linux/drivers/net/ethernet/sun/cassini.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
   3 *
   4 * Copyright (C) 2004 Sun Microsystems Inc.
   5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
   6 *
   7 * This driver uses the sungem driver (c) David Miller
   8 * (davem@redhat.com) as its basis.
   9 *
  10 * The cassini chip has a number of features that distinguish it from
  11 * the gem chip:
  12 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
  13 *      load balancing (non-VLAN mode)
  14 *  batching of multiple packets
  15 *  multiple CPU dispatching
  16 *  page-based RX descriptor engine with separate completion rings
  17 *  Gigabit support (GMII and PCS interface)
  18 *  MIF link up/down detection works
  19 *
  20 * RX is handled by page sized buffers that are attached as fragments to
  21 * the skb. here's what's done:
  22 *  -- driver allocates pages at a time and keeps reference counts
  23 *     on them.
  24 *  -- the upper protocol layers assume that the header is in the skb
  25 *     itself. as a result, cassini will copy a small amount (64 bytes)
  26 *     to make them happy.
  27 *  -- driver appends the rest of the data pages as frags to skbuffs
  28 *     and increments the reference count
  29 *  -- on page reclamation, the driver swaps the page with a spare page.
  30 *     if that page is still in use, it frees its reference to that page,
  31 *     and allocates a new page for use. otherwise, it just recycles the
  32 *     the page.
  33 *
  34 * NOTE: cassini can parse the header. however, it's not worth it
  35 *       as long as the network stack requires a header copy.
  36 *
  37 * TX has 4 queues. currently these queues are used in a round-robin
  38 * fashion for load balancing. They can also be used for QoS. for that
  39 * to work, however, QoS information needs to be exposed down to the driver
  40 * level so that subqueues get targeted to particular transmit rings.
  41 * alternatively, the queues can be configured via use of the all-purpose
  42 * ioctl.
  43 *
  44 * RX DATA: the rx completion ring has all the info, but the rx desc
  45 * ring has all of the data. RX can conceivably come in under multiple
  46 * interrupts, but the INT# assignment needs to be set up properly by
  47 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
  48 * that. also, the two descriptor rings are designed to distinguish between
  49 * encrypted and non-encrypted packets, but we use them for buffering
  50 * instead.
  51 *
  52 * by default, the selective clear mask is set up to process rx packets.
  53 */
  54
  55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  56
  57#include <linux/module.h>
  58#include <linux/kernel.h>
  59#include <linux/types.h>
  60#include <linux/compiler.h>
  61#include <linux/slab.h>
  62#include <linux/delay.h>
  63#include <linux/init.h>
  64#include <linux/interrupt.h>
  65#include <linux/vmalloc.h>
  66#include <linux/ioport.h>
  67#include <linux/pci.h>
  68#include <linux/mm.h>
  69#include <linux/highmem.h>
  70#include <linux/list.h>
  71#include <linux/dma-mapping.h>
  72
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/ethtool.h>
  77#include <linux/crc32.h>
  78#include <linux/random.h>
  79#include <linux/mii.h>
  80#include <linux/ip.h>
  81#include <linux/tcp.h>
  82#include <linux/mutex.h>
  83#include <linux/firmware.h>
  84
  85#include <net/checksum.h>
  86
  87#include <linux/atomic.h>
  88#include <asm/io.h>
  89#include <asm/byteorder.h>
  90#include <linux/uaccess.h>
  91
  92#define cas_page_map(x)      kmap_atomic((x))
  93#define cas_page_unmap(x)    kunmap_atomic((x))
  94#define CAS_NCPUS            num_online_cpus()
  95
  96#define cas_skb_release(x)  netif_rx(x)
  97
  98/* select which firmware to use */
  99#define USE_HP_WORKAROUND
 100#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
 101#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
 102
 103#include "cassini.h"
 104
 105#define USE_TX_COMPWB      /* use completion writeback registers */
 106#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
 107#define USE_RX_BLANK       /* hw interrupt mitigation */
 108#undef USE_ENTROPY_DEV     /* don't test for entropy device */
 109
 110/* NOTE: these aren't useable unless PCI interrupts can be assigned.
 111 * also, we need to make cp->lock finer-grained.
 112 */
 113#undef  USE_PCI_INTB
 114#undef  USE_PCI_INTC
 115#undef  USE_PCI_INTD
 116#undef  USE_QOS
 117
 118#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
 119
 120/* rx processing options */
 121#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
 122#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
 123#define RX_COPY_ALWAYS 0    /* if 0, use frags */
 124#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
 125#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
 126
 127#define DRV_MODULE_NAME         "cassini"
 128#define DRV_MODULE_VERSION      "1.6"
 129#define DRV_MODULE_RELDATE      "21 May 2008"
 130
 131#define CAS_DEF_MSG_ENABLE        \
 132        (NETIF_MSG_DRV          | \
 133         NETIF_MSG_PROBE        | \
 134         NETIF_MSG_LINK         | \
 135         NETIF_MSG_TIMER        | \
 136         NETIF_MSG_IFDOWN       | \
 137         NETIF_MSG_IFUP         | \
 138         NETIF_MSG_RX_ERR       | \
 139         NETIF_MSG_TX_ERR)
 140
 141/* length of time before we decide the hardware is borked,
 142 * and dev->tx_timeout() should be called to fix the problem
 143 */
 144#define CAS_TX_TIMEOUT                  (HZ)
 145#define CAS_LINK_TIMEOUT                (22*HZ/10)
 146#define CAS_LINK_FAST_TIMEOUT           (1)
 147
 148/* timeout values for state changing. these specify the number
 149 * of 10us delays to be used before giving up.
 150 */
 151#define STOP_TRIES_PHY 1000
 152#define STOP_TRIES     5000
 153
 154/* specify a minimum frame size to deal with some fifo issues
 155 * max mtu == 2 * page size - ethernet header - 64 - swivel =
 156 *            2 * page_size - 0x50
 157 */
 158#define CAS_MIN_FRAME                   97
 159#define CAS_1000MB_MIN_FRAME            255
 160#define CAS_MIN_MTU                     60
 161#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
 162
 163#if 1
 164/*
 165 * Eliminate these and use separate atomic counters for each, to
 166 * avoid a race condition.
 167 */
 168#else
 169#define CAS_RESET_MTU                   1
 170#define CAS_RESET_ALL                   2
 171#define CAS_RESET_SPARE                 3
 172#endif
 173
 174static char version[] =
 175        DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
 176
 177static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
 178static int link_mode;
 179
 180MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
 181MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
 182MODULE_LICENSE("GPL");
 183MODULE_FIRMWARE("sun/cassini.bin");
 184module_param(cassini_debug, int, 0);
 185MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
 186module_param(link_mode, int, 0);
 187MODULE_PARM_DESC(link_mode, "default link mode");
 188
 189/*
 190 * Work around for a PCS bug in which the link goes down due to the chip
 191 * being confused and never showing a link status of "up."
 192 */
 193#define DEFAULT_LINKDOWN_TIMEOUT 5
 194/*
 195 * Value in seconds, for user input.
 196 */
 197static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
 198module_param(linkdown_timeout, int, 0);
 199MODULE_PARM_DESC(linkdown_timeout,
 200"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
 201
 202/*
 203 * value in 'ticks' (units used by jiffies). Set when we init the
 204 * module because 'HZ' in actually a function call on some flavors of
 205 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
 206 */
 207static int link_transition_timeout;
 208
 209
 210
 211static u16 link_modes[] = {
 212        BMCR_ANENABLE,                   /* 0 : autoneg */
 213        0,                               /* 1 : 10bt half duplex */
 214        BMCR_SPEED100,                   /* 2 : 100bt half duplex */
 215        BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
 216        BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
 217        CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
 218};
 219
 220static const struct pci_device_id cas_pci_tbl[] = {
 221        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
 222          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 223        { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
 224          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 225        { 0, }
 226};
 227
 228MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
 229
 230static void cas_set_link_modes(struct cas *cp);
 231
 232static inline void cas_lock_tx(struct cas *cp)
 233{
 234        int i;
 235
 236        for (i = 0; i < N_TX_RINGS; i++)
 237                spin_lock_nested(&cp->tx_lock[i], i);
 238}
 239
 240static inline void cas_lock_all(struct cas *cp)
 241{
 242        spin_lock_irq(&cp->lock);
 243        cas_lock_tx(cp);
 244}
 245
 246/* WTZ: QA was finding deadlock problems with the previous
 247 * versions after long test runs with multiple cards per machine.
 248 * See if replacing cas_lock_all with safer versions helps. The
 249 * symptoms QA is reporting match those we'd expect if interrupts
 250 * aren't being properly restored, and we fixed a previous deadlock
 251 * with similar symptoms by using save/restore versions in other
 252 * places.
 253 */
 254#define cas_lock_all_save(cp, flags) \
 255do { \
 256        struct cas *xxxcp = (cp); \
 257        spin_lock_irqsave(&xxxcp->lock, flags); \
 258        cas_lock_tx(xxxcp); \
 259} while (0)
 260
 261static inline void cas_unlock_tx(struct cas *cp)
 262{
 263        int i;
 264
 265        for (i = N_TX_RINGS; i > 0; i--)
 266                spin_unlock(&cp->tx_lock[i - 1]);
 267}
 268
 269static inline void cas_unlock_all(struct cas *cp)
 270{
 271        cas_unlock_tx(cp);
 272        spin_unlock_irq(&cp->lock);
 273}
 274
 275#define cas_unlock_all_restore(cp, flags) \
 276do { \
 277        struct cas *xxxcp = (cp); \
 278        cas_unlock_tx(xxxcp); \
 279        spin_unlock_irqrestore(&xxxcp->lock, flags); \
 280} while (0)
 281
 282static void cas_disable_irq(struct cas *cp, const int ring)
 283{
 284        /* Make sure we won't get any more interrupts */
 285        if (ring == 0) {
 286                writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
 287                return;
 288        }
 289
 290        /* disable completion interrupts and selectively mask */
 291        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 292                switch (ring) {
 293#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 294#ifdef USE_PCI_INTB
 295                case 1:
 296#endif
 297#ifdef USE_PCI_INTC
 298                case 2:
 299#endif
 300#ifdef USE_PCI_INTD
 301                case 3:
 302#endif
 303                        writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
 304                               cp->regs + REG_PLUS_INTRN_MASK(ring));
 305                        break;
 306#endif
 307                default:
 308                        writel(INTRN_MASK_CLEAR_ALL, cp->regs +
 309                               REG_PLUS_INTRN_MASK(ring));
 310                        break;
 311                }
 312        }
 313}
 314
 315static inline void cas_mask_intr(struct cas *cp)
 316{
 317        int i;
 318
 319        for (i = 0; i < N_RX_COMP_RINGS; i++)
 320                cas_disable_irq(cp, i);
 321}
 322
 323static void cas_enable_irq(struct cas *cp, const int ring)
 324{
 325        if (ring == 0) { /* all but TX_DONE */
 326                writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
 327                return;
 328        }
 329
 330        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
 331                switch (ring) {
 332#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
 333#ifdef USE_PCI_INTB
 334                case 1:
 335#endif
 336#ifdef USE_PCI_INTC
 337                case 2:
 338#endif
 339#ifdef USE_PCI_INTD
 340                case 3:
 341#endif
 342                        writel(INTRN_MASK_RX_EN, cp->regs +
 343                               REG_PLUS_INTRN_MASK(ring));
 344                        break;
 345#endif
 346                default:
 347                        break;
 348                }
 349        }
 350}
 351
 352static inline void cas_unmask_intr(struct cas *cp)
 353{
 354        int i;
 355
 356        for (i = 0; i < N_RX_COMP_RINGS; i++)
 357                cas_enable_irq(cp, i);
 358}
 359
 360static inline void cas_entropy_gather(struct cas *cp)
 361{
 362#ifdef USE_ENTROPY_DEV
 363        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 364                return;
 365
 366        batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
 367                            readl(cp->regs + REG_ENTROPY_IV),
 368                            sizeof(uint64_t)*8);
 369#endif
 370}
 371
 372static inline void cas_entropy_reset(struct cas *cp)
 373{
 374#ifdef USE_ENTROPY_DEV
 375        if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
 376                return;
 377
 378        writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
 379               cp->regs + REG_BIM_LOCAL_DEV_EN);
 380        writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
 381        writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
 382
 383        /* if we read back 0x0, we don't have an entropy device */
 384        if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
 385                cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
 386#endif
 387}
 388
 389/* access to the phy. the following assumes that we've initialized the MIF to
 390 * be in frame rather than bit-bang mode
 391 */
 392static u16 cas_phy_read(struct cas *cp, int reg)
 393{
 394        u32 cmd;
 395        int limit = STOP_TRIES_PHY;
 396
 397        cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
 398        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 399        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 400        cmd |= MIF_FRAME_TURN_AROUND_MSB;
 401        writel(cmd, cp->regs + REG_MIF_FRAME);
 402
 403        /* poll for completion */
 404        while (limit-- > 0) {
 405                udelay(10);
 406                cmd = readl(cp->regs + REG_MIF_FRAME);
 407                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 408                        return cmd & MIF_FRAME_DATA_MASK;
 409        }
 410        return 0xFFFF; /* -1 */
 411}
 412
 413static int cas_phy_write(struct cas *cp, int reg, u16 val)
 414{
 415        int limit = STOP_TRIES_PHY;
 416        u32 cmd;
 417
 418        cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
 419        cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
 420        cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
 421        cmd |= MIF_FRAME_TURN_AROUND_MSB;
 422        cmd |= val & MIF_FRAME_DATA_MASK;
 423        writel(cmd, cp->regs + REG_MIF_FRAME);
 424
 425        /* poll for completion */
 426        while (limit-- > 0) {
 427                udelay(10);
 428                cmd = readl(cp->regs + REG_MIF_FRAME);
 429                if (cmd & MIF_FRAME_TURN_AROUND_LSB)
 430                        return 0;
 431        }
 432        return -1;
 433}
 434
 435static void cas_phy_powerup(struct cas *cp)
 436{
 437        u16 ctl = cas_phy_read(cp, MII_BMCR);
 438
 439        if ((ctl & BMCR_PDOWN) == 0)
 440                return;
 441        ctl &= ~BMCR_PDOWN;
 442        cas_phy_write(cp, MII_BMCR, ctl);
 443}
 444
 445static void cas_phy_powerdown(struct cas *cp)
 446{
 447        u16 ctl = cas_phy_read(cp, MII_BMCR);
 448
 449        if (ctl & BMCR_PDOWN)
 450                return;
 451        ctl |= BMCR_PDOWN;
 452        cas_phy_write(cp, MII_BMCR, ctl);
 453}
 454
 455/* cp->lock held. note: the last put_page will free the buffer */
 456static int cas_page_free(struct cas *cp, cas_page_t *page)
 457{
 458        pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
 459                       PCI_DMA_FROMDEVICE);
 460        __free_pages(page->buffer, cp->page_order);
 461        kfree(page);
 462        return 0;
 463}
 464
 465#ifdef RX_COUNT_BUFFERS
 466#define RX_USED_ADD(x, y)       ((x)->used += (y))
 467#define RX_USED_SET(x, y)       ((x)->used  = (y))
 468#else
 469#define RX_USED_ADD(x, y)
 470#define RX_USED_SET(x, y)
 471#endif
 472
 473/* local page allocation routines for the receive buffers. jumbo pages
 474 * require at least 8K contiguous and 8K aligned buffers.
 475 */
 476static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
 477{
 478        cas_page_t *page;
 479
 480        page = kmalloc(sizeof(cas_page_t), flags);
 481        if (!page)
 482                return NULL;
 483
 484        INIT_LIST_HEAD(&page->list);
 485        RX_USED_SET(page, 0);
 486        page->buffer = alloc_pages(flags, cp->page_order);
 487        if (!page->buffer)
 488                goto page_err;
 489        page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
 490                                      cp->page_size, PCI_DMA_FROMDEVICE);
 491        return page;
 492
 493page_err:
 494        kfree(page);
 495        return NULL;
 496}
 497
 498/* initialize spare pool of rx buffers, but allocate during the open */
 499static void cas_spare_init(struct cas *cp)
 500{
 501        spin_lock(&cp->rx_inuse_lock);
 502        INIT_LIST_HEAD(&cp->rx_inuse_list);
 503        spin_unlock(&cp->rx_inuse_lock);
 504
 505        spin_lock(&cp->rx_spare_lock);
 506        INIT_LIST_HEAD(&cp->rx_spare_list);
 507        cp->rx_spares_needed = RX_SPARE_COUNT;
 508        spin_unlock(&cp->rx_spare_lock);
 509}
 510
 511/* used on close. free all the spare buffers. */
 512static void cas_spare_free(struct cas *cp)
 513{
 514        struct list_head list, *elem, *tmp;
 515
 516        /* free spare buffers */
 517        INIT_LIST_HEAD(&list);
 518        spin_lock(&cp->rx_spare_lock);
 519        list_splice_init(&cp->rx_spare_list, &list);
 520        spin_unlock(&cp->rx_spare_lock);
 521        list_for_each_safe(elem, tmp, &list) {
 522                cas_page_free(cp, list_entry(elem, cas_page_t, list));
 523        }
 524
 525        INIT_LIST_HEAD(&list);
 526#if 1
 527        /*
 528         * Looks like Adrian had protected this with a different
 529         * lock than used everywhere else to manipulate this list.
