tx_queue->cur_tx;
1867        lstatus = be32_to_cpu(txbdp->lstatus);
1868
1869        /* Add TxPAL between FCB and frame if required */
1870        if (unlikely(do_tstamp)) {
1871                skb_push(skb, GMAC_TXPAL_LEN);
1872                memset(skb->data, 0, GMAC_TXPAL_LEN);
1873        }
1874
1875        /* Add TxFCB if required */
1876        if (fcb_len) {
1877                fcb = gfar_add_fcb(skb);
1878                lstatus |= BD_LFLAG(TXBD_TOE);
1879        }
1880
1881        /* Set up checksumming */
1882        if (do_csum) {
1883                gfar_tx_checksum(skb, fcb, fcb_len);
1884
1885                if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1886                    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1887                        __skb_pull(skb, GMAC_FCB_LEN);
1888                        skb_checksum_help(skb);
1889                        if (do_vlan || do_tstamp) {
1890                                /* put back a new fcb for vlan/tstamp TOE */
1891                                fcb = gfar_add_fcb(skb);
1892                        } else {
1893                                /* Tx TOE not used */
1894                                lstatus &= ~(BD_LFLAG(TXBD_TOE));
1895                                fcb = NULL;
1896                        }
1897                }
1898        }
1899
1900        if (do_vlan)
1901                gfar_tx_vlan(skb, fcb);
1902
1903        bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1904                                 DMA_TO_DEVICE);
1905        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1906                goto dma_map_err;
1907
1908        txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1909
1910        /* Time stamp insertion requires one additional TxBD */
1911        if (unlikely(do_tstamp))
1912                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1913                                                 tx_queue->tx_ring_size);
1914
1915        if (likely(!nr_frags)) {
1916                if (likely(!do_tstamp))
1917                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1918        } else {
1919                u32 lstatus_start = lstatus;
1920
1921                /* Place the fragment addresses and lengths into the TxBDs */
1922                frag = &skb_shinfo(skb)->frags[0];
1923                for (i = 0; i < nr_frags; i++, frag++) {
1924                        unsigned int size;
1925
1926                        /* Point at the next BD, wrapping as needed */
1927                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1928
1929                        size = skb_frag_size(frag);
1930
1931                        lstatus = be32_to_cpu(txbdp->lstatus) | size |
1932                                  BD_LFLAG(TXBD_READY);
1933
1934                        /* Handle the last BD specially */
1935                        if (i == nr_frags - 1)
1936                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1937
1938                        bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1939                                                   size, DMA_TO_DEVICE);
1940                        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1941                                goto dma_map_err;
1942
1943                        /* set the TxBD length and buffer pointer */
1944                        txbdp->bufPtr = cpu_to_be32(bufaddr);
1945                        txbdp->lstatus = cpu_to_be32(lstatus);
1946                }
1947
1948                lstatus = lstatus_start;
1949        }
1950
1951        /* If time stamping is requested one additional TxBD must be set up. The
1952         * first TxBD points to the FCB and must have a data length of
1953         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1954         * the full frame length.
1955         */
1956        if (unlikely(do_tstamp)) {
1957                u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1958
1959                bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1960                bufaddr += fcb_len;
1961
1962                lstatus_ts |= BD_LFLAG(TXBD_READY) |
1963                              (skb_headlen(skb) - fcb_len);
1964                if (!nr_frags)
1965                        lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1966
1967                txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1968                txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1969                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1970
1971                /* Setup tx hardware time stamping */
1972                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1973                fcb->ptp = 1;
1974        } else {
1975                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1976        }
1977
1978        netdev_tx_sent_queue(txq, bytes_sent);
1979
1980        gfar_wmb();
1981
1982        txbdp_start->lstatus = cpu_to_be32(lstatus);
1983
1984        gfar_wmb(); /* force lstatus write before tx_skbuff */
1985
1986        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1987
1988        /* Update the current skb pointer to the next entry we will use
1989         * (wrapping if necessary)
1990         */
1991        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1992                              TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1993
1994        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1995
1996        /* We can work in parallel with gfar_clean_tx_ring(), except
1997         * when modifying num_txbdfree. Note that we didn't grab the lock
1998         * when we were reading the num_txbdfree and checking for available
1999         * space, that's because outside of this function it can only grow.
2000         */
2001        spin_lock_bh(&tx_queue->txlock);
2002        /* reduce TxBD free count */
2003        tx_queue->num_txbdfree -= (nr_txbds);
2004        spin_unlock_bh(&tx_queue->txlock);
2005
2006        /* If the next BD still needs to be cleaned up, then the bds
2007         * are full.  We need to tell the kernel to stop sending us stuff.
2008         */
2009        if (!tx_queue->num_txbdfree) {
2010                netif_tx_stop_queue(txq);
2011
2012                dev->stats.tx_fifo_errors++;
2013        }
2014
2015        /* Tell the DMA to go go go */
2016        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2017
2018        return NETDEV_TX_OK;
2019
2020dma_map_err:
2021        txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2022        if (do_tstamp)
2023                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2024        for (i = 0; i < nr_frags; i++) {
2025                lstatus = be32_to_cpu(txbdp->lstatus);
2026                if (!(lstatus & BD_LFLAG(TXBD_READY)))
2027                        break;
2028
2029                lstatus &= ~BD_LFLAG(TXBD_READY);
2030                txbdp->lstatus = cpu_to_be32(lstatus);
2031                bufaddr = be32_to_cpu(txbdp->bufPtr);
2032                dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2033                               DMA_TO_DEVICE);
2034                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2035        }
2036        gfar_wmb();
2037        dev_kfree_skb_any(skb);
2038        return NETDEV_TX_OK;
2039}
2040
2041/* Changes the mac address if the controller is not running. */
2042static int gfar_set_mac_address(struct net_device *dev)
2043{
2044        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2045
2046        return 0;
2047}
2048
2049static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2050{
2051        struct gfar_private *priv = netdev_priv(dev);
2052
2053        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2054                cpu_relax();
2055
2056        if (dev->flags & IFF_UP)
2057                stop_gfar(dev);
2058
2059        dev->mtu = new_mtu;
2060
2061        if (dev->flags & IFF_UP)
2062                startup_gfar(dev);
2063
2064        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2065
2066        return 0;
2067}
2068
2069static void reset_gfar(struct net_device *ndev)
2070{
2071        struct gfar_private *priv = netdev_priv(ndev);
2072
2073        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2074                cpu_relax();
2075
2076        stop_gfar(ndev);
2077        startup_gfar(ndev);
2078
2079        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2080}
2081
2082/* gfar_reset_task gets scheduled when a packet has not been
2083 * transmitted after a set amount of time.
2084 * For now, assume that clearing out all the structures, and
2085 * starting over will fix the problem.
