linux/drivers/net/ethernet/sfc/ef10.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "ef10_regs.h"
  10#include "io.h"
  11#include "mcdi.h"
  12#include "mcdi_pcol.h"
  13#include "mcdi_port_common.h"
  14#include "mcdi_functions.h"
  15#include "nic.h"
  16#include "mcdi_filters.h"
  17#include "workarounds.h"
  18#include "selftest.h"
  19#include "ef10_sriov.h"
  20#include <linux/in.h>
  21#include <linux/jhash.h>
  22#include <linux/wait.h>
  23#include <linux/workqueue.h>
  24
  25/* Hardware control for EF10 architecture including 'Huntington'. */
  26
  27#define EFX_EF10_DRVGEN_EV              7
  28enum {
  29        EFX_EF10_TEST = 1,
  30        EFX_EF10_REFILL,
  31};
  32
  33/* VLAN list entry */
  34struct efx_ef10_vlan {
  35        struct list_head list;
  36        u16 vid;
  37};
  38
  39static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  40
  41static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  42{
  43        efx_dword_t reg;
  44
  45        efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  46        return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  47                EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  48}
  49
  50/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  51 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  52 * bar; PFs use BAR 0/1 for memory.
  53 */
  54static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  55{
  56        switch (efx->pci_dev->device) {
  57        case 0x0b03: /* SFC9250 PF */
  58                return 0;
  59        default:
  60                return 2;
  61        }
  62}
  63
  64/* All VFs use BAR 0/1 for memory */
  65static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  66{
  67        return 0;
  68}
  69
  70static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  71{
  72        int bar;
  73
  74        bar = efx->type->mem_bar(efx);
  75        return resource_size(&efx->pci_dev->resource[bar]);
  76}
  77
  78static bool efx_ef10_is_vf(struct efx_nic *efx)
  79{
  80        return efx->type->is_vf;
  81}
  82
  83#ifdef CONFIG_SFC_SRIOV
  84static int efx_ef10_get_vf_index(struct efx_nic *efx)
  85{
  86        MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  87        struct efx_ef10_nic_data *nic_data = efx->nic_data;
  88        size_t outlen;
  89        int rc;
  90
  91        rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  92                          sizeof(outbuf), &outlen);
  93        if (rc)
  94                return rc;
  95        if (outlen < sizeof(outbuf))
  96                return -EIO;
  97
  98        nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
  99        return 0;
 100}
 101#endif
 102
 103static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 104{
 105        MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 106        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 107        size_t outlen;
 108        int rc;
 109
 110        BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 111
 112        rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 113                          outbuf, sizeof(outbuf), &outlen);
 114        if (rc)
 115                return rc;
 116        if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 117                netif_err(efx, drv, efx->net_dev,
 118                          "unable to read datapath firmware capabilities\n");
 119                return -EIO;
 120        }
 121
 122        nic_data->datapath_caps =
 123                MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 124
 125        if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 126                nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 127                                GET_CAPABILITIES_V2_OUT_FLAGS2);
 128                nic_data->piobuf_size = MCDI_WORD(outbuf,
 129                                GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 130        } else {
 131                nic_data->datapath_caps2 = 0;
 132                nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 133        }
 134
 135        /* record the DPCPU firmware IDs to determine VEB vswitching support.
 136         */
 137        nic_data->rx_dpcpu_fw_id =
 138                MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 139        nic_data->tx_dpcpu_fw_id =
 140                MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 141
 142        if (!(nic_data->datapath_caps &
 143              (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 144                netif_err(efx, probe, efx->net_dev,
 145                          "current firmware does not support an RX prefix\n");
 146                return -ENODEV;
 147        }
 148
 149        if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 150                u8 vi_window_mode = MCDI_BYTE(outbuf,
 151                                GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 152
 153                rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 154                if (rc)
 155                        return rc;
 156        } else {
 157                /* keep default VI stride */
 158                netif_dbg(efx, probe, efx->net_dev,
 159                          "firmware did not report VI window mode, assuming vi_stride = %u\n",
 160                          efx->vi_stride);
 161        }
 162
 163        if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 164                efx->num_mac_stats = MCDI_WORD(outbuf,
 165                                GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 166                netif_dbg(efx, probe, efx->net_dev,
 167                          "firmware reports num_mac_stats = %u\n",
 168                          efx->num_mac_stats);
 169        } else {
 170                /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 171                netif_dbg(efx, probe, efx->net_dev,
 172                          "firmware did not report num_mac_stats, assuming %u\n",
 173                          efx->num_mac_stats);
 174        }
 175
 176        return 0;
 177}
 178
 179static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 180{
 181        MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 182        MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 183        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 184        size_t outlen;
 185        int rc;
 186
 187        MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 188                       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 189        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 190                                outbuf, sizeof(outbuf), &outlen);
 191        if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 192                return;
 193
 194        nic_data->licensed_features = MCDI_QWORD(outbuf,
 195                                         LICENSING_V3_OUT_LICENSED_FEATURES);
 196}
 197
 198static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 199{
 200        MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 201        int rc;
 202
 203        rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 204                          outbuf, sizeof(outbuf), NULL);
 205        if (rc)
 206                return rc;
 207        rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 208        return rc > 0 ? rc : -ERANGE;
 209}
 210
 211static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 212{
 213        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 214        unsigned int implemented;
 215        unsigned int enabled;
 216        int rc;
 217
 218        nic_data->workaround_35388 = false;
 219        nic_data->workaround_61265 = false;
 220
 221        rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 222
 223        if (rc == -ENOSYS) {
 224                /* Firmware without GET_WORKAROUNDS - not a problem. */
 225                rc = 0;
 226        } else if (rc == 0) {
 227                /* Bug61265 workaround is always enabled if implemented. */
 228                if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 229                        nic_data->workaround_61265 = true;
 230
 231                if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 232                        nic_data->workaround_35388 = true;
 233                } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 234                        /* Workaround is implemented but not enabled.
 235                         * Try to enable it.
 236                         */
 237                        rc = efx_mcdi_set_workaround(efx,
 238                                                     MC_CMD_WORKAROUND_BUG35388,
 239                                                     true, NULL);
 240                        if (rc == 0)
 241                                nic_data->workaround_35388 = true;
 242                        /* If we failed to set the workaround just carry on. */
 243                        rc = 0;
 244                }
 245        }
 246
 247        netif_dbg(efx, probe, efx->net_dev,
 248                  "workaround for bug 35388 is %sabled\n",
 249                  nic_data->workaround_35388 ? "en" : "dis");
 250        netif_dbg(efx, probe, efx->net_dev,
 251                  "workaround for bug 61265 is %sabled\n",
 252                  nic_data->workaround_61265 ? "en" : "dis");
 253
 254        return rc;
 255}
 256
 257static void efx_ef10_process_timer_config(struct efx_nic *efx,
 258                                          const efx_dword_t *data)
 259{
 260        unsigned int max_count;
 261
 262        if (EFX_EF10_WORKAROUND_61265(efx)) {
 263                efx->timer_quantum_ns = MCDI_DWORD(data,
 264                        GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 265                efx->timer_max_ns = MCDI_DWORD(data,
 266                        GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 267        } else if (EFX_EF10_WORKAROUND_35388(efx)) {
 268                efx->timer_quantum_ns = MCDI_DWORD(data,
 269                        GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 270                max_count = MCDI_DWORD(data,
 271                        GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 272                efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 273        } else {
 274                efx->timer_quantum_ns = MCDI_DWORD(data,
 275                        GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 276                max_count = MCDI_DWORD(data,
 277                        GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 278                efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 279        }
 280
 281        netif_dbg(efx, probe, efx->net_dev,
 282                  "got timer properties from MC: quantum %u ns; max %u ns\n",
 283                  efx->timer_quantum_ns, efx->timer_max_ns);
 284}
 285
 286static int efx_ef10_get_timer_config(struct efx_nic *efx)
 287{
 288        MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 289        int rc;
 290
 291        rc = efx_ef10_get_timer_workarounds(efx);
 292        if (rc)
 293                return rc;
 294
 295        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 296                                outbuf, sizeof(outbuf), NULL);
 297
 298        if (rc == 0) {
 299                efx_ef10_process_timer_config(efx, outbuf);
 300        } else if (rc == -ENOSYS || rc == -EPERM) {
 301                /* Not available - fall back to Huntington defaults. */
 302                unsigned int quantum;
 303
 304                rc = efx_ef10_get_sysclk_freq(efx);
 305                if (rc < 0)
 306                        return rc;
 307
 308                quantum = 1536000 / rc; /* 1536 cycles */
 309                efx->timer_quantum_ns = quantum;
 310                efx->timer_max_ns = efx->type->timer_period_max * quantum;
 311                rc = 0;
 312        } else {
 313                efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 314                                       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 315                                       NULL, 0, rc);
 316        }
 317
 318        return rc;
 319}
 320
 321static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 322{
 323        MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 324        size_t outlen;
 325        int rc;
 326
 327        BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 328
 329        rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 330                          outbuf, sizeof(outbuf), &outlen);
 331        if (rc)
 332                return rc;
 333        if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 334                return -EIO;
 335
 336        ether_addr_copy(mac_address,
 337                        MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 338        return 0;
 339}
 340
 341static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 342{
 343        MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 344        MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 345        size_t outlen;
 346        int num_addrs, rc;
 347
 348        MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 349                       EVB_PORT_ID_ASSIGNED);
 350        rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 351                          sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 352
 353        if (rc)
 354                return rc;
 355        if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 356                return -EIO;
 357
 358        num_addrs = MCDI_DWORD(outbuf,
 359                               VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 360
 361        WARN_ON(num_addrs != 1);
 362
 363        ether_addr_copy(mac_address,
 364                        MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 365
 366        return 0;
 367}
 368
 369static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
 370                                               struct device_attribute *attr,
 371                                               char *buf)
 372{
 373        struct efx_nic *efx = dev_get_drvdata(dev);
 374
 375        return sprintf(buf, "%d\n",
 376                       ((efx->mcdi->fn_flags) &
 377                        (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 378                       ? 1 : 0);
 379}
 380
 381static ssize_t efx_ef10_show_primary_flag(struct device *dev,
 382                                          struct device_attribute *attr,
 383                                          char *buf)
 384{
 385        struct efx_nic *efx = dev_get_drvdata(dev);
 386
 387        return sprintf(buf, "%d\n",
 388                       ((efx->mcdi->fn_flags) &
 389                        (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 390                       ? 1 : 0);
 391}
 392
 393static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 394{
 395        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 396        struct efx_ef10_vlan *vlan;
 397
 398        WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 399
 400        list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 401                if (vlan->vid == vid)
 402                        return vlan;
 403        }
 404
 405        return NULL;
 406}
 407
 408static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 409{
 410        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 411        struct efx_ef10_vlan *vlan;
 412        int rc;
 413
 414        mutex_lock(&nic_data->vlan_lock);
 415
 416        vlan = efx_ef10_find_vlan(efx, vid);
 417        if (vlan) {
 418                /* We add VID 0 on init. 8021q adds it on module init
 419                 * for all interfaces with VLAN filtring feature.
 420                 */
 421                if (vid == 0)
 422                        goto done_unlock;
 423                netif_warn(efx, drv, efx->net_dev,
 424                           "VLAN %u already added\n", vid);
 425                rc = -EALREADY;
 426                goto fail_exist;
 427        }
 428
 429        rc = -ENOMEM;
 430        vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 431        if (!vlan)
 432                goto fail_alloc;
 433
 434        vlan->vid = vid;
 435
 436        list_add_tail(&vlan->list, &nic_data->vlan_list);
 437
 438        if (efx->filter_state) {
 439                mutex_lock(&efx->mac_lock);
 440                down_write(&efx->filter_sem);
 441                rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 442                up_write(&efx->filter_sem);
 443                mutex_unlock(&efx->mac_lock);
 444                if (rc)
 445                        goto fail_filter_add_vlan;
 446        }
 447
 448done_unlock:
 449        mutex_unlock(&nic_data->vlan_lock);
 450        return 0;
 451
 452fail_filter_add_vlan:
 453        list_del(&vlan->list);
 454        kfree(vlan);
 455fail_alloc:
 456fail_exist:
 457        mutex_unlock(&nic_data->vlan_lock);
 458        return rc;
 459}
 460
 461static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 462                                       struct efx_ef10_vlan *vlan)
 463{
 464        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 465
 466        WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 467
 468        if (efx->filter_state) {
 469                down_write(&efx->filter_sem);
 470                efx_mcdi_filter_del_vlan(efx, vlan->vid);
 471                up_write(&efx->filter_sem);
 472        }
 473
 474        list_del(&vlan->list);
 475        kfree(vlan);
 476}
 477
 478static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 479{
 480        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 481        struct efx_ef10_vlan *vlan;
 482        int rc = 0;
 483
 484        /* 8021q removes VID 0 on module unload for all interfaces
 485         * with VLAN filtering feature. We need to keep it to receive
 486         * untagged traffic.
 487         */
 488        if (vid == 0)
 489                return 0;
 490
 491        mutex_lock(&nic_data->vlan_lock);
 492
 493        vlan = efx_ef10_find_vlan(efx, vid);
 494        if (!vlan) {
 495                netif_err(efx, drv, efx->net_dev,
 496                          "VLAN %u to be deleted not found\n", vid);
 497                rc = -ENOENT;
 498        } else {
 499                efx_ef10_del_vlan_internal(efx, vlan);
 500        }
 501
 502        mutex_unlock(&nic_data->vlan_lock);
 503
 504        return rc;
 505}
 506
 507static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 508{
 509        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 510        struct efx_ef10_vlan *vlan, *next_vlan;
 511
 512        mutex_lock(&nic_data->vlan_lock);
 513        list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 514                efx_ef10_del_vlan_internal(efx, vlan);
 515        mutex_unlock(&nic_data->vlan_lock);
 516}
 517
 518static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
 519                   NULL);
 520static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
 521
 522static int efx_ef10_probe(struct efx_nic *efx)
 523{
 524        struct efx_ef10_nic_data *nic_data;
 525        int i, rc;
 526
 527        nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 528        if (!nic_data)
 529                return -ENOMEM;
 530        efx->nic_data = nic_data;
 531
 532        /* we assume later that we can copy from this buffer in dwords */
 533        BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 534
 535        rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 536                                  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 537        if (rc)
 538                goto fail1;
 539
 540        /* Get the MC's warm boot count.  In case it's rebooting right
 541         * now, be prepared to retry.
 542         */
 543        i = 0;
 544        for (;;) {
 545                rc = efx_ef10_get_warm_boot_count(efx);
 546                if (rc >= 0)
 547                        break;
 548                if (++i == 5)
 549                        goto fail2;
 550                ssleep(1);
 551        }
 552        nic_data->warm_boot_count = rc;
 553
 554        efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
 555
 556        nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
 557
 558        /* In case we're recovering from a crash (kexec), we want to
 559         * cancel any outstanding request by the previous user of this
 560         * function.  We send a special message using the least
 561         * significant bits of the 'high' (doorbell) register.
 562         */
 563        _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 564
 565        rc = efx_mcdi_init(efx);
 566        if (rc)
 567                goto fail2;
 568
 569        mutex_init(&nic_data->udp_tunnels_lock);
 570
 571        /* Reset (most) configuration for this function */
 572        rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 573        if (rc)
 574                goto fail3;
 575
 576        /* Enable event logging */
 577        rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 578        if (rc)
 579                goto fail3;
 580
 581        rc = device_create_file(&efx->pci_dev->dev,
 582                                &dev_attr_link_control_flag);
 583        if (rc)
 584                goto fail3;
 585
 586        rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 587        if (rc)
 588                goto fail4;
 589
 590        rc = efx_get_pf_index(efx, &nic_data->pf_index);
 591        if (rc)
 592                goto fail5;
 593
 594        rc = efx_ef10_init_datapath_caps(efx);
 595        if (rc < 0)
 596                goto fail5;
 597
 598        efx_ef10_read_licensed_features(efx);
 599
 600        /* We can have one VI for each vi_stride-byte region.