 530         */
 531        spin_lock(&cp->rx_inuse_lock);
 532        list_splice_init(&cp->rx_inuse_list, &list);
 533        spin_unlock(&cp->rx_inuse_lock);
 534#else
 535        spin_lock(&cp->rx_spare_lock);
 536        list_splice_init(&cp->rx_inuse_list, &list);
 537        spin_unlock(&cp->rx_spare_lock);
 538#endif
 539        list_for_each_safe(elem, tmp, &list) {
 540                cas_page_free(cp, list_entry(elem, cas_page_t, list));
 541        }
 542}
 543
 544/* replenish spares if needed */
 545static void cas_spare_recover(struct cas *cp, const gfp_t flags)
 546{
 547        struct list_head list, *elem, *tmp;
 548        int needed, i;
 549
 550        /* check inuse list. if we don't need any more free buffers,
 551         * just free it
 552         */
 553
 554        /* make a local copy of the list */
 555        INIT_LIST_HEAD(&list);
 556        spin_lock(&cp->rx_inuse_lock);
 557        list_splice_init(&cp->rx_inuse_list, &list);
 558        spin_unlock(&cp->rx_inuse_lock);
 559
 560        list_for_each_safe(elem, tmp, &list) {
 561                cas_page_t *page = list_entry(elem, cas_page_t, list);
 562
 563                /*
 564                 * With the lockless pagecache, cassini buffering scheme gets
 565                 * slightly less accurate: we might find that a page has an
 566                 * elevated reference count here, due to a speculative ref,
 567                 * and skip it as in-use. Ideally we would be able to reclaim
 568                 * it. However this would be such a rare case, it doesn't
 569                 * matter too much as we should pick it up the next time round.
 570                 *
 571                 * Importantly, if we find that the page has a refcount of 1
 572                 * here (our refcount), then we know it is definitely not inuse
 573                 * so we can reuse it.
 574                 */
 575                if (page_count(page->buffer) > 1)
 576                        continue;
 577
 578                list_del(elem);
 579                spin_lock(&cp->rx_spare_lock);
 580                if (cp->rx_spares_needed > 0) {
 581                        list_add(elem, &cp->rx_spare_list);
 582                        cp->rx_spares_needed--;
 583                        spin_unlock(&cp->rx_spare_lock);
 584                } else {
 585                        spin_unlock(&cp->rx_spare_lock);
 586                        cas_page_free(cp, page);
 587                }
 588        }
 589
 590        /* put any inuse buffers back on the list */
 591        if (!list_empty(&list)) {
 592                spin_lock(&cp->rx_inuse_lock);
 593                list_splice(&list, &cp->rx_inuse_list);
 594                spin_unlock(&cp->rx_inuse_lock);
 595        }
 596
 597        spin_lock(&cp->rx_spare_lock);
 598        needed = cp->rx_spares_needed;
 599        spin_unlock(&cp->rx_spare_lock);
 600        if (!needed)
 601                return;
 602
 603        /* we still need spares, so try to allocate some */
 604        INIT_LIST_HEAD(&list);
 605        i = 0;
 606        while (i < needed) {
 607                cas_page_t *spare = cas_page_alloc(cp, flags);
 608                if (!spare)
 609                        break;
 610                list_add(&spare->list, &list);
 611                i++;
 612        }
 613
 614        spin_lock(&cp->rx_spare_lock);
 615        list_splice(&list, &cp->rx_spare_list);
 616        cp->rx_spares_needed -= i;
 617        spin_unlock(&cp->rx_spare_lock);
 618}
 619
 620/* pull a page from the list. */
 621static cas_page_t *cas_page_dequeue(struct cas *cp)
 622{
 623        struct list_head *entry;
 624        int recover;
 625
 626        spin_lock(&cp->rx_spare_lock);
 627        if (list_empty(&cp->rx_spare_list)) {
 628                /* try to do a quick recovery */
 629                spin_unlock(&cp->rx_spare_lock);
 630                cas_spare_recover(cp, GFP_ATOMIC);
 631                spin_lock(&cp->rx_spare_lock);
 632                if (list_empty(&cp->rx_spare_list)) {
 633                        netif_err(cp, rx_err, cp->dev,
 634                                  "no spare buffers available\n");
 635                        spin_unlock(&cp->rx_spare_lock);
 636                        return NULL;
 637                }
 638        }
 639
 640        entry = cp->rx_spare_list.next;
 641        list_del(entry);
 642        recover = ++cp->rx_spares_needed;
 643        spin_unlock(&cp->rx_spare_lock);
 644
 645        /* trigger the timer to do the recovery */
 646        if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
 647#if 1
 648                atomic_inc(&cp->reset_task_pending);
 649                atomic_inc(&cp->reset_task_pending_spare);
 650                schedule_work(&cp->reset_task);
 651#else
 652                atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
 653                schedule_work(&cp->reset_task);
 654#endif
 655        }
 656        return list_entry(entry, cas_page_t, list);
 657}
 658
 659
 660static void cas_mif_poll(struct cas *cp, const int enable)
 661{
 662        u32 cfg;
 663
 664        cfg  = readl(cp->regs + REG_MIF_CFG);
 665        cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
 666
 667        if (cp->phy_type & CAS_PHY_MII_MDIO1)
 668                cfg |= MIF_CFG_PHY_SELECT;
 669
 670        /* poll and interrupt on link status change. */
 671        if (enable) {
 672                cfg |= MIF_CFG_POLL_EN;
 673                cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
 674                cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
 675        }
 676        writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
 677               cp->regs + REG_MIF_MASK);
 678        writel(cfg, cp->regs + REG_MIF_CFG);
 679}
 680
 681/* Must be invoked under cp->lock */
 682static void cas_begin_auto_negotiation(struct cas *cp,
 683                                       const struct ethtool_link_ksettings *ep)
 684{
 685        u16 ctl;
 686#if 1
 687        int lcntl;
 688        int changed = 0;
 689        int oldstate = cp->lstate;
 690        int link_was_not_down = !(oldstate == link_down);
 691#endif
 692        /* Setup link parameters */
 693        if (!ep)
 694                goto start_aneg;
 695        lcntl = cp->link_cntl;
 696        if (ep->base.autoneg == AUTONEG_ENABLE) {
 697                cp->link_cntl = BMCR_ANENABLE;
 698        } else {
 699                u32 speed = ep->base.speed;
 700                cp->link_cntl = 0;
 701                if (speed == SPEED_100)
 702                        cp->link_cntl |= BMCR_SPEED100;
 703                else if (speed == SPEED_1000)
 704                        cp->link_cntl |= CAS_BMCR_SPEED1000;
 705                if (ep->base.duplex == DUPLEX_FULL)
 706                        cp->link_cntl |= BMCR_FULLDPLX;
 707        }
 708#if 1
 709        changed = (lcntl != cp->link_cntl);
 710#endif
 711start_aneg:
 712        if (cp->lstate == link_up) {
 713                netdev_info(cp->dev, "PCS link down\n");
 714        } else {
 715                if (changed) {
 716                        netdev_info(cp->dev, "link configuration changed\n");
 717                }
 718        }
 719        cp->lstate = link_down;
 720        cp->link_transition = LINK_TRANSITION_LINK_DOWN;
 721        if (!cp->hw_running)
 722                return;
 723#if 1
 724        /*
 725         * WTZ: If the old state was link_up, we turn off the carrier
 726         * to replicate everything we do elsewhere on a link-down
 727         * event when we were already in a link-up state..
 728         */
 729        if (oldstate == link_up)
 730                netif_carrier_off(cp->dev);
 731        if (changed  && link_was_not_down) {
 732                /*
 733                 * WTZ: This branch will simply schedule a full reset after
 734                 * we explicitly changed link modes in an ioctl. See if this
 735                 * fixes the link-problems we were having for forced mode.
 736                 */
 737                atomic_inc(&cp->reset_task_pending);
 738                atomic_inc(&cp->reset_task_pending_all);
 739                schedule_work(&cp->reset_task);
 740                cp->timer_ticks = 0;
 741                mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 742                return;
 743        }
 744#endif
 745        if (cp->phy_type & CAS_PHY_SERDES) {
 746                u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
 747
 748                if (cp->link_cntl & BMCR_ANENABLE) {
 749                        val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
 750                        cp->lstate = link_aneg;
 751                } else {
 752                        if (cp->link_cntl & BMCR_FULLDPLX)
 753                                val |= PCS_MII_CTRL_DUPLEX;
 754                        val &= ~PCS_MII_AUTONEG_EN;
 755                        cp->lstate = link_force_ok;
 756                }
 757                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 758                writel(val, cp->regs + REG_PCS_MII_CTRL);
 759
 760        } else {
 761                cas_mif_poll(cp, 0);
 762                ctl = cas_phy_read(cp, MII_BMCR);
 763                ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
 764                         CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
 765                ctl |= cp->link_cntl;
 766                if (ctl & BMCR_ANENABLE) {
 767                        ctl |= BMCR_ANRESTART;
 768                        cp->lstate = link_aneg;
 769                } else {
 770                        cp->lstate = link_force_ok;
 771                }
 772                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
 773                cas_phy_write(cp, MII_BMCR, ctl);
 774                cas_mif_poll(cp, 1);
 775        }
 776
 777        cp->timer_ticks = 0;
 778        mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
 779}
 780
 781/* Must be invoked under cp->lock. */
 782static int cas_reset_mii_phy(struct cas *cp)
 783{
 784        int limit = STOP_TRIES_PHY;
 785        u16 val;
 786
 787        cas_phy_write(cp, MII_BMCR, BMCR_RESET);
 788        udelay(100);
 789        while (--limit) {
 790                val = cas_phy_read(cp, MII_BMCR);
 791                if ((val & BMCR_RESET) == 0)
 792                        break;
 793                udelay(10);
 794        }
 795        return limit <= 0;
 796}
 797
 798static void cas_saturn_firmware_init(struct cas *cp)
 799{
 800        const struct firmware *fw;
 801        const char fw_name[] = "sun/cassini.bin";
 802        int err;
 803
 804        if (PHY_NS_DP83065 != cp->phy_id)
 805                return;
 806
 807        err = request_firmware(&fw, fw_name, &cp->pdev->dev);
 808        if (err) {
 809                pr_err("Failed to load firmware \"%s\"\n",
 810                       fw_name);
 811                return;
 812        }
 813        if (fw->size < 2) {
 814                pr_err("bogus length %zu in \"%s\"\n",
 815                       fw->size, fw_name);
 816                goto out;
 817        }
 818        cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
 819        cp->fw_size = fw->size - 2;
 820        cp->fw_data = vmalloc(cp->fw_size);
 821        if (!cp->fw_data)
 822                goto out;
 823        memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
 824out:
 825        release_firmware(fw);
 826}
 827
 828static void cas_saturn_firmware_load(struct cas *cp)
 829{
 830        int i;
 831
 832        if (!cp->fw_data)
 833                return;
 834
 835        cas_phy_powerdown(cp);
 836
 837        /* expanded memory access mode */
 838        cas_phy_write(cp, DP83065_MII_MEM, 0x0);
 839
 840        /* pointer configuration for new firmware */
 841        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
 842        cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
 843        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
 844        cas_phy_write(cp, DP83065_MII_REGD, 0x82);
 845        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
 846        cas_phy_write(cp, DP83065_MII_REGD, 0x0);
 847        cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
 848        cas_phy_write(cp, DP83065_MII_REGD, 0x39);
 849
 850        /* download new firmware */
 851        cas_phy_write(cp, DP83065_MII_MEM, 0x1);
 852        cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
 853        for (i = 0; i < cp->fw_size; i++)
 854                cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
 855
 856        /* enable firmware */
 857        cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
 858        cas_phy_write(cp, DP83065_MII_REGD, 0x1);
 859}
 860
 861
 862/* phy initialization */
 863static void cas_phy_init(struct cas *cp)
 864{
 865        u16 val;
 866
 867        /* if we're in MII/GMII mode, set up phy */
 868        if (CAS_PHY_MII(cp->phy_type)) {
 869                writel(PCS_DATAPATH_MODE_MII,
 870                       cp->regs + REG_PCS_DATAPATH_MODE);
 871
 872                cas_mif_poll(cp, 0);
 873                cas_reset_mii_phy(cp); /* take out of isolate mode */
 874
 875                if (PHY_LUCENT_B0 == cp->phy_id) {
 876                        /* workaround link up/down issue with lucent */
 877                        cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
 878                        cas_phy_write(cp, MII_BMCR, 0x00f1);
 879                        cas_phy_write(cp, LUCENT_MII_REG, 0x0);
 880
 881                } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
 882                        /* workarounds for broadcom phy */
 883                        cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
 884                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
 885                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
 886                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
 887                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
 888                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 889                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
 890                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
 891                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
 892                        cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
 893                        cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
 894
 895                } else if (PHY_BROADCOM_5411 == cp->phy_id) {
 896                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
 897                        val = cas_phy_read(cp, BROADCOM_MII_REG4);
 898                        if (val & 0x0080) {
 899                                /* link workaround */
 900                                cas_phy_write(cp, BROADCOM_MII_REG4,
 901                                              val & ~0x0080);
 902                        }
 903
 904                } else if (cp->cas_flags & CAS_FLAG_SATURN) {
 905                        writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
 906                               SATURN_PCFG_FSI : 0x0,
 907                               cp->regs + REG_SATURN_PCFG);
 908
 909                        /* load firmware to address 10Mbps auto-negotiation
 910                         * issue. NOTE: this will need to be changed if the
 911                         * default firmware gets fixed.
 912                         */
 913                        if (PHY_NS_DP83065 == cp->phy_id) {
 914                                cas_saturn_firmware_load(cp);
 915                        }
 916                        cas_phy_powerup(cp);
 917                }
 918
 919                /* advertise capabilities */
 920                val = cas_phy_read(cp, MII_BMCR);
 921                val &= ~BMCR_ANENABLE;
 922                cas_phy_write(cp, MII_BMCR, val);
 923                udelay(10);
 924
 925                cas_phy_write(cp, MII_ADVERTISE,
 926                              cas_phy_read(cp, MII_ADVERTISE) |
 927                              (ADVERTISE_10HALF | ADVERTISE_10FULL |
 928                               ADVERTISE_100HALF | ADVERTISE_100FULL |
 929                               CAS_ADVERTISE_PAUSE |
 930                               CAS_ADVERTISE_ASYM_PAUSE));
 931
 932                if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
 933                        /* make sure that we don't advertise half
 934                         * duplex to avoid a chip issue
 935                         */
 936                        val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
 937                        val &= ~CAS_ADVERTISE_1000HALF;
 938                        val |= CAS_ADVERTISE_1000FULL;
 939                        cas_phy_write(cp, CAS_MII_1000_CTRL, val);
 940                }
 941
 942        } else {
 943                /* reset pcs for serdes */
 944                u32 val;
 945                int limit;
 946
 947                writel(PCS_DATAPATH_MODE_SERDES,
 948                       cp->regs + REG_PCS_DATAPATH_MODE);
 949
 950                /* enable serdes pins on saturn */
 951                if (cp->cas_flags & CAS_FLAG_SATURN)
 952                        writel(0, cp->regs + REG_SATURN_PCFG);
 953
 954                /* Reset PCS unit. */
 955                val = readl(cp->regs + REG_PCS_MII_CTRL);
 956                val |= PCS_MII_RESET;
 957                writel(val, cp->regs + REG_PCS_MII_CTRL);
 958
 959                limit = STOP_TRIES;
 960                while (--limit > 0) {
 961                        udelay(10);
 962                        if ((readl(cp->regs + REG_PCS_MII_CTRL) &
 963                             PCS_MII_RESET) == 0)
 964                                break;
 965                }
 966                if (limit <= 0)
 967                        netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
 968                                    readl(cp->regs + REG_PCS_STATE_MACHINE));
 969
 970                /* Make sure PCS is disabled while changing advertisement
 971                 * configuration.