2086 */
2087static void gfar_reset_task(struct work_struct *work)
2088{
2089        struct gfar_private *priv = container_of(work, struct gfar_private,
2090                                                 reset_task);
2091        reset_gfar(priv->ndev);
2092}
2093
2094static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2095{
2096        struct gfar_private *priv = netdev_priv(dev);
2097
2098        dev->stats.tx_errors++;
2099        schedule_work(&priv->reset_task);
2100}
2101
2102static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2103{
2104        struct hwtstamp_config config;
2105        struct gfar_private *priv = netdev_priv(netdev);
2106
2107        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2108                return -EFAULT;
2109
2110        /* reserved for future extensions */
2111        if (config.flags)
2112                return -EINVAL;
2113
2114        switch (config.tx_type) {
2115        case HWTSTAMP_TX_OFF:
2116                priv->hwts_tx_en = 0;
2117                break;
2118        case HWTSTAMP_TX_ON:
2119                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2120                        return -ERANGE;
2121                priv->hwts_tx_en = 1;
2122                break;
2123        default:
2124                return -ERANGE;
2125        }
2126
2127        switch (config.rx_filter) {
2128        case HWTSTAMP_FILTER_NONE:
2129                if (priv->hwts_rx_en) {
2130                        priv->hwts_rx_en = 0;
2131                        reset_gfar(netdev);
2132                }
2133                break;
2134        default:
2135                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2136                        return -ERANGE;
2137                if (!priv->hwts_rx_en) {
2138                        priv->hwts_rx_en = 1;
2139                        reset_gfar(netdev);
2140                }
2141                config.rx_filter = HWTSTAMP_FILTER_ALL;
2142                break;
2143        }
2144
2145        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2146                -EFAULT : 0;
2147}
2148
2149static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2150{
2151        struct hwtstamp_config config;
2152        struct gfar_private *priv = netdev_priv(netdev);
2153
2154        config.flags = 0;
2155        config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2156        config.rx_filter = (priv->hwts_rx_en ?
2157                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2158
2159        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2160                -EFAULT : 0;
2161}
2162
2163static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2164{
2165        struct phy_device *phydev = dev->phydev;
2166
2167        if (!netif_running(dev))
2168                return -EINVAL;
2169
2170        if (cmd == SIOCSHWTSTAMP)
2171                return gfar_hwtstamp_set(dev, rq);
2172        if (cmd == SIOCGHWTSTAMP)
2173                return gfar_hwtstamp_get(dev, rq);
2174
2175        if (!phydev)
2176                return -ENODEV;
2177
2178        return phy_mii_ioctl(phydev, rq, cmd);
2179}
2180
2181/* Interrupt Handler for Transmit complete */
2182static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2183{
2184        struct net_device *dev = tx_queue->dev;
2185        struct netdev_queue *txq;
2186        struct gfar_private *priv = netdev_priv(dev);
2187        struct txbd8 *bdp, *next = NULL;
2188        struct txbd8 *lbdp = NULL;
2189        struct txbd8 *base = tx_queue->tx_bd_base;
2190        struct sk_buff *skb;
2191        int skb_dirtytx;
2192        int tx_ring_size = tx_queue->tx_ring_size;
2193        int frags = 0, nr_txbds = 0;
2194        int i;
2195        int howmany = 0;
2196        int tqi = tx_queue->qindex;
2197        unsigned int bytes_sent = 0;
2198        u32 lstatus;
2199        size_t buflen;
2200
2201        txq = netdev_get_tx_queue(dev, tqi);
2202        bdp = tx_queue->dirty_tx;
2203        skb_dirtytx = tx_queue->skb_dirtytx;
2204
2205        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2206                bool do_tstamp;
2207
2208                do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2209                            priv->hwts_tx_en;
2210
2211                frags = skb_shinfo(skb)->nr_frags;
2212
2213                /* When time stamping, one additional TxBD must be freed.
2214                 * Also, we need to dma_unmap_single() the TxPAL.
2215                 */
2216                if (unlikely(do_tstamp))
2217                        nr_txbds = frags + 2;
2218                else
2219                        nr_txbds = frags + 1;
2220
2221                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2222
2223                lstatus = be32_to_cpu(lbdp->lstatus);
2224
2225                /* Only clean completed frames */
2226                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2227                    (lstatus & BD_LENGTH_MASK))
2228                        break;
2229
2230                if (unlikely(do_tstamp)) {
2231                        next = next_txbd(bdp, base, tx_ring_size);
2232                        buflen = be16_to_cpu(next->length) +
2233                                 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2234                } else
2235                        buflen = be16_to_cpu(bdp->length);
2236
2237                dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2238                                 buflen, DMA_TO_DEVICE);
2239
2240                if (unlikely(do_tstamp)) {
2241                        struct skb_shared_hwtstamps shhwtstamps;
2242                        u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2243                                          ~0x7UL);
2244
2245                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2246                        shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2247                        skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2248                        skb_tstamp_tx(skb, &shhwtstamps);
2249                        gfar_clear_txbd_status(bdp);
2250                        bdp = next;
2251                }
2252
2253                gfar_clear_txbd_status(bdp);
2254                bdp = next_txbd(bdp, base, tx_ring_size);
2255
2256                for (i = 0; i < frags; i++) {
2257                        dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2258                                       be16_to_cpu(bdp->length),
2259                                       DMA_TO_DEVICE);
2260                        gfar_clear_txbd_status(bdp);
2261                        bdp = next_txbd(bdp, base, tx_ring_size);
2262                }
2263
2264                bytes_sent += GFAR_CB(skb)->bytes_sent;
2265
2266                dev_kfree_skb_any(skb);
2267
2268                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2269
2270                skb_dirtytx = (skb_dirtytx + 1) &
2271                              TX_RING_MOD_MASK(tx_ring_size);
2272
2273                howmany++;
2274                spin_lock(&tx_queue->txlock);
2275                tx_queue->num_txbdfree += nr_txbds;
2276                spin_unlock(&tx_queue->txlock);
2277        }
2278
2279        /* If we freed a buffer, we can restart transmission, if necessary */
2280        if (tx_queue->num_txbdfree &&
2281            netif_tx_queue_stopped(txq) &&
2282            !(test_bit(GFAR_DOWN, &priv->state)))
2283                netif_wake_subqueue(priv->ndev, tqi);
2284
2285        /* Update dirty indicators */
2286        tx_queue->skb_dirtytx = skb_dirtytx;
2287        tx_queue->dirty_tx = bdp;
2288
2289        netdev_tx_completed_queue(txq, howmany, bytes_sent);
2290}
2291
2292static void count_errors(u32 lstatus, struct net_device *ndev)
2293{
2294        struct gfar_private *priv = netdev_priv(ndev);
2295        struct net_device_stats *stats = &ndev->stats;
2296        struct gfar_extra_stats *estats = &priv->extra_stats;
2297
2298        /* If the packet was truncated, none of the other errors matter */
2299        if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2300                stats->rx_length_errors++;
2301
2302                atomic64_inc(&estats->rx_trunc);
2303
2304                return;
2305        }
2306        /* Count the errors, if there were any */
2307        if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2308                stats->rx_length_errors++;
2309
2310                if (lstatus & BD_LFLAG(RXBD_LARGE))
2311                        atomic64_inc(&estats->rx_large);
2312                else
2313                        atomic64_inc(&estats->rx_short);
2314        }
2315        if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2316                stats->rx_frame_errors++;
2317                atomic64_inc(&estats->rx_nonoctet);
2318        }
2319        if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2320                atomic64_inc(&estats->rx_crcerr);
2321                stats->rx_crc_errors++;
2322        }
2323        if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2324                atomic64_inc(&estats->rx_overrun);
2325                stats->rx_over_errors++;
2326        }
2327}
2328
2329static irqreturn_t gfar_receive(int irq, void *grp_id)
2330{
2331        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332        unsigned long flags;
2333        u32 imask, ievent;
2334
2335        ievent = gfar_read(&grp->regs->ievent);
2336
2337        if (unlikely(ievent & IEVENT_FGPI)) {
2338                gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2339                return IRQ_HANDLED;
2340        }
2341
2342        if (likely(napi_schedule_prep(&grp->napi_rx))) {
2343                spin_lock_irqsave(&grp->grplock, flags);
2344                imask = gfar_read(&grp->regs->imask);
2345                imask &= IMASK_RX_DISABLED;
2346                gfar_write(&grp->regs->imask, imask);
2347                spin_unlock_irqrestore(&grp->grplock, flags);
2348                __napi_schedule(&grp->napi_rx);
2349        } else {
2350                /* Clear IEVENT, so interrupts aren't called again
2351                 * because of the packets that have already arrived.