 601         * However, until we use TX option descriptors we need two TX queues
 602         * per channel.
 603         */
 604        efx->max_channels = min_t(unsigned int,
 605                                  EFX_MAX_CHANNELS,
 606                                  efx_ef10_mem_map_size(efx) /
 607                                  (efx->vi_stride * EFX_TXQ_TYPES));
 608        efx->max_tx_channels = efx->max_channels;
 609        if (WARN_ON(efx->max_channels == 0)) {
 610                rc = -EIO;
 611                goto fail5;
 612        }
 613
 614        efx->rx_packet_len_offset =
 615                ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 616
 617        if (nic_data->datapath_caps &
 618            (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 619                efx->net_dev->hw_features |= NETIF_F_RXFCS;
 620
 621        rc = efx_mcdi_port_get_number(efx);
 622        if (rc < 0)
 623                goto fail5;
 624        efx->port_num = rc;
 625
 626        rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 627        if (rc)
 628                goto fail5;
 629
 630        rc = efx_ef10_get_timer_config(efx);
 631        if (rc < 0)
 632                goto fail5;
 633
 634        rc = efx_mcdi_mon_probe(efx);
 635        if (rc && rc != -EPERM)
 636                goto fail5;
 637
 638        efx_ptp_defer_probe_with_channel(efx);
 639
 640#ifdef CONFIG_SFC_SRIOV
 641        if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 642                struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 643                struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 644
 645                efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 646        } else
 647#endif
 648                ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 649
 650        INIT_LIST_HEAD(&nic_data->vlan_list);
 651        mutex_init(&nic_data->vlan_lock);
 652
 653        /* Add unspecified VID to support VLAN filtering being disabled */
 654        rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 655        if (rc)
 656                goto fail_add_vid_unspec;
 657
 658        /* If VLAN filtering is enabled, we need VID 0 to get untagged
 659         * traffic.  It is added automatically if 8021q module is loaded,
 660         * but we can't rely on it since module may be not loaded.
 661         */
 662        rc = efx_ef10_add_vlan(efx, 0);
 663        if (rc)
 664                goto fail_add_vid_0;
 665
 666        return 0;
 667
 668fail_add_vid_0:
 669        efx_ef10_cleanup_vlans(efx);
 670fail_add_vid_unspec:
 671        mutex_destroy(&nic_data->vlan_lock);
 672        efx_ptp_remove(efx);
 673        efx_mcdi_mon_remove(efx);
 674fail5:
 675        device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 676fail4:
 677        device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 678fail3:
 679        efx_mcdi_detach(efx);
 680
 681        mutex_lock(&nic_data->udp_tunnels_lock);
 682        memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 683        (void)efx_ef10_set_udp_tnl_ports(efx, true);
 684        mutex_unlock(&nic_data->udp_tunnels_lock);
 685        mutex_destroy(&nic_data->udp_tunnels_lock);
 686
 687        efx_mcdi_fini(efx);
 688fail2:
 689        efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 690fail1:
 691        kfree(nic_data);
 692        efx->nic_data = NULL;
 693        return rc;
 694}
 695
 696#ifdef EFX_USE_PIO
 697
 698static void efx_ef10_free_piobufs(struct efx_nic *efx)
 699{
 700        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 701        MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 702        unsigned int i;
 703        int rc;
 704
 705        BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 706
 707        for (i = 0; i < nic_data->n_piobufs; i++) {
 708                MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 709                               nic_data->piobuf_handle[i]);
 710                rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 711                                  NULL, 0, NULL);
 712                WARN_ON(rc);
 713        }
 714
 715        nic_data->n_piobufs = 0;
 716}
 717
 718static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 719{
 720        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 721        MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 722        unsigned int i;
 723        size_t outlen;
 724        int rc = 0;
 725
 726        BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 727
 728        for (i = 0; i < n; i++) {
 729                rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 730                                        outbuf, sizeof(outbuf), &outlen);
 731                if (rc) {
 732                        /* Don't display the MC error if we didn't have space
 733                         * for a VF.
 734                         */
 735                        if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 736                                efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 737                                                       0, outbuf, outlen, rc);
 738                        break;
 739                }
 740                if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 741                        rc = -EIO;
 742                        break;
 743                }
 744                nic_data->piobuf_handle[i] =
 745                        MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 746                netif_dbg(efx, probe, efx->net_dev,
 747                          "allocated PIO buffer %u handle %x\n", i,
 748                          nic_data->piobuf_handle[i]);
 749        }
 750
 751        nic_data->n_piobufs = i;
 752        if (rc)
 753                efx_ef10_free_piobufs(efx);
 754        return rc;
 755}
 756
 757static int efx_ef10_link_piobufs(struct efx_nic *efx)
 758{
 759        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 760        MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 761        struct efx_channel *channel;
 762        struct efx_tx_queue *tx_queue;
 763        unsigned int offset, index;
 764        int rc;
 765
 766        BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 767        BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 768
 769        /* Link a buffer to each VI in the write-combining mapping */
 770        for (index = 0; index < nic_data->n_piobufs; ++index) {
 771                MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 772                               nic_data->piobuf_handle[index]);
 773                MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 774                               nic_data->pio_write_vi_base + index);
 775                rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 776                                  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 777                                  NULL, 0, NULL);
 778                if (rc) {
 779                        netif_err(efx, drv, efx->net_dev,
 780                                  "failed to link VI %u to PIO buffer %u (%d)\n",
 781                                  nic_data->pio_write_vi_base + index, index,
 782                                  rc);
 783                        goto fail;
 784                }
 785                netif_dbg(efx, probe, efx->net_dev,
 786                          "linked VI %u to PIO buffer %u\n",
 787                          nic_data->pio_write_vi_base + index, index);
 788        }
 789
 790        /* Link a buffer to each TX queue */
 791        efx_for_each_channel(channel, efx) {
 792                /* Extra channels, even those with TXQs (PTP), do not require
 793                 * PIO resources.
 794                 */
 795                if (!channel->type->want_pio ||
 796                    channel->channel >= efx->xdp_channel_offset)
 797                        continue;
 798
 799                efx_for_each_channel_tx_queue(tx_queue, channel) {
 800                        /* We assign the PIO buffers to queues in
 801                         * reverse order to allow for the following
 802                         * special case.
 803                         */
 804                        offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 805                                   tx_queue->channel->channel - 1) *
 806                                  efx_piobuf_size);
 807                        index = offset / nic_data->piobuf_size;
 808                        offset = offset % nic_data->piobuf_size;
 809
 810                        /* When the host page size is 4K, the first
 811                         * host page in the WC mapping may be within
 812                         * the same VI page as the last TX queue.  We
 813                         * can only link one buffer to each VI.
 814                         */
 815                        if (tx_queue->queue == nic_data->pio_write_vi_base) {
 816                                BUG_ON(index != 0);
 817                                rc = 0;
 818                        } else {
 819                                MCDI_SET_DWORD(inbuf,
 820                                               LINK_PIOBUF_IN_PIOBUF_HANDLE,
 821                                               nic_data->piobuf_handle[index]);
 822                                MCDI_SET_DWORD(inbuf,
 823                                               LINK_PIOBUF_IN_TXQ_INSTANCE,
 824                                               tx_queue->queue);
 825                                rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 826                                                  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 827                                                  NULL, 0, NULL);
 828                        }
 829
 830                        if (rc) {
 831                                /* This is non-fatal; the TX path just
 832                                 * won't use PIO for this queue
 833                                 */
 834                                netif_err(efx, drv, efx->net_dev,
 835                                          "failed to link VI %u to PIO buffer %u (%d)\n",
 836                                          tx_queue->queue, index, rc);
 837                                tx_queue->piobuf = NULL;
 838                        } else {
 839                                tx_queue->piobuf =
 840                                        nic_data->pio_write_base +
 841                                        index * efx->vi_stride + offset;
 842                                tx_queue->piobuf_offset = offset;
 843                                netif_dbg(efx, probe, efx->net_dev,
 844                                          "linked VI %u to PIO buffer %u offset %x addr %p\n",
 845                                          tx_queue->queue, index,
 846                                          tx_queue->piobuf_offset,
 847                                          tx_queue->piobuf);
 848                        }
 849                }
 850        }
 851
 852        return 0;
 853
 854fail:
 855        /* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 856         * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 857         */
 858        BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 859        while (index--) {
 860                MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 861                               nic_data->pio_write_vi_base + index);
 862                efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 863                             inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 864                             NULL, 0, NULL);
 865        }
 866        return rc;
 867}
 868
 869static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 870{
 871        struct efx_channel *channel;
 872        struct efx_tx_queue *tx_queue;
 873
 874        /* All our existing PIO buffers went away */
 875        efx_for_each_channel(channel, efx)
 876                efx_for_each_channel_tx_queue(tx_queue, channel)
 877                        tx_queue->piobuf = NULL;
 878}
 879
 880#else /* !EFX_USE_PIO */
 881
 882static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 883{
 884        return n == 0 ? 0 : -ENOBUFS;
 885}
 886
 887static int efx_ef10_link_piobufs(struct efx_nic *efx)
 888{
 889        return 0;
 890}
 891
 892static void efx_ef10_free_piobufs(struct efx_nic *efx)
 893{
 894}
 895
 896static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 897{
 898}
 899
 900#endif /* EFX_USE_PIO */
 901
 902static void efx_ef10_remove(struct efx_nic *efx)
 903{
 904        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 905        int rc;
 906
 907#ifdef CONFIG_SFC_SRIOV
 908        struct efx_ef10_nic_data *nic_data_pf;
 909        struct pci_dev *pci_dev_pf;
 910        struct efx_nic *efx_pf;
 911        struct ef10_vf *vf;
 912
 913        if (efx->pci_dev->is_virtfn) {
 914                pci_dev_pf = efx->pci_dev->physfn;
 915                if (pci_dev_pf) {
 916                        efx_pf = pci_get_drvdata(pci_dev_pf);
 917                        nic_data_pf = efx_pf->nic_data;
 918                        vf = nic_data_pf->vf + nic_data->vf_index;
 919                        vf->efx = NULL;
 920                } else
 921                        netif_info(efx, drv, efx->net_dev,
 922                                   "Could not get the PF id from VF\n");
 923        }
 924#endif
 925
 926        efx_ef10_cleanup_vlans(efx);
 927        mutex_destroy(&nic_data->vlan_lock);
 928
 929        efx_ptp_remove(efx);
 930
 931        efx_mcdi_mon_remove(efx);
 932
 933        efx_mcdi_rx_free_indir_table(efx);
 934
 935        if (nic_data->wc_membase)
 936                iounmap(nic_data->wc_membase);
 937
 938        rc = efx_mcdi_free_vis(efx);
 939        WARN_ON(rc != 0);
 940
 941        if (!nic_data->must_restore_piobufs)
 942                efx_ef10_free_piobufs(efx);
 943
 944        device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 945        device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 946
 947        efx_mcdi_detach(efx);
 948
 949        memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 950        mutex_lock(&nic_data->udp_tunnels_lock);
 951        (void)efx_ef10_set_udp_tnl_ports(efx, true);
 952        mutex_unlock(&nic_data->udp_tunnels_lock);
 953
 954        mutex_destroy(&nic_data->udp_tunnels_lock);
 955
 956        efx_mcdi_fini(efx);
 957        efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 958        kfree(nic_data);
 959}
 960
 961static int efx_ef10_probe_pf(struct efx_nic *efx)
 962{
 963        return efx_ef10_probe(efx);
 964}
 965
 966int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 967                            u32 *port_flags, u32 *vadaptor_flags,
 968                            unsigned int *vlan_tags)
 969{
 970        struct efx_ef10_nic_data *nic_data = efx->nic_data;
 971        MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 972        MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 973        size_t outlen;
 974        int rc;
 975
 976        if (nic_data->datapath_caps &
 977            (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 978                MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 979                               port_id);
 980
 981                rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 982                                  outbuf, sizeof(outbuf), &outlen);
 983                if (rc)
 984                        return rc;
 985
 986                if (outlen < sizeof(outbuf)) {
 987                        rc = -EIO;
 988                        return rc;
 989                }
 990        }
 991
 992        if (port_flags)
 993                *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
 994        if (vadaptor_flags)
 995                *vadaptor_flags =
 996                        MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
 997        if (vlan_tags)
 998                *vlan_tags =
 999                        MCDI_DWORD(outbuf,
1000                                   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1001
1002        return 0;
1003}
1004
1005int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1006{
1007        MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1008
1009        MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1010        return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1011                            NULL, 0, NULL);
1012}
1013
1014int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1015{
1016        MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1017
1018        MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1019        return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1020                            NULL, 0, NULL);
1021}
1022
1023int efx_ef10_vport_add_mac(struct efx_nic *efx,
1024                           unsigned int port_id, u8 *mac)
1025{
1026        MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1027
1028        MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1029        ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1030
1031        return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1032                            sizeof(inbuf), NULL, 0, NULL);
1033}
1034
1035int efx_ef10_vport_del_mac(struct efx_nic *efx,
1036                           unsigned int port_id, u8 *mac)
1037{
1038        MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1039
1040        MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1041        ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1042
1043        return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1044                            sizeof(inbuf), NULL, 0, NULL);
1045}
1046
1047#ifdef CONFIG_SFC_SRIOV
1048static int efx_ef10_probe_vf(struct efx_nic *efx)
1049{
1050        int rc;
1051        struct pci_dev *pci_dev_pf;
1052
1053        /* If the parent PF has no VF data structure, it doesn't know about this
1054         * VF so fail probe.  The VF needs to be re-created.  This can happen
1055         * if the PF driver is unloaded while the VF is assigned to a guest.
1056         */
1057        pci_dev_pf = efx->pci_dev->physfn;
1058        if (pci_dev_pf) {
1059                struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1060                struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1061
1062                if (!nic_data_pf->vf) {
1063                        netif_info(efx, drv, efx->net_dev,
1064                                   "The VF cannot link to its parent PF; "
1065                                   "please destroy and re-create the VF\n");
1066                        return -EBUSY;
1067                }
1068        }
1069
1070        rc = efx_ef10_probe(efx);
1071        if (rc)
1072                return rc;
1073
1074        rc = efx_ef10_get_vf_index(efx);
1075        if (rc)
1076                goto fail;
1077
1078        if (efx->pci_dev->is_virtfn) {
1079                if (efx->pci_dev->physfn) {
1080                        struct efx_nic *efx_pf =
1081                                pci_get_drvdata(efx->pci_dev->physfn);
1082                        struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1083                        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1084
1085                        nic_data_p->vf[nic_data->vf_index].efx = efx;
1086                        nic_data_p->vf[nic_data->vf_index].pci_dev =
1087                                efx->pci_dev;
1088                } else
1089                        netif_info(efx, drv, efx->net_dev,
1090                                   "Could not get the PF id from VF\n");
1091        }
1092
1093        return 0;
1094
1095fail:
1096        efx_ef10_remove(efx);
1097        return rc;
1098}
1099#else
1100static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1101{
1102        return 0;
1103}
1104#endif
1105
1106static int efx_ef10_alloc_vis(struct efx_nic *efx,
1107                              unsigned int min_vis, unsigned int max_vis)
1108{
1109        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1110
1111        return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1112                                  &nic_data->n_allocated_vis);
1113}
1114
1115/* Note that the failure path of this function does not free
1116 * resources, as this will be done by efx_ef10_remove().