 972                 */
 973                writel(0x0, cp->regs + REG_PCS_CFG);
 974
 975                /* Advertise all capabilities except half-duplex. */
 976                val  = readl(cp->regs + REG_PCS_MII_ADVERT);
 977                val &= ~PCS_MII_ADVERT_HD;
 978                val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
 979                        PCS_MII_ADVERT_ASYM_PAUSE);
 980                writel(val, cp->regs + REG_PCS_MII_ADVERT);
 981
 982                /* enable PCS */
 983                writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
 984
 985                /* pcs workaround: enable sync detect */
 986                writel(PCS_SERDES_CTRL_SYNCD_EN,
 987                       cp->regs + REG_PCS_SERDES_CTRL);
 988        }
 989}
 990
 991
 992static int cas_pcs_link_check(struct cas *cp)
 993{
 994        u32 stat, state_machine;
 995        int retval = 0;
 996
 997        /* The link status bit latches on zero, so you must
 998         * read it twice in such a case to see a transition
 999         * to the link being up.
1000         */
1001        stat = readl(cp->regs + REG_PCS_MII_STATUS);
1002        if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1003                stat = readl(cp->regs + REG_PCS_MII_STATUS);
1004
1005        /* The remote-fault indication is only valid
1006         * when autoneg has completed.
1007         */
1008        if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1009                     PCS_MII_STATUS_REMOTE_FAULT)) ==
1010            (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1011                netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1012
1013        /* work around link detection issue by querying the PCS state
1014         * machine directly.
1015         */
1016        state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1017        if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1018                stat &= ~PCS_MII_STATUS_LINK_STATUS;
1019        } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1020                stat |= PCS_MII_STATUS_LINK_STATUS;
1021        }
1022
1023        if (stat & PCS_MII_STATUS_LINK_STATUS) {
1024                if (cp->lstate != link_up) {
1025                        if (cp->opened) {
1026                                cp->lstate = link_up;
1027                                cp->link_transition = LINK_TRANSITION_LINK_UP;
1028
1029                                cas_set_link_modes(cp);
1030                                netif_carrier_on(cp->dev);
1031                        }
1032                }
1033        } else if (cp->lstate == link_up) {
1034                cp->lstate = link_down;
1035                if (link_transition_timeout != 0 &&
1036                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1037                    !cp->link_transition_jiffies_valid) {
1038                        /*
1039                         * force a reset, as a workaround for the
1040                         * link-failure problem. May want to move this to a
1041                         * point a bit earlier in the sequence. If we had
1042                         * generated a reset a short time ago, we'll wait for
1043                         * the link timer to check the status until a
1044                         * timer expires (link_transistion_jiffies_valid is
1045                         * true when the timer is running.)  Instead of using
1046                         * a system timer, we just do a check whenever the
1047                         * link timer is running - this clears the flag after
1048                         * a suitable delay.
1049                         */
1050                        retval = 1;
1051                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1052                        cp->link_transition_jiffies = jiffies;
1053                        cp->link_transition_jiffies_valid = 1;
1054                } else {
1055                        cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1056                }
1057                netif_carrier_off(cp->dev);
1058                if (cp->opened)
1059                        netif_info(cp, link, cp->dev, "PCS link down\n");
1060
1061                /* Cassini only: if you force a mode, there can be
1062                 * sync problems on link down. to fix that, the following
1063                 * things need to be checked:
1064                 * 1) read serialink state register
1065                 * 2) read pcs status register to verify link down.
1066                 * 3) if link down and serial link == 0x03, then you need
1067                 *    to global reset the chip.
1068                 */
1069                if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1070                        /* should check to see if we're in a forced mode */
1071                        stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1072                        if (stat == 0x03)
1073                                return 1;
1074                }
1075        } else if (cp->lstate == link_down) {
1076                if (link_transition_timeout != 0 &&
1077                    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1078                    !cp->link_transition_jiffies_valid) {
1079                        /* force a reset, as a workaround for the
1080                         * link-failure problem.  May want to move
1081                         * this to a point a bit earlier in the
1082                         * sequence.
1083                         */
1084                        retval = 1;
1085                        cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1086                        cp->link_transition_jiffies = jiffies;
1087                        cp->link_transition_jiffies_valid = 1;
1088                } else {
1089                        cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1090                }
1091        }
1092
1093        return retval;
1094}
1095
1096static int cas_pcs_interrupt(struct net_device *dev,
1097                             struct cas *cp, u32 status)
1098{
1099        u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1100
1101        if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1102                return 0;
1103        return cas_pcs_link_check(cp);
1104}
1105
1106static int cas_txmac_interrupt(struct net_device *dev,
1107                               struct cas *cp, u32 status)
1108{
1109        u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1110
1111        if (!txmac_stat)
1112                return 0;
1113
1114        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1115                     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1116
1117        /* Defer timer expiration is quite normal,
1118         * don't even log the event.
1119         */
1120        if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1121            !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1122                return 0;
1123
1124        spin_lock(&cp->stat_lock[0]);
1125        if (txmac_stat & MAC_TX_UNDERRUN) {
1126                netdev_err(dev, "TX MAC xmit underrun\n");
1127                cp->net_stats[0].tx_fifo_errors++;
1128        }
1129
1130        if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1131                netdev_err(dev, "TX MAC max packet size error\n");
1132                cp->net_stats[0].tx_errors++;
1133        }
1134
1135        /* The rest are all cases of one of the 16-bit TX
1136         * counters expiring.
1137         */
1138        if (txmac_stat & MAC_TX_COLL_NORMAL)
1139                cp->net_stats[0].collisions += 0x10000;
1140
1141        if (txmac_stat & MAC_TX_COLL_EXCESS) {
1142                cp->net_stats[0].tx_aborted_errors += 0x10000;
1143                cp->net_stats[0].collisions += 0x10000;
1144        }
1145
1146        if (txmac_stat & MAC_TX_COLL_LATE) {
1147                cp->net_stats[0].tx_aborted_errors += 0x10000;
1148                cp->net_stats[0].collisions += 0x10000;
1149        }
1150        spin_unlock(&cp->stat_lock[0]);
1151
1152        /* We do not keep track of MAC_TX_COLL_FIRST and
1153         * MAC_TX_PEAK_ATTEMPTS events.
1154         */
1155        return 0;
1156}
1157
1158static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1159{
1160        cas_hp_inst_t *inst;
1161        u32 val;
1162        int i;
1163
1164        i = 0;
1165        while ((inst = firmware) && inst->note) {
1166                writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1167
1168                val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1169                val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1170                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1171
1172                val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1173                val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1174                val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1175                val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1176                val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1177                val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1178                val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1179                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1180
1181                val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1182                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1183                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1184                val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1185                writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1186                ++firmware;
1187                ++i;
1188        }
1189}
1190
1191static void cas_init_rx_dma(struct cas *cp)
1192{
1193        u64 desc_dma = cp->block_dvma;
1194        u32 val;
1195        int i, size;
1196
1197        /* rx free descriptors */
1198        val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1199        val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1200        val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1201        if ((N_RX_DESC_RINGS > 1) &&
1202            (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1203                val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1204        writel(val, cp->regs + REG_RX_CFG);
1205
1206        val = (unsigned long) cp->init_rxds[0] -
1207                (unsigned long) cp->init_block;
1208        writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1209        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1210        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1211
1212        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1213                /* rx desc 2 is for IPSEC packets. however,
1214                 * we don't it that for that purpose.
1215                 */
1216                val = (unsigned long) cp->init_rxds[1] -
1217                        (unsigned long) cp->init_block;
1218                writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1219                writel((desc_dma + val) & 0xffffffff, cp->regs +
1220                       REG_PLUS_RX_DB1_LOW);
1221                writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1222                       REG_PLUS_RX_KICK1);
1223        }
1224
1225        /* rx completion registers */
1226        val = (unsigned long) cp->init_rxcs[0] -
1227                (unsigned long) cp->init_block;
1228        writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1229        writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1230
1231        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1232                /* rx comp 2-4 */
1233                for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1234                        val = (unsigned long) cp->init_rxcs[i] -
1235                                (unsigned long) cp->init_block;
1236                        writel((desc_dma + val) >> 32, cp->regs +
1237                               REG_PLUS_RX_CBN_HI(i));
1238                        writel((desc_dma + val) & 0xffffffff, cp->regs +
1239                               REG_PLUS_RX_CBN_LOW(i));
1240                }
1241        }
1242
1243        /* read selective clear regs to prevent spurious interrupts
1244         * on reset because complete == kick.
1245         * selective clear set up to prevent interrupts on resets
1246         */
1247        readl(cp->regs + REG_INTR_STATUS_ALIAS);
1248        writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1249        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1250                for (i = 1; i < N_RX_COMP_RINGS; i++)
1251                        readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1252
1253                /* 2 is different from 3 and 4 */
1254                if (N_RX_COMP_RINGS > 1)
1255                        writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1256                               cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1257
1258                for (i = 2; i < N_RX_COMP_RINGS; i++)
1259                        writel(INTR_RX_DONE_ALT,
1260                               cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1261        }
1262
1263        /* set up pause thresholds */
1264        val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1265                        cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1266        val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1267                        cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1268        writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1269
1270        /* zero out dma reassembly buffers */
1271        for (i = 0; i < 64; i++) {
1272                writel(i, cp->regs + REG_RX_TABLE_ADDR);
1273                writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1274                writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1275                writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1276        }
1277
1278        /* make sure address register is 0 for normal operation */
1279        writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1280        writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1281
1282        /* interrupt mitigation */
1283#ifdef USE_RX_BLANK
1284        val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1285        val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1286        writel(val, cp->regs + REG_RX_BLANK);
1287#else
1288        writel(0x0, cp->regs + REG_RX_BLANK);
1289#endif
1290
1291        /* interrupt generation as a function of low water marks for
1292         * free desc and completion entries. these are used to trigger
1293         * housekeeping for rx descs. we don't use the free interrupt
1294         * as it's not very useful
1295         */
1296        /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1297        val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1298        writel(val, cp->regs + REG_RX_AE_THRESH);
1299        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1300                val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1301                writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1302        }
1303
1304        /* Random early detect registers. useful for congestion avoidance.
1305         * this should be tunable.
1306         */
1307        writel(0x0, cp->regs + REG_RX_RED);
1308
1309        /* receive page sizes. default == 2K (0x800) */
1310        val = 0;
1311        if (cp->page_size == 0x1000)
1312                val = 0x1;
1313        else if (cp->page_size == 0x2000)
1314                val = 0x2;
1315        else if (cp->page_size == 0x4000)
1316                val = 0x3;
1317
1318        /* round mtu + offset. constrain to page size. */
1319        size = cp->dev->mtu + 64;
1320        if (size > cp->page_size)
1321                size = cp->page_size;
1322
1323        if (size <= 0x400)
1324                i = 0x0;
1325        else if (size <= 0x800)
1326                i = 0x1;
1327        else if (size <= 0x1000)
1328                i = 0x2;
1329        else
1330                i = 0x3;
1331
1332        cp->mtu_stride = 1 << (i + 10);
1333        val  = CAS_BASE(RX_PAGE_SIZE, val);
1334        val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1335        val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1336        val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1337        writel(val, cp->regs + REG_RX_PAGE_SIZE);
1338
1339        /* enable the header parser if desired */
1340        if (CAS_HP_FIRMWARE == cas_prog_null)
1341                return;
1342
1343        val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1344        val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1345        val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1346        writel(val, cp->regs + REG_HP_CFG);
1347}
1348
1349static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1350{
1351        memset(rxc, 0, sizeof(*rxc));
1352        rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1353}
1354
1355/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1356 * flipping is protected by the fact that the chip will not
1357 * hand back the same page index while it's being processed.
1358 */
1359static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1360{
1361        cas_page_t *page = cp->rx_pages[1][index];
1362        cas_page_t *new;
1363
1364        if (page_count(page->buffer) == 1)
1365                return page;
1366
1367        new = cas_page_dequeue(cp);
1368        if (new) {
1369                spin_lock(&cp->rx_inuse_lock);
1370                list_add(&page->list, &cp->rx_inuse_list);
1371                spin_unlock(&cp->rx_inuse_lock);
1372        }
1373        return new;
1374}
1375
1376/* this needs to be changed if we actually use the ENC RX DESC ring */
1377static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1378                                 const int index)
1379{
1380        cas_page_t **page0 = cp->rx_pages[0];
1381        cas_page_t **page1 = cp->rx_pages[1];
1382
1383        /* swap if buffer is in use */
1384        if (page_count(page0[index]->buffer) > 1) {
1385                cas_page_t *new = cas_page_spare(cp, index);
1386                if (new) {
1387                        page1[index] = page0[index];
1388                        page0[index] = new;
1389                }
1390        }
1391        RX_USED_SET(page0[index], 0);
1392        return page0[index];
1393}
1394
1395static void cas_clean_rxds(struct cas *cp)
1396{
1397        /* only clean ring 0 as ring 1 is used for spare buffers */
1398        struct cas_rx_desc *rxd = cp->init_rxds[0];
1399        int i, size;
1400
1401        /* release all rx flows */
1402        for (i = 0; i < N_RX_FLOWS; i++) {
1403                struct sk_buff *skb;
1404                while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1405                        cas_skb_release(skb);
1406                }
1407        }
1408
1409        /* initialize descriptors */
1410        size = RX_DESC_RINGN_SIZE(0);
1411        for (i = 0; i < size; i++) {
1412                cas_page_t *page = cas_page_swap(cp, 0, i);
1413                rxd[i].buffer = cpu_to_le64(page->dma_addr);
1414                rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1415                                            CAS_BASE(RX_INDEX_RING, 0));
1416        }
1417
1418        cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1419        cp->rx_last[0] = 0;
1420        cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1421}
1422
1423static void cas_clean_rxcs(struct cas *cp)
1424{
1425        int i, j;
1426
1427        /* take ownership of rx comp descriptors */
1428        memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1429        memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1430        for (i = 0; i < N_RX_COMP_RINGS; i++) {
1431                struct cas_rx_comp *rxc = cp->init_rxcs[i];
1432                for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1433                        cas_rxc_init(rxc + j);
1434                }
1435        }
1436}
1437
1438#if 0
1439/* When we get a RX fifo overflow, the RX unit is probably hung
1440 * so we do the following.
1441 *
1442 * If any part of the reset goes wrong, we return 1 and that causes the
1443 * whole chip to be reset.
1444 */
1445static int cas_rxmac_reset(struct cas *cp)
1446{
1447        struct net_device *dev = cp->dev;
1448        int limit;
1449        u32 val;
1450
1451        /* First, reset MAC RX. */
1452        writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1453        for (limit = 0; limit < STOP_TRIES; limit++) {
1454                if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1455                        break;
1456                udelay(10);
1457        }
1458        if (limit == STOP_TRIES) {
1459                netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1460                return 1;
1461        }
1462
1463        /* Second, disable RX DMA. */
1464        writel(0, cp->regs + REG_RX_CFG);
1465        for (limit = 0; limit < STOP_TRIES; limit++) {
1466                if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1467                        break;
1468                udelay(10);
1469        }
1470        if (limit == STOP_TRIES) {
1471                netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1472                return 1;
1473        }
1474
1475        mdelay(5);
1476
1477        /* Execute RX reset command. */
1478        writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1479        for (limit = 0; limit < STOP_TRIES; limit++) {
1480                if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1481                        break;
1482                udelay(10);
1483        }
1484        if (limit == STOP_TRIES) {
1485                netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1486                return 1;
1487        }
1488
1489        /* reset driver rx state */
1490        cas_clean_rxds(cp);
1491        cas_clean_rxcs(cp);
1492
1493        /* Now, reprogram the rest of RX unit. */
1494        cas_init_rx_dma(cp);
1495
1496        /* re-enable */
1497        val = readl(cp->regs + REG_RX_CFG);
1498        writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1499        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1500        val = readl(cp->regs + REG_MAC_RX_CFG);
1501        writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1502        return 0;
1503}
1504#endif
1505
1506static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1507                               u32 status)
1508{
1509        u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1510
1511        if (!stat)
1512                return 0;
1513
1514        netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1515
1516        /* these are all rollovers */
1517        spin_lock(&cp->stat_lock[0]);
1518        if (stat & MAC_RX_ALIGN_ERR)
1519                cp->net_stats[0].rx_frame_errors += 0x10000;
1520
1521        if (stat & MAC_RX_CRC_ERR)
1522                cp->net_stats[0].rx_crc_errors += 0x10000;
1523
1524        if (stat & MAC_RX_LEN_ERR)
1525                cp->net_stats[0].rx_length_errors += 0x10000;
1526
1527        if (stat & MAC_RX_OVERFLOW) {
1528                cp->net_stats[0].rx_over_errors++;
1529                cp->net_stats[0].rx_fifo_errors++;
1530        }
1531
1532        /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1533         * events.