2352                 */
2353                gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2354        }
2355
2356        return IRQ_HANDLED;
2357}
2358
2359/* Interrupt Handler for Transmit complete */
2360static irqreturn_t gfar_transmit(int irq, void *grp_id)
2361{
2362        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2363        unsigned long flags;
2364        u32 imask;
2365
2366        if (likely(napi_schedule_prep(&grp->napi_tx))) {
2367                spin_lock_irqsave(&grp->grplock, flags);
2368                imask = gfar_read(&grp->regs->imask);
2369                imask &= IMASK_TX_DISABLED;
2370                gfar_write(&grp->regs->imask, imask);
2371                spin_unlock_irqrestore(&grp->grplock, flags);
2372                __napi_schedule(&grp->napi_tx);
2373        } else {
2374                /* Clear IEVENT, so interrupts aren't called again
2375                 * because of the packets that have already arrived.
2376                 */
2377                gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2378        }
2379
2380        return IRQ_HANDLED;
2381}
2382
2383static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2384                             struct sk_buff *skb, bool first)
2385{
2386        int size = lstatus & BD_LENGTH_MASK;
2387        struct page *page = rxb->page;
2388
2389        if (likely(first)) {
2390                skb_put(skb, size);
2391        } else {
2392                /* the last fragments' length contains the full frame length */
2393                if (lstatus & BD_LFLAG(RXBD_LAST))
2394                        size -= skb->len;
2395
2396                skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2397                                rxb->page_offset + RXBUF_ALIGNMENT,
2398                                size, GFAR_RXB_TRUESIZE);
2399        }
2400
2401        /* try reuse page */
2402        if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2403                return false;
2404
2405        /* change offset to the other half */
2406        rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2407
2408        page_ref_inc(page);
2409
2410        return true;
2411}
2412
2413static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2414                               struct gfar_rx_buff *old_rxb)
2415{
2416        struct gfar_rx_buff *new_rxb;
2417        u16 nta = rxq->next_to_alloc;
2418
2419        new_rxb = &rxq->rx_buff[nta];
2420
2421        /* find next buf that can reuse a page */
2422        nta++;
2423        rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2424
2425        /* copy page reference */
2426        *new_rxb = *old_rxb;
2427
2428        /* sync for use by the device */
2429        dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2430                                         old_rxb->page_offset,
2431                                         GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2432}
2433
2434static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2435                                            u32 lstatus, struct sk_buff *skb)
2436{
2437        struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2438        struct page *page = rxb->page;
2439        bool first = false;
2440
2441        if (likely(!skb)) {
2442                void *buff_addr = page_address(page) + rxb->page_offset;
2443
2444                skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2445                if (unlikely(!skb)) {
2446                        gfar_rx_alloc_err(rx_queue);
2447                        return NULL;
2448                }
2449                skb_reserve(skb, RXBUF_ALIGNMENT);
2450                first = true;
2451        }
2452
2453        dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2454                                      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2455
2456        if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2457                /* reuse the free half of the page */
2458                gfar_reuse_rx_page(rx_queue, rxb);
2459        } else {
2460                /* page cannot be reused, unmap it */
2461                dma_unmap_page(rx_queue->dev, rxb->dma,
2462                               PAGE_SIZE, DMA_FROM_DEVICE);
2463        }
2464
2465        /* clear rxb content */
2466        rxb->page = NULL;
2467
2468        return skb;
2469}
2470
2471static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2472{
2473        /* If valid headers were found, and valid sums
2474         * were verified, then we tell the kernel that no
2475         * checksumming is necessary.  Otherwise, it is [FIXME]
2476         */
2477        if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2478            (RXFCB_CIP | RXFCB_CTU))
2479                skb->ip_summed = CHECKSUM_UNNECESSARY;
2480        else
2481                skb_checksum_none_assert(skb);
2482}
2483
2484/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2485static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2486{
2487        struct gfar_private *priv = netdev_priv(ndev);
2488        struct rxfcb *fcb = NULL;
2489
2490        /* fcb is at the beginning if exists */
2491        fcb = (struct rxfcb *)skb->data;
2492
2493        /* Remove the FCB from the skb
2494         * Remove the padded bytes, if there are any
2495         */
2496        if (priv->uses_rxfcb)
2497                skb_pull(skb, GMAC_FCB_LEN);
2498
2499        /* Get receive timestamp from the skb */
2500        if (priv->hwts_rx_en) {
2501                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2502                u64 *ns = (u64 *) skb->data;
2503
2504                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2505                shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2506        }
2507
2508        if (priv->padding)
2509                skb_pull(skb, priv->padding);
2510
2511        /* Trim off the FCS */
2512        pskb_trim(skb, skb->len - ETH_FCS_LEN);
2513
2514        if (ndev->features & NETIF_F_RXCSUM)
2515                gfar_rx_checksum(skb, fcb);
2516
2517        /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2518         * Even if vlan rx accel is disabled, on some chips
2519         * RXFCB_VLN is pseudo randomly set.
2520         */
2521        if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2522            be16_to_cpu(fcb->flags) & RXFCB_VLN)
2523                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2524                                       be16_to_cpu(fcb->vlctl));
2525}
2526
2527/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2528 * until the budget/quota has been reached. Returns the number
2529 * of frames handled
2530 */
2531static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2532                              int rx_work_limit)
2533{
2534        struct net_device *ndev = rx_queue->ndev;
2535        struct gfar_private *priv = netdev_priv(ndev);
2536        struct rxbd8 *bdp;
2537        int i, howmany = 0;
2538        struct sk_buff *skb = rx_queue->skb;
2539        int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2540        unsigned int total_bytes = 0, total_pkts = 0;
2541
2542        /* Get the first full descriptor */
2543        i = rx_queue->next_to_clean;
2544
2545        while (rx_work_limit--) {
2546                u32 lstatus;
2547
2548                if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2549                        gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2550                        cleaned_cnt = 0;
2551                }
2552
2553                bdp = &rx_queue->rx_bd_base[i];
2554                lstatus = be32_to_cpu(bdp->lstatus);
2555                if (lstatus & BD_LFLAG(RXBD_EMPTY))
2556                        break;
2557
2558                /* order rx buffer descriptor reads */
2559                rmb();
2560
2561                /* fetch next to clean buffer from the ring */
2562                skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2563                if (unlikely(!skb))
2564                        break;
2565
2566                cleaned_cnt++;
2567                howmany++;
2568
2569                if (unlikely(++i == rx_queue->rx_ring_size))
2570                        i = 0;
2571
2572                rx_queue->next_to_clean = i;
2573
2574                /* fetch next buffer if not the last in frame */
2575                if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2576                        continue;
2577
2578                if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2579                        count_errors(lstatus, ndev);
2580
2581                        /* discard faulty buffer */
2582                        dev_kfree_skb(skb);
2583                        skb = NULL;
2584                        rx_queue->stats.rx_dropped++;
2585                        continue;
2586                }
2587
2588                gfar_process_frame(ndev, skb);
2589
2590                /* Increment the number of packets */
2591                total_pkts++;
2592                total_bytes += skb->len;
2593
2594                skb_record_rx_queue(skb, rx_queue->qindex);
2595
2596                skb->protocol = eth_type_trans(skb, ndev);
2597
2598                /* Send the packet up the stack */
2599                napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2600
2601                skb = NULL;
2602        }
2603
2604        /* Store incomplete frames for completion */
2605        rx_queue->skb = skb;
2606
2607        rx_queue->stats.rx_packets += total_pkts;
2608        rx_queue->stats.rx_bytes += total_bytes;
2609
2610        if (cleaned_cnt)
2611                gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2612
2613        /* Update Last Free RxBD pointer for LFC */
2614        if (unlikely(priv->tx_actual_en)) {
2615                u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2616
2617                gfar_write(rx_queue->rfbptr, bdp_dma);