1117 */
1118static int efx_ef10_dimension_resources(struct efx_nic *efx)
1119{
1120        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1121        unsigned int uc_mem_map_size, wc_mem_map_size;
1122        unsigned int min_vis = max(EFX_TXQ_TYPES,
1123                                   efx_separate_tx_channels ? 2 : 1);
1124        unsigned int channel_vis, pio_write_vi_base, max_vis;
1125        void __iomem *membase;
1126        int rc;
1127
1128        channel_vis = max(efx->n_channels,
1129                          ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1130                           EFX_TXQ_TYPES) +
1131                           efx->n_xdp_channels * efx->xdp_tx_per_channel);
1132
1133#ifdef EFX_USE_PIO
1134        /* Try to allocate PIO buffers if wanted and if the full
1135         * number of PIO buffers would be sufficient to allocate one
1136         * copy-buffer per TX channel.  Failure is non-fatal, as there
1137         * are only a small number of PIO buffers shared between all
1138         * functions of the controller.
1139         */
1140        if (efx_piobuf_size != 0 &&
1141            nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1142            efx->n_tx_channels) {
1143                unsigned int n_piobufs =
1144                        DIV_ROUND_UP(efx->n_tx_channels,
1145                                     nic_data->piobuf_size / efx_piobuf_size);
1146
1147                rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1148                if (rc == -ENOSPC)
1149                        netif_dbg(efx, probe, efx->net_dev,
1150                                  "out of PIO buffers; cannot allocate more\n");
1151                else if (rc == -EPERM)
1152                        netif_dbg(efx, probe, efx->net_dev,
1153                                  "not permitted to allocate PIO buffers\n");
1154                else if (rc)
1155                        netif_err(efx, probe, efx->net_dev,
1156                                  "failed to allocate PIO buffers (%d)\n", rc);
1157                else
1158                        netif_dbg(efx, probe, efx->net_dev,
1159                                  "allocated %u PIO buffers\n", n_piobufs);
1160        }
1161#else
1162        nic_data->n_piobufs = 0;
1163#endif
1164
1165        /* PIO buffers should be mapped with write-combining enabled,
1166         * and we want to make single UC and WC mappings rather than
1167         * several of each (in fact that's the only option if host
1168         * page size is >4K).  So we may allocate some extra VIs just
1169         * for writing PIO buffers through.
1170         *
1171         * The UC mapping contains (channel_vis - 1) complete VIs and the
1172         * first 4K of the next VI.  Then the WC mapping begins with
1173         * the remainder of this last VI.
1174         */
1175        uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1176                                     ER_DZ_TX_PIOBUF);
1177        if (nic_data->n_piobufs) {
1178                /* pio_write_vi_base rounds down to give the number of complete
1179                 * VIs inside the UC mapping.
1180                 */
1181                pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1182                wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1183                                               nic_data->n_piobufs) *
1184                                              efx->vi_stride) -
1185                                   uc_mem_map_size);
1186                max_vis = pio_write_vi_base + nic_data->n_piobufs;
1187        } else {
1188                pio_write_vi_base = 0;
1189                wc_mem_map_size = 0;
1190                max_vis = channel_vis;
1191        }
1192
1193        /* In case the last attached driver failed to free VIs, do it now */
1194        rc = efx_mcdi_free_vis(efx);
1195        if (rc != 0)
1196                return rc;
1197
1198        rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1199        if (rc != 0)
1200                return rc;
1201
1202        if (nic_data->n_allocated_vis < channel_vis) {
1203                netif_info(efx, drv, efx->net_dev,
1204                           "Could not allocate enough VIs to satisfy RSS"
1205                           " requirements. Performance may not be optimal.\n");
1206                /* We didn't get the VIs to populate our channels.
1207                 * We could keep what we got but then we'd have more
1208                 * interrupts than we need.
1209                 * Instead calculate new max_channels and restart
1210                 */
1211                efx->max_channels = nic_data->n_allocated_vis;
1212                efx->max_tx_channels =
1213                        nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1214
1215                efx_mcdi_free_vis(efx);
1216                return -EAGAIN;
1217        }
1218
1219        /* If we didn't get enough VIs to map all the PIO buffers, free the
1220         * PIO buffers
1221         */
1222        if (nic_data->n_piobufs &&
1223            nic_data->n_allocated_vis <
1224            pio_write_vi_base + nic_data->n_piobufs) {
1225                netif_dbg(efx, probe, efx->net_dev,
1226                          "%u VIs are not sufficient to map %u PIO buffers\n",
1227                          nic_data->n_allocated_vis, nic_data->n_piobufs);
1228                efx_ef10_free_piobufs(efx);
1229        }
1230
1231        /* Shrink the original UC mapping of the memory BAR */
1232        membase = ioremap(efx->membase_phys, uc_mem_map_size);
1233        if (!membase) {
1234                netif_err(efx, probe, efx->net_dev,
1235                          "could not shrink memory BAR to %x\n",
1236                          uc_mem_map_size);
1237                return -ENOMEM;
1238        }
1239        iounmap(efx->membase);
1240        efx->membase = membase;
1241
1242        /* Set up the WC mapping if needed */
1243        if (wc_mem_map_size) {
1244                nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1245                                                  uc_mem_map_size,
1246                                                  wc_mem_map_size);
1247                if (!nic_data->wc_membase) {
1248                        netif_err(efx, probe, efx->net_dev,
1249                                  "could not allocate WC mapping of size %x\n",
1250                                  wc_mem_map_size);
1251                        return -ENOMEM;
1252                }
1253                nic_data->pio_write_vi_base = pio_write_vi_base;
1254                nic_data->pio_write_base =
1255                        nic_data->wc_membase +
1256                        (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1257                         uc_mem_map_size);
1258
1259                rc = efx_ef10_link_piobufs(efx);
1260                if (rc)
1261                        efx_ef10_free_piobufs(efx);
1262        }
1263
1264        netif_dbg(efx, probe, efx->net_dev,
1265                  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1266                  &efx->membase_phys, efx->membase, uc_mem_map_size,
1267                  nic_data->wc_membase, wc_mem_map_size);
1268
1269        return 0;
1270}
1271
1272static int efx_ef10_init_nic(struct efx_nic *efx)
1273{
1274        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1275        int rc;
1276
1277        if (nic_data->must_check_datapath_caps) {
1278                rc = efx_ef10_init_datapath_caps(efx);
1279                if (rc)
1280                        return rc;
1281                nic_data->must_check_datapath_caps = false;
1282        }
1283
1284        if (nic_data->must_realloc_vis) {
1285                /* We cannot let the number of VIs change now */
1286                rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1287                                        nic_data->n_allocated_vis);
1288                if (rc)
1289                        return rc;
1290                nic_data->must_realloc_vis = false;
1291        }
1292
1293        if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1294                rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1295                if (rc == 0) {
1296                        rc = efx_ef10_link_piobufs(efx);
1297                        if (rc)
1298                                efx_ef10_free_piobufs(efx);
1299                }
1300
1301                /* Log an error on failure, but this is non-fatal.
1302                 * Permission errors are less important - we've presumably
1303                 * had the PIO buffer licence removed.
1304                 */
1305                if (rc == -EPERM)
1306                        netif_dbg(efx, drv, efx->net_dev,
1307                                  "not permitted to restore PIO buffers\n");
1308                else if (rc)
1309                        netif_err(efx, drv, efx->net_dev,
1310                                  "failed to restore PIO buffers (%d)\n", rc);
1311                nic_data->must_restore_piobufs = false;
1312        }
1313
1314        /* don't fail init if RSS setup doesn't work */
1315        rc = efx->type->rx_push_rss_config(efx, false,
1316                                           efx->rss_context.rx_indir_table, NULL);
1317
1318        return 0;
1319}
1320
1321static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1322{
1323        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1324#ifdef CONFIG_SFC_SRIOV
1325        unsigned int i;
1326#endif
1327
1328        /* All our allocations have been reset */
1329        nic_data->must_realloc_vis = true;
1330        nic_data->must_restore_rss_contexts = true;
1331        nic_data->must_restore_filters = true;
1332        nic_data->must_restore_piobufs = true;
1333        efx_ef10_forget_old_piobufs(efx);
1334        efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1335
1336        /* Driver-created vswitches and vports must be re-created */
1337        nic_data->must_probe_vswitching = true;
1338        nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1339#ifdef CONFIG_SFC_SRIOV
1340        if (nic_data->vf)
1341                for (i = 0; i < efx->vf_count; i++)
1342                        nic_data->vf[i].vport_id = 0;
1343#endif
1344}
1345
1346static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1347{
1348        if (reason == RESET_TYPE_MC_FAILURE)
1349                return RESET_TYPE_DATAPATH;
1350
1351        return efx_mcdi_map_reset_reason(reason);
1352}
1353
1354static int efx_ef10_map_reset_flags(u32 *flags)
1355{
1356        enum {
1357                EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1358                                   ETH_RESET_SHARED_SHIFT),
1359                EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1360                                  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1361                                  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1362                                 ETH_RESET_SHARED_SHIFT)
1363        };
1364
1365        /* We assume for now that our PCI function is permitted to
1366         * reset everything.
1367         */
1368
1369        if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1370                *flags &= ~EF10_RESET_MC;
1371                return RESET_TYPE_WORLD;
1372        }
1373
1374        if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1375                *flags &= ~EF10_RESET_PORT;
1376                return RESET_TYPE_ALL;
1377        }
1378
1379        /* no invisible reset implemented */
1380
1381        return -EINVAL;
1382}
1383
1384static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1385{
1386        int rc = efx_mcdi_reset(efx, reset_type);
1387
1388        /* Unprivileged functions return -EPERM, but need to return success
1389         * here so that the datapath is brought back up.
1390         */
1391        if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1392                rc = 0;
1393
1394        /* If it was a port reset, trigger reallocation of MC resources.
1395         * Note that on an MC reset nothing needs to be done now because we'll
1396         * detect the MC reset later and handle it then.
1397         * For an FLR, we never get an MC reset event, but the MC has reset all
1398         * resources assigned to us, so we have to trigger reallocation now.
1399         */
1400        if ((reset_type == RESET_TYPE_ALL ||
1401             reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1402                efx_ef10_table_reset_mc_allocations(efx);
1403        return rc;
1404}
1405
1406#define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1407        [EF10_STAT_ ## ext_name] =                              \
1408        { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1409#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1410        [EF10_STAT_ ## int_name] =                              \
1411        { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1412#define EF10_OTHER_STAT(ext_name)                               \
1413        [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1414#define GENERIC_SW_STAT(ext_name)                               \
1415        [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1416
1417static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1418        EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1419        EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1420        EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1421        EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1422        EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1423        EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1424        EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1425        EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1426        EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1427        EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1428        EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1429        EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1430        EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1431        EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1432        EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1433        EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1434        EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1435        EF10_OTHER_STAT(port_rx_good_bytes),
1436        EF10_OTHER_STAT(port_rx_bad_bytes),
1437        EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1438        EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1439        EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1440        EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1441        EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1442        EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1443        EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1444        EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1445        EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1446        EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1447        EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1448        EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1449        EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1450        EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1451        EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1452        EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1453        EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1454        EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1455        EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1456        EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1457        EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1458        EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1459        GENERIC_SW_STAT(rx_nodesc_trunc),
1460        GENERIC_SW_STAT(rx_noskb_drops),
1461        EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1462        EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1463        EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1464        EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1465        EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1466        EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1467        EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1468        EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1469        EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1470        EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1471        EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1472        EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1473        EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1474        EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1475        EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1476        EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1477        EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1478        EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1479        EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1480        EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1481        EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1482        EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1483        EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1484        EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1485        EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1486        EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1487        EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1488        EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1489        EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1490        EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1491        EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1492        EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1493        EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1494        EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1495        EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1496        EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1497        EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1498        EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1499        EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1500        EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1501        EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1502        EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1503        EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1504        EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1505        EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1506        EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1507        EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1508        EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1509        EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1510        EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1511        EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1512        EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1513};
1514
1515#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1516                               (1ULL << EF10_STAT_port_tx_packets) |    \
1517                               (1ULL << EF10_STAT_port_tx_pause) |      \
1518                               (1ULL << EF10_STAT_port_tx_unicast) |    \
1519                               (1ULL << EF10_STAT_port_tx_multicast) |  \
1520                               (1ULL << EF10_STAT_port_tx_broadcast) |  \
1521                               (1ULL << EF10_STAT_port_rx_bytes) |      \
1522                               (1ULL <<                                 \
1523                                EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1524                               (1ULL << EF10_STAT_port_rx_good_bytes) | \
1525                               (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1526                               (1ULL << EF10_STAT_port_rx_packets) |    \
1527                               (1ULL << EF10_STAT_port_rx_good) |       \
1528                               (1ULL << EF10_STAT_port_rx_bad) |        \
1529                               (1ULL << EF10_STAT_port_rx_pause) |      \
1530                               (1ULL << EF10_STAT_port_rx_control) |    \
1531                               (1ULL << EF10_STAT_port_rx_unicast) |    \
1532                               (1ULL << EF10_STAT_port_rx_multicast) |  \
1533                               (1ULL << EF10_STAT_port_rx_broadcast) |  \
1534                               (1ULL << EF10_STAT_port_rx_lt64) |       \
1535                               (1ULL << EF10_STAT_port_rx_64) |         \
1536                               (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1537                               (1ULL << EF10_STAT_port_rx_128_to_255) | \
1538                               (1ULL << EF10_STAT_port_rx_256_to_511) | \
1539                               (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1540                               (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1541                               (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1542                               (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1543                               (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1544                               (1ULL << EF10_STAT_port_rx_overflow) |   \
1545                               (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1546                               (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1547                               (1ULL << GENERIC_STAT_rx_noskb_drops))
1548
1549/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1550 * For a 10G/40G switchable port we do not expose these because they might
1551 * not include all the packets they should.
1552 * On 8000 series NICs these statistics are always provided.
1553 */
1554#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1555                                 (1ULL << EF10_STAT_port_tx_lt64) |     \
1556                                 (1ULL << EF10_STAT_port_tx_64) |       \
1557                                 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1558                                 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1559                                 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1560                                 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1561                                 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1562                                 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1563
1564/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1565 * switchable port we do expose these because the errors will otherwise
1566 * be silent.
1567 */
1568#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1569                                  (1ULL << EF10_STAT_port_rx_length_error))
1570
1571/* These statistics are only provided if the firmware supports the
1572 * capability PM_AND_RXDP_COUNTERS.
1573 */
1574#define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1575        (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1576        (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1577        (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1578        (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1579        (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1580        (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1581        (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1582        (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1583        (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1584        (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1585        (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1586        (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1587
1588/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1589 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1590 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1591 * These bits are in the second u64 of the raw mask.
1592 */
1593#define EF10_FEC_STAT_MASK (                                            \
1594        (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |             \
1595        (1ULL << (EF10_STAT_fec_corrected_errors - 64)) |               \
1596        (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |        \
1597        (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |        \
1598        (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |        \
1599        (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1600
1601/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1602 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1603 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1604 * These bits are in the second u64 of the raw mask.
1605 */
1606#define EF10_CTPIO_STAT_MASK (                                          \
1607        (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |             \
1608        (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |           \
1609        (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |           \
1610        (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |                \
1611        (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |               \
1612        (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |                 \
1613        (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |            \
1614        (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |             \
1615        (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |              \
1616        (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |          \
1617        (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |         \
1618        (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |                \
1619        (1ULL << (EF10_STAT_ctpio_success - 64)) |                      \
1620        (1ULL << (EF10_STAT_ctpio_fallback - 64)) |                     \
1621        (1ULL << (EF10_STAT_ctpio_poison - 64)) |                       \
1622        (1ULL << (EF10_STAT_ctpio_erase - 64)))
1623
1624static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1625{
1626        u64 raw_mask = HUNT_COMMON_STAT_MASK;
1627        u32 port_caps = efx_mcdi_phy_get_caps(efx);
1628        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1629
1630        if (!(efx->mcdi->fn_flags &
1631              1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1632                return 0;
1633
1634        if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1635                raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1636                /* 8000 series have everything even at 40G */
1637                if (nic_data->datapath_caps2 &
1638                    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1639                        raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1640        } else {
1641                raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1642        }
1643
1644        if (nic_data->datapath_caps &
1645            (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1646                raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1647
1648        return raw_mask;
1649}
1650
1651static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1652{
1653        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1654        u64 raw_mask[2];
1655
1656        raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1657
1658        /* Only show vadaptor stats when EVB capability is present */
1659        if (nic_data->datapath_caps &
1660            (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1661                raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1662                raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1663        } else {
1664                raw_mask[1] = 0;
1665        }
1666        /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1667        if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1668                raw_mask[1] |= EF10_FEC_STAT_MASK;
1669
1670        /* CTPIO stats appear in V3. Only show them on devices that actually
1671         * support CTPIO. Although this driver doesn't use CTPIO others might,
1672         * and we may be reporting the stats for the underlying port.