1534         */
1535        spin_unlock(&cp->stat_lock[0]);
1536        return 0;
1537}
1538
1539static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1540                             u32 status)
1541{
1542        u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1543
1544        if (!stat)
1545                return 0;
1546
1547        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1548                     "mac interrupt, stat: 0x%x\n", stat);
1549
1550        /* This interrupt is just for pause frame and pause
1551         * tracking.  It is useful for diagnostics and debug
1552         * but probably by default we will mask these events.
1553         */
1554        if (stat & MAC_CTRL_PAUSE_STATE)
1555                cp->pause_entered++;
1556
1557        if (stat & MAC_CTRL_PAUSE_RECEIVED)
1558                cp->pause_last_time_recvd = (stat >> 16);
1559
1560        return 0;
1561}
1562
1563
1564/* Must be invoked under cp->lock. */
1565static inline int cas_mdio_link_not_up(struct cas *cp)
1566{
1567        u16 val;
1568
1569        switch (cp->lstate) {
1570        case link_force_ret:
1571                netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1572                cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1573                cp->timer_ticks = 5;
1574                cp->lstate = link_force_ok;
1575                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1576                break;
1577
1578        case link_aneg:
1579                val = cas_phy_read(cp, MII_BMCR);
1580
1581                /* Try forced modes. we try things in the following order:
1582                 * 1000 full -> 100 full/half -> 10 half
1583                 */
1584                val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1585                val |= BMCR_FULLDPLX;
1586                val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1587                        CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1588                cas_phy_write(cp, MII_BMCR, val);
1589                cp->timer_ticks = 5;
1590                cp->lstate = link_force_try;
1591                cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1592                break;
1593
1594        case link_force_try:
1595                /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1596                val = cas_phy_read(cp, MII_BMCR);
1597                cp->timer_ticks = 5;
1598                if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1599                        val &= ~CAS_BMCR_SPEED1000;
1600                        val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1601                        cas_phy_write(cp, MII_BMCR, val);
1602                        break;
1603                }
1604
1605                if (val & BMCR_SPEED100) {
1606                        if (val & BMCR_FULLDPLX) /* fd failed */
1607                                val &= ~BMCR_FULLDPLX;
1608                        else { /* 100Mbps failed */
1609                                val &= ~BMCR_SPEED100;
1610                        }
1611                        cas_phy_write(cp, MII_BMCR, val);
1612                        break;
1613                }
1614        default:
1615                break;
1616        }
1617        return 0;
1618}
1619
1620
1621/* must be invoked with cp->lock held */
1622static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1623{
1624        int restart;
1625
1626        if (bmsr & BMSR_LSTATUS) {
1627                /* Ok, here we got a link. If we had it due to a forced
1628                 * fallback, and we were configured for autoneg, we
1629                 * retry a short autoneg pass. If you know your hub is
1630                 * broken, use ethtool ;)
1631                 */
1632                if ((cp->lstate == link_force_try) &&
1633                    (cp->link_cntl & BMCR_ANENABLE)) {
1634                        cp->lstate = link_force_ret;
1635                        cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1636                        cas_mif_poll(cp, 0);
1637                        cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1638                        cp->timer_ticks = 5;
1639                        if (cp->opened)
1640                                netif_info(cp, link, cp->dev,
1641                                           "Got link after fallback, retrying autoneg once...\n");
1642                        cas_phy_write(cp, MII_BMCR,
1643                                      cp->link_fcntl | BMCR_ANENABLE |
1644                                      BMCR_ANRESTART);
1645                        cas_mif_poll(cp, 1);
1646
1647                } else if (cp->lstate != link_up) {
1648                        cp->lstate = link_up;
1649                        cp->link_transition = LINK_TRANSITION_LINK_UP;
1650
1651                        if (cp->opened) {
1652                                cas_set_link_modes(cp);
1653                                netif_carrier_on(cp->dev);
1654                        }
1655                }
1656                return 0;
1657        }
1658
1659        /* link not up. if the link was previously up, we restart the
1660         * whole process
1661         */
1662        restart = 0;
1663        if (cp->lstate == link_up) {
1664                cp->lstate = link_down;
1665                cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1666
1667                netif_carrier_off(cp->dev);
1668                if (cp->opened)
1669                        netif_info(cp, link, cp->dev, "Link down\n");
1670                restart = 1;
1671
1672        } else if (++cp->timer_ticks > 10)
1673                cas_mdio_link_not_up(cp);
1674
1675        return restart;
1676}
1677
1678static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1679                             u32 status)
1680{
1681        u32 stat = readl(cp->regs + REG_MIF_STATUS);
1682        u16 bmsr;
1683
1684        /* check for a link change */
1685        if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1686                return 0;
1687
1688        bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1689        return cas_mii_link_check(cp, bmsr);
1690}
1691
1692static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1693                             u32 status)
1694{
1695        u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1696
1697        if (!stat)
1698                return 0;
1699
1700        netdev_err(dev, "PCI error [%04x:%04x]",
1701                   stat, readl(cp->regs + REG_BIM_DIAG));
1702
1703        /* cassini+ has this reserved */
1704        if ((stat & PCI_ERR_BADACK) &&
1705            ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1706                pr_cont(" <No ACK64# during ABS64 cycle>");
1707
1708        if (stat & PCI_ERR_DTRTO)
1709                pr_cont(" <Delayed transaction timeout>");
1710        if (stat & PCI_ERR_OTHER)
1711                pr_cont(" <other>");
1712        if (stat & PCI_ERR_BIM_DMA_WRITE)
1713                pr_cont(" <BIM DMA 0 write req>");
1714        if (stat & PCI_ERR_BIM_DMA_READ)
1715                pr_cont(" <BIM DMA 0 read req>");
1716        pr_cont("\n");
1717
1718        if (stat & PCI_ERR_OTHER) {
1719                int pci_errs;
1720
1721                /* Interrogate PCI config space for the
1722                 * true cause.
1723                 */
1724                pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1725
1726                netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1727                if (pci_errs & PCI_STATUS_PARITY)
1728                        netdev_err(dev, "PCI parity error detected\n");
1729                if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1730                        netdev_err(dev, "PCI target abort\n");
1731                if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1732                        netdev_err(dev, "PCI master acks target abort\n");
1733                if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1734                        netdev_err(dev, "PCI master abort\n");
1735                if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1736                        netdev_err(dev, "PCI system error SERR#\n");
1737                if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1738                        netdev_err(dev, "PCI parity error\n");
1739        }
1740
1741        /* For all PCI errors, we should reset the chip. */
1742        return 1;
1743}
1744
1745/* All non-normal interrupt conditions get serviced here.
1746 * Returns non-zero if we should just exit the interrupt
1747 * handler right now (ie. if we reset the card which invalidates
1748 * all of the other original irq status bits).
1749 */
1750static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1751                            u32 status)
1752{
1753        if (status & INTR_RX_TAG_ERROR) {
1754                /* corrupt RX tag framing */
1755                netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1756                             "corrupt rx tag framing\n");
1757                spin_lock(&cp->stat_lock[0]);
1758                cp->net_stats[0].rx_errors++;
1759                spin_unlock(&cp->stat_lock[0]);
1760                goto do_reset;
1761        }
1762
1763        if (status & INTR_RX_LEN_MISMATCH) {
1764                /* length mismatch. */
1765                netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1766                             "length mismatch for rx frame\n");
1767                spin_lock(&cp->stat_lock[0]);
1768                cp->net_stats[0].rx_errors++;
1769                spin_unlock(&cp->stat_lock[0]);
1770                goto do_reset;
1771        }
1772
1773        if (status & INTR_PCS_STATUS) {
1774                if (cas_pcs_interrupt(dev, cp, status))
1775                        goto do_reset;
1776        }
1777
1778        if (status & INTR_TX_MAC_STATUS) {
1779                if (cas_txmac_interrupt(dev, cp, status))
1780                        goto do_reset;
1781        }
1782
1783        if (status & INTR_RX_MAC_STATUS) {
1784                if (cas_rxmac_interrupt(dev, cp, status))
1785                        goto do_reset;
1786        }
1787
1788        if (status & INTR_MAC_CTRL_STATUS) {
1789                if (cas_mac_interrupt(dev, cp, status))
1790                        goto do_reset;
1791        }
1792
1793        if (status & INTR_MIF_STATUS) {
1794                if (cas_mif_interrupt(dev, cp, status))
1795                        goto do_reset;
1796        }
1797
1798        if (status & INTR_PCI_ERROR_STATUS) {
1799                if (cas_pci_interrupt(dev, cp, status))
1800                        goto do_reset;
1801        }
1802        return 0;
1803
1804do_reset:
1805#if 1
1806        atomic_inc(&cp->reset_task_pending);
1807        atomic_inc(&cp->reset_task_pending_all);
1808        netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1809        schedule_work(&cp->reset_task);
1810#else
1811        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1812        netdev_err(dev, "reset called in cas_abnormal_irq\n");
1813        schedule_work(&cp->reset_task);
1814#endif
1815        return 1;
1816}
1817
1818/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1819 *       determining whether to do a netif_stop/wakeup
1820 */
1821#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1822#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1823static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1824                                  const int len)
1825{
1826        unsigned long off = addr + len;
1827
1828        if (CAS_TABORT(cp) == 1)
1829                return 0;
1830        if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1831                return 0;
1832        return TX_TARGET_ABORT_LEN;
1833}
1834
1835static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1836{
1837        struct cas_tx_desc *txds;
1838        struct sk_buff **skbs;
1839        struct net_device *dev = cp->dev;
1840        int entry, count;
1841
1842        spin_lock(&cp->tx_lock[ring]);
1843        txds = cp->init_txds[ring];
1844        skbs = cp->tx_skbs[ring];
1845        entry = cp->tx_old[ring];
1846
1847        count = TX_BUFF_COUNT(ring, entry, limit);
1848        while (entry != limit) {
1849                struct sk_buff *skb = skbs[entry];
1850                dma_addr_t daddr;
1851                u32 dlen;
1852                int frag;
1853
1854                if (!skb) {
1855                        /* this should never occur */
1856                        entry = TX_DESC_NEXT(ring, entry);
1857                        continue;
1858                }
1859
1860                /* however, we might get only a partial skb release. */
1861                count -= skb_shinfo(skb)->nr_frags +
1862                        + cp->tx_tiny_use[ring][entry].nbufs + 1;
1863                if (count < 0)
1864                        break;
1865
1866                netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1867                             "tx[%d] done, slot %d\n", ring, entry);
1868
1869                skbs[entry] = NULL;
1870                cp->tx_tiny_use[ring][entry].nbufs = 0;
1871
1872                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1873                        struct cas_tx_desc *txd = txds + entry;
1874
1875                        daddr = le64_to_cpu(txd->buffer);
1876                        dlen = CAS_VAL(TX_DESC_BUFLEN,
1877                                       le64_to_cpu(txd->control));
1878                        pci_unmap_page(cp->pdev, daddr, dlen,
1879                                       PCI_DMA_TODEVICE);
1880                        entry = TX_DESC_NEXT(ring, entry);
1881
1882                        /* tiny buffer may follow */
1883                        if (cp->tx_tiny_use[ring][entry].used) {
1884                                cp->tx_tiny_use[ring][entry].used = 0;
1885                                entry = TX_DESC_NEXT(ring, entry);
1886                        }
1887                }
1888
1889                spin_lock(&cp->stat_lock[ring]);
1890                cp->net_stats[ring].tx_packets++;
1891                cp->net_stats[ring].tx_bytes += skb->len;
1892                spin_unlock(&cp->stat_lock[ring]);
1893                dev_consume_skb_irq(skb);
1894        }
1895        cp->tx_old[ring] = entry;
1896
1897        /* this is wrong for multiple tx rings. the net device needs
1898         * multiple queues for this to do the right thing.  we wait
1899         * for 2*packets to be available when using tiny buffers
1900         */
1901        if (netif_queue_stopped(dev) &&
1902            (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1903                netif_wake_queue(dev);
1904        spin_unlock(&cp->tx_lock[ring]);
1905}
1906
1907static void cas_tx(struct net_device *dev, struct cas *cp,
1908                   u32 status)
1909{
1910        int limit, ring;
1911#ifdef USE_TX_COMPWB
1912        u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1913#endif
1914        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1915                     "tx interrupt, status: 0x%x, %llx\n",
1916                     status, (unsigned long long)compwb);
1917        /* process all the rings */
1918        for (ring = 0; ring < N_TX_RINGS; ring++) {
1919#ifdef USE_TX_COMPWB
1920                /* use the completion writeback registers */
1921                limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1922                        CAS_VAL(TX_COMPWB_LSB, compwb);
1923                compwb = TX_COMPWB_NEXT(compwb);
1924#else
1925                limit = readl(cp->regs + REG_TX_COMPN(ring));
1926#endif
1927                if (cp->tx_old[ring] != limit)
1928                        cas_tx_ringN(cp, ring, limit);
1929        }
1930}
1931
1932
1933static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1934                              int entry, const u64 *words,
1935                              struct sk_buff **skbref)
1936{
1937        int dlen, hlen, len, i, alloclen;
1938        int off, swivel = RX_SWIVEL_OFF_VAL;
1939        struct cas_page *page;
1940        struct sk_buff *skb;
1941        void *addr, *crcaddr;
1942        __sum16 csum;
1943        char *p;
1944
1945        hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1946        dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1947        len  = hlen + dlen;
1948
1949        if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1950                alloclen = len;
1951        else
1952                alloclen = max(hlen, RX_COPY_MIN);
1953
1954        skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1955        if (skb == NULL)
1956                return -1;
1957
1958        *skbref = skb;
1959        skb_reserve(skb, swivel);
1960
1961        p = skb->data;
1962        addr = crcaddr = NULL;
1963        if (hlen) { /* always copy header pages */
1964                i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1965                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1966                off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1967                        swivel;
1968
1969                i = hlen;
1970                if (!dlen) /* attach FCS */
1971                        i += cp->crc_size;
1972                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1973                                    PCI_DMA_FROMDEVICE);
1974                addr = cas_page_map(page->buffer);
1975                memcpy(p, addr + off, i);
1976                pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1977                                    PCI_DMA_FROMDEVICE);
1978                cas_page_unmap(addr);
1979                RX_USED_ADD(page, 0x100);
1980                p += hlen;
1981                swivel = 0;
1982        }
1983
1984
1985        if (alloclen < (hlen + dlen)) {
1986                skb_frag_t *frag = skb_shinfo(skb)->frags;
1987
1988                /* normal or jumbo packets. we use frags */
1989                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1990                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1991                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1992
1993                hlen = min(cp->page_size - off, dlen);
1994                if (hlen < 0) {
1995                        netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1996                                     "rx page overflow: %d\n", hlen);
1997                        dev_kfree_skb_irq(skb);
1998                        return -1;
1999                }
2000                i = hlen;
2001                if (i == dlen)  /* attach FCS */
2002                        i += cp->crc_size;
2003                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2004                                    PCI_DMA_FROMDEVICE);
2005
2006                /* make sure we always copy a header */
2007                swivel = 0;
2008                if (p == (char *) skb->data) { /* not split */
2009                        addr = cas_page_map(page->buffer);
2010                        memcpy(p, addr + off, RX_COPY_MIN);
2011                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2012                                        PCI_DMA_FROMDEVICE);
2013                        cas_page_unmap(addr);
2014                        off += RX_COPY_MIN;
2015                        swivel = RX_COPY_MIN;
2016                        RX_USED_ADD(page, cp->mtu_stride);
2017                } else {
2018                        RX_USED_ADD(page, hlen);
2019                }
2020                skb_put(skb, alloclen);
2021
2022                skb_shinfo(skb)->nr_frags++;
2023                skb->data_len += hlen - swivel;
2024                skb->truesize += hlen - swivel;
2025                skb->len      += hlen - swivel;
2026
2027                __skb_frag_set_page(frag, page->buffer);
2028                __skb_frag_ref(frag);
2029                skb_frag_off_set(frag, off);
2030                skb_frag_size_set(frag, hlen - swivel);
2031
2032                /* any more data? */
2033                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2034                        hlen = dlen;
2035                        off = 0;
2036
2037                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2038                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2039                        pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2040                                            hlen + cp->crc_size,
2041                                            PCI_DMA_FROMDEVICE);
2042                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2043                                            hlen + cp->crc_size,
2044                                            PCI_DMA_FROMDEVICE);
2045
2046                        skb_shinfo(skb)->nr_frags++;
2047                        skb->data_len += hlen;
2048                        skb->len      += hlen;
2049                        frag++;
2050
2051                        __skb_frag_set_page(frag, page->buffer);
2052                        __skb_frag_ref(frag);
2053                        skb_frag_off_set(frag, 0);
2054                        skb_frag_size_set(frag, hlen);
2055                        RX_USED_ADD(page, hlen + cp->crc_size);
2056                }
2057
2058                if (cp->crc_size) {
2059                        addr = cas_page_map(page->buffer);
2060                        crcaddr  = addr + off + hlen;
2061                }
2062
2063        } else {
2064                /* copying packet */
2065                if (!dlen)
2066                        goto end_copy_pkt;
2067
2068                i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2069                page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2070                off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2071                hlen = min(cp->page_size - off, dlen);
2072                if (hlen < 0) {
2073                        netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2074                                     "rx page overflow: %d\n", hlen);
2075                        dev_kfree_skb_irq(skb);
2076                        return -1;
2077                }
2078                i = hlen;
2079                if (i == dlen) /* attach FCS */
2080                        i += cp->crc_size;
2081                pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2082                                    PCI_DMA_FROMDEVICE);
2083                addr = cas_page_map(page->buffer);
2084                memcpy(p, addr + off, i);
2085                pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2086                                    PCI_DMA_FROMDEVICE);
2087                cas_page_unmap(addr);
2088                if (p == (char *) skb->data) /* not split */
2089                        RX_USED_ADD(page, cp->mtu_stride);
2090                else
2091                        RX_USED_ADD(page, i);
2092
2093                /* any more data? */
2094                if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2095                        p += hlen;
2096                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2097                        page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2098                        pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2099                                            dlen + cp->crc_size,
2100                                            PCI_DMA_FROMDEVICE);
2101                        addr = cas_page_map(page->buffer);
2102                        memcpy(p, addr, dlen + cp->crc_size);
2103                        pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2104                                            dlen + cp->crc_size,
2105                                            PCI_DMA_FROMDEVICE);
2106                        cas_page_unmap(addr);
2107                        RX_USED_ADD(page, dlen + cp->crc_size);
2108                }
2109end_copy_pkt:
2110                if (cp->crc_size) {
2111                        addr    = NULL;
2112                        crcaddr = skb->data + alloclen;
2113                }
2114                skb_put(skb, alloclen);
2115        }
2116
2117        csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2118        if (cp->crc_size) {
2119                /* checksum includes FCS. strip it out. */
2120                csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2121                                              csum_unfold(csum)));
2122                if (addr)
2123                        cas_page_unmap(addr);
2124        }
2125        skb->protocol = eth_type_trans(skb, cp->dev);
2126        if (skb->protocol == htons(ETH_P_IP)) {
2127                skb->csum = csum_unfold(~csum);
2128                skb->ip_summed = CHECKSUM_COMPLETE;
2129        } else
2130                skb_checksum_none_assert(skb);
2131        return len;
2132}
2133
2134
2135/* we can handle up to 64 rx flows at a time. we do the same thing
2136 * as nonreassm except that we batch up the buffers.