2618        }
2619
2620        return howmany;
2621}
2622
2623static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2624{
2625        struct gfar_priv_grp *gfargrp =
2626                container_of(napi, struct gfar_priv_grp, napi_rx);
2627        struct gfar __iomem *regs = gfargrp->regs;
2628        struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2629        int work_done = 0;
2630
2631        /* Clear IEVENT, so interrupts aren't called again
2632         * because of the packets that have already arrived
2633         */
2634        gfar_write(&regs->ievent, IEVENT_RX_MASK);
2635
2636        work_done = gfar_clean_rx_ring(rx_queue, budget);
2637
2638        if (work_done < budget) {
2639                u32 imask;
2640                napi_complete_done(napi, work_done);
2641                /* Clear the halt bit in RSTAT */
2642                gfar_write(&regs->rstat, gfargrp->rstat);
2643
2644                spin_lock_irq(&gfargrp->grplock);
2645                imask = gfar_read(&regs->imask);
2646                imask |= IMASK_RX_DEFAULT;
2647                gfar_write(&regs->imask, imask);
2648                spin_unlock_irq(&gfargrp->grplock);
2649        }
2650
2651        return work_done;
2652}
2653
2654static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2655{
2656        struct gfar_priv_grp *gfargrp =
2657                container_of(napi, struct gfar_priv_grp, napi_tx);
2658        struct gfar __iomem *regs = gfargrp->regs;
2659        struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2660        u32 imask;
2661
2662        /* Clear IEVENT, so interrupts aren't called again
2663         * because of the packets that have already arrived
2664         */
2665        gfar_write(&regs->ievent, IEVENT_TX_MASK);
2666
2667        /* run Tx cleanup to completion */
2668        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2669                gfar_clean_tx_ring(tx_queue);
2670
2671        napi_complete(napi);
2672
2673        spin_lock_irq(&gfargrp->grplock);
2674        imask = gfar_read(&regs->imask);
2675        imask |= IMASK_TX_DEFAULT;
2676        gfar_write(&regs->imask, imask);
2677        spin_unlock_irq(&gfargrp->grplock);
2678
2679        return 0;
2680}
2681
2682static int gfar_poll_rx(struct napi_struct *napi, int budget)
2683{
2684        struct gfar_priv_grp *gfargrp =
2685                container_of(napi, struct gfar_priv_grp, napi_rx);
2686        struct gfar_private *priv = gfargrp->priv;
2687        struct gfar __iomem *regs = gfargrp->regs;
2688        struct gfar_priv_rx_q *rx_queue = NULL;
2689        int work_done = 0, work_done_per_q = 0;
2690        int i, budget_per_q = 0;
2691        unsigned long rstat_rxf;
2692        int num_act_queues;
2693
2694        /* Clear IEVENT, so interrupts aren't called again
2695         * because of the packets that have already arrived
2696         */
2697        gfar_write(&regs->ievent, IEVENT_RX_MASK);
2698
2699        rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2700
2701        num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2702        if (num_act_queues)
2703                budget_per_q = budget/num_act_queues;
2704
2705        for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2706                /* skip queue if not active */
2707                if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2708                        continue;
2709
2710                rx_queue = priv->rx_queue[i];
2711                work_done_per_q =
2712                        gfar_clean_rx_ring(rx_queue, budget_per_q);
2713                work_done += work_done_per_q;
2714
2715                /* finished processing this queue */
2716                if (work_done_per_q < budget_per_q) {
2717                        /* clear active queue hw indication */
2718                        gfar_write(&regs->rstat,
2719                                   RSTAT_CLEAR_RXF0 >> i);
2720                        num_act_queues--;
2721
2722                        if (!num_act_queues)
2723                                break;
2724                }
2725        }
2726
2727        if (!num_act_queues) {
2728                u32 imask;
2729                napi_complete_done(napi, work_done);
2730
2731                /* Clear the halt bit in RSTAT */
2732                gfar_write(&regs->rstat, gfargrp->rstat);
2733
2734                spin_lock_irq(&gfargrp->grplock);
2735                imask = gfar_read(&regs->imask);
2736                imask |= IMASK_RX_DEFAULT;
2737                gfar_write(&regs->imask, imask);
2738                spin_unlock_irq(&gfargrp->grplock);
2739        }
2740
2741        return work_done;
2742}
2743
2744static int gfar_poll_tx(struct napi_struct *napi, int budget)
2745{
2746        struct gfar_priv_grp *gfargrp =
2747                container_of(napi, struct gfar_priv_grp, napi_tx);
2748        struct gfar_private *priv = gfargrp->priv;
2749        struct gfar __iomem *regs = gfargrp->regs;
2750        struct gfar_priv_tx_q *tx_queue = NULL;
2751        int has_tx_work = 0;
2752        int i;
2753
2754        /* Clear IEVENT, so interrupts aren't called again
2755         * because of the packets that have already arrived
2756         */
2757        gfar_write(&regs->ievent, IEVENT_TX_MASK);
2758
2759        for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2760                tx_queue = priv->tx_queue[i];
2761                /* run Tx cleanup to completion */
2762                if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2763                        gfar_clean_tx_ring(tx_queue);
2764                        has_tx_work = 1;
2765                }
2766        }
2767
2768        if (!has_tx_work) {
2769                u32 imask;
2770                napi_complete(napi);
2771
2772                spin_lock_irq(&gfargrp->grplock);
2773                imask = gfar_read(&regs->imask);
2774                imask |= IMASK_TX_DEFAULT;
2775                gfar_write(&regs->imask, imask);
2776                spin_unlock_irq(&gfargrp->grplock);
2777        }
2778
2779        return 0;
2780}
2781
2782/* GFAR error interrupt handler */
2783static irqreturn_t gfar_error(int irq, void *grp_id)
2784{
2785        struct gfar_priv_grp *gfargrp = grp_id;
2786        struct gfar __iomem *regs = gfargrp->regs;
2787        struct gfar_private *priv= gfargrp->priv;
2788        struct net_device *dev = priv->ndev;
2789
2790        /* Save ievent for future reference */
2791        u32 events = gfar_read(&regs->ievent);
2792
2793        /* Clear IEVENT */
2794        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2795
2796        /* Magic Packet is not an error. */
2797        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2798            (events & IEVENT_MAG))
2799                events &= ~IEVENT_MAG;
2800
2801        /* Hmm... */
2802        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2803                netdev_dbg(dev,
2804                           "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2805                           events, gfar_read(&regs->imask));
2806
2807        /* Update the error counters */
2808        if (events & IEVENT_TXE) {
2809                dev->stats.tx_errors++;
2810
2811                if (events & IEVENT_LC)
2812                        dev->stats.tx_window_errors++;
2813                if (events & IEVENT_CRL)
2814                        dev->stats.tx_aborted_errors++;
2815                if (events & IEVENT_XFUN) {
2816                        netif_dbg(priv, tx_err, dev,
2817                                  "TX FIFO underrun, packet dropped\n");
2818                        dev->stats.tx_dropped++;
2819                        atomic64_inc(&priv->extra_stats.tx_underrun);
2820
2821                        schedule_work(&priv->reset_task);
2822                }
2823                netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2824        }
2825        if (events & IEVENT_BSY) {
2826                dev->stats.rx_over_errors++;
2827                atomic64_inc(&priv->extra_stats.rx_bsy);
2828
2829                netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2830                          gfar_read(&regs->rstat));
2831        }
2832        if (events & IEVENT_BABR) {
2833                dev->stats.rx_errors++;
2834                atomic64_inc(&priv->extra_stats.rx_babr);
2835
2836                netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2837        }
2838        if (events & IEVENT_EBERR) {
2839                atomic64_inc(&priv->extra_stats.eberr);
2840                netif_dbg(priv, rx_err, dev, "bus error\n");
2841        }
2842        if (events & IEVENT_RXC)
2843                netif_dbg(priv, rx_status, dev, "control frame\n");
2844
2845        if (events & IEVENT_BABT) {
2846                atomic64_inc(&priv->extra_stats.tx_babt);
2847                netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2848        }
2849        return IRQ_HANDLED;
2850}
2851
2852/* The interrupt handler for devices with one interrupt */
2853static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2854{
2855        struct gfar_priv_grp *gfargrp = grp_id;
2856
2857        /* Save ievent for future reference */
2858        u32 events = gfar_read(&gfargrp->regs->ievent);
2859
2860        /* Check for reception */
2861        if (events & IEVENT_RX_MASK)
2862                gfar_receive(irq, grp_id);
2863
2864        /* Check for transmit completion */
2865        if (events & IEVENT_TX_MASK)
2866                gfar_transmit(irq, grp_id);
2867
2868        /* Check for errors */
2869        if (events & IEVENT_ERR_MASK)
2870                gfar_error(irq, grp_id);
2871
2872        return IRQ_HANDLED;
2873}
2874
2875#ifdef CONFIG_NET_POLL_CONTROLLER
2876/* Polling 'interrupt' - used by things like netconsole to send skbs
2877 * without having to re-enable interrupts. It's not called while
2878 * the interrupt routine is executing.