1673         */
1674        if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1675            (nic_data->datapath_caps2 &
1676             (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1677                raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1678
1679#if BITS_PER_LONG == 64
1680        BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1681        mask[0] = raw_mask[0];
1682        mask[1] = raw_mask[1];
1683#else
1684        BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1685        mask[0] = raw_mask[0] & 0xffffffff;
1686        mask[1] = raw_mask[0] >> 32;
1687        mask[2] = raw_mask[1] & 0xffffffff;
1688#endif
1689}
1690
1691static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1692{
1693        DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1694
1695        efx_ef10_get_stat_mask(efx, mask);
1696        return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1697                                      mask, names);
1698}
1699
1700static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1701                                           struct rtnl_link_stats64 *core_stats)
1702{
1703        DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1704        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1705        u64 *stats = nic_data->stats;
1706        size_t stats_count = 0, index;
1707
1708        efx_ef10_get_stat_mask(efx, mask);
1709
1710        if (full_stats) {
1711                for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1712                        if (efx_ef10_stat_desc[index].name) {
1713                                *full_stats++ = stats[index];
1714                                ++stats_count;
1715                        }
1716                }
1717        }
1718
1719        if (!core_stats)
1720                return stats_count;
1721
1722        if (nic_data->datapath_caps &
1723                        1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1724                /* Use vadaptor stats. */
1725                core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1726                                         stats[EF10_STAT_rx_multicast] +
1727                                         stats[EF10_STAT_rx_broadcast];
1728                core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1729                                         stats[EF10_STAT_tx_multicast] +
1730                                         stats[EF10_STAT_tx_broadcast];
1731                core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1732                                       stats[EF10_STAT_rx_multicast_bytes] +
1733                                       stats[EF10_STAT_rx_broadcast_bytes];
1734                core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1735                                       stats[EF10_STAT_tx_multicast_bytes] +
1736                                       stats[EF10_STAT_tx_broadcast_bytes];
1737                core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1738                                         stats[GENERIC_STAT_rx_noskb_drops];
1739                core_stats->multicast = stats[EF10_STAT_rx_multicast];
1740                core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1741                core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1742                core_stats->rx_errors = core_stats->rx_crc_errors;
1743                core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1744        } else {
1745                /* Use port stats. */
1746                core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1747                core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1748                core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1749                core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1750                core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1751                                         stats[GENERIC_STAT_rx_nodesc_trunc] +
1752                                         stats[GENERIC_STAT_rx_noskb_drops];
1753                core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1754                core_stats->rx_length_errors =
1755                                stats[EF10_STAT_port_rx_gtjumbo] +
1756                                stats[EF10_STAT_port_rx_length_error];
1757                core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1758                core_stats->rx_frame_errors =
1759                                stats[EF10_STAT_port_rx_align_error];
1760                core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1761                core_stats->rx_errors = (core_stats->rx_length_errors +
1762                                         core_stats->rx_crc_errors +
1763                                         core_stats->rx_frame_errors);
1764        }
1765
1766        return stats_count;
1767}
1768
1769static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1770{
1771        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1772        DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1773        __le64 generation_start, generation_end;
1774        u64 *stats = nic_data->stats;
1775        __le64 *dma_stats;
1776
1777        efx_ef10_get_stat_mask(efx, mask);
1778
1779        dma_stats = efx->stats_buffer.addr;
1780
1781        generation_end = dma_stats[efx->num_mac_stats - 1];
1782        if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1783                return 0;
1784        rmb();
1785        efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1786                             stats, efx->stats_buffer.addr, false);
1787        rmb();
1788        generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1789        if (generation_end != generation_start)
1790                return -EAGAIN;
1791
1792        /* Update derived statistics */
1793        efx_nic_fix_nodesc_drop_stat(efx,
1794                                     &stats[EF10_STAT_port_rx_nodesc_drops]);
1795        stats[EF10_STAT_port_rx_good_bytes] =
1796                stats[EF10_STAT_port_rx_bytes] -
1797                stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1798        efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1799                             stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1800        efx_update_sw_stats(efx, stats);
1801        return 0;
1802}
1803
1804
1805static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1806                                       struct rtnl_link_stats64 *core_stats)
1807{
1808        int retry;
1809
1810        /* If we're unlucky enough to read statistics during the DMA, wait
1811         * up to 10ms for it to finish (typically takes <500us)
1812         */
1813        for (retry = 0; retry < 100; ++retry) {
1814                if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1815                        break;
1816                udelay(100);
1817        }
1818
1819        return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1820}
1821
1822static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1823{
1824        MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1825        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1826        DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1827        __le64 generation_start, generation_end;
1828        u64 *stats = nic_data->stats;
1829        u32 dma_len = efx->num_mac_stats * sizeof(u64);
1830        struct efx_buffer stats_buf;
1831        __le64 *dma_stats;
1832        int rc;
1833
1834        spin_unlock_bh(&efx->stats_lock);
1835
1836        if (in_interrupt()) {
1837                /* If in atomic context, cannot update stats.  Just update the
1838                 * software stats and return so the caller can continue.
1839                 */
1840                spin_lock_bh(&efx->stats_lock);
1841                efx_update_sw_stats(efx, stats);
1842                return 0;
1843        }
1844
1845        efx_ef10_get_stat_mask(efx, mask);
1846
1847        rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1848        if (rc) {
1849                spin_lock_bh(&efx->stats_lock);
1850                return rc;
1851        }
1852
1853        dma_stats = stats_buf.addr;
1854        dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1855
1856        MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1857        MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1858                              MAC_STATS_IN_DMA, 1);
1859        MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1860        MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1861
1862        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1863                                NULL, 0, NULL);
1864        spin_lock_bh(&efx->stats_lock);
1865        if (rc) {
1866                /* Expect ENOENT if DMA queues have not been set up */
1867                if (rc != -ENOENT || atomic_read(&efx->active_queues))
1868                        efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1869                                               sizeof(inbuf), NULL, 0, rc);
1870                goto out;
1871        }
1872
1873        generation_end = dma_stats[efx->num_mac_stats - 1];
1874        if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1875                WARN_ON_ONCE(1);
1876                goto out;
1877        }
1878        rmb();
1879        efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1880                             stats, stats_buf.addr, false);
1881        rmb();
1882        generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1883        if (generation_end != generation_start) {
1884                rc = -EAGAIN;
1885                goto out;
1886        }
1887
1888        efx_update_sw_stats(efx, stats);
1889out:
1890        efx_nic_free_buffer(efx, &stats_buf);
1891        return rc;
1892}
1893
1894static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1895                                       struct rtnl_link_stats64 *core_stats)
1896{
1897        if (efx_ef10_try_update_nic_stats_vf(efx))
1898                return 0;
1899
1900        return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1901}
1902
1903static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1904{
1905        struct efx_nic *efx = channel->efx;
1906        unsigned int mode, usecs;
1907        efx_dword_t timer_cmd;
1908
1909        if (channel->irq_moderation_us) {
1910                mode = 3;
1911                usecs = channel->irq_moderation_us;
1912        } else {
1913                mode = 0;
1914                usecs = 0;
1915        }
1916
1917        if (EFX_EF10_WORKAROUND_61265(efx)) {
1918                MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1919                unsigned int ns = usecs * 1000;
1920
1921                MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1922                               channel->channel);
1923                MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1924                MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1925                MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1926
1927                efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1928                                   inbuf, sizeof(inbuf), 0, NULL, 0);
1929        } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1930                unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1931
1932                EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1933                                     EFE_DD_EVQ_IND_TIMER_FLAGS,
1934                                     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1935                                     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1936                efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1937                                channel->channel);
1938        } else {
1939                unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1940
1941                EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1942                                     ERF_DZ_TC_TIMER_VAL, ticks,
1943                                     ERF_FZ_TC_TMR_REL_VAL, ticks);
1944                efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1945                                channel->channel);
1946        }
1947}
1948
1949static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1950                                struct ethtool_wolinfo *wol) {}
1951
1952static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1953{
1954        return -EOPNOTSUPP;
1955}
1956
1957static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1958{
1959        wol->supported = 0;
1960        wol->wolopts = 0;
1961        memset(&wol->sopass, 0, sizeof(wol->sopass));
1962}
1963
1964static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1965{
1966        if (type != 0)
1967                return -EINVAL;
1968        return 0;
1969}
1970
1971static void efx_ef10_mcdi_request(struct efx_nic *efx,
1972                                  const efx_dword_t *hdr, size_t hdr_len,
1973                                  const efx_dword_t *sdu, size_t sdu_len)
1974{
1975        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1976        u8 *pdu = nic_data->mcdi_buf.addr;
1977
1978        memcpy(pdu, hdr, hdr_len);
1979        memcpy(pdu + hdr_len, sdu, sdu_len);
1980        wmb();
1981
1982        /* The hardware provides 'low' and 'high' (doorbell) registers
1983         * for passing the 64-bit address of an MCDI request to
1984         * firmware.  However the dwords are swapped by firmware.  The
1985         * least significant bits of the doorbell are then 0 for all
1986         * MCDI requests due to alignment.
1987         */
1988        _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1989                    ER_DZ_MC_DB_LWRD);
1990        _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1991                    ER_DZ_MC_DB_HWRD);
1992}
1993
1994static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1995{
1996        struct efx_ef10_nic_data *nic_data = efx->nic_data;
1997        const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1998
1999        rmb();
2000        return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2001}
2002
2003static void
2004efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2005                            size_t offset, size_t outlen)
2006{
2007        struct efx_ef10_nic_data *nic_data = efx->nic_data;
2008        const u8 *pdu = nic_data->mcdi_buf.addr;
2009
2010        memcpy(outbuf, pdu + offset, outlen);
2011}
2012
2013static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2014{
2015        struct efx_ef10_nic_data *nic_data = efx->nic_data;
2016
2017        /* All our allocations have been reset */
2018        efx_ef10_table_reset_mc_allocations(efx);
2019
2020        /* The datapath firmware might have been changed */
2021        nic_data->must_check_datapath_caps = true;
2022
2023        /* MAC statistics have been cleared on the NIC; clear the local
2024         * statistic that we update with efx_update_diff_stat().
2025         */
2026        nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2027}
2028
2029static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2030{
2031        struct efx_ef10_nic_data *nic_data = efx->nic_data;
2032        int rc;
2033
2034        rc = efx_ef10_get_warm_boot_count(efx);
2035        if (rc < 0) {
2036                /* The firmware is presumably in the process of
2037                 * rebooting.  However, we are supposed to report each
2038                 * reboot just once, so we must only do that once we
2039                 * can read and store the updated warm boot count.
2040                 */
2041                return 0;
2042        }
2043
2044        if (rc == nic_data->warm_boot_count)
2045                return 0;
2046
2047        nic_data->warm_boot_count = rc;
2048        efx_ef10_mcdi_reboot_detected(efx);
2049
2050        return -EIO;
2051}
2052
2053/* Handle an MSI interrupt
2054 *
2055 * Handle an MSI hardware interrupt.  This routine schedules event
2056 * queue processing.  No interrupt acknowledgement cycle is necessary.
2057 * Also, we never need to check that the interrupt is for us, since
2058 * MSI interrupts cannot be shared.
2059 */
2060static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2061{
2062        struct efx_msi_context *context = dev_id;
2063        struct efx_nic *efx = context->efx;
2064
2065        netif_vdbg(efx, intr, efx->net_dev,
2066                   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2067
2068        if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2069                /* Note test interrupts */
2070                if (context->index == efx->irq_level)
2071                        efx->last_irq_cpu = raw_smp_processor_id();
2072
2073                /* Schedule processing of the channel */
2074                efx_schedule_channel_irq(efx->channel[context->index]);
2075        }
2076
2077        return IRQ_HANDLED;
2078}
2079
2080static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2081{
2082        struct efx_nic *efx = dev_id;
2083        bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2084        struct efx_channel *channel;
2085        efx_dword_t reg;
2086        u32 queues;
2087
2088        /* Read the ISR which also ACKs the interrupts */
2089        efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2090        queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2091
2092        if (queues == 0)
2093                return IRQ_NONE;
2094
2095        if (likely(soft_enabled)) {
2096                /* Note test interrupts */
2097                if (queues & (1U << efx->irq_level))
2098                        efx->last_irq_cpu = raw_smp_processor_id();
2099
2100                efx_for_each_channel(channel, efx) {
2101                        if (queues & 1)
2102                                efx_schedule_channel_irq(channel);
2103                        queues >>= 1;
2104                }
2105        }
2106
2107        netif_vdbg(efx, intr, efx->net_dev,
2108                   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2109                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2110
2111        return IRQ_HANDLED;
2112}
2113
2114static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2115{
2116        MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2117
2118        if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2119                                    NULL) == 0)
2120                return -ENOTSUPP;
2121
2122        BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2123
2124        MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2125        return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2126                            inbuf, sizeof(inbuf), NULL, 0, NULL);
2127}
2128
2129static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2130{
2131        return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2132                                    (tx_queue->ptr_mask + 1) *
2133                                    sizeof(efx_qword_t),
2134                                    GFP_KERNEL);
2135}
2136
2137/* This writes to the TX_DESC_WPTR and also pushes data */
2138static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2139                                         const efx_qword_t *txd)
2140{
2141        unsigned int write_ptr;
2142        efx_oword_t reg;
2143
2144        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2145        EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2146        reg.qword[0] = *txd;
2147        efx_writeo_page(tx_queue->efx, &reg,
2148                        ER_DZ_TX_DESC_UPD, tx_queue->queue);
2149}
2150
2151/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2152 */
2153static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2154                                struct sk_buff *skb,
2155                                bool *data_mapped)
2156{
2157        struct efx_tx_buffer *buffer;
2158        struct tcphdr *tcp;
2159        struct iphdr *ip;
2160
2161        u16 ipv4_id;
2162        u32 seqnum;
2163        u32 mss;
2164
2165        EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2166
2167        mss = skb_shinfo(skb)->gso_size;
2168
2169        if (unlikely(mss < 4)) {
2170                WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2171                return -EINVAL;
2172        }
2173
2174        ip = ip_hdr(skb);
2175        if (ip->version == 4) {
2176                /* Modify IPv4 header if needed. */
2177                ip->tot_len = 0;
2178                ip->check = 0;
2179                ipv4_id = ntohs(ip->id);
2180        } else {
2181                /* Modify IPv6 header if needed. */
2182                struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2183
2184                ipv6->payload_len = 0;
2185                ipv4_id = 0;
2186        }
2187
2188        tcp = tcp_hdr(skb);
2189        seqnum = ntohl(tcp->seq);
2190
2191        buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2192
2193        buffer->flags = EFX_TX_BUF_OPTION;
2194        buffer->len = 0;
2195        buffer->unmap_len = 0;
2196        EFX_POPULATE_QWORD_5(buffer->option,
2197                        ESF_DZ_TX_DESC_IS_OPT, 1,
2198                        ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2199                        ESF_DZ_TX_TSO_OPTION_TYPE,
2200                        ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2201                        ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2202                        ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2203                        );
2204        ++tx_queue->insert_count;
2205
2206        buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2207
2208        buffer->flags = EFX_TX_BUF_OPTION;
2209        buffer->len = 0;
2210        buffer->unmap_len = 0;
2211        EFX_POPULATE_QWORD_4(buffer->option,
2212                        ESF_DZ_TX_DESC_IS_OPT, 1,
2213                        ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2214                        ESF_DZ_TX_TSO_OPTION_TYPE,
2215                        ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2216                        ESF_DZ_TX_TSO_TCP_MSS, mss
2217                        );
2218        ++tx_queue->insert_count;
2219
2220        return 0;
2221}
2222
2223static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2224{
2225        struct efx_ef10_nic_data *nic_data = efx->nic_data;
2226        u32 tso_versions = 0;
2227
2228        if (nic_data->datapath_caps &
2229            (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2230                tso_versions |= BIT(1);
2231        if (nic_data->datapath_caps2 &
2232            (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2233                tso_versions |= BIT(2);
2234        return tso_versions;
2235}
2236
2237static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2238{
2239        bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2240        struct efx_channel *channel = tx_queue->channel;
2241        struct efx_nic *efx = tx_queue->efx;
2242        struct efx_ef10_nic_data *nic_data;
2243        bool tso_v2 = false;
2244        efx_qword_t *txd;
2245        int rc;
2246
2247        nic_data = efx->nic_data;
2248
2249        /* Only attempt to enable TX timestamping if we have the license for it,
2250         * otherwise TXQ init will fail
2251         */
2252        if (!(nic_data->licensed_features &
2253              (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2254                tx_queue->timestamping = false;
2255                /* Disable sync events on this channel. */
2256                if (efx->type->ptp_set_ts_sync_events)
2257                        efx->type->ptp_set_ts_sync_events(efx, false, false);
2258        }
2259
2260        /* TSOv2 is a limited resource that can only be configured on a limited
2261         * number of queues. TSO without checksum offload is not really a thing,
2262         * so we only enable it for those queues.