2137 * NOTE: we currently just treat each flow as a bunch of packets that
2138 *       we pass up. a better way would be to coalesce the packets
2139 *       into a jumbo packet. to do that, we need to do the following:
2140 *       1) the first packet will have a clean split between header and
2141 *          data. save both.
2142 *       2) each time the next flow packet comes in, extend the
2143 *          data length and merge the checksums.
2144 *       3) on flow release, fix up the header.
2145 *       4) make sure the higher layer doesn't care.
2146 * because packets get coalesced, we shouldn't run into fragment count
2147 * issues.
2148 */
2149static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2150                                   struct sk_buff *skb)
2151{
2152        int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2153        struct sk_buff_head *flow = &cp->rx_flows[flowid];
2154
2155        /* this is protected at a higher layer, so no need to
2156         * do any additional locking here. stick the buffer
2157         * at the end.
2158         */
2159        __skb_queue_tail(flow, skb);
2160        if (words[0] & RX_COMP1_RELEASE_FLOW) {
2161                while ((skb = __skb_dequeue(flow))) {
2162                        cas_skb_release(skb);
2163                }
2164        }
2165}
2166
2167/* put rx descriptor back on ring. if a buffer is in use by a higher
2168 * layer, this will need to put in a replacement.
2169 */
2170static void cas_post_page(struct cas *cp, const int ring, const int index)
2171{
2172        cas_page_t *new;
2173        int entry;
2174
2175        entry = cp->rx_old[ring];
2176
2177        new = cas_page_swap(cp, ring, index);
2178        cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2179        cp->init_rxds[ring][entry].index  =
2180                cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2181                            CAS_BASE(RX_INDEX_RING, ring));
2182
2183        entry = RX_DESC_ENTRY(ring, entry + 1);
2184        cp->rx_old[ring] = entry;
2185
2186        if (entry % 4)
2187                return;
2188
2189        if (ring == 0)
2190                writel(entry, cp->regs + REG_RX_KICK);
2191        else if ((N_RX_DESC_RINGS > 1) &&
2192                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2193                writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2194}
2195
2196
2197/* only when things are bad */
2198static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2199{
2200        unsigned int entry, last, count, released;
2201        int cluster;
2202        cas_page_t **page = cp->rx_pages[ring];
2203
2204        entry = cp->rx_old[ring];
2205
2206        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2207                     "rxd[%d] interrupt, done: %d\n", ring, entry);
2208
2209        cluster = -1;
2210        count = entry & 0x3;
2211        last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2212        released = 0;
2213        while (entry != last) {
2214                /* make a new buffer if it's still in use */
2215                if (page_count(page[entry]->buffer) > 1) {
2216                        cas_page_t *new = cas_page_dequeue(cp);
2217                        if (!new) {
2218                                /* let the timer know that we need to
2219                                 * do this again
2220                                 */
2221                                cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2222                                if (!timer_pending(&cp->link_timer))
2223                                        mod_timer(&cp->link_timer, jiffies +
2224                                                  CAS_LINK_FAST_TIMEOUT);
2225                                cp->rx_old[ring]  = entry;
2226                                cp->rx_last[ring] = num ? num - released : 0;
2227                                return -ENOMEM;
2228                        }
2229                        spin_lock(&cp->rx_inuse_lock);
2230                        list_add(&page[entry]->list, &cp->rx_inuse_list);
2231                        spin_unlock(&cp->rx_inuse_lock);
2232                        cp->init_rxds[ring][entry].buffer =
2233                                cpu_to_le64(new->dma_addr);
2234                        page[entry] = new;
2235
2236                }
2237
2238                if (++count == 4) {
2239                        cluster = entry;
2240                        count = 0;
2241                }
2242                released++;
2243                entry = RX_DESC_ENTRY(ring, entry + 1);
2244        }
2245        cp->rx_old[ring] = entry;
2246
2247        if (cluster < 0)
2248                return 0;
2249
2250        if (ring == 0)
2251                writel(cluster, cp->regs + REG_RX_KICK);
2252        else if ((N_RX_DESC_RINGS > 1) &&
2253                 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2254                writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2255        return 0;
2256}
2257
2258
2259/* process a completion ring. packets are set up in three basic ways:
2260 * small packets: should be copied header + data in single buffer.
2261 * large packets: header and data in a single buffer.
2262 * split packets: header in a separate buffer from data.
2263 *                data may be in multiple pages. data may be > 256
2264 *                bytes but in a single page.
2265 *
2266 * NOTE: RX page posting is done in this routine as well. while there's
2267 *       the capability of using multiple RX completion rings, it isn't
2268 *       really worthwhile due to the fact that the page posting will
2269 *       force serialization on the single descriptor ring.
2270 */
2271static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2272{
2273        struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2274        int entry, drops;
2275        int npackets = 0;
2276
2277        netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2278                     "rx[%d] interrupt, done: %d/%d\n",
2279                     ring,
2280                     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2281
2282        entry = cp->rx_new[ring];
2283        drops = 0;
2284        while (1) {
2285                struct cas_rx_comp *rxc = rxcs + entry;
2286                struct sk_buff *uninitialized_var(skb);
2287                int type, len;
2288                u64 words[4];
2289                int i, dring;
2290
2291                words[0] = le64_to_cpu(rxc->word1);
2292                words[1] = le64_to_cpu(rxc->word2);
2293                words[2] = le64_to_cpu(rxc->word3);
2294                words[3] = le64_to_cpu(rxc->word4);
2295
2296                /* don't touch if still owned by hw */
2297                type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2298                if (type == 0)
2299                        break;
2300
2301                /* hw hasn't cleared the zero bit yet */
2302                if (words[3] & RX_COMP4_ZERO) {
2303                        break;
2304                }
2305
2306                /* get info on the packet */
2307                if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2308                        spin_lock(&cp->stat_lock[ring]);
2309                        cp->net_stats[ring].rx_errors++;
2310                        if (words[3] & RX_COMP4_LEN_MISMATCH)
2311                                cp->net_stats[ring].rx_length_errors++;
2312                        if (words[3] & RX_COMP4_BAD)
2313                                cp->net_stats[ring].rx_crc_errors++;
2314                        spin_unlock(&cp->stat_lock[ring]);
2315
2316                        /* We'll just return it to Cassini. */
2317                drop_it:
2318                        spin_lock(&cp->stat_lock[ring]);
2319                        ++cp->net_stats[ring].rx_dropped;
2320                        spin_unlock(&cp->stat_lock[ring]);
2321                        goto next;
2322                }
2323
2324                len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2325                if (len < 0) {
2326                        ++drops;
2327                        goto drop_it;
2328                }
2329
2330                /* see if it's a flow re-assembly or not. the driver
2331                 * itself handles release back up.
2332                 */
2333                if (RX_DONT_BATCH || (type == 0x2)) {
2334                        /* non-reassm: these always get released */
2335                        cas_skb_release(skb);
2336                } else {
2337                        cas_rx_flow_pkt(cp, words, skb);
2338                }
2339
2340                spin_lock(&cp->stat_lock[ring]);
2341                cp->net_stats[ring].rx_packets++;
2342                cp->net_stats[ring].rx_bytes += len;
2343                spin_unlock(&cp->stat_lock[ring]);
2344
2345        next:
2346                npackets++;
2347
2348                /* should it be released? */
2349                if (words[0] & RX_COMP1_RELEASE_HDR) {
2350                        i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2351                        dring = CAS_VAL(RX_INDEX_RING, i);
2352                        i = CAS_VAL(RX_INDEX_NUM, i);
2353                        cas_post_page(cp, dring, i);
2354                }
2355
2356                if (words[0] & RX_COMP1_RELEASE_DATA) {
2357                        i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2358                        dring = CAS_VAL(RX_INDEX_RING, i);
2359                        i = CAS_VAL(RX_INDEX_NUM, i);
2360                        cas_post_page(cp, dring, i);
2361                }
2362
2363                if (words[0] & RX_COMP1_RELEASE_NEXT) {
2364                        i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2365                        dring = CAS_VAL(RX_INDEX_RING, i);
2366                        i = CAS_VAL(RX_INDEX_NUM, i);
2367                        cas_post_page(cp, dring, i);
2368                }
2369
2370                /* skip to the next entry */
2371                entry = RX_COMP_ENTRY(ring, entry + 1 +
2372                                      CAS_VAL(RX_COMP1_SKIP, words[0]));
2373#ifdef USE_NAPI
2374                if (budget && (npackets >= budget))
2375                        break;
2376#endif
2377        }
2378        cp->rx_new[ring] = entry;
2379
2380        if (drops)
2381                netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2382        return npackets;
2383}
2384
2385
2386/* put completion entries back on the ring */
2387static void cas_post_rxcs_ringN(struct net_device *dev,
2388                                struct cas *cp, int ring)
2389{
2390        struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2391        int last, entry;
2392
2393        last = cp->rx_cur[ring];
2394        entry = cp->rx_new[ring];
2395        netif_printk(cp, intr, KERN_DEBUG, dev,
2396                     "rxc[%d] interrupt, done: %d/%d\n",
2397                     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2398
2399        /* zero and re-mark descriptors */
2400        while (last != entry) {
2401                cas_rxc_init(rxc + last);
2402                last = RX_COMP_ENTRY(ring, last + 1);
2403        }
2404        cp->rx_cur[ring] = last;
2405
2406        if (ring == 0)
2407                writel(last, cp->regs + REG_RX_COMP_TAIL);
2408        else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2409                writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2410}
2411
2412
2413
2414/* cassini can use all four PCI interrupts for the completion ring.
2415 * rings 3 and 4 are identical
2416 */
2417#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2418static inline void cas_handle_irqN(struct net_device *dev,
2419                                   struct cas *cp, const u32 status,
2420                                   const int ring)
2421{
2422        if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2423                cas_post_rxcs_ringN(dev, cp, ring);
2424}
2425
2426static irqreturn_t cas_interruptN(int irq, void *dev_id)
2427{
2428        struct net_device *dev = dev_id;
2429        struct cas *cp = netdev_priv(dev);
2430        unsigned long flags;
2431        int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2432        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2433
2434        /* check for shared irq */
2435        if (status == 0)
2436                return IRQ_NONE;
2437
2438        spin_lock_irqsave(&cp->lock, flags);
2439        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2440#ifdef USE_NAPI
2441                cas_mask_intr(cp);
2442                napi_schedule(&cp->napi);
2443#else
2444                cas_rx_ringN(cp, ring, 0);
2445#endif
2446                status &= ~INTR_RX_DONE_ALT;
2447        }
2448
2449        if (status)
2450                cas_handle_irqN(dev, cp, status, ring);
2451        spin_unlock_irqrestore(&cp->lock, flags);
2452        return IRQ_HANDLED;
2453}
2454#endif
2455
2456#ifdef USE_PCI_INTB
2457/* everything but rx packets */
2458static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2459{
2460        if (status & INTR_RX_BUF_UNAVAIL_1) {
2461                /* Frame arrived, no free RX buffers available.
2462                 * NOTE: we can get this on a link transition. */
2463                cas_post_rxds_ringN(cp, 1, 0);
2464                spin_lock(&cp->stat_lock[1]);
2465                cp->net_stats[1].rx_dropped++;
2466                spin_unlock(&cp->stat_lock[1]);
2467        }
2468
2469        if (status & INTR_RX_BUF_AE_1)
2470                cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2471                                    RX_AE_FREEN_VAL(1));
2472
2473        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2474                cas_post_rxcs_ringN(cp, 1);
2475}
2476
2477/* ring 2 handles a few more events than 3 and 4 */
2478static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2479{
2480        struct net_device *dev = dev_id;
2481        struct cas *cp = netdev_priv(dev);
2482        unsigned long flags;
2483        u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2484
2485        /* check for shared interrupt */
2486        if (status == 0)
2487                return IRQ_NONE;
2488
2489        spin_lock_irqsave(&cp->lock, flags);
2490        if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2491#ifdef USE_NAPI
2492                cas_mask_intr(cp);
2493                napi_schedule(&cp->napi);
2494#else
2495                cas_rx_ringN(cp, 1, 0);
2496#endif
2497                status &= ~INTR_RX_DONE_ALT;
2498        }
2499        if (status)
2500                cas_handle_irq1(cp, status);
2501        spin_unlock_irqrestore(&cp->lock, flags);
2502        return IRQ_HANDLED;
2503}
2504#endif
2505
2506static inline void cas_handle_irq(struct net_device *dev,
2507                                  struct cas *cp, const u32 status)
2508{
2509        /* housekeeping interrupts */
2510        if (status & INTR_ERROR_MASK)
2511                cas_abnormal_irq(dev, cp, status);
2512
2513        if (status & INTR_RX_BUF_UNAVAIL) {
2514                /* Frame arrived, no free RX buffers available.
2515                 * NOTE: we can get this on a link transition.