2879 */
2880static void gfar_netpoll(struct net_device *dev)
2881{
2882        struct gfar_private *priv = netdev_priv(dev);
2883        int i;
2884
2885        /* If the device has multiple interrupts, run tx/rx */
2886        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2887                for (i = 0; i < priv->num_grps; i++) {
2888                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2889
2890                        disable_irq(gfar_irq(grp, TX)->irq);
2891                        disable_irq(gfar_irq(grp, RX)->irq);
2892                        disable_irq(gfar_irq(grp, ER)->irq);
2893                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2894                        enable_irq(gfar_irq(grp, ER)->irq);
2895                        enable_irq(gfar_irq(grp, RX)->irq);
2896                        enable_irq(gfar_irq(grp, TX)->irq);
2897                }
2898        } else {
2899                for (i = 0; i < priv->num_grps; i++) {
2900                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2901
2902                        disable_irq(gfar_irq(grp, TX)->irq);
2903                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2904                        enable_irq(gfar_irq(grp, TX)->irq);
2905                }
2906        }
2907}
2908#endif
2909
2910static void free_grp_irqs(struct gfar_priv_grp *grp)
2911{
2912        free_irq(gfar_irq(grp, TX)->irq, grp);
2913        free_irq(gfar_irq(grp, RX)->irq, grp);
2914        free_irq(gfar_irq(grp, ER)->irq, grp);
2915}
2916
2917static int register_grp_irqs(struct gfar_priv_grp *grp)
2918{
2919        struct gfar_private *priv = grp->priv;
2920        struct net_device *dev = priv->ndev;
2921        int err;
2922
2923        /* If the device has multiple interrupts, register for
2924         * them.  Otherwise, only register for the one
2925         */
2926        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2927                /* Install our interrupt handlers for Error,
2928                 * Transmit, and Receive
2929                 */
2930                err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2931                                  gfar_irq(grp, ER)->name, grp);
2932                if (err < 0) {
2933                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2934                                  gfar_irq(grp, ER)->irq);
2935
2936                        goto err_irq_fail;
2937                }
2938                enable_irq_wake(gfar_irq(grp, ER)->irq);
2939
2940                err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2941                                  gfar_irq(grp, TX)->name, grp);
2942                if (err < 0) {
2943                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2944                                  gfar_irq(grp, TX)->irq);
2945                        goto tx_irq_fail;
2946                }
2947                err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2948                                  gfar_irq(grp, RX)->name, grp);
2949                if (err < 0) {
2950                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2951                                  gfar_irq(grp, RX)->irq);
2952                        goto rx_irq_fail;
2953                }
2954                enable_irq_wake(gfar_irq(grp, RX)->irq);
2955
2956        } else {
2957                err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2958                                  gfar_irq(grp, TX)->name, grp);
2959                if (err < 0) {
2960                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2961                                  gfar_irq(grp, TX)->irq);
2962                        goto err_irq_fail;
2963                }
2964                enable_irq_wake(gfar_irq(grp, TX)->irq);
2965        }
2966
2967        return 0;
2968
2969rx_irq_fail:
2970        free_irq(gfar_irq(grp, TX)->irq, grp);
2971tx_irq_fail:
2972        free_irq(gfar_irq(grp, ER)->irq, grp);
2973err_irq_fail:
2974        return err;
2975
2976}
2977
2978static void gfar_free_irq(struct gfar_private *priv)
2979{
2980        int i;
2981
2982        /* Free the IRQs */
2983        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2984                for (i = 0; i < priv->num_grps; i++)
2985                        free_grp_irqs(&priv->gfargrp[i]);
2986        } else {
2987                for (i = 0; i < priv->num_grps; i++)
2988                        free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2989                                 &priv->gfargrp[i]);
2990        }
2991}
2992
2993static int gfar_request_irq(struct gfar_private *priv)
2994{
2995        int err, i, j;
2996
2997        for (i = 0; i < priv->num_grps; i++) {
2998                err = register_grp_irqs(&priv->gfargrp[i]);
2999                if (err) {
3000                        for (j = 0; j < i; j++)
3001                                free_grp_irqs(&priv->gfargrp[j]);
3002                        return err;
3003                }
3004        }
3005
3006        return 0;
3007}
3008
3009/* Called when something needs to use the ethernet device
3010 * Returns 0 for success.