2263         * TSOv2 cannot be used with Hardware timestamping, and is never needed
2264         * for XDP tx.
2265         */
2266        if (csum_offload && (nic_data->datapath_caps2 &
2267                        (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2268            !tx_queue->timestamping && !tx_queue->xdp_tx) {
2269                tso_v2 = true;
2270                netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2271                                channel->channel);
2272        }
2273
2274        rc = efx_mcdi_tx_init(tx_queue, tso_v2);
2275        if (rc)
2276                goto fail;
2277
2278        /* A previous user of this TX queue might have set us up the
2279         * bomb by writing a descriptor to the TX push collector but
2280         * not the doorbell.  (Each collector belongs to a port, not a
2281         * queue or function, so cannot easily be reset.)  We must
2282         * attempt to push a no-op descriptor in its place.
2283         */
2284        tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2285        tx_queue->insert_count = 1;
2286        txd = efx_tx_desc(tx_queue, 0);
2287        EFX_POPULATE_QWORD_5(*txd,
2288                             ESF_DZ_TX_DESC_IS_OPT, true,
2289                             ESF_DZ_TX_OPTION_TYPE,
2290                             ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2291                             ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2292                             ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2293                             ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2294        tx_queue->write_count = 1;
2295
2296        if (tso_v2) {
2297                tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2298                tx_queue->tso_version = 2;
2299        } else if (nic_data->datapath_caps &
2300                        (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2301                tx_queue->tso_version = 1;
2302        }
2303
2304        wmb();
2305        efx_ef10_push_tx_desc(tx_queue, txd);
2306
2307        return;
2308
2309fail:
2310        netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2311                    tx_queue->queue);
2312}
2313
2314/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2315static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2316{
2317        unsigned int write_ptr;
2318        efx_dword_t reg;
2319
2320        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2321        EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2322        efx_writed_page(tx_queue->efx, &reg,
2323                        ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2324}
2325
2326#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2327
2328static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2329                                          dma_addr_t dma_addr, unsigned int len)
2330{
2331        if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2332                /* If we need to break across multiple descriptors we should
2333                 * stop at a page boundary. This assumes the length limit is
2334                 * greater than the page size.
2335                 */
2336                dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2337
2338                BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2339                len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2340        }
2341
2342        return len;
2343}
2344
2345static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2346{
2347        unsigned int old_write_count = tx_queue->write_count;
2348        struct efx_tx_buffer *buffer;
2349        unsigned int write_ptr;
2350        efx_qword_t *txd;
2351
2352        tx_queue->xmit_more_available = false;
2353        if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2354                return;
2355
2356        do {
2357                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2358                buffer = &tx_queue->buffer[write_ptr];
2359                txd = efx_tx_desc(tx_queue, write_ptr);
2360                ++tx_queue->write_count;
2361
2362                /* Create TX descriptor ring entry */
2363                if (buffer->flags & EFX_TX_BUF_OPTION) {
2364                        *txd = buffer->option;
2365                        if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2366                                /* PIO descriptor */
2367                                tx_queue->packet_write_count = tx_queue->write_count;
2368                } else {
2369                        tx_queue->packet_write_count = tx_queue->write_count;
2370                        BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2371                        EFX_POPULATE_QWORD_3(
2372                                *txd,
2373                                ESF_DZ_TX_KER_CONT,
2374                                buffer->flags & EFX_TX_BUF_CONT,
2375                                ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2376                                ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2377                }
2378        } while (tx_queue->write_count != tx_queue->insert_count);
2379
2380        wmb(); /* Ensure descriptors are written before they are fetched */
2381
2382        if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2383                txd = efx_tx_desc(tx_queue,
2384                                  old_write_count & tx_queue->ptr_mask);
2385                efx_ef10_push_tx_desc(tx_queue, txd);
2386                ++tx_queue->pushes;
2387        } else {
2388                efx_ef10_notify_tx_desc(tx_queue);
2389        }
2390}
2391
2392/* This creates an entry in the RX descriptor queue */
2393static inline void
2394efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2395{
2396        struct efx_rx_buffer *rx_buf;
2397        efx_qword_t *rxd;
2398
2399        rxd = efx_rx_desc(rx_queue, index);
2400        rx_buf = efx_rx_buffer(rx_queue, index);
2401        EFX_POPULATE_QWORD_2(*rxd,
2402                             ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2403                             ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2404}
2405
2406static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2407{
2408        struct efx_nic *efx = rx_queue->efx;
2409        unsigned int write_count;
2410        efx_dword_t reg;
2411
2412        /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2413        write_count = rx_queue->added_count & ~7;
2414        if (rx_queue->notified_count == write_count)
2415                return;
2416
2417        do
2418                efx_ef10_build_rx_desc(
2419                        rx_queue,
2420                        rx_queue->notified_count & rx_queue->ptr_mask);
2421        while (++rx_queue->notified_count != write_count);
2422
2423        wmb();
2424        EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2425                             write_count & rx_queue->ptr_mask);
2426        efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2427                        efx_rx_queue_index(rx_queue));
2428}
2429
2430static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2431
2432static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2433{
2434        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2435        MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2436        efx_qword_t event;
2437
2438        EFX_POPULATE_QWORD_2(event,
2439                             ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2440                             ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2441
2442        MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2443
2444        /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2445         * already swapped the data to little-endian order.
2446         */
2447        memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2448               sizeof(efx_qword_t));
2449
2450        efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2451                           inbuf, sizeof(inbuf), 0,
2452                           efx_ef10_rx_defer_refill_complete, 0);
2453}
2454
2455static void
2456efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2457                                  int rc, efx_dword_t *outbuf,
2458                                  size_t outlen_actual)
2459{
2460        /* nothing to do */
2461}
2462
2463static int efx_ef10_ev_init(struct efx_channel *channel)
2464{
2465        struct efx_nic *efx = channel->efx;
2466        struct efx_ef10_nic_data *nic_data;
2467        unsigned int enabled, implemented;
2468        bool use_v2, cut_thru;
2469        int rc;
2470
2471        nic_data = efx->nic_data;
2472        use_v2 = nic_data->datapath_caps2 &
2473                            1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2474        cut_thru = !(nic_data->datapath_caps &
2475                              1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2476        rc = efx_mcdi_ev_init(channel, cut_thru, use_v2);
2477
2478        /* IRQ return is ignored */
2479        if (channel->channel || rc)
2480                return rc;
2481
2482        /* Successfully created event queue on channel 0 */
2483        rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2484        if (rc == -ENOSYS) {
2485                /* GET_WORKAROUNDS was implemented before this workaround,
2486                 * thus it must be unavailable in this firmware.
2487                 */
2488                nic_data->workaround_26807 = false;
2489                rc = 0;
2490        } else if (rc) {
2491                goto fail;
2492        } else {
2493                nic_data->workaround_26807 =
2494                        !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2495
2496                if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2497                    !nic_data->workaround_26807) {
2498                        unsigned int flags;
2499
2500                        rc = efx_mcdi_set_workaround(efx,
2501                                                     MC_CMD_WORKAROUND_BUG26807,
2502                                                     true, &flags);
2503
2504                        if (!rc) {
2505                                if (flags &
2506                                    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2507                                        netif_info(efx, drv, efx->net_dev,
2508                                                   "other functions on NIC have been reset\n");
2509
2510                                        /* With MCFW v4.6.x and earlier, the
2511                                         * boot count will have incremented,
2512                                         * so re-read the warm_boot_count
2513                                         * value now to ensure this function
2514                                         * doesn't think it has changed next
2515                                         * time it checks.
2516                                         */
2517                                        rc = efx_ef10_get_warm_boot_count(efx);
2518                                        if (rc >= 0) {
2519                                                nic_data->warm_boot_count = rc;
2520                                                rc = 0;
2521                                        }
2522                                }
2523                                nic_data->workaround_26807 = true;
2524                        } else if (rc == -EPERM) {
2525                                rc = 0;
2526                        }
2527                }
2528        }
2529
2530        if (!rc)
2531                return 0;
2532
2533fail:
2534        efx_mcdi_ev_fini(channel);
2535        return rc;
2536}
2537
2538static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2539                                           unsigned int rx_queue_label)
2540{
2541        struct efx_nic *efx = rx_queue->efx;
2542
2543        netif_info(efx, hw, efx->net_dev,
2544                   "rx event arrived on queue %d labeled as queue %u\n",
2545                   efx_rx_queue_index(rx_queue), rx_queue_label);
2546
2547        efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2548}
2549
2550static void
2551efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2552                             unsigned int actual, unsigned int expected)
2553{
2554        unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2555        struct efx_nic *efx = rx_queue->efx;
2556
2557        netif_info(efx, hw, efx->net_dev,
2558                   "dropped %d events (index=%d expected=%d)\n",
2559                   dropped, actual, expected);
2560
2561        efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2562}
2563
2564/* partially received RX was aborted. clean up. */
2565static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2566{
2567        unsigned int rx_desc_ptr;
2568
2569        netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2570                  "scattered RX aborted (dropping %u buffers)\n",
2571                  rx_queue->scatter_n);
2572
2573        rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2574
2575        efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2576                      0, EFX_RX_PKT_DISCARD);
2577
2578        rx_queue->removed_count += rx_queue->scatter_n;
2579        rx_queue->scatter_n = 0;
2580        rx_queue->scatter_len = 0;
2581        ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2582}
2583
2584static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2585                                           unsigned int n_packets,
2586                                           unsigned int rx_encap_hdr,
2587                                           unsigned int rx_l3_class,
2588                                           unsigned int rx_l4_class,
2589                                           const efx_qword_t *event)
2590{
2591        struct efx_nic *efx = channel->efx;
2592        bool handled = false;
2593
2594        if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2595                if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2596                        if (!efx->loopback_selftest)
2597                                channel->n_rx_eth_crc_err += n_packets;
2598                        return EFX_RX_PKT_DISCARD;
2599                }
2600                handled = true;
2601        }
2602        if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2603                if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2604                             rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2605                             rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2606                             rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2607                             rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2608                        netdev_WARN(efx->net_dev,
2609                                    "invalid class for RX_IPCKSUM_ERR: event="
2610                                    EFX_QWORD_FMT "\n",
2611                                    EFX_QWORD_VAL(*event));
2612                if (!efx->loopback_selftest)
2613                        *(rx_encap_hdr ?
2614                          &channel->n_rx_outer_ip_hdr_chksum_err :
2615                          &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2616                return 0;
2617        }
2618        if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2619                if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2620                             ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2621                               rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2622                              (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2623                               rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2624                        netdev_WARN(efx->net_dev,
2625                                    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2626                                    EFX_QWORD_FMT "\n",
2627                                    EFX_QWORD_VAL(*event));
2628                if (!efx->loopback_selftest)
2629                        *(rx_encap_hdr ?
2630                          &channel->n_rx_outer_tcp_udp_chksum_err :
2631                          &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2632                return 0;
2633        }
2634        if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2635                if (unlikely(!rx_encap_hdr))
2636                        netdev_WARN(efx->net_dev,
2637                                    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2638                                    EFX_QWORD_FMT "\n",
2639                                    EFX_QWORD_VAL(*event));
2640                else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2641                                  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2642                                  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2643                                  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2644                        netdev_WARN(efx->net_dev,
2645                                    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2646                                    EFX_QWORD_FMT "\n",
2647                                    EFX_QWORD_VAL(*event));
2648                if (!efx->loopback_selftest)
2649                        channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2650                return 0;
2651        }
2652        if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2653                if (unlikely(!rx_encap_hdr))
2654                        netdev_WARN(efx->net_dev,
2655                                    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2656                                    EFX_QWORD_FMT "\n",
2657                                    EFX_QWORD_VAL(*event));
2658                else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2659                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2660                                  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2661                                   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2662                        netdev_WARN(efx->net_dev,
2663                                    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2664                                    EFX_QWORD_FMT "\n",
2665                                    EFX_QWORD_VAL(*event));
2666                if (!efx->loopback_selftest)
2667                        channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2668                return 0;
2669        }
2670
2671        WARN_ON(!handled); /* No error bits were recognised */
2672        return 0;
2673}
2674
2675static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2676                                    const efx_qword_t *event)
2677{
2678        unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2679        unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2680        unsigned int n_descs, n_packets, i;
2681        struct efx_nic *efx = channel->efx;
2682        struct efx_ef10_nic_data *nic_data = efx->nic_data;
2683        struct efx_rx_queue *rx_queue;
2684        efx_qword_t errors;
2685        bool rx_cont;
2686        u16 flags = 0;
2687
2688        if (unlikely(READ_ONCE(efx->reset_pending)))
2689                return 0;
2690
2691        /* Basic packet information */
2692        rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2693        next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2694        rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2695        rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2696        rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2697        rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2698        rx_encap_hdr =
2699                nic_data->datapath_caps &
2700                        (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2701                EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2702                ESE_EZ_ENCAP_HDR_NONE;
2703
2704        if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2705                netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2706                            EFX_QWORD_FMT "\n",
2707                            EFX_QWORD_VAL(*event));
2708
2709        rx_queue = efx_channel_get_rx_queue(channel);
2710
2711        if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2712                efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2713
2714        n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2715                   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2716
2717        if (n_descs != rx_queue->scatter_n + 1) {
2718                struct efx_ef10_nic_data *nic_data = efx->nic_data;
2719
2720                /* detect rx abort */
2721                if (unlikely(n_descs == rx_queue->scatter_n)) {
2722                        if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2723                                netdev_WARN(efx->net_dev,
2724                                            "invalid RX abort: scatter_n=%u event="
2725                                            EFX_QWORD_FMT "\n",
2726                                            rx_queue->scatter_n,
2727                                            EFX_QWORD_VAL(*event));
2728                        efx_ef10_handle_rx_abort(rx_queue);
2729                        return 0;
2730                }
2731
2732                /* Check that RX completion merging is valid, i.e.