2516                 */
2517                cas_post_rxds_ringN(cp, 0, 0);
2518                spin_lock(&cp->stat_lock[0]);
2519                cp->net_stats[0].rx_dropped++;
2520                spin_unlock(&cp->stat_lock[0]);
2521        } else if (status & INTR_RX_BUF_AE) {
2522                cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2523                                    RX_AE_FREEN_VAL(0));
2524        }
2525
2526        if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2527                cas_post_rxcs_ringN(dev, cp, 0);
2528}
2529
2530static irqreturn_t cas_interrupt(int irq, void *dev_id)
2531{
2532        struct net_device *dev = dev_id;
2533        struct cas *cp = netdev_priv(dev);
2534        unsigned long flags;
2535        u32 status = readl(cp->regs + REG_INTR_STATUS);
2536
2537        if (status == 0)
2538                return IRQ_NONE;
2539
2540        spin_lock_irqsave(&cp->lock, flags);
2541        if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2542                cas_tx(dev, cp, status);
2543                status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2544        }
2545
2546        if (status & INTR_RX_DONE) {
2547#ifdef USE_NAPI
2548                cas_mask_intr(cp);
2549                napi_schedule(&cp->napi);
2550#else
2551                cas_rx_ringN(cp, 0, 0);
2552#endif
2553                status &= ~INTR_RX_DONE;
2554        }
2555
2556        if (status)
2557                cas_handle_irq(dev, cp, status);
2558        spin_unlock_irqrestore(&cp->lock, flags);
2559        return IRQ_HANDLED;
2560}
2561
2562
2563#ifdef USE_NAPI
2564static int cas_poll(struct napi_struct *napi, int budget)
2565{
2566        struct cas *cp = container_of(napi, struct cas, napi);
2567        struct net_device *dev = cp->dev;
2568        int i, enable_intr, credits;
2569        u32 status = readl(cp->regs + REG_INTR_STATUS);
2570        unsigned long flags;
2571
2572        spin_lock_irqsave(&cp->lock, flags);
2573        cas_tx(dev, cp, status);
2574        spin_unlock_irqrestore(&cp->lock, flags);
2575
2576        /* NAPI rx packets. we spread the credits across all of the
2577         * rxc rings
2578         *
2579         * to make sure we're fair with the work we loop through each
2580         * ring N_RX_COMP_RING times with a request of
2581         * budget / N_RX_COMP_RINGS
2582         */
2583        enable_intr = 1;
2584        credits = 0;
2585        for (i = 0; i < N_RX_COMP_RINGS; i++) {
2586                int j;
2587                for (j = 0; j < N_RX_COMP_RINGS; j++) {
2588                        credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2589                        if (credits >= budget) {
2590                                enable_intr = 0;
2591                                goto rx_comp;
2592                        }
2593                }
2594        }
2595
2596rx_comp:
2597        /* final rx completion */
2598        spin_lock_irqsave(&cp->lock, flags);
2599        if (status)
2600                cas_handle_irq(dev, cp, status);
2601
2602#ifdef USE_PCI_INTB
2603        if (N_RX_COMP_RINGS > 1) {
2604                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2605                if (status)
2606                        cas_handle_irq1(dev, cp, status);
2607        }
2608#endif
2609
2610#ifdef USE_PCI_INTC
2611        if (N_RX_COMP_RINGS > 2) {
2612                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2613                if (status)
2614                        cas_handle_irqN(dev, cp, status, 2);
2615        }
2616#endif
2617
2618#ifdef USE_PCI_INTD
2619        if (N_RX_COMP_RINGS > 3) {
2620                status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2621                if (status)
2622                        cas_handle_irqN(dev, cp, status, 3);
2623        }
2624#endif
2625        spin_unlock_irqrestore(&cp->lock, flags);
2626        if (enable_intr) {
2627                napi_complete(napi);
2628                cas_unmask_intr(cp);
2629        }
2630        return credits;
2631}
2632#endif
2633
2634#ifdef CONFIG_NET_POLL_CONTROLLER
2635static void cas_netpoll(struct net_device *dev)
2636{
2637        struct cas *cp = netdev_priv(dev);
2638
2639        cas_disable_irq(cp, 0);
2640        cas_interrupt(cp->pdev->irq, dev);
2641        cas_enable_irq(cp, 0);
2642
2643#ifdef USE_PCI_INTB
2644        if (N_RX_COMP_RINGS > 1) {
2645                /* cas_interrupt1(); */
2646        }
2647#endif
2648#ifdef USE_PCI_INTC
2649        if (N_RX_COMP_RINGS > 2) {
2650                /* cas_interruptN(); */
2651        }
2652#endif
2653#ifdef USE_PCI_INTD
2654        if (N_RX_COMP_RINGS > 3) {
2655                /* cas_interruptN(); */
2656        }
2657#endif
2658}
2659#endif
2660
2661static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2662{
2663        struct cas *cp = netdev_priv(dev);
2664
2665        netdev_err(dev, "transmit timed out, resetting\n");
2666        if (!cp->hw_running) {
2667                netdev_err(dev, "hrm.. hw not running!\n");
2668                return;
2669        }
2670
2671        netdev_err(dev, "MIF_STATE[%08x]\n",
2672                   readl(cp->regs + REG_MIF_STATE_MACHINE));
2673
2674        netdev_err(dev, "MAC_STATE[%08x]\n",
2675                   readl(cp->regs + REG_MAC_STATE_MACHINE));
2676
2677        netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2678                   readl(cp->regs + REG_TX_CFG),
2679                   readl(cp->regs + REG_MAC_TX_STATUS),
2680                   readl(cp->regs + REG_MAC_TX_CFG),
2681                   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2682                   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2683                   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2684                   readl(cp->regs + REG_TX_SM_1),
2685                   readl(cp->regs + REG_TX_SM_2));
2686
2687        netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2688                   readl(cp->regs + REG_RX_CFG),
2689                   readl(cp->regs + REG_MAC_RX_STATUS),
2690                   readl(cp->regs + REG_MAC_RX_CFG));
2691
2692        netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2693                   readl(cp->regs + REG_HP_STATE_MACHINE),
2694                   readl(cp->regs + REG_HP_STATUS0),
2695                   readl(cp->regs + REG_HP_STATUS1),
2696                   readl(cp->regs + REG_HP_STATUS2));
2697
2698#if 1
2699        atomic_inc(&cp->reset_task_pending);
2700        atomic_inc(&cp->reset_task_pending_all);
2701        schedule_work(&cp->reset_task);
2702#else
2703        atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2704        schedule_work(&cp->reset_task);
2705#endif
2706}
2707
2708static inline int cas_intme(int ring, int entry)
2709{
2710        /* Algorithm: IRQ every 1/2 of descriptors. */
2711        if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2712                return 1;
2713        return 0;
2714}
2715
2716
2717static void cas_write_txd(struct cas *cp, int ring, int entry,
2718                          dma_addr_t mapping, int len, u64 ctrl, int last)
2719{
2720        struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2721
2722        ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2723        if (cas_intme(ring, entry))
2724                ctrl |= TX_DESC_INTME;
2725        if (last)
2726                ctrl |= TX_DESC_EOF;
2727        txd->control = cpu_to_le64(ctrl);
2728        txd->buffer = cpu_to_le64(mapping);
2729}
2730
2731static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2732                                const int entry)
2733{
2734        return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2735}
2736
2737static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2738                                     const int entry, const int tentry)
2739{
2740        cp->tx_tiny_use[ring][tentry].nbufs++;
2741        cp->tx_tiny_use[ring][entry].used = 1;
2742        return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2743}
2744
2745static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2746                                    struct sk_buff *skb)
2747{
2748        struct net_device *dev = cp->dev;
2749        int entry, nr_frags, frag, tabort, tentry;
2750        dma_addr_t mapping;
2751        unsigned long flags;
2752        u64 ctrl;
2753        u32 len;
2754
2755        spin_lock_irqsave(&cp->tx_lock[ring], flags);
2756
2757        /* This is a hard error, log it. */
2758        if (TX_BUFFS_AVAIL(cp, ring) <=
2759            CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2760                netif_stop_queue(dev);
2761                spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2762                netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2763                return 1;
2764        }
2765
2766        ctrl = 0;
2767        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2768                const u64 csum_start_off = skb_checksum_start_offset(skb);
2769                const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2770
2771                ctrl =  TX_DESC_CSUM_EN |
2772                        CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2773                        CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2774        }
2775
2776        entry = cp->tx_new[ring];
2777        cp->tx_skbs[ring][entry] = skb;
2778
2779        nr_frags = skb_shinfo(skb)->nr_frags;
2780        len = skb_headlen(skb);
2781        mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2782                               offset_in_page(skb->data), len,
2783                               PCI_DMA_TODEVICE);
2784
2785        tentry = entry;
2786        tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2787        if (unlikely(tabort)) {
2788                /* NOTE: len is always >  tabort */
2789                cas_write_txd(cp, ring, entry, mapping, len - tabort,
2790                              ctrl | TX_DESC_SOF, 0);
2791                entry = TX_DESC_NEXT(ring, entry);
2792
2793                skb_copy_from_linear_data_offset(skb, len - tabort,
2794                              tx_tiny_buf(cp, ring, entry), tabort);
2795                mapping = tx_tiny_map(cp, ring, entry, tentry);
2796                cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2797                              (nr_frags == 0));
2798        } else {
2799                cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2800                              TX_DESC_SOF, (nr_frags == 0));
2801        }
2802        entry = TX_DESC_NEXT(ring, entry);
2803
2804        for (frag = 0; frag < nr_frags; frag++) {
2805                const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2806
2807                len = skb_frag_size(fragp);
2808                mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2809                                           DMA_TO_DEVICE);
2810
2811                tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2812                if (unlikely(tabort)) {
2813                        void *addr;
2814
2815                        /* NOTE: len is always > tabort */
2816                        cas_write_txd(cp, ring, entry, mapping, len - tabort,
2817                                      ctrl, 0);
2818                        entry = TX_DESC_NEXT(ring, entry);
2819
2820                        addr = cas_page_map(skb_frag_page(fragp));
2821                        memcpy(tx_tiny_buf(cp, ring, entry),
2822                               addr + skb_frag_off(fragp) + len - tabort,
2823                               tabort);
2824                        cas_page_unmap(addr);
2825                        mapping = tx_tiny_map(cp, ring, entry, tentry);
2826                        len     = tabort;
2827                }
2828
2829                cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2830                              (frag + 1 == nr_frags));
2831                entry = TX_DESC_NEXT(ring, entry);
2832        }
2833
2834        cp->tx_new[ring] = entry;
2835        if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2836                netif_stop_queue(dev);
2837
2838        netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2839                     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2840                     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2841        writel(entry, cp->regs + REG_TX_KICKN(ring));
2842        spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2843        return 0;
2844}
2845
2846static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2847{
2848        struct cas *cp = netdev_priv(dev);
2849
2850        /* this is only used as a load-balancing hint, so it doesn't
2851         * need to be SMP safe
2852         */
2853        static int ring;
2854
2855        if (skb_padto(skb, cp->min_frame_size))
2856                return NETDEV_TX_OK;
2857
2858        /* XXX: we need some higher-level QoS hooks to steer packets to
2859         *      individual queues.
2860         */
2861        if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2862                return NETDEV_TX_BUSY;
2863        return NETDEV_TX_OK;
2864}
2865
2866static void cas_init_tx_dma(struct cas *cp)
2867{
2868        u64 desc_dma = cp->block_dvma;
2869        unsigned long off;
2870        u32 val;
2871        int i;
2872
2873        /* set up tx completion writeback registers. must be 8-byte aligned */
2874#ifdef USE_TX_COMPWB
2875        off = offsetof(struct cas_init_block, tx_compwb);
2876        writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2877        writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2878#endif
2879
2880        /* enable completion writebacks, enable paced mode,
2881         * disable read pipe, and disable pre-interrupt compwbs
2882         */
2883        val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2884                TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2885                TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2886                TX_CFG_INTR_COMPWB_DIS;
2887
2888        /* write out tx ring info and tx desc bases */
2889        for (i = 0; i < MAX_TX_RINGS; i++) {
2890                off = (unsigned long) cp->init_txds[i] -
2891                        (unsigned long) cp->init_block;
2892
2893                val |= CAS_TX_RINGN_BASE(i);
2894                writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2895                writel((desc_dma + off) & 0xffffffff, cp->regs +
2896                       REG_TX_DBN_LOW(i));
2897                /* don't zero out the kick register here as the system
2898                 * will wedge
2899                 */
2900        }
2901        writel(val, cp->regs + REG_TX_CFG);
2902
2903        /* program max burst sizes. these numbers should be different
2904         * if doing QoS.
2905         */
2906#ifdef USE_QOS
2907        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2908        writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2909        writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2910        writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2911#else
2912        writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2913        writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2914        writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2915        writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2916#endif
2917}
2918
2919/* Must be invoked under cp->lock. */
2920static inline void cas_init_dma(struct cas *cp)
2921{
2922        cas_init_tx_dma(cp);
2923        cas_init_rx_dma(cp);
2924}
2925
2926static void cas_process_mc_list(struct cas *cp)
2927{
2928        u16 hash_table[16];
2929        u32 crc;
2930        struct netdev_hw_addr *ha;
2931        int i = 1;
2932
2933        memset(hash_table, 0, sizeof(hash_table));
2934        netdev_for_each_mc_addr(ha, cp->dev) {
2935                if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2936                        /* use the alternate mac address registers for the
2937                         * first 15 multicast addresses
2938                         */
2939                        writel((ha->addr[4] << 8) | ha->addr[5],
2940                               cp->regs + REG_MAC_ADDRN(i*3 + 0));
2941                        writel((ha->addr[2] << 8) | ha->addr[3],
2942                               cp->regs + REG_MAC_ADDRN(i*3 + 1));
2943                        writel((ha->addr[0] << 8) | ha->addr[1],
2944                               cp->regs + REG_MAC_ADDRN(i*3 + 2));
2945                        i++;
2946                }
2947                else {
2948                        /* use hw hash table for the next series of
2949                         * multicast addresses
2950                         */
2951                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2952                        crc >>= 24;
2953                        hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2954                }
2955        }
2956        for (i = 0; i < 16; i++)
2957                writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2958}
2959
2960/* Must be invoked under cp->lock. */
2961static u32 cas_setup_multicast(struct cas *cp)
2962{
2963        u32 rxcfg = 0;
2964        int i;
2965
2966        if (cp->dev->flags & IFF_PROMISC) {
2967                rxcfg |= MAC_RX_CFG_PROMISC_EN;
2968
2969        } else if (cp->dev->flags & IFF_ALLMULTI) {
2970                for (i=0; i < 16; i++)
2971                        writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2972                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2973
2974        } else {
2975                cas_process_mc_list(cp);
2976                rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2977        }
2978
2979        return rxcfg;
2980}
2981
2982/* must be invoked under cp->stat_lock[N_TX_RINGS] */
2983static void cas_clear_mac_err(struct cas *cp)
2984{
2985        writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2986        writel(0, cp->regs + REG_MAC_COLL_FIRST);
2987        writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2988        writel(0, cp->regs + REG_MAC_COLL_LATE);
2989        writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2990        writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2991        writel(0, cp->regs + REG_MAC_RECV_FRAME);
2992        writel(0, cp->regs + REG_MAC_LEN_ERR);
2993        writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2994        writel(0, cp->regs + REG_MAC_FCS_ERR);
2995        writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2996}
2997
2998
2999static void cas_mac_reset(struct cas *cp)
3000{
3001        int i;
3002
3003        /* do both TX and RX reset */
3004        writel(0x1, cp->regs + REG_MAC_TX_RESET);
3005        writel(0x1, cp->regs + REG_MAC_RX_RESET);
3006
3007        /* wait for TX */
3008        i = STOP_TRIES;
3009        while (i-- > 0) {
3010                if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3011                        break;
3012                udelay(10);
3013        }
3014
3015        /* wait for RX */
3016        i = STOP_TRIES;
3017        while (i-- > 0) {
3018                if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3019                        break;
3020                udelay(10);
3021        }
3022
3023        if (readl(cp->regs + REG_MAC_TX_RESET) |
3024            readl(cp->regs + REG_MAC_RX_RESET))
3025                netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3026                           readl(cp->regs + REG_MAC_TX_RESET),
3027                           readl(cp->regs + REG_MAC_RX_RESET),
3028                           readl(cp->regs + REG_MAC_STATE_MACHINE));
3029}
3030
3031
3032/* Must be invoked under cp->lock. */
3033static void cas_init_mac(struct cas *cp)
3034{
3035        unsigned char *e = &cp->dev->dev_addr[0];
3036        int i;
3037        cas_mac_reset(cp);
3038
3039        /* setup core arbitration weight register */
3040        writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3041
3042#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3043        /* set the infinite burst register for chips that don't have
3044         * pci issues.
3045         */
3046        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3047                writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3048#endif
3049
3050        writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3051
3052        writel(0x00, cp->regs + REG_MAC_IPG0);
3053        writel(0x08, cp->regs + REG_MAC_IPG1);
3054        writel(0x04, cp->regs + REG_MAC_IPG2);
3055
3056        /* change later for 802.3z */
3057        writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3058
3059        /* min frame + FCS */
3060        writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3061
3062        /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3063         * specify the maximum frame size to prevent RX tag errors on
3064         * oversized frames.
3065         */
3066        writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3067               CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3068                        (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3069               cp->regs + REG_MAC_FRAMESIZE_MAX);
3070
3071        /* NOTE: crc_size is used as a surrogate for half-duplex.
3072         * workaround saturn half-duplex issue by increasing preamble
3073         * size to 65 bytes.
3074         */
3075        if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3076                writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3077        else
3078                writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3079        writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3080        writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3081        writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3082
3083        writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3084
3085        writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3086        writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3087        writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3088        writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3089        writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3090
3091        /* setup mac address in perfect filter array */
3092        for (i = 0; i < 45; i++)
3093                writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3094
3095        writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3096        writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3097        writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3098
3099        writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3100        writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3101        writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3102
3103        cp->mac_rx_cfg = cas_setup_multicast(cp);
3104
3105        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3106        cas_clear_mac_err(cp);
3107        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3108
3109        /* Setup MAC interrupts.  We want to get all of the interesting
3110         * counter expiration events, but we do not want to hear about
3111         * normal rx/tx as the DMA engine tells us that.