3011 */
3012static int gfar_enet_open(struct net_device *dev)
3013{
3014        struct gfar_private *priv = netdev_priv(dev);
3015        int err;
3016
3017        err = init_phy(dev);
3018        if (err)
3019                return err;
3020
3021        err = gfar_request_irq(priv);
3022        if (err)
3023                return err;
3024
3025        err = startup_gfar(dev);
3026        if (err)
3027                return err;
3028
3029        return err;
3030}
3031
3032/* Stops the kernel queue, and halts the controller */
3033static int gfar_close(struct net_device *dev)
3034{
3035        struct gfar_private *priv = netdev_priv(dev);
3036
3037        cancel_work_sync(&priv->reset_task);
3038        stop_gfar(dev);
3039
3040        /* Disconnect from the PHY */
3041        phy_disconnect(dev->phydev);
3042
3043        gfar_free_irq(priv);
3044
3045        return 0;
3046}
3047
3048/* Clears each of the exact match registers to zero, so they
3049 * don't interfere with normal reception
3050 */
3051static void gfar_clear_exact_match(struct net_device *dev)
3052{
3053        int idx;
3054        static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3055
3056        for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3057                gfar_set_mac_for_addr(dev, idx, zero_arr);
3058}
3059
3060/* Update the hash table based on the current list of multicast
3061 * addresses we subscribe to.  Also, change the promiscuity of
3062 * the device based on the flags (this function is called
3063 * whenever dev->flags is changed
3064 */
3065static void gfar_set_multi(struct net_device *dev)
3066{
3067        struct netdev_hw_addr *ha;
3068        struct gfar_private *priv = netdev_priv(dev);
3069        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3070        u32 tempval;
3071
3072        if (dev->flags & IFF_PROMISC) {
3073                /* Set RCTRL to PROM */
3074                tempval = gfar_read(&regs->rctrl);
3075                tempval |= RCTRL_PROM;
3076                gfar_write(&regs->rctrl, tempval);
3077        } else {
3078                /* Set RCTRL to not PROM */
3079                tempval = gfar_read(&regs->rctrl);
3080                tempval &= ~(RCTRL_PROM);
3081                gfar_write(&regs->rctrl, tempval);
3082        }
3083
3084        if (dev->flags & IFF_ALLMULTI) {
3085                /* Set the hash to rx all multicast frames */
3086                gfar_write(&regs->igaddr0, 0xffffffff);
3087                gfar_write(&regs->igaddr1, 0xffffffff);
3088                gfar_write(&regs->igaddr2, 0xffffffff);
3089                gfar_write(&regs->igaddr3, 0xffffffff);
3090                gfar_write(&regs->igaddr4, 0xffffffff);
3091                gfar_write(&regs->igaddr5, 0xffffffff);
3092                gfar_write(&regs->igaddr6, 0xffffffff);
3093                gfar_write(&regs->igaddr7, 0xffffffff);
3094                gfar_write(&regs->gaddr0, 0xffffffff);
3095                gfar_write(&regs->gaddr1, 0xffffffff);
3096                gfar_write(&regs->gaddr2, 0xffffffff);
3097                gfar_write(&regs->gaddr3, 0xffffffff);
3098                gfar_write(&regs->gaddr4, 0xffffffff);
3099                gfar_write(&regs->gaddr5, 0xffffffff);
3100                gfar_write(&regs->gaddr6, 0xffffffff);
3101                gfar_write(&regs->gaddr7, 0xffffffff);
3102        } else {
3103                int em_num;
3104                int idx;
3105
3106                /* zero out the hash */
3107                gfar_write(&regs->igaddr0, 0x0);
3108                gfar_write(&regs->igaddr1, 0x0);
3109                gfar_write(&regs->igaddr2, 0x0);
3110                gfar_write(&regs->igaddr3, 0x0);
3111                gfar_write(&regs->igaddr4, 0x0);
3112                gfar_write(&regs->igaddr5, 0x0);
3113                gfar_write(&regs->igaddr6, 0x0);
3114                gfar_write(&regs->igaddr7, 0x0);
3115                gfar_write(&regs->gaddr0, 0x0);
3116                gfar_write(&regs->gaddr1, 0x0);
3117                gfar_write(&regs->gaddr2, 0x0);
3118                gfar_write(&regs->gaddr3, 0x0);
3119                gfar_write(&regs->gaddr4, 0x0);
3120                gfar_write(&regs->gaddr5, 0x0);
3121                gfar_write(&regs->gaddr6, 0x0);
3122                gfar_write(&regs->gaddr7, 0x0);
3123
3124                /* If we have extended hash tables, we need to
3125                 * clear the exact match registers to prepare for
3126                 * setting them
3127                 */
3128                if (priv->extended_hash) {
3129                        em_num = GFAR_EM_NUM + 1;
3130                        gfar_clear_exact_match(dev);
3131                        idx = 1;
3132                } else {
3133                        idx = 0;
3134                        em_num = 0;
3135                }
3136
3137                if (netdev_mc_empty(dev))
3138                        return;
3139
3140                /* Parse the list, and set the appropriate bits */
3141                netdev_for_each_mc_addr(ha, dev) {
3142                        if (idx < em_num) {
3143                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3144                                idx++;
3145                        } else
3146                                gfar_set_hash_for_addr(dev, ha->addr);
3147                }
3148        }
3149}
3150
3151void gfar_mac_reset(struct gfar_private *priv)
3152{
3153        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3154        u32 tempval;
3155
3156        /* Reset MAC layer */
3157        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3158
3159        /* We need to delay at least 3 TX clocks */
3160        udelay(3);
3161
3162        /* the soft reset bit is not self-resetting, so we need to
3163         * clear it before resuming normal operation
3164         */
3165        gfar_write(&regs->maccfg1, 0);
3166
3167        udelay(3);
3168
3169        gfar_rx_offload_en(priv);
3170
3171        /* Initialize the max receive frame/buffer lengths */
3172        gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3173        gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3174
3175        /* Initialize the Minimum Frame Length Register */
3176        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3177
3178        /* Initialize MACCFG2. */
3179        tempval = MACCFG2_INIT_SETTINGS;
3180
3181        /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3182         * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3183         * and by checking RxBD[LG] and discarding larger than MAXFRM.
3184         */
3185        if (gfar_has_errata(priv, GFAR_ERRATA_74))
3186                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3187
3188        gfar_write(&regs->maccfg2, tempval);
3189
3190        /* Clear mac addr hash registers */
3191        gfar_write(&regs->igaddr0, 0);
3192        gfar_write(&regs->igaddr1, 0);
3193        gfar_write(&regs->igaddr2, 0);
3194        gfar_write(&regs->igaddr3, 0);
3195        gfar_write(&regs->igaddr4, 0);
3196        gfar_write(&regs->igaddr5, 0);
3197        gfar_write(&regs->igaddr6, 0);
3198        gfar_write(&regs->igaddr7, 0);
3199
3200        gfar_write(&regs->gaddr0, 0);
3201        gfar_write(&regs->gaddr1, 0);
3202        gfar_write(&regs->gaddr2, 0);
3203        gfar_write(&regs->gaddr3, 0);
3204        gfar_write(&regs->gaddr4, 0);
3205        gfar_write(&regs->gaddr5, 0);
3206        gfar_write(&regs->gaddr6, 0);
3207        gfar_write(&regs->gaddr7, 0);
3208
3209        if (priv->extended_hash)
3210                gfar_clear_exact_match(priv->ndev);
3211
3212        gfar_mac_rx_config(priv);
3213
3214        gfar_mac_tx_config(priv);
3215
3216        gfar_set_mac_address(priv->ndev);
3217
3218        gfar_set_multi(priv->ndev);
3219
3220        /* clear ievent and imask before configuring coalescing */
3221        gfar_ints_disable(priv);
3222
3223        /* Configure the coalescing support */
3224        gfar_configure_coalescing_all(priv);
3225}
3226
3227static void gfar_hw_init(struct gfar_private *priv)
3228{
3229        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3230        u32 attrs;
3231
3232        /* Stop the DMA engine now, in case it was running before
3233         * (The firmware could have used it, and left it running).