2733                 * the current firmware supports it and this is a
2734                 * non-scattered packet.
2735                 */
2736                if (!(nic_data->datapath_caps &
2737                      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2738                    rx_queue->scatter_n != 0 || rx_cont) {
2739                        efx_ef10_handle_rx_bad_lbits(
2740                                rx_queue, next_ptr_lbits,
2741                                (rx_queue->removed_count +
2742                                 rx_queue->scatter_n + 1) &
2743                                ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2744                        return 0;
2745                }
2746
2747                /* Merged completion for multiple non-scattered packets */
2748                rx_queue->scatter_n = 1;
2749                rx_queue->scatter_len = 0;
2750                n_packets = n_descs;
2751                ++channel->n_rx_merge_events;
2752                channel->n_rx_merge_packets += n_packets;
2753                flags |= EFX_RX_PKT_PREFIX_LEN;
2754        } else {
2755                ++rx_queue->scatter_n;
2756                rx_queue->scatter_len += rx_bytes;
2757                if (rx_cont)
2758                        return 0;
2759                n_packets = 1;
2760        }
2761
2762        EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2763                                     ESF_DZ_RX_IPCKSUM_ERR, 1,
2764                                     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2765                                     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2766                                     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2767        EFX_AND_QWORD(errors, *event, errors);
2768        if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2769                flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2770                                                         rx_encap_hdr,
2771                                                         rx_l3_class, rx_l4_class,
2772                                                         event);
2773        } else {
2774                bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2775                              rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2776
2777                switch (rx_encap_hdr) {
2778                case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2779                        flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2780                        if (tcpudp)
2781                                flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2782                        break;
2783                case ESE_EZ_ENCAP_HDR_GRE:
2784                case ESE_EZ_ENCAP_HDR_NONE:
2785                        if (tcpudp)
2786                                flags |= EFX_RX_PKT_CSUMMED;
2787                        break;
2788                default:
2789                        netdev_WARN(efx->net_dev,
2790                                    "unknown encapsulation type: event="
2791                                    EFX_QWORD_FMT "\n",
2792                                    EFX_QWORD_VAL(*event));
2793                }
2794        }
2795
2796        if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2797                flags |= EFX_RX_PKT_TCP;
2798
2799        channel->irq_mod_score += 2 * n_packets;
2800
2801        /* Handle received packet(s) */
2802        for (i = 0; i < n_packets; i++) {
2803                efx_rx_packet(rx_queue,
2804                              rx_queue->removed_count & rx_queue->ptr_mask,
2805                              rx_queue->scatter_n, rx_queue->scatter_len,
2806                              flags);
2807                rx_queue->removed_count += rx_queue->scatter_n;
2808        }
2809
2810        rx_queue->scatter_n = 0;
2811        rx_queue->scatter_len = 0;
2812
2813        return n_packets;
2814}
2815
2816static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2817{
2818        u32 tstamp;
2819
2820        tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2821        tstamp <<= 16;
2822        tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2823
2824        return tstamp;
2825}
2826
2827static void
2828efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2829{
2830        struct efx_nic *efx = channel->efx;
2831        struct efx_tx_queue *tx_queue;
2832        unsigned int tx_ev_desc_ptr;
2833        unsigned int tx_ev_q_label;
2834        unsigned int tx_ev_type;
2835        u64 ts_part;
2836
2837        if (unlikely(READ_ONCE(efx->reset_pending)))
2838                return;
2839
2840        if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2841                return;
2842
2843        /* Get the transmit queue */
2844        tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2845        tx_queue = efx_channel_get_tx_queue(channel,
2846                                            tx_ev_q_label % EFX_TXQ_TYPES);
2847
2848        if (!tx_queue->timestamping) {
2849                /* Transmit completion */
2850                tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2851                efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2852                return;
2853        }
2854
2855        /* Transmit timestamps are only available for 8XXX series. They result
2856         * in up to three events per packet. These occur in order, and are:
2857         *  - the normal completion event (may be omitted)
2858         *  - the low part of the timestamp
2859         *  - the high part of the timestamp
2860         *
2861         * It's possible for multiple completion events to appear before the
2862         * corresponding timestamps. So we can for example get:
2863         *  COMP N
2864         *  COMP N+1
2865         *  TS_LO N
2866         *  TS_HI N
2867         *  TS_LO N+1
2868         *  TS_HI N+1
2869         *
2870         * In addition it's also possible for the adjacent completions to be
2871         * merged, so we may not see COMP N above. As such, the completion
2872         * events are not very useful here.
2873         *
2874         * Each part of the timestamp is itself split across two 16 bit
2875         * fields in the event.
2876         */
2877        tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2878
2879        switch (tx_ev_type) {
2880        case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2881                /* Ignore this event - see above. */
2882                break;
2883
2884        case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2885                ts_part = efx_ef10_extract_event_ts(event);
2886                tx_queue->completed_timestamp_minor = ts_part;
2887                break;
2888
2889        case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2890                ts_part = efx_ef10_extract_event_ts(event);
2891                tx_queue->completed_timestamp_major = ts_part;
2892
2893                efx_xmit_done_single(tx_queue);
2894                break;
2895
2896        default:
2897                netif_err(efx, hw, efx->net_dev,
2898                          "channel %d unknown tx event type %d (data "
2899                          EFX_QWORD_FMT ")\n",
2900                          channel->channel, tx_ev_type,
2901                          EFX_QWORD_VAL(*event));
2902                break;
2903        }
2904}
2905
2906static void
2907efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2908{
2909        struct efx_nic *efx = channel->efx;
2910        int subcode;
2911
2912        subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2913
2914        switch (subcode) {
2915        case ESE_DZ_DRV_TIMER_EV:
2916        case ESE_DZ_DRV_WAKE_UP_EV:
2917                break;
2918        case ESE_DZ_DRV_START_UP_EV:
2919                /* event queue init complete. ok. */
2920                break;
2921        default:
2922                netif_err(efx, hw, efx->net_dev,
2923                          "channel %d unknown driver event type %d"
2924                          " (data " EFX_QWORD_FMT ")\n",
2925                          channel->channel, subcode,
2926                          EFX_QWORD_VAL(*event));
2927
2928        }
2929}
2930
2931static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2932                                                   efx_qword_t *event)
2933{
2934        struct efx_nic *efx = channel->efx;
2935        u32 subcode;
2936
2937        subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2938
2939        switch (subcode) {
2940        case EFX_EF10_TEST:
2941                channel->event_test_cpu = raw_smp_processor_id();
2942                break;
2943        case EFX_EF10_REFILL:
2944                /* The queue must be empty, so we won't receive any rx
2945                 * events, so efx_process_channel() won't refill the
2946                 * queue. Refill it here
2947                 */
2948                efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2949                break;
2950        default:
2951                netif_err(efx, hw, efx->net_dev,
2952                          "channel %d unknown driver event type %u"
2953                          " (data " EFX_QWORD_FMT ")\n",
2954                          channel->channel, (unsigned) subcode,
2955                          EFX_QWORD_VAL(*event));
2956        }
2957}
2958
2959static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2960{
2961        struct efx_nic *efx = channel->efx;
2962        efx_qword_t event, *p_event;
2963        unsigned int read_ptr;
2964        int ev_code;
2965        int spent = 0;
2966
2967        if (quota <= 0)
2968                return spent;
2969
2970        read_ptr = channel->eventq_read_ptr;
2971
2972        for (;;) {
2973                p_event = efx_event(channel, read_ptr);
2974                event = *p_event;
2975
2976                if (!efx_event_present(&event))
2977                        break;
2978
2979                EFX_SET_QWORD(*p_event);
2980
2981                ++read_ptr;
2982
2983                ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2984
2985                netif_vdbg(efx, drv, efx->net_dev,
2986                           "processing event on %d " EFX_QWORD_FMT "\n",
2987                           channel->channel, EFX_QWORD_VAL(event));
2988
2989                switch (ev_code) {
2990                case ESE_DZ_EV_CODE_MCDI_EV:
2991                        efx_mcdi_process_event(channel, &event);
2992                        break;
2993                case ESE_DZ_EV_CODE_RX_EV:
2994                        spent += efx_ef10_handle_rx_event(channel, &event);
2995                        if (spent >= quota) {
2996                                /* XXX can we split a merged event to
2997                                 * avoid going over-quota?
2998                                 */
2999                                spent = quota;
3000                                goto out;
3001                        }
3002                        break;
3003                case ESE_DZ_EV_CODE_TX_EV:
3004                        efx_ef10_handle_tx_event(channel, &event);
3005                        break;
3006                case ESE_DZ_EV_CODE_DRIVER_EV:
3007                        efx_ef10_handle_driver_event(channel, &event);
3008                        if (++spent == quota)
3009                                goto out;
3010                        break;
3011                case EFX_EF10_DRVGEN_EV:
3012                        efx_ef10_handle_driver_generated_event(channel, &event);
3013                        break;
3014                default:
3015                        netif_err(efx, hw, efx->net_dev,
3016                                  "channel %d unknown event type %d"
3017                                  " (data " EFX_QWORD_FMT ")\n",
3018                                  channel->channel, ev_code,
3019                                  EFX_QWORD_VAL(event));
3020                }
3021        }
3022
3023out:
3024        channel->eventq_read_ptr = read_ptr;
3025        return spent;
3026}
3027
3028static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3029{
3030        struct efx_nic *efx = channel->efx;
3031        efx_dword_t rptr;
3032
3033        if (EFX_EF10_WORKAROUND_35388(efx)) {
3034                BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3035                             (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3036                BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3037                             (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3038
3039                EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3040                                     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3041                                     ERF_DD_EVQ_IND_RPTR,
3042                                     (channel->eventq_read_ptr &
3043                                      channel->eventq_mask) >>
3044                                     ERF_DD_EVQ_IND_RPTR_WIDTH);
3045                efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3046                                channel->channel);
3047                EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3048                                     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3049                                     ERF_DD_EVQ_IND_RPTR,
3050                                     channel->eventq_read_ptr &
3051                                     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3052                efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3053                                channel->channel);
3054        } else {
3055                EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3056                                     channel->eventq_read_ptr &
3057                                     channel->eventq_mask);
3058                efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3059        }
3060}
3061
3062static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3063{
3064        MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3065        struct efx_nic *efx = channel->efx;
3066        efx_qword_t event;
3067        int rc;
3068
3069        EFX_POPULATE_QWORD_2(event,
3070                             ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3071                             ESF_DZ_EV_DATA, EFX_EF10_TEST);
3072
3073        MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3074
3075        /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3076         * already swapped the data to little-endian order.
3077         */
3078        memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3079               sizeof(efx_qword_t));
3080
3081        rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3082                          NULL, 0, NULL);
3083        if (rc != 0)
3084                goto fail;
3085
3086        return;
3087
3088fail:
3089        WARN_ON(true);
3090        netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3091}
3092
3093void efx_ef10_handle_drain_event(struct efx_nic *efx)
3094{
3095        if (atomic_dec_and_test(&efx->active_queues))
3096                wake_up(&efx->flush_wq);
3097
3098        WARN_ON(atomic_read(&efx->active_queues) < 0);
3099}
3100
3101static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3102{
3103        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3104        struct efx_channel *channel;
3105        struct efx_tx_queue *tx_queue;
3106        struct efx_rx_queue *rx_queue;
3107        int pending;
3108
3109        /* If the MC has just rebooted, the TX/RX queues will have already been
3110         * torn down, but efx->active_queues needs to be set to zero.
3111         */
3112        if (nic_data->must_realloc_vis) {
3113                atomic_set(&efx->active_queues, 0);
3114                return 0;
3115        }
3116
3117        /* Do not attempt to write to the NIC during EEH recovery */
3118        if (efx->state != STATE_RECOVERY) {
3119                efx_for_each_channel(channel, efx) {
3120                        efx_for_each_channel_rx_queue(rx_queue, channel)
3121                                efx_mcdi_rx_fini(rx_queue);
3122                        efx_for_each_channel_tx_queue(tx_queue, channel)
3123                                efx_mcdi_tx_fini(tx_queue);
3124                }
3125
3126                wait_event_timeout(efx->flush_wq,
3127                                   atomic_read(&efx->active_queues) == 0,
3128                                   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3129                pending = atomic_read(&efx->active_queues);
3130                if (pending) {
3131                        netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3132                                  pending);
3133                        return -ETIMEDOUT;
3134                }
3135        }
3136
3137        return 0;
3138}
3139
3140static void efx_ef10_prepare_flr(struct efx_nic *efx)
3141{
3142        atomic_set(&efx->active_queues, 0);
3143}
3144
3145static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3146{
3147        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3148        u8 mac_old[ETH_ALEN];
3149        int rc, rc2;
3150
3151        /* Only reconfigure a PF-created vport */
3152        if (is_zero_ether_addr(nic_data->vport_mac))
3153                return 0;
3154
3155        efx_device_detach_sync(efx);
3156        efx_net_stop(efx->net_dev);
3157        down_write(&efx->filter_sem);
3158        efx_mcdi_filter_table_remove(efx);
3159        up_write(&efx->filter_sem);
3160
3161        rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
3162        if (rc)
3163                goto restore_filters;
3164
3165        ether_addr_copy(mac_old, nic_data->vport_mac);
3166        rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
3167                                    nic_data->vport_mac);
3168        if (rc)
3169                goto restore_vadaptor;
3170
3171        rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
3172                                    efx->net_dev->dev_addr);
3173        if (!rc) {
3174                ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3175        } else {
3176                rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
3177                if (rc2) {
3178                        /* Failed to add original MAC, so clear vport_mac */
3179                        eth_zero_addr(nic_data->vport_mac);
3180                        goto reset_nic;
3181                }
3182        }
3183
3184restore_vadaptor:
3185        rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
3186        if (rc2)
3187                goto reset_nic;
3188restore_filters:
3189        down_write(&efx->filter_sem);
3190        rc2 = efx_mcdi_filter_table_probe(efx);
3191        up_write(&efx->filter_sem);
3192        if (rc2)
3193                goto reset_nic;
3194
3195        rc2 = efx_net_open(efx->net_dev);
3196        if (rc2)
3197                goto reset_nic;
3198
3199        efx_device_attach_if_not_resetting(efx);
3200
3201        return rc;
3202
3203reset_nic:
3204        netif_err(efx, drv, efx->net_dev,
3205                  "Failed to restore when changing MAC address - scheduling reset\n");
3206        efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3207
3208        return rc ? rc : rc2;
3209}
3210
3211static int efx_ef10_set_mac_address(struct efx_nic *efx)
3212{
3213        MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3214        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3215        bool was_enabled = efx->port_enabled;
3216        int rc;
3217
3218        efx_device_detach_sync(efx);
3219        efx_net_stop(efx->net_dev);
3220
3221        mutex_lock(&efx->mac_lock);
3222        down_write(&efx->filter_sem);
3223        efx_mcdi_filter_table_remove(efx);
3224
3225        ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3226                        efx->net_dev->dev_addr);
3227        MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3228                       nic_data->vport_id);
3229        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3230                                sizeof(inbuf), NULL, 0, NULL);
3231
3232        efx_mcdi_filter_table_probe(efx);
3233        up_write(&efx->filter_sem);
3234        mutex_unlock(&efx->mac_lock);
3235
3236        if (was_enabled)
3237                efx_net_open(efx->net_dev);
3238        efx_device_attach_if_not_resetting(efx);
3239
3240#ifdef CONFIG_SFC_SRIOV
3241        if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3242                struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3243
3244                if (rc == -EPERM) {
3245                        struct efx_nic *efx_pf;
3246
3247                        /* Switch to PF and change MAC address on vport */
3248                        efx_pf = pci_get_drvdata(pci_dev_pf);
3249
3250                        rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3251                                                       nic_data->vf_index,
3252                                                       efx->net_dev->dev_addr);
3253                } else if (!rc) {
3254                        struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3255                        struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3256                        unsigned int i;
3257
3258                        /* MAC address successfully changed by VF (with MAC
3259                         * spoofing) so update the parent PF if possible.