3112         */
3113        writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3114        writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3115
3116        /* Don't enable even the PAUSE interrupts for now, we
3117         * make no use of those events other than to record them.
3118         */
3119        writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3120}
3121
3122/* Must be invoked under cp->lock. */
3123static void cas_init_pause_thresholds(struct cas *cp)
3124{
3125        /* Calculate pause thresholds.  Setting the OFF threshold to the
3126         * full RX fifo size effectively disables PAUSE generation
3127         */
3128        if (cp->rx_fifo_size <= (2 * 1024)) {
3129                cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3130        } else {
3131                int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3132                if (max_frame * 3 > cp->rx_fifo_size) {
3133                        cp->rx_pause_off = 7104;
3134                        cp->rx_pause_on  = 960;
3135                } else {
3136                        int off = (cp->rx_fifo_size - (max_frame * 2));
3137                        int on = off - max_frame;
3138                        cp->rx_pause_off = off;
3139                        cp->rx_pause_on = on;
3140                }
3141        }
3142}
3143
3144static int cas_vpd_match(const void __iomem *p, const char *str)
3145{
3146        int len = strlen(str) + 1;
3147        int i;
3148
3149        for (i = 0; i < len; i++) {
3150                if (readb(p + i) != str[i])
3151                        return 0;
3152        }
3153        return 1;
3154}
3155
3156
3157/* get the mac address by reading the vpd information in the rom.
3158 * also get the phy type and determine if there's an entropy generator.
3159 * NOTE: this is a bit convoluted for the following reasons:
3160 *  1) vpd info has order-dependent mac addresses for multinic cards
3161 *  2) the only way to determine the nic order is to use the slot
3162 *     number.
3163 *  3) fiber cards don't have bridges, so their slot numbers don't
3164 *     mean anything.
3165 *  4) we don't actually know we have a fiber card until after
3166 *     the mac addresses are parsed.
3167 */
3168static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3169                            const int offset)
3170{
3171        void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3172        void __iomem *base, *kstart;
3173        int i, len;
3174        int found = 0;
3175#define VPD_FOUND_MAC        0x01
3176#define VPD_FOUND_PHY        0x02
3177
3178        int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3179        int mac_off  = 0;
3180
3181#if defined(CONFIG_SPARC)
3182        const unsigned char *addr;
3183#endif
3184
3185        /* give us access to the PROM */
3186        writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3187               cp->regs + REG_BIM_LOCAL_DEV_EN);
3188
3189        /* check for an expansion rom */
3190        if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3191                goto use_random_mac_addr;
3192
3193        /* search for beginning of vpd */
3194        base = NULL;
3195        for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3196                /* check for PCIR */
3197                if ((readb(p + i + 0) == 0x50) &&
3198                    (readb(p + i + 1) == 0x43) &&
3199                    (readb(p + i + 2) == 0x49) &&
3200                    (readb(p + i + 3) == 0x52)) {
3201                        base = p + (readb(p + i + 8) |
3202                                    (readb(p + i + 9) << 8));
3203                        break;
3204                }
3205        }
3206
3207        if (!base || (readb(base) != 0x82))
3208                goto use_random_mac_addr;
3209
3210        i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3211        while (i < EXPANSION_ROM_SIZE) {
3212                if (readb(base + i) != 0x90) /* no vpd found */
3213                        goto use_random_mac_addr;
3214
3215                /* found a vpd field */
3216                len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3217
3218                /* extract keywords */
3219                kstart = base + i + 3;
3220                p = kstart;
3221                while ((p - kstart) < len) {
3222                        int klen = readb(p + 2);
3223                        int j;
3224                        char type;
3225
3226                        p += 3;
3227
3228                        /* look for the following things:
3229                         * -- correct length == 29
3230                         * 3 (type) + 2 (size) +
3231                         * 18 (strlen("local-mac-address") + 1) +
3232                         * 6 (mac addr)
3233                         * -- VPD Instance 'I'
3234                         * -- VPD Type Bytes 'B'
3235                         * -- VPD data length == 6
3236                         * -- property string == local-mac-address
3237                         *
3238                         * -- correct length == 24
3239                         * 3 (type) + 2 (size) +
3240                         * 12 (strlen("entropy-dev") + 1) +
3241                         * 7 (strlen("vms110") + 1)
3242                         * -- VPD Instance 'I'
3243                         * -- VPD Type String 'B'
3244                         * -- VPD data length == 7
3245                         * -- property string == entropy-dev
3246                         *
3247                         * -- correct length == 18
3248                         * 3 (type) + 2 (size) +
3249                         * 9 (strlen("phy-type") + 1) +
3250                         * 4 (strlen("pcs") + 1)
3251                         * -- VPD Instance 'I'
3252                         * -- VPD Type String 'S'
3253                         * -- VPD data length == 4
3254                         * -- property string == phy-type
3255                         *
3256                         * -- correct length == 23
3257                         * 3 (type) + 2 (size) +
3258                         * 14 (strlen("phy-interface") + 1) +
3259                         * 4 (strlen("pcs") + 1)
3260                         * -- VPD Instance 'I'
3261                         * -- VPD Type String 'S'
3262                         * -- VPD data length == 4
3263                         * -- property string == phy-interface
3264                         */
3265                        if (readb(p) != 'I')
3266                                goto next;
3267
3268                        /* finally, check string and length */
3269                        type = readb(p + 3);
3270                        if (type == 'B') {
3271                                if ((klen == 29) && readb(p + 4) == 6 &&
3272                                    cas_vpd_match(p + 5,
3273                                                  "local-mac-address")) {
3274                                        if (mac_off++ > offset)
3275                                                goto next;
3276
3277                                        /* set mac address */
3278                                        for (j = 0; j < 6; j++)
3279                                                dev_addr[j] =
3280                                                        readb(p + 23 + j);
3281                                        goto found_mac;
3282                                }
3283                        }
3284
3285                        if (type != 'S')
3286                                goto next;
3287
3288#ifdef USE_ENTROPY_DEV
3289                        if ((klen == 24) &&
3290                            cas_vpd_match(p + 5, "entropy-dev") &&
3291                            cas_vpd_match(p + 17, "vms110")) {
3292                                cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3293                                goto next;
3294                        }
3295#endif
3296
3297                        if (found & VPD_FOUND_PHY)
3298                                goto next;
3299
3300                        if ((klen == 18) && readb(p + 4) == 4 &&
3301                            cas_vpd_match(p + 5, "phy-type")) {
3302                                if (cas_vpd_match(p + 14, "pcs")) {
3303                                        phy_type = CAS_PHY_SERDES;
3304                                        goto found_phy;
3305                                }
3306                        }
3307
3308                        if ((klen == 23) && readb(p + 4) == 4 &&
3309                            cas_vpd_match(p + 5, "phy-interface")) {
3310                                if (cas_vpd_match(p + 19, "pcs")) {
3311                                        phy_type = CAS_PHY_SERDES;
3312                                        goto found_phy;
3313                                }
3314                        }
3315found_mac:
3316                        found |= VPD_FOUND_MAC;
3317                        goto next;
3318
3319found_phy:
3320                        found |= VPD_FOUND_PHY;
3321
3322next:
3323                        p += klen;
3324                }
3325                i += len + 3;
3326        }
3327
3328use_random_mac_addr:
3329        if (found & VPD_FOUND_MAC)
3330                goto done;
3331
3332#if defined(CONFIG_SPARC)
3333        addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3334        if (addr != NULL) {
3335                memcpy(dev_addr, addr, ETH_ALEN);
3336                goto done;
3337        }
3338#endif
3339
3340        /* Sun MAC prefix then 3 random bytes. */
3341        pr_info("MAC address not found in ROM VPD\n");
3342        dev_addr[0] = 0x08;
3343        dev_addr[1] = 0x00;
3344        dev_addr[2] = 0x20;
3345        get_random_bytes(dev_addr + 3, 3);
3346
3347done:
3348        writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3349        return phy_type;
3350}
3351
3352/* check pci invariants */
3353static void cas_check_pci_invariants(struct cas *cp)
3354{
3355        struct pci_dev *pdev = cp->pdev;
3356
3357        cp->cas_flags = 0;
3358        if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3359            (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3360                if (pdev->revision >= CAS_ID_REVPLUS)
3361                        cp->cas_flags |= CAS_FLAG_REG_PLUS;
3362                if (pdev->revision < CAS_ID_REVPLUS02u)
3363                        cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3364
3365                /* Original Cassini supports HW CSUM, but it's not
3366                 * enabled by default as it can trigger TX hangs.
3367                 */
3368                if (pdev->revision < CAS_ID_REV2)
3369                        cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3370        } else {
3371                /* Only sun has original cassini chips.  */
3372                cp->cas_flags |= CAS_FLAG_REG_PLUS;
3373
3374                /* We use a flag because the same phy might be externally
3375                 * connected.
3376                 */
3377                if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3378                    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3379                        cp->cas_flags |= CAS_FLAG_SATURN;
3380        }
3381}
3382
3383
3384static int cas_check_invariants(struct cas *cp)
3385{
3386        struct pci_dev *pdev = cp->pdev;
3387        u32 cfg;
3388        int i;
3389
3390        /* get page size for rx buffers. */
3391        cp->page_order = 0;
3392#ifdef USE_PAGE_ORDER
3393        if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3394                /* see if we can allocate larger pages */
3395                struct page *page = alloc_pages(GFP_ATOMIC,
3396                                                CAS_JUMBO_PAGE_SHIFT -
3397                                                PAGE_SHIFT);
3398                if (page) {
3399                        __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3400                        cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3401                } else {
3402                        printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3403                }
3404        }
3405#endif
3406        cp->page_size = (PAGE_SIZE << cp->page_order);
3407
3408        /* Fetch the FIFO configurations. */
3409        cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3410        cp->rx_fifo_size = RX_FIFO_SIZE;
3411
3412        /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3413         * they're both connected.
3414         */
3415        cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3416                                        PCI_SLOT(pdev->devfn));
3417        if (cp->phy_type & CAS_PHY_SERDES) {
3418                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3419                return 0; /* no more checking needed */
3420        }
3421
3422        /* MII */
3423        cfg = readl(cp->regs + REG_MIF_CFG);
3424        if (cfg & MIF_CFG_MDIO_1) {
3425                cp->phy_type = CAS_PHY_MII_MDIO1;
3426        } else if (cfg & MIF_CFG_MDIO_0) {
3427                cp->phy_type = CAS_PHY_MII_MDIO0;
3428        }
3429
3430        cas_mif_poll(cp, 0);
3431        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3432
3433        for (i = 0; i < 32; i++) {
3434                u32 phy_id;
3435                int j;
3436
3437                for (j = 0; j < 3; j++) {
3438                        cp->phy_addr = i;
3439                        phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3440                        phy_id |= cas_phy_read(cp, MII_PHYSID2);
3441                        if (phy_id && (phy_id != 0xFFFFFFFF)) {
3442                                cp->phy_id = phy_id;
3443                                goto done;
3444                        }
3445                }
3446        }
3447        pr_err("MII phy did not respond [%08x]\n",
3448               readl(cp->regs + REG_MIF_STATE_MACHINE));
3449        return -1;
3450
3451done:
3452        /* see if we can do gigabit */
3453        cfg = cas_phy_read(cp, MII_BMSR);
3454        if ((cfg & CAS_BMSR_1000_EXTEND) &&
3455            cas_phy_read(cp, CAS_MII_1000_EXTEND))
3456                cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3457        return 0;
3458}
3459
3460/* Must be invoked under cp->lock. */
3461static inline void cas_start_dma(struct cas *cp)
3462{
3463        int i;
3464        u32 val;
3465        int txfailed = 0;
3466
3467        /* enable dma */
3468        val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3469        writel(val, cp->regs + REG_TX_CFG);
3470        val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3471        writel(val, cp->regs + REG_RX_CFG);
3472
3473        /* enable the mac */
3474        val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3475        writel(val, cp->regs + REG_MAC_TX_CFG);
3476        val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3477        writel(val, cp->regs + REG_MAC_RX_CFG);
3478
3479        i = STOP_TRIES;
3480        while (i-- > 0) {
3481                val = readl(cp->regs + REG_MAC_TX_CFG);
3482                if ((val & MAC_TX_CFG_EN))
3483                        break;
3484                udelay(10);
3485        }
3486        if (i < 0) txfailed = 1;
3487        i = STOP_TRIES;
3488        while (i-- > 0) {
3489                val = readl(cp->regs + REG_MAC_RX_CFG);
3490                if ((val & MAC_RX_CFG_EN)) {
3491                        if (txfailed) {
3492                                netdev_err(cp->dev,
3493                                           "enabling mac failed [tx:%08x:%08x]\n",
3494                                           readl(cp->regs + REG_MIF_STATE_MACHINE),
3495                                           readl(cp->regs + REG_MAC_STATE_MACHINE));
3496                        }
3497                        goto enable_rx_done;
3498                }
3499                udelay(10);
3500        }
3501        netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3502                   (txfailed ? "tx,rx" : "rx"),
3503                   readl(cp->regs + REG_MIF_STATE_MACHINE),
3504                   readl(cp->regs + REG_MAC_STATE_MACHINE));
3505
3506enable_rx_done:
3507        cas_unmask_intr(cp); /* enable interrupts */
3508        writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3509        writel(0, cp->regs + REG_RX_COMP_TAIL);
3510
3511        if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3512                if (N_RX_DESC_RINGS > 1)
3513                        writel(RX_DESC_RINGN_SIZE(1) - 4,
3514                               cp->regs + REG_PLUS_RX_KICK1);
3515
3516                for (i = 1; i < N_RX_COMP_RINGS; i++)
3517                        writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3518        }
3519}
3520
3521/* Must be invoked under cp->lock. */
3522static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3523                                   int *pause)
3524{
3525        u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3526        *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3527        *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3528        if (val & PCS_MII_LPA_ASYM_PAUSE)
3529                *pause |= 0x10;
3530        *spd = 1000;
3531}
3532
3533/* Must be invoked under cp->lock. */
3534static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3535                                   int *pause)
3536{
3537        u32 val;
3538
3539        *fd = 0;
3540        *spd = 10;
3541        *pause = 0;
3542
3543        /* use GMII registers */
3544        val = cas_phy_read(cp, MII_LPA);
3545        if (val & CAS_LPA_PAUSE)
3546                *pause = 0x01;
3547
3548        if (val & CAS_LPA_ASYM_PAUSE)
3549                *pause |= 0x10;
3550
3551        if (val & LPA_DUPLEX)
3552                *fd = 1;
3553        if (val & LPA_100)
3554                *spd = 100;
3555
3556        if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3557                val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3558                if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3559                        *spd = 1000;
3560                if (val & CAS_LPA_1000FULL)
3561                        *fd = 1;
3562        }
3563}
3564
3565/* A link-up condition has occurred, initialize and enable the
3566 * rest of the chip.
3567 *
3568 * Must be invoked under cp->lock.
3569 */
3570static void cas_set_link_modes(struct cas *cp)
3571{
3572        u32 val;
3573        int full_duplex, speed, pause;
3574
3575        full_duplex = 0;
3576        speed = 10;
3577        pause = 0;
3578
3579        if (CAS_PHY_MII(cp->phy_type)) {
3580                cas_mif_poll(cp, 0);
3581                val = cas_phy_read(cp, MII_BMCR);
3582                if (val & BMCR_ANENABLE) {
3583                        cas_read_mii_link_mode(cp, &full_duplex, &speed,
3584                                               &pause);
3585                } else {
3586                        if (val & BMCR_FULLDPLX)
3587                                full_duplex = 1;
3588
3589                        if (val & BMCR_SPEED100)
3590                                speed = 100;
3591                        else if (val & CAS_BMCR_SPEED1000)
3592                                speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3593                                        1000 : 100;
3594                }
3595                cas_mif_poll(cp, 1);
3596
3597        } else {
3598                val = readl(cp->regs + REG_PCS_MII_CTRL);
3599                cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3600                if ((val & PCS_MII_AUTONEG_EN) == 0) {
3601                        if (val & PCS_MII_CTRL_DUPLEX)
3602                                full_duplex = 1;
3603                }
3604        }
3605
3606        netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3607                   speed, full_duplex ? "full" : "half");
3608
3609        val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3610        if (CAS_PHY_MII(cp->phy_type)) {
3611                val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3612                if (!full_duplex)
3613                        val |= MAC_XIF_DISABLE_ECHO;
3614        }
3615        if (full_duplex)
3616                val |= MAC_XIF_FDPLX_LED;
3617        if (speed == 1000)
3618                val |= MAC_XIF_GMII_MODE;
3619        writel(val, cp->regs + REG_MAC_XIF_CFG);
3620
3621        /* deal with carrier and collision detect. */
3622        val = MAC_TX_CFG_IPG_EN;
3623        if (full_duplex) {
3624                val |= MAC_TX_CFG_IGNORE_CARRIER;
3625                val |= MAC_TX_CFG_IGNORE_COLL;
3626        } else {
3627#ifndef USE_CSMA_CD_PROTO
3628                val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3629                val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3630#endif
3631        }
3632        /* val now set up for REG_MAC_TX_CFG */
3633
3634        /* If gigabit and half-duplex, enable carrier extension
3635         * mode.  increase slot time to 512 bytes as well.