3234         */
3235        gfar_halt(priv);
3236
3237        gfar_mac_reset(priv);
3238
3239        /* Zero out the rmon mib registers if it has them */
3240        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3241                memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3242
3243                /* Mask off the CAM interrupts */
3244                gfar_write(&regs->rmon.cam1, 0xffffffff);
3245                gfar_write(&regs->rmon.cam2, 0xffffffff);
3246        }
3247
3248        /* Initialize ECNTRL */
3249        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3250
3251        /* Set the extraction length and index */
3252        attrs = ATTRELI_EL(priv->rx_stash_size) |
3253                ATTRELI_EI(priv->rx_stash_index);
3254
3255        gfar_write(&regs->attreli, attrs);
3256
3257        /* Start with defaults, and add stashing
3258         * depending on driver parameters
3259         */
3260        attrs = ATTR_INIT_SETTINGS;
3261
3262        if (priv->bd_stash_en)
3263                attrs |= ATTR_BDSTASH;
3264
3265        if (priv->rx_stash_size != 0)
3266                attrs |= ATTR_BUFSTASH;
3267
3268        gfar_write(&regs->attr, attrs);
3269
3270        /* FIFO configs */
3271        gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3272        gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3273        gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3274
3275        /* Program the interrupt steering regs, only for MG devices */
3276        if (priv->num_grps > 1)
3277                gfar_write_isrg(priv);
3278}
3279
3280static const struct net_device_ops gfar_netdev_ops = {
3281        .ndo_open = gfar_enet_open,
3282        .ndo_start_xmit = gfar_start_xmit,
3283        .ndo_stop = gfar_close,
3284        .ndo_change_mtu = gfar_change_mtu,
3285        .ndo_set_features = gfar_set_features,
3286        .ndo_set_rx_mode = gfar_set_multi,
3287        .ndo_tx_timeout = gfar_timeout,
3288        .ndo_do_ioctl = gfar_ioctl,
3289        .ndo_get_stats = gfar_get_stats,
3290        .ndo_change_carrier = fixed_phy_change_carrier,
3291        .ndo_set_mac_address = gfar_set_mac_addr,
3292        .ndo_validate_addr = eth_validate_addr,
3293#ifdef CONFIG_NET_POLL_CONTROLLER
3294        .ndo_poll_controller = gfar_netpoll,
3295#endif
3296};
3297
3298/* Set up the ethernet device structure, private data,
3299 * and anything else we need before we start
3300 */
3301static int gfar_probe(struct platform_device *ofdev)
3302{
3303        struct device_node *np = ofdev->dev.of_node;
3304        struct net_device *dev = NULL;
3305        struct gfar_private *priv = NULL;
3306        int err = 0, i;
3307
3308        err = gfar_of_init(ofdev, &dev);
3309
3310        if (err)
3311                return err;
3312
3313        priv = netdev_priv(dev);
3314        priv->ndev = dev;
3315        priv->ofdev = ofdev;
3316        priv->dev = &ofdev->dev;
3317        SET_NETDEV_DEV(dev, &ofdev->dev);
3318
3319        INIT_WORK(&priv->reset_task, gfar_reset_task);
3320
3321        platform_set_drvdata(ofdev, priv);
3322
3323        gfar_detect_errata(priv);
3324
3325        /* Set the dev->base_addr to the gfar reg region */
3326        dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3327
3328        /* Fill in the dev structure */
3329        dev->watchdog_timeo = TX_TIMEOUT;
3330        /* MTU range: 50 - 9586 */
3331        dev->mtu = 1500;
3332        dev->min_mtu = 50;
3333        dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3334        dev->netdev_ops = &gfar_netdev_ops;
3335        dev->ethtool_ops = &gfar_ethtool_ops;
3336
3337        /* Register for napi ...We are registering NAPI for each grp */
3338        for (i = 0; i < priv->num_grps; i++) {
3339                if (priv->poll_mode == GFAR_SQ_POLLING) {
3340                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3341                                       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3342                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3343                                       gfar_poll_tx_sq, 2);
3344                } else {
3345                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3346                                       gfar_poll_rx, GFAR_DEV_WEIGHT);
3347                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3348                                       gfar_poll_tx, 2);
3349                }
3350        }
3351
3352        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3353                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3354                                   NETIF_F_RXCSUM;
3355                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3356                                 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3357        }
3358
3359        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3360                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3361                                    NETIF_F_HW_VLAN_CTAG_RX;
3362                dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3363        }
3364
3365        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3366
3367        gfar_init_addr_hash_table(priv);
3368
3369        /* Insert receive time stamps into padding alignment bytes, and
3370         * plus 2 bytes padding to ensure the cpu alignment.
3371         */
3372        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3373                priv->padding = 8 + DEFAULT_PADDING;
3374
3375        if (dev->features & NETIF_F_IP_CSUM ||
3376            priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3377                dev->needed_headroom = GMAC_FCB_LEN;
3378
3379        /* Initializing some of the rx/tx queue level parameters */
3380        for (i = 0; i < priv->num_tx_queues; i++) {
3381                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3382                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3383                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3384                priv->tx_queue[i]->txic = DEFAULT_TXIC;
3385        }
3386
3387        for (i = 0; i < priv->num_rx_queues; i++) {
3388                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3389                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3390                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3391        }
3392
3393        /* Always enable rx filer if available */
3394        priv->rx_filer_enable =
3395            (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3396        /* Enable most messages by default */
3397        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3398        /* use pritority h/w tx queue scheduling for single queue devices */
3399        if (priv->num_tx_queues == 1)
3400                priv->prio_sched_en = 1;
3401
3402        set_bit(GFAR_DOWN, &priv->state);
3403
3404        gfar_hw_init(priv);
3405
3406        /* Carrier starts down, phylib will bring it up */
3407        netif_carrier_off(dev);
3408
3409        err = register_netdev(dev);
3410
3411        if (err) {
3412                pr_err("%s: Cannot register net device, aborting\n", dev->name);
3413                goto register_fail;
3414        }
3415
3416        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3417                priv->wol_supported |= GFAR_WOL_MAGIC;
3418
3419        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3420            priv->rx_filer_enable)
3421                priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3422
3423        device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3424
3425        /* fill out IRQ number and name fields */
3426        for (i = 0; i < priv->num_grps; i++) {
3427                struct gfar_priv_grp *grp = &priv->gfargrp[i];
3428                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3429                        sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3430                                dev->name, "_g", '0' + i, "_tx");
3431                        sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3432                                dev->name, "_g", '0' + i, "_rx");
3433                        sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3434                                dev->name, "_g", '0' + i, "_er");
3435                } else
3436                        strcpy(gfar_irq(grp, TX)->name, dev->name);
3437        }
3438
3439        /* Initialize the filer table */
3440        gfar_init_filer_table(priv);
3441
3442        /* Print out the device info */
3443        netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3444
3445        /* Even more device info helps when determining which kernel
3446         * provided which set of benchmarks.