3260                         */
3261                        for (i = 0; i < efx_pf->vf_count; ++i) {
3262                                struct ef10_vf *vf = nic_data->vf + i;
3263
3264                                if (vf->efx == efx) {
3265                                        ether_addr_copy(vf->mac,
3266                                                        efx->net_dev->dev_addr);
3267                                        return 0;
3268                                }
3269                        }
3270                }
3271        } else
3272#endif
3273        if (rc == -EPERM) {
3274                netif_err(efx, drv, efx->net_dev,
3275                          "Cannot change MAC address; use sfboot to enable"
3276                          " mac-spoofing on this interface\n");
3277        } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3278                /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3279                 * fall-back to the method of changing the MAC address on the
3280                 * vport.  This only applies to PFs because such versions of
3281                 * MCFW do not support VFs.
3282                 */
3283                rc = efx_ef10_vport_set_mac_address(efx);
3284        } else if (rc) {
3285                efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3286                                       sizeof(inbuf), NULL, 0, rc);
3287        }
3288
3289        return rc;
3290}
3291
3292static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3293{
3294        efx_mcdi_filter_sync_rx_mode(efx);
3295
3296        return efx_mcdi_set_mac(efx);
3297}
3298
3299static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
3300{
3301        efx_mcdi_filter_sync_rx_mode(efx);
3302
3303        return 0;
3304}
3305
3306static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3307{
3308        MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3309
3310        MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3311        return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3312                            NULL, 0, NULL);
3313}
3314
3315/* MC BISTs follow a different poll mechanism to phy BISTs.
3316 * The BIST is done in the poll handler on the MC, and the MCDI command
3317 * will block until the BIST is done.
3318 */
3319static int efx_ef10_poll_bist(struct efx_nic *efx)
3320{
3321        int rc;
3322        MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3323        size_t outlen;
3324        u32 result;
3325
3326        rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3327                           outbuf, sizeof(outbuf), &outlen);
3328        if (rc != 0)
3329                return rc;
3330
3331        if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3332                return -EIO;
3333
3334        result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3335        switch (result) {
3336        case MC_CMD_POLL_BIST_PASSED:
3337                netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3338                return 0;
3339        case MC_CMD_POLL_BIST_TIMEOUT:
3340                netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3341                return -EIO;
3342        case MC_CMD_POLL_BIST_FAILED:
3343                netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3344                return -EIO;
3345        default:
3346                netif_err(efx, hw, efx->net_dev,
3347                          "BIST returned unknown result %u", result);
3348                return -EIO;
3349        }
3350}
3351
3352static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3353{
3354        int rc;
3355
3356        netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3357
3358        rc = efx_ef10_start_bist(efx, bist_type);
3359        if (rc != 0)
3360                return rc;
3361
3362        return efx_ef10_poll_bist(efx);
3363}
3364
3365static int
3366efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3367{
3368        int rc, rc2;
3369
3370        efx_reset_down(efx, RESET_TYPE_WORLD);
3371
3372        rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3373                          NULL, 0, NULL, 0, NULL);
3374        if (rc != 0)
3375                goto out;
3376
3377        tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3378        tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3379
3380        rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3381
3382out:
3383        if (rc == -EPERM)
3384                rc = 0;
3385        rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3386        return rc ? rc : rc2;
3387}
3388
3389#ifdef CONFIG_SFC_MTD
3390
3391struct efx_ef10_nvram_type_info {
3392        u16 type, type_mask;
3393        u8 port;
3394        const char *name;
3395};
3396
3397static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3398        { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
3399        { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3400        { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
3401        { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
3402        { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
3403        { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3404        { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3405        { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3406        { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3407        { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
3408        { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
3409        { NVRAM_PARTITION_TYPE_MUM_FIRMWARE,       0,    0, "sfc_mumfw" },
3410        { NVRAM_PARTITION_TYPE_EXPANSION_UEFI,     0,    0, "sfc_uefi" },
3411        { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3412        { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3413        { NVRAM_PARTITION_TYPE_STATUS,             0,    0, "sfc_status" },
3414        { NVRAM_PARTITION_TYPE_BUNDLE,             0,    0, "sfc_bundle" },
3415        { NVRAM_PARTITION_TYPE_BUNDLE_METADATA,    0,    0, "sfc_bundle_metadata" },
3416};
3417#define EF10_NVRAM_PARTITION_COUNT      ARRAY_SIZE(efx_ef10_nvram_types)
3418
3419static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3420                                        struct efx_mcdi_mtd_partition *part,
3421                                        unsigned int type,
3422                                        unsigned long *found)
3423{
3424        MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3425        MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3426        const struct efx_ef10_nvram_type_info *info;
3427        size_t size, erase_size, outlen;
3428        int type_idx = 0;
3429        bool protected;
3430        int rc;
3431
3432        for (type_idx = 0; ; type_idx++) {
3433                if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3434                        return -ENODEV;
3435                info = efx_ef10_nvram_types + type_idx;
3436                if ((type & ~info->type_mask) == info->type)
3437                        break;
3438        }
3439        if (info->port != efx_port_num(efx))
3440                return -ENODEV;
3441
3442        rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3443        if (rc)
3444                return rc;
3445        if (protected &&
3446            (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3447             type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3448                /* Hide protected partitions that don't provide defaults. */
3449                return -ENODEV;
3450
3451        if (protected)
3452                /* Protected partitions are read only. */
3453                erase_size = 0;
3454
3455        /* If we've already exposed a partition of this type, hide this
3456         * duplicate.  All operations on MTDs are keyed by the type anyway,
3457         * so we can't act on the duplicate.
3458         */
3459        if (__test_and_set_bit(type_idx, found))
3460                return -EEXIST;
3461
3462        part->nvram_type = type;
3463
3464        MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3465        rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3466                          outbuf, sizeof(outbuf), &outlen);
3467        if (rc)
3468                return rc;
3469        if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3470                return -EIO;
3471        if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3472            (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3473                part->fw_subtype = MCDI_DWORD(outbuf,
3474                                              NVRAM_METADATA_OUT_SUBTYPE);
3475
3476        part->common.dev_type_name = "EF10 NVRAM manager";
3477        part->common.type_name = info->name;
3478
3479        part->common.mtd.type = MTD_NORFLASH;
3480        part->common.mtd.flags = MTD_CAP_NORFLASH;
3481        part->common.mtd.size = size;
3482        part->common.mtd.erasesize = erase_size;
3483        /* sfc_status is read-only */
3484        if (!erase_size)
3485                part->common.mtd.flags |= MTD_NO_ERASE;
3486
3487        return 0;
3488}
3489
3490static int efx_ef10_mtd_probe(struct efx_nic *efx)
3491{
3492        MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3493        DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3494        struct efx_mcdi_mtd_partition *parts;
3495        size_t outlen, n_parts_total, i, n_parts;
3496        unsigned int type;
3497        int rc;
3498
3499        ASSERT_RTNL();
3500
3501        BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3502        rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3503                          outbuf, sizeof(outbuf), &outlen);
3504        if (rc)
3505                return rc;
3506        if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3507                return -EIO;
3508
3509        n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3510        if (n_parts_total >
3511            MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3512                return -EIO;
3513
3514        parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3515        if (!parts)
3516                return -ENOMEM;
3517
3518        n_parts = 0;
3519        for (i = 0; i < n_parts_total; i++) {
3520                type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3521                                        i);
3522                rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3523                                                  found);
3524                if (rc == -EEXIST || rc == -ENODEV)
3525                        continue;
3526                if (rc)
3527                        goto fail;
3528                n_parts++;
3529        }
3530
3531        rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3532fail:
3533        if (rc)
3534                kfree(parts);
3535        return rc;
3536}
3537
3538#endif /* CONFIG_SFC_MTD */
3539
3540static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3541{
3542        _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3543}
3544
3545static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3546                                            u32 host_time) {}
3547
3548static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3549                                           bool temp)
3550{
3551        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3552        int rc;
3553
3554        if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3555            channel->sync_events_state == SYNC_EVENTS_VALID ||
3556            (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3557                return 0;
3558        channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3559
3560        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3561        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3562        MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3563                       channel->channel);
3564
3565        rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3566                          inbuf, sizeof(inbuf), NULL, 0, NULL);
3567
3568        if (rc != 0)
3569                channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3570                                                    SYNC_EVENTS_DISABLED;
3571
3572        return rc;
3573}
3574
3575static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3576                                            bool temp)
3577{
3578        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3579        int rc;
3580
3581        if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3582            (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3583                return 0;
3584        if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3585                channel->sync_events_state = SYNC_EVENTS_DISABLED;
3586                return 0;
3587        }
3588        channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3589                                            SYNC_EVENTS_DISABLED;
3590
3591        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3592        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3593        MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3594                       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3595        MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3596                       channel->channel);
3597
3598        rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3599                          inbuf, sizeof(inbuf), NULL, 0, NULL);
3600
3601        return rc;
3602}
3603
3604static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3605                                           bool temp)
3606{
3607        int (*set)(struct efx_channel *channel, bool temp);
3608        struct efx_channel *channel;
3609
3610        set = en ?
3611              efx_ef10_rx_enable_timestamping :
3612              efx_ef10_rx_disable_timestamping;
3613
3614        channel = efx_ptp_channel(efx);
3615        if (channel) {
3616                int rc = set(channel, temp);
3617                if (en && rc != 0) {
3618                        efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3619                        return rc;
3620                }
3621        }
3622
3623        return 0;
3624}
3625
3626static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3627                                         struct hwtstamp_config *init)
3628{
3629        return -EOPNOTSUPP;
3630}
3631
3632static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3633                                      struct hwtstamp_config *init)
3634{
3635        int rc;
3636
3637        switch (init->rx_filter) {
3638        case HWTSTAMP_FILTER_NONE:
3639                efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3640                /* if TX timestamping is still requested then leave PTP on */
3641                return efx_ptp_change_mode(efx,
3642                                           init->tx_type != HWTSTAMP_TX_OFF, 0);
3643        case HWTSTAMP_FILTER_ALL:
3644        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3645        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3646        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3647        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3648        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3649        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3650        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3651        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3652        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3653        case HWTSTAMP_FILTER_PTP_V2_EVENT:
3654        case HWTSTAMP_FILTER_PTP_V2_SYNC:
3655        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3656        case HWTSTAMP_FILTER_NTP_ALL:
3657                init->rx_filter = HWTSTAMP_FILTER_ALL;
3658                rc = efx_ptp_change_mode(efx, true, 0);
3659                if (!rc)
3660                        rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3661                if (rc)
3662                        efx_ptp_change_mode(efx, false, 0);
3663                return rc;
3664        default:
3665                return -ERANGE;
3666        }
3667}
3668
3669static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3670                                     struct netdev_phys_item_id *ppid)
3671{
3672        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3673
3674        if (!is_valid_ether_addr(nic_data->port_id))
3675                return -EOPNOTSUPP;
3676
3677        ppid->id_len = ETH_ALEN;
3678        memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3679
3680        return 0;
3681}
3682
3683static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3684{
3685        if (proto != htons(ETH_P_8021Q))
3686                return -EINVAL;
3687
3688        return efx_ef10_add_vlan(efx, vid);
3689}
3690
3691static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3692{
3693        if (proto != htons(ETH_P_8021Q))
3694                return -EINVAL;
3695
3696        return efx_ef10_del_vlan(efx, vid);
3697}
3698
3699/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3700 * ports table, ensuring that any TSO descriptors that were made on a now-
3701 * removed tunnel port will be blown away and won't break things when we try
3702 * to transmit them using the new ports table.
3703 */
3704static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3705{
3706        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3707        MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3708        MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3709        bool will_reset = false;
3710        size_t num_entries = 0;
3711        size_t inlen, outlen;
3712        size_t i;
3713        int rc;
3714        efx_dword_t flags_and_num_entries;
3715
3716        WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3717
3718        nic_data->udp_tunnels_dirty = false;
3719
3720        if (!(nic_data->datapath_caps &
3721            (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3722                efx_device_attach_if_not_resetting(efx);
3723                return 0;
3724        }
3725
3726        BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3727                     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3728
3729        for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3730                if (nic_data->udp_tunnels[i].count &&
3731                    nic_data->udp_tunnels[i].port) {
3732                        efx_dword_t entry;
3733
3734                        EFX_POPULATE_DWORD_2(entry,
3735                                TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3736                                        ntohs(nic_data->udp_tunnels[i].port),
3737                                TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3738                                        nic_data->udp_tunnels[i].type);
3739                        *_MCDI_ARRAY_DWORD(inbuf,
3740                                SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3741                                num_entries++) = entry;
3742                }
3743        }
3744
3745        BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3746                      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3747                     EFX_WORD_1_LBN);
3748        BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3749                     EFX_WORD_1_WIDTH);
3750        EFX_POPULATE_DWORD_2(flags_and_num_entries,
3751                             MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3752                                !!unloading,
3753                             EFX_WORD_1, num_entries);
3754        *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3755                flags_and_num_entries;
3756
3757        inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3758
3759        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3760                                inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3761        if (rc == -EIO) {
3762                /* Most likely the MC rebooted due to another function also
3763                 * setting its tunnel port list. Mark the tunnel port list as
3764                 * dirty, so it will be pushed upon coming up from the reboot.
3765                 */
3766                nic_data->udp_tunnels_dirty = true;
3767                return 0;
3768        }
3769
3770        if (rc) {
3771                /* expected not available on unprivileged functions */
3772                if (rc != -EPERM)
3773                        netif_warn(efx, drv, efx->net_dev,
3774                                   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3775        } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3776                   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3777                netif_info(efx, drv, efx->net_dev,
3778                           "Rebooting MC due to UDP tunnel port list change\n");
3779                will_reset = true;
3780                if (unloading)
3781                        /* Delay for the MC reset to complete. This will make
3782                         * unloading other functions a bit smoother. This is a
3783                         * race, but the other unload will work whichever way
3784                         * it goes, this just avoids an unnecessary error
3785                         * message.
3786                         */
3787                        msleep(100);
3788        }
3789        if (!will_reset && !unloading) {
3790                /* The caller will have detached, relying on the MC reset to
3791                 * trigger a re-attach.  Since there won't be an MC reset, we
3792                 * have to do the attach ourselves.
3793                 */
3794                efx_device_attach_if_not_resetting(efx);
3795        }
3796
3797        return rc;
3798}
3799
3800static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3801{
3802        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3803        int rc = 0;
3804
3805        mutex_lock(&nic_data->udp_tunnels_lock);
3806        if (nic_data->udp_tunnels_dirty) {
3807                /* Make sure all TX are stopped while we modify the table, else
3808                 * we might race against an efx_features_check().
3809                 */
3810                efx_device_detach_sync(efx);
3811                rc = efx_ef10_set_udp_tnl_ports(efx, false);
3812        }
3813        mutex_unlock(&nic_data->udp_tunnels_lock);
3814        return rc;
3815}
3816
3817static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
3818                                                             __be16 port)
3819{
3820        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3821        size_t i;
3822
3823        for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3824                if (!nic_data->udp_tunnels[i].count)
3825                        continue;
3826                if (nic_data->udp_tunnels[i].port == port)
3827                        return &nic_data->udp_tunnels[i];
3828        }
3829        return NULL;
3830}
3831
3832static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
3833                                     struct efx_udp_tunnel tnl)
3834{
3835        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3836        struct efx_udp_tunnel *match;
3837        char typebuf[8];
3838        size_t i;
3839        int rc;
3840
3841        if (!(nic_data->datapath_caps &
3842              (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3843                return 0;
3844
3845        efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3846        netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
3847                  typebuf, ntohs(tnl.port));
3848
3849        mutex_lock(&nic_data->udp_tunnels_lock);
3850        /* Make sure all TX are stopped while we add to the table, else we
3851         * might race against an efx_features_check().