3447         */
3448        netdev_info(dev, "Running with NAPI enabled\n");
3449        for (i = 0; i < priv->num_rx_queues; i++)
3450                netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3451                            i, priv->rx_queue[i]->rx_ring_size);
3452        for (i = 0; i < priv->num_tx_queues; i++)
3453                netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3454                            i, priv->tx_queue[i]->tx_ring_size);
3455
3456        return 0;
3457
3458register_fail:
3459        if (of_phy_is_fixed_link(np))
3460                of_phy_deregister_fixed_link(np);
3461        unmap_group_regs(priv);
3462        gfar_free_rx_queues(priv);
3463        gfar_free_tx_queues(priv);
3464        of_node_put(priv->phy_node);
3465        of_node_put(priv->tbi_node);
3466        free_gfar_dev(priv);
3467        return err;
3468}
3469
3470static int gfar_remove(struct platform_device *ofdev)
3471{
3472        struct gfar_private *priv = platform_get_drvdata(ofdev);
3473        struct device_node *np = ofdev->dev.of_node;
3474
3475        of_node_put(priv->phy_node);
3476        of_node_put(priv->tbi_node);
3477
3478        unregister_netdev(priv->ndev);
3479
3480        if (of_phy_is_fixed_link(np))
3481                of_phy_deregister_fixed_link(np);
3482
3483        unmap_group_regs(priv);
3484        gfar_free_rx_queues(priv);
3485        gfar_free_tx_queues(priv);
3486        free_gfar_dev(priv);
3487
3488        return 0;
3489}
3490
3491#ifdef CONFIG_PM
3492
3493static void __gfar_filer_disable(struct gfar_private *priv)
3494{
3495        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3496        u32 temp;
3497
3498        temp = gfar_read(&regs->rctrl);
3499        temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3500        gfar_write(&regs->rctrl, temp);
3501}
3502
3503static void __gfar_filer_enable(struct gfar_private *priv)
3504{
3505        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3506        u32 temp;
3507
3508        temp = gfar_read(&regs->rctrl);
3509        temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3510        gfar_write(&regs->rctrl, temp);
3511}
3512
3513/* Filer rules implementing wol capabilities */
3514static void gfar_filer_config_wol(struct gfar_private *priv)
3515{
3516        unsigned int i;
3517        u32 rqfcr;
3518
3519        __gfar_filer_disable(priv);
3520
3521        /* clear the filer table, reject any packet by default */
3522        rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3523        for (i = 0; i <= MAX_FILER_IDX; i++)
3524                gfar_write_filer(priv, i, rqfcr, 0);
3525
3526        i = 0;
3527        if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3528                /* unicast packet, accept it */
3529                struct net_device *ndev = priv->ndev;
3530                /* get the default rx queue index */
3531                u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3532                u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3533                                    (ndev->dev_addr[1] << 8) |
3534                                     ndev->dev_addr[2];
3535
3536                rqfcr = (qindex << 10) | RQFCR_AND |
3537                        RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3538
3539                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3540
3541                dest_mac_addr = (ndev->dev_addr[3] << 16) |
3542                                (ndev->dev_addr[4] << 8) |
3543                                 ndev->dev_addr[5];
3544                rqfcr = (qindex << 10) | RQFCR_GPI |
3545                        RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3546                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3547        }
3548
3549        __gfar_filer_enable(priv);
3550}
3551
3552static void gfar_filer_restore_table(struct gfar_private *priv)
3553{
3554        u32 rqfcr, rqfpr;
3555        unsigned int i;
3556
3557        __gfar_filer_disable(priv);
3558
3559        for (i = 0; i <= MAX_FILER_IDX; i++) {
3560                rqfcr = priv->ftp_rqfcr[i];
3561                rqfpr = priv->ftp_rqfpr[i];
3562                gfar_write_filer(priv, i, rqfcr, rqfpr);
3563        }
3564
3565        __gfar_filer_enable(priv);
3566}
3567
3568/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3569static void gfar_start_wol_filer(struct gfar_private *priv)
3570{
3571        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3572        u32 tempval;
3573        int i = 0;
3574
3575        /* Enable Rx hw queues */
3576        gfar_write(&regs->rqueue, priv->rqueue);
3577
3578        /* Initialize DMACTRL to have WWR and WOP */
3579        tempval = gfar_read(&regs->dmactrl);
3580        tempval |= DMACTRL_INIT_SETTINGS;
3581        gfar_write(&regs->dmactrl, tempval);
3582
3583        /* Make sure we aren't stopped */
3584        tempval = gfar_read(&regs->dmactrl);
3585        tempval &= ~DMACTRL_GRS;
3586        gfar_write(&regs->dmactrl, tempval);
3587
3588        for (i = 0; i < priv->num_grps; i++) {
3589                regs = priv->gfargrp[i].regs;
3590                /* Clear RHLT, so that the DMA starts polling now */
3591                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3592                /* enable the Filer General Purpose Interrupt */
3593                gfar_write(&regs->imask, IMASK_FGPI);
3594        }
3595
3596        /* Enable Rx DMA */
3597        tempval = gfar_read(&regs->maccfg1);
3598        tempval |= MACCFG1_RX_EN;
3599        gfar_write(&regs->maccfg1, tempval);
3600}
3601
3602static int gfar_suspend(struct device *dev)
3603{
3604        struct gfar_private *priv = dev_get_drvdata(dev);
3605        struct net_device *ndev = priv->ndev;
3606        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3607        u32 tempval;
3608        u16 wol = priv->wol_opts;
3609
3610        if (!netif_running(ndev))
3611                return 0;
3612
3613        disable_napi(priv);
3614        netif_tx_lock(ndev);
3615        netif_device_detach(ndev);
3616        netif_tx_unlock(ndev);
3617
3618        gfar_halt(priv);
3619
3620        if (wol & GFAR_WOL_MAGIC) {
3621                /* Enable interrupt on Magic Packet */
3622                gfar_write(&regs->imask, IMASK_MAG);
3623
3624                /* Enable Magic Packet mode */
3625                tempval = gfar_read(&regs->maccfg2);
3626                tempval |= MACCFG2_MPEN;
3627                gfar_write(&regs->maccfg2, tempval);
3628
3629                /* re-enable the Rx block */
3630                tempval = gfar_read(&regs->maccfg1);
3631                tempval |= MACCFG1_RX_EN;
3632                gfar_write(&regs->maccfg1, tempval);
3633
3634        } else if (wol & GFAR_WOL_FILER_UCAST) {
3635                gfar_filer_config_wol(priv);
3636                gfar_start_wol_filer(priv);
3637
3638        } else {
3639                phy_stop(ndev->phydev);
3640        }
3641
3642        return 0;
3643}
3644
3645static int gfar_resume(struct device *dev)
3646{
3647        struct gfar_private *priv = dev_get_drvdata(dev);
3648        struct net_device *ndev = priv->ndev;
3649        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3650        u32 tempval;
3651        u16 wol = priv->wol_opts;
3652
3653        if (!netif_running(ndev))
3654                return 0;
3655
3656        if (wol & GFAR_WOL_MAGIC) {
3657                /* Disable Magic Packet mode */
3658                tempval = gfar_read(&regs->maccfg2);
3659                tempval &= ~MACCFG2_MPEN;
3660                gfar_write(&regs->maccfg2, tempval);
3661
3662        } else if (wol & GFAR_WOL_FILER_UCAST) {
3663                /* need to stop rx only, tx is already down */
3664                gfar_halt(priv);
3665                gfar_filer_restore_table(priv);
3666
3667        } else {
3668                phy_start(ndev->phydev);
3669        }
3670
3671        gfar_start(priv);
3672
3673        netif_device_attach(ndev);
3674        enable_napi(priv);
3675
3676        return 0;
3677}
3678
3679static int gfar_restore(struct device *dev)
3680{
3681        struct gfar_private *priv = dev_get_drvdata(dev);
3682        struct net_device *ndev = priv->ndev;
3683
3684        if (!netif_running(ndev)) {
3685                netif_device_attach(ndev);
3686
3687                return 0;
3688        }
3689
3690        gfar_init_bds(ndev);
3691
3692        gfar_mac_reset(priv);
3693
3694        gfar_init_tx_rx_base(priv);
3695
3696        gfar_start(priv);
3697
3698        priv->oldlink = 0;
3699        priv->oldspeed = 0;
3700        priv->oldduplex = -1;
3701
3702        if (ndev->phydev)
3703                phy_start(ndev->phydev);
3704
3705        netif_device_attach(ndev);
3706        enable_napi(priv);
3707
3708        return 0;
3709}
3710
3711static const struct dev_pm_ops gfar_pm_ops = {
3712        .suspend = gfar_suspend,
3713        .resume = gfar_resume,
3714        .freeze = gfar_suspend,
3715        .thaw = gfar_resume,
3716        .restore = gfar_restore,
3717};
3718
3719#define GFAR_PM_OPS (&gfar_pm_ops)
3720
3721#else
3722
3723#define GFAR_PM_OPS NULL
3724
3725#endif
3726
3727static const struct of_device_id gfar_match[] =
3728{
3729        {
3730                .type = "network",
3731                .compatible = "gianfar",
3732        },
3733        {
3734                .compatible = "fsl,etsec2",
3735        },
3736        {},
3737};
3738MODULE_DEVICE_TABLE(of, gfar_match);
3739
3740/* Structure for a device driver */
3741static struct platform_driver gfar_driver = {
3742        .driver = {
3743                .name = "fsl-gianfar",
3744                .pm = GFAR_PM_OPS,
3745                .of_match_table = gfar_match,
3746        },
3747        .probe = gfar_probe,
3748        .remove = gfar_remove,
3749};
3750
3751module_platform_driver(gfar_driver);
3752