3852         */
3853        efx_device_detach_sync(efx);
3854
3855        match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3856        if (match != NULL) {
3857                if (match->type == tnl.type) {
3858                        netif_dbg(efx, drv, efx->net_dev,
3859                                  "Referencing existing tunnel entry\n");
3860                        match->count++;
3861                        /* No need to cause an MCDI update */
3862                        rc = 0;
3863                        goto unlock_out;
3864                }
3865                efx_get_udp_tunnel_type_name(match->type,
3866                                             typebuf, sizeof(typebuf));
3867                netif_dbg(efx, drv, efx->net_dev,
3868                          "UDP port %d is already in use by %s\n",
3869                          ntohs(tnl.port), typebuf);
3870                rc = -EEXIST;
3871                goto unlock_out;
3872        }
3873
3874        for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3875                if (!nic_data->udp_tunnels[i].count) {
3876                        nic_data->udp_tunnels[i] = tnl;
3877                        nic_data->udp_tunnels[i].count = 1;
3878                        rc = efx_ef10_set_udp_tnl_ports(efx, false);
3879                        goto unlock_out;
3880                }
3881
3882        netif_dbg(efx, drv, efx->net_dev,
3883                  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
3884                  typebuf, ntohs(tnl.port));
3885
3886        rc = -ENOMEM;
3887
3888unlock_out:
3889        mutex_unlock(&nic_data->udp_tunnels_lock);
3890        return rc;
3891}
3892
3893/* Called under the TX lock with the TX queue running, hence no-one can be
3894 * in the middle of updating the UDP tunnels table.  However, they could
3895 * have tried and failed the MCDI, in which case they'll have set the dirty
3896 * flag before dropping their locks.
3897 */
3898static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3899{
3900        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3901
3902        if (!(nic_data->datapath_caps &
3903              (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3904                return false;
3905
3906        if (nic_data->udp_tunnels_dirty)
3907                /* SW table may not match HW state, so just assume we can't
3908                 * use any UDP tunnel offloads.
3909                 */
3910                return false;
3911
3912        return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
3913}
3914
3915static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
3916                                     struct efx_udp_tunnel tnl)
3917{
3918        struct efx_ef10_nic_data *nic_data = efx->nic_data;
3919        struct efx_udp_tunnel *match;
3920        char typebuf[8];
3921        int rc;
3922
3923        if (!(nic_data->datapath_caps &
3924              (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3925                return 0;
3926
3927        efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3928        netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
3929                  typebuf, ntohs(tnl.port));
3930
3931        mutex_lock(&nic_data->udp_tunnels_lock);
3932        /* Make sure all TX are stopped while we remove from the table, else we
3933         * might race against an efx_features_check().
3934         */
3935        efx_device_detach_sync(efx);
3936
3937        match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3938        if (match != NULL) {
3939                if (match->type == tnl.type) {
3940                        if (--match->count) {
3941                                /* Port is still in use, so nothing to do */
3942                                netif_dbg(efx, drv, efx->net_dev,
3943                                          "UDP tunnel port %d remains active\n",
3944                                          ntohs(tnl.port));
3945                                rc = 0;
3946                                goto out_unlock;
3947                        }
3948                        rc = efx_ef10_set_udp_tnl_ports(efx, false);
3949                        goto out_unlock;
3950                }
3951                efx_get_udp_tunnel_type_name(match->type,
3952                                             typebuf, sizeof(typebuf));
3953                netif_warn(efx, drv, efx->net_dev,
3954                           "UDP port %d is actually in use by %s, not removing\n",
3955                           ntohs(tnl.port), typebuf);
3956        }
3957        rc = -ENOENT;
3958
3959out_unlock:
3960        mutex_unlock(&nic_data->udp_tunnels_lock);
3961        return rc;
3962}
3963
3964#define EF10_OFFLOAD_FEATURES           \
3965        (NETIF_F_IP_CSUM |              \
3966         NETIF_F_HW_VLAN_CTAG_FILTER |  \
3967         NETIF_F_IPV6_CSUM |            \
3968         NETIF_F_RXHASH |               \
3969         NETIF_F_NTUPLE)
3970
3971const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
3972        .is_vf = true,
3973        .mem_bar = efx_ef10_vf_mem_bar,
3974        .mem_map_size = efx_ef10_mem_map_size,
3975        .probe = efx_ef10_probe_vf,
3976        .remove = efx_ef10_remove,
3977        .dimension_resources = efx_ef10_dimension_resources,
3978        .init = efx_ef10_init_nic,
3979        .fini = efx_port_dummy_op_void,
3980        .map_reset_reason = efx_ef10_map_reset_reason,
3981        .map_reset_flags = efx_ef10_map_reset_flags,
3982        .reset = efx_ef10_reset,
3983        .probe_port = efx_mcdi_port_probe,
3984        .remove_port = efx_mcdi_port_remove,
3985        .fini_dmaq = efx_ef10_fini_dmaq,
3986        .prepare_flr = efx_ef10_prepare_flr,
3987        .finish_flr = efx_port_dummy_op_void,
3988        .describe_stats = efx_ef10_describe_stats,
3989        .update_stats = efx_ef10_update_stats_vf,
3990        .start_stats = efx_port_dummy_op_void,
3991        .pull_stats = efx_port_dummy_op_void,
3992        .stop_stats = efx_port_dummy_op_void,
3993        .set_id_led = efx_mcdi_set_id_led,
3994        .push_irq_moderation = efx_ef10_push_irq_moderation,
3995        .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
3996        .check_mac_fault = efx_mcdi_mac_check_fault,
3997        .reconfigure_port = efx_mcdi_port_reconfigure,
3998        .get_wol = efx_ef10_get_wol_vf,
3999        .set_wol = efx_ef10_set_wol_vf,
4000        .resume_wol = efx_port_dummy_op_void,
4001        .mcdi_request = efx_ef10_mcdi_request,
4002        .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4003        .mcdi_read_response = efx_ef10_mcdi_read_response,
4004        .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4005        .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4006        .irq_enable_master = efx_port_dummy_op_void,
4007        .irq_test_generate = efx_ef10_irq_test_generate,
4008        .irq_disable_non_ev = efx_port_dummy_op_void,
4009        .irq_handle_msi = efx_ef10_msi_interrupt,
4010        .irq_handle_legacy = efx_ef10_legacy_interrupt,
4011        .tx_probe = efx_ef10_tx_probe,
4012        .tx_init = efx_ef10_tx_init,
4013        .tx_remove = efx_mcdi_tx_remove,
4014        .tx_write = efx_ef10_tx_write,
4015        .tx_limit_len = efx_ef10_tx_limit_len,
4016        .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4017        .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4018        .rx_probe = efx_mcdi_rx_probe,
4019        .rx_init = efx_mcdi_rx_init,
4020        .rx_remove = efx_mcdi_rx_remove,
4021        .rx_write = efx_ef10_rx_write,
4022        .rx_defer_refill = efx_ef10_rx_defer_refill,
4023        .ev_probe = efx_mcdi_ev_probe,
4024        .ev_init = efx_ef10_ev_init,
4025        .ev_fini = efx_mcdi_ev_fini,
4026        .ev_remove = efx_mcdi_ev_remove,
4027        .ev_process = efx_ef10_ev_process,
4028        .ev_read_ack = efx_ef10_ev_read_ack,
4029        .ev_test_generate = efx_ef10_ev_test_generate,
4030        .filter_table_probe = efx_mcdi_filter_table_probe,
4031        .filter_table_restore = efx_mcdi_filter_table_restore,
4032        .filter_table_remove = efx_mcdi_filter_table_remove,
4033        .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4034        .filter_insert = efx_mcdi_filter_insert,
4035        .filter_remove_safe = efx_mcdi_filter_remove_safe,
4036        .filter_get_safe = efx_mcdi_filter_get_safe,
4037        .filter_clear_rx = efx_mcdi_filter_clear_rx,
4038        .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4039        .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4040        .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4041#ifdef CONFIG_RFS_ACCEL
4042        .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4043#endif
4044#ifdef CONFIG_SFC_MTD
4045        .mtd_probe = efx_port_dummy_op_int,
4046#endif
4047        .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4048        .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4049        .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4050        .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4051#ifdef CONFIG_SFC_SRIOV
4052        .vswitching_probe = efx_ef10_vswitching_probe_vf,
4053        .vswitching_restore = efx_ef10_vswitching_restore_vf,
4054        .vswitching_remove = efx_ef10_vswitching_remove_vf,
4055#endif
4056        .get_mac_address = efx_ef10_get_mac_address_vf,
4057        .set_mac_address = efx_ef10_set_mac_address,
4058
4059        .get_phys_port_id = efx_ef10_get_phys_port_id,
4060        .revision = EFX_REV_HUNT_A0,
4061        .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4062        .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4063        .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4064        .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4065        .can_rx_scatter = true,
4066        .always_rx_scatter = true,
4067        .min_interrupt_mode = EFX_INT_MODE_MSIX,
4068        .max_interrupt_mode = EFX_INT_MODE_MSIX,
4069        .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4070        .offload_features = EF10_OFFLOAD_FEATURES,
4071        .mcdi_max_ver = 2,
4072        .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4073        .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4074                            1 << HWTSTAMP_FILTER_ALL,
4075        .rx_hash_key_size = 40,
4076};
4077
4078const struct efx_nic_type efx_hunt_a0_nic_type = {
4079        .is_vf = false,
4080        .mem_bar = efx_ef10_pf_mem_bar,
4081        .mem_map_size = efx_ef10_mem_map_size,
4082        .probe = efx_ef10_probe_pf,
4083        .remove = efx_ef10_remove,
4084        .dimension_resources = efx_ef10_dimension_resources,
4085        .init = efx_ef10_init_nic,
4086        .fini = efx_port_dummy_op_void,
4087        .map_reset_reason = efx_ef10_map_reset_reason,
4088        .map_reset_flags = efx_ef10_map_reset_flags,
4089        .reset = efx_ef10_reset,
4090        .probe_port = efx_mcdi_port_probe,
4091        .remove_port = efx_mcdi_port_remove,
4092        .fini_dmaq = efx_ef10_fini_dmaq,
4093        .prepare_flr = efx_ef10_prepare_flr,
4094        .finish_flr = efx_port_dummy_op_void,
4095        .describe_stats = efx_ef10_describe_stats,
4096        .update_stats = efx_ef10_update_stats_pf,
4097        .start_stats = efx_mcdi_mac_start_stats,
4098        .pull_stats = efx_mcdi_mac_pull_stats,
4099        .stop_stats = efx_mcdi_mac_stop_stats,
4100        .set_id_led = efx_mcdi_set_id_led,
4101        .push_irq_moderation = efx_ef10_push_irq_moderation,
4102        .reconfigure_mac = efx_ef10_mac_reconfigure,
4103        .check_mac_fault = efx_mcdi_mac_check_fault,
4104        .reconfigure_port = efx_mcdi_port_reconfigure,
4105        .get_wol = efx_ef10_get_wol,
4106        .set_wol = efx_ef10_set_wol,
4107        .resume_wol = efx_port_dummy_op_void,
4108        .test_chip = efx_ef10_test_chip,
4109        .test_nvram = efx_mcdi_nvram_test_all,
4110        .mcdi_request = efx_ef10_mcdi_request,
4111        .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4112        .mcdi_read_response = efx_ef10_mcdi_read_response,
4113        .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4114        .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4115        .irq_enable_master = efx_port_dummy_op_void,
4116        .irq_test_generate = efx_ef10_irq_test_generate,
4117        .irq_disable_non_ev = efx_port_dummy_op_void,
4118        .irq_handle_msi = efx_ef10_msi_interrupt,
4119        .irq_handle_legacy = efx_ef10_legacy_interrupt,
4120        .tx_probe = efx_ef10_tx_probe,
4121        .tx_init = efx_ef10_tx_init,
4122        .tx_remove = efx_mcdi_tx_remove,
4123        .tx_write = efx_ef10_tx_write,
4124        .tx_limit_len = efx_ef10_tx_limit_len,
4125        .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4126        .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4127        .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4128        .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4129        .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4130        .rx_probe = efx_mcdi_rx_probe,
4131        .rx_init = efx_mcdi_rx_init,
4132        .rx_remove = efx_mcdi_rx_remove,
4133        .rx_write = efx_ef10_rx_write,
4134        .rx_defer_refill = efx_ef10_rx_defer_refill,
4135        .ev_probe = efx_mcdi_ev_probe,
4136        .ev_init = efx_ef10_ev_init,
4137        .ev_fini = efx_mcdi_ev_fini,
4138        .ev_remove = efx_mcdi_ev_remove,
4139        .ev_process = efx_ef10_ev_process,
4140        .ev_read_ack = efx_ef10_ev_read_ack,
4141        .ev_test_generate = efx_ef10_ev_test_generate,
4142        .filter_table_probe = efx_mcdi_filter_table_probe,
4143        .filter_table_restore = efx_mcdi_filter_table_restore,
4144        .filter_table_remove = efx_mcdi_filter_table_remove,
4145        .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4146        .filter_insert = efx_mcdi_filter_insert,
4147        .filter_remove_safe = efx_mcdi_filter_remove_safe,
4148        .filter_get_safe = efx_mcdi_filter_get_safe,
4149        .filter_clear_rx = efx_mcdi_filter_clear_rx,
4150        .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4151        .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4152        .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4153#ifdef CONFIG_RFS_ACCEL
4154        .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4155#endif
4156#ifdef CONFIG_SFC_MTD
4157        .mtd_probe = efx_ef10_mtd_probe,
4158        .mtd_rename = efx_mcdi_mtd_rename,
4159        .mtd_read = efx_mcdi_mtd_read,
4160        .mtd_erase = efx_mcdi_mtd_erase,
4161        .mtd_write = efx_mcdi_mtd_write,
4162        .mtd_sync = efx_mcdi_mtd_sync,
4163#endif
4164        .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4165        .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4166        .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4167        .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4168        .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4169        .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4170        .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
4171        .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4172        .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
4173#ifdef CONFIG_SFC_SRIOV
4174        .sriov_configure = efx_ef10_sriov_configure,
4175        .sriov_init = efx_ef10_sriov_init,
4176        .sriov_fini = efx_ef10_sriov_fini,
4177        .sriov_wanted = efx_ef10_sriov_wanted,
4178        .sriov_reset = efx_ef10_sriov_reset,
4179        .sriov_flr = efx_ef10_sriov_flr,
4180        .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4181        .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4182        .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4183        .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4184        .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4185        .vswitching_probe = efx_ef10_vswitching_probe_pf,
4186        .vswitching_restore = efx_ef10_vswitching_restore_pf,
4187        .vswitching_remove = efx_ef10_vswitching_remove_pf,
4188#endif
4189        .get_mac_address = efx_ef10_get_mac_address_pf,
4190        .set_mac_address = efx_ef10_set_mac_address,
4191        .tso_versions = efx_ef10_tso_versions,
4192
4193        .get_phys_port_id = efx_ef10_get_phys_port_id,
4194        .revision = EFX_REV_HUNT_A0,
4195        .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4196        .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4197        .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4198        .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4199        .can_rx_scatter = true,
4200        .always_rx_scatter = true,
4201        .option_descriptors = true,
4202        .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4203        .max_interrupt_mode = EFX_INT_MODE_MSIX,
4204        .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4205        .offload_features = EF10_OFFLOAD_FEATURES,
4206        .mcdi_max_ver = 2,
4207        .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4208        .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4209                            1 << HWTSTAMP_FILTER_ALL,
4210        .rx_hash_key_size = 40,
4211};
4212