3636         * else, disable it and make sure slot time is 64 bytes.
3637         * also activate checksum bug workaround
3638         */
3639        if ((speed == 1000) && !full_duplex) {
3640                writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3641                       cp->regs + REG_MAC_TX_CFG);
3642
3643                val = readl(cp->regs + REG_MAC_RX_CFG);
3644                val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3645                writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3646                       cp->regs + REG_MAC_RX_CFG);
3647
3648                writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3649
3650                cp->crc_size = 4;
3651                /* minimum size gigabit frame at half duplex */
3652                cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3653
3654        } else {
3655                writel(val, cp->regs + REG_MAC_TX_CFG);
3656
3657                /* checksum bug workaround. don't strip FCS when in
3658                 * half-duplex mode
3659                 */
3660                val = readl(cp->regs + REG_MAC_RX_CFG);
3661                if (full_duplex) {
3662                        val |= MAC_RX_CFG_STRIP_FCS;
3663                        cp->crc_size = 0;
3664                        cp->min_frame_size = CAS_MIN_MTU;
3665                } else {
3666                        val &= ~MAC_RX_CFG_STRIP_FCS;
3667                        cp->crc_size = 4;
3668                        cp->min_frame_size = CAS_MIN_FRAME;
3669                }
3670                writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3671                       cp->regs + REG_MAC_RX_CFG);
3672                writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3673        }
3674
3675        if (netif_msg_link(cp)) {
3676                if (pause & 0x01) {
3677                        netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3678                                    cp->rx_fifo_size,
3679                                    cp->rx_pause_off,
3680                                    cp->rx_pause_on);
3681                } else if (pause & 0x10) {
3682                        netdev_info(cp->dev, "TX pause enabled\n");
3683                } else {
3684                        netdev_info(cp->dev, "Pause is disabled\n");
3685                }
3686        }
3687
3688        val = readl(cp->regs + REG_MAC_CTRL_CFG);
3689        val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3690        if (pause) { /* symmetric or asymmetric pause */
3691                val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3692                if (pause & 0x01) { /* symmetric pause */
3693                        val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3694                }
3695        }
3696        writel(val, cp->regs + REG_MAC_CTRL_CFG);
3697        cas_start_dma(cp);
3698}
3699
3700/* Must be invoked under cp->lock. */
3701static void cas_init_hw(struct cas *cp, int restart_link)
3702{
3703        if (restart_link)
3704                cas_phy_init(cp);
3705
3706        cas_init_pause_thresholds(cp);
3707        cas_init_mac(cp);
3708        cas_init_dma(cp);
3709
3710        if (restart_link) {
3711                /* Default aneg parameters */
3712                cp->timer_ticks = 0;
3713                cas_begin_auto_negotiation(cp, NULL);
3714        } else if (cp->lstate == link_up) {
3715                cas_set_link_modes(cp);
3716                netif_carrier_on(cp->dev);
3717        }
3718}
3719
3720/* Must be invoked under cp->lock. on earlier cassini boards,
3721 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3722 * let it settle out, and then restore pci state.
3723 */
3724static void cas_hard_reset(struct cas *cp)
3725{
3726        writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3727        udelay(20);
3728        pci_restore_state(cp->pdev);
3729}
3730
3731
3732static void cas_global_reset(struct cas *cp, int blkflag)
3733{
3734        int limit;
3735
3736        /* issue a global reset. don't use RSTOUT. */
3737        if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3738                /* For PCS, when the blkflag is set, we should set the
3739                 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3740                 * the last autonegotiation from being cleared.  We'll
3741                 * need some special handling if the chip is set into a
3742                 * loopback mode.
3743                 */
3744                writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3745                       cp->regs + REG_SW_RESET);
3746        } else {
3747                writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3748        }
3749
3750        /* need to wait at least 3ms before polling register */
3751        mdelay(3);
3752
3753        limit = STOP_TRIES;
3754        while (limit-- > 0) {
3755                u32 val = readl(cp->regs + REG_SW_RESET);
3756                if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3757                        goto done;
3758                udelay(10);
3759        }
3760        netdev_err(cp->dev, "sw reset failed\n");
3761
3762done:
3763        /* enable various BIM interrupts */
3764        writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3765               BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3766
3767        /* clear out pci error status mask for handled errors.
3768         * we don't deal with DMA counter overflows as they happen
3769         * all the time.
3770         */
3771        writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3772                               PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3773                               PCI_ERR_BIM_DMA_READ), cp->regs +
3774               REG_PCI_ERR_STATUS_MASK);
3775
3776        /* set up for MII by default to address mac rx reset timeout
3777         * issue
3778         */
3779        writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3780}
3781
3782static void cas_reset(struct cas *cp, int blkflag)
3783{
3784        u32 val;
3785
3786        cas_mask_intr(cp);
3787        cas_global_reset(cp, blkflag);
3788        cas_mac_reset(cp);
3789        cas_entropy_reset(cp);
3790
3791        /* disable dma engines. */
3792        val = readl(cp->regs + REG_TX_CFG);
3793        val &= ~TX_CFG_DMA_EN;
3794        writel(val, cp->regs + REG_TX_CFG);
3795
3796        val = readl(cp->regs + REG_RX_CFG);
3797        val &= ~RX_CFG_DMA_EN;
3798        writel(val, cp->regs + REG_RX_CFG);
3799
3800        /* program header parser */
3801        if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3802            (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3803                cas_load_firmware(cp, CAS_HP_FIRMWARE);
3804        } else {
3805                cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3806        }
3807
3808        /* clear out error registers */
3809        spin_lock(&cp->stat_lock[N_TX_RINGS]);
3810        cas_clear_mac_err(cp);
3811        spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3812}
3813
3814/* Shut down the chip, must be called with pm_mutex held.  */
3815static void cas_shutdown(struct cas *cp)
3816{
3817        unsigned long flags;
3818
3819        /* Make us not-running to avoid timers respawning */
3820        cp->hw_running = 0;
3821
3822        del_timer_sync(&cp->link_timer);
3823
3824        /* Stop the reset task */
3825#if 0
3826        while (atomic_read(&cp->reset_task_pending_mtu) ||
3827               atomic_read(&cp->reset_task_pending_spare) ||
3828               atomic_read(&cp->reset_task_pending_all))
3829                schedule();
3830
3831#else
3832        while (atomic_read(&cp->reset_task_pending))
3833                schedule();
3834#endif
3835        /* Actually stop the chip */
3836        cas_lock_all_save(cp, flags);
3837        cas_reset(cp, 0);
3838        if (cp->cas_flags & CAS_FLAG_SATURN)
3839                cas_phy_powerdown(cp);
3840        cas_unlock_all_restore(cp, flags);
3841}
3842
3843static int cas_change_mtu(struct net_device *dev, int new_mtu)
3844{
3845        struct cas *cp = netdev_priv(dev);
3846
3847        dev->mtu = new_mtu;
3848        if (!netif_running(dev) || !netif_device_present(dev))
3849                return 0;
3850
3851        /* let the reset task handle it */
3852#if 1
3853        atomic_inc(&cp->reset_task_pending);
3854        if ((cp->phy_type & CAS_PHY_SERDES)) {
3855                atomic_inc(&cp->reset_task_pending_all);
3856        } else {
3857                atomic_inc(&cp->reset_task_pending_mtu);
3858        }
3859        schedule_work(&cp->reset_task);
3860#else
3861        atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3862                   CAS_RESET_ALL : CAS_RESET_MTU);
3863        pr_err("reset called in cas_change_mtu\n");
3864        schedule_work(&cp->reset_task);
3865#endif
3866
3867        flush_work(&cp->reset_task);
3868        return 0;
3869}
3870
3871static void cas_clean_txd(struct cas *cp, int ring)
3872{
3873        struct cas_tx_desc *txd = cp->init_txds[ring];
3874        struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3875        u64 daddr, dlen;
3876        int i, size;
3877
3878        size = TX_DESC_RINGN_SIZE(ring);
3879        for (i = 0; i < size; i++) {
3880                int frag;
3881
3882                if (skbs[i] == NULL)
3883                        continue;
3884
3885                skb = skbs[i];
3886                skbs[i] = NULL;
3887
3888                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3889                        int ent = i & (size - 1);
3890
3891                        /* first buffer is never a tiny buffer and so
3892                         * needs to be unmapped.
3893                         */
3894                        daddr = le64_to_cpu(txd[ent].buffer);
3895                        dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3896                                         le64_to_cpu(txd[ent].control));
3897                        pci_unmap_page(cp->pdev, daddr, dlen,
3898                                       PCI_DMA_TODEVICE);
3899
3900                        if (frag != skb_shinfo(skb)->nr_frags) {
3901                                i++;
3902
3903                                /* next buffer might by a tiny buffer.
3904                                 * skip past it.
3905                                 */
3906                                ent = i & (size - 1);
3907                                if (cp->tx_tiny_use[ring][ent].used)
3908                                        i++;
3909                        }
3910                }
3911                dev_kfree_skb_any(skb);
3912        }
3913
3914        /* zero out tiny buf usage */
3915        memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3916}
3917
3918/* freed on close */
3919static inline void cas_free_rx_desc(struct cas *cp, int ring)
3920{
3921        cas_page_t **page = cp->rx_pages[ring];
3922        int i, size;
3923
3924        size = RX_DESC_RINGN_SIZE(ring);
3925        for (i = 0; i < size; i++) {
3926                if (page[i]) {
3927                        cas_page_free(cp, page[i]);
3928                        page[i] = NULL;
3929                }
3930        }
3931}
3932
3933static void cas_free_rxds(struct cas *cp)
3934{
3935        int i;
3936
3937        for (i = 0; i < N_RX_DESC_RINGS; i++)
3938                cas_free_rx_desc(cp, i);
3939}
3940
3941/* Must be invoked under cp->lock. */
3942static void cas_clean_rings(struct cas *cp)
3943{
3944        int i;
3945
3946        /* need to clean all tx rings */
3947        memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3948        memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3949        for (i = 0; i < N_TX_RINGS; i++)
3950                cas_clean_txd(cp, i);
3951
3952        /* zero out init block */
3953        memset(cp->init_block, 0, sizeof(struct cas_init_block));
3954        cas_clean_rxds(cp);
3955        cas_clean_rxcs(cp);
3956}
3957
3958/* allocated on open */
3959static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3960{
3961        cas_page_t **page = cp->rx_pages[ring];
3962        int size, i = 0;
3963
3964        size = RX_DESC_RINGN_SIZE(ring);
3965        for (i = 0; i < size; i++) {
3966                if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3967                        return -1;
3968        }
3969        return 0;
3970}
3971
3972static int cas_alloc_rxds(struct cas *cp)
3973{
3974        int i;
3975
3976        for (i = 0; i < N_RX_DESC_RINGS; i++) {
3977                if (cas_alloc_rx_desc(cp, i) < 0) {
3978                        cas_free_rxds(cp);
3979                        return -1;
3980                }
3981        }
3982        return 0;
3983}
3984
3985static void cas_reset_task(struct work_struct *work)
3986{
3987        struct cas *cp = container_of(work, struct cas, reset_task);
3988#if 0
3989        int pending = atomic_read(&cp->reset_task_pending);
3990#else
3991        int pending_all = atomic_read(&cp->reset_task_pending_all);
3992        int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3993        int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3994
3995        if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3996                /* We can have more tasks scheduled than actually
3997                 * needed.
3998                 */
3999                atomic_dec(&cp->reset_task_pending);
4000                return;
4001        }
4002#endif
4003        /* The link went down, we reset the ring, but keep
4004         * DMA stopped. Use this function for reset
4005         * on error as well.
4006         */
4007        if (cp->hw_running) {
4008                unsigned long flags;
4009
4010                /* Make sure we don't get interrupts or tx packets */
4011                netif_device_detach(cp->dev);
4012                cas_lock_all_save(cp, flags);
4013
4014                if (cp->opened) {
4015                        /* We call cas_spare_recover when we call cas_open.
4016                         * but we do not initialize the lists cas_spare_recover
4017                         * uses until cas_open is called.
4018                         */
4019                        cas_spare_recover(cp, GFP_ATOMIC);
4020                }
4021#if 1
4022                /* test => only pending_spare set */
4023                if (!pending_all && !pending_mtu)
4024                        goto done;
4025#else
4026                if (pending == CAS_RESET_SPARE)
4027                        goto done;
4028#endif
4029                /* when pending == CAS_RESET_ALL, the following
4030                 * call to cas_init_hw will restart auto negotiation.
4031                 * Setting the second argument of cas_reset to
4032                 * !(pending == CAS_RESET_ALL) will set this argument
4033                 * to 1 (avoiding reinitializing the PHY for the normal
4034                 * PCS case) when auto negotiation is not restarted.
4035                 */
4036#if 1
4037                cas_reset(cp, !(pending_all > 0));
4038                if (cp->opened)
4039                        cas_clean_rings(cp);
4040                cas_init_hw(cp, (pending_all > 0));
4041#else
4042                cas_reset(cp, !(pending == CAS_RESET_ALL));
4043                if (cp->opened)
4044                        cas_clean_rings(cp);
4045                cas_init_hw(cp, pending == CAS_RESET_ALL);
4046#endif
4047
4048done:
4049                cas_unlock_all_restore(cp, flags);
4050                netif_device_attach(cp->dev);
4051        }
4052#if 1
4053        atomic_sub(pending_all, &cp->reset_task_pending_all);
4054        atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4055        atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4056        atomic_dec(&cp->reset_task_pending);
4057#else
4058        atomic_set(&cp->reset_task_pending, 0);
4059#endif
4060}
4061
4062static void cas_link_timer(struct timer_list *t)
4063{
4064        struct cas *cp = from_timer(cp, t, link_timer);
4065        int mask, pending = 0, reset = 0;
4066        unsigned long flags;
4067
4068        if (link_transition_timeout != 0 &&
4069            cp->link_transition_jiffies_valid &&
4070            ((jiffies - cp->link_transition_jiffies) >
4071              (link_transition_timeout))) {
4072                /* One-second counter so link-down workaround doesn't
4073                 * cause resets to occur so fast as to fool the switch
4074                 * into thinking the link is down.
4075                 */
4076                cp->link_transition_jiffies_valid = 0;
4077        }
4078
4079        if (!cp->hw_running)
4080                return;
4081
4082        spin_lock_irqsave(&cp->lock, flags);
4083        cas_lock_tx(cp);
4084        cas_entropy_gather(cp);
4085
4086        /* If the link task is still pending, we just
4087         * reschedule the link timer
4088         */
4089#if 1
4090        if (atomic_read(&cp->reset_task_pending_all) ||
4091            atomic_read(&cp->reset_task_pending_spare) ||
4092            atomic_read(&cp->reset_task_pending_mtu))
4093                goto done;
4094#else
4095        if (atomic_read(&cp->reset_task_pending))
4096                goto done;
4097#endif
4098
4099        /* check for rx cleaning */
4100        if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4101                int i, rmask;
4102
4103                for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4104                        rmask = CAS_FLAG_RXD_POST(i);
4105                        if ((mask & rmask) == 0)
4106                                continue;
4107
4108                        /* post_rxds will do a mod_timer */
4109                        if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4110                                pending = 1;
4111                                continue;
4112                        }
4113                        cp->cas_flags &= ~rmask;
4114                }
4115        }
4116
4117        if (CAS_PHY_MII(cp->phy_type)) {
4118                u16 bmsr;
4119                cas_mif_poll(cp, 0);
4120                bmsr = cas_phy_read(cp, MII_BMSR);
4121                /* WTZ: Solaris driver reads this twice, but that
4122                 * may be due to the PCS case and the use of a
4123                 * common implementation. Read it twice here to be
4124                 * safe.
4125                 */
4126                bmsr = cas_phy_read(cp, MII_BMSR);
4127                cas_mif_poll(cp, 1);
4128                readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4129                reset = cas_mii_link_check(cp, bmsr);
4130        } else {
4131                reset = cas_pcs_link_check(cp);
4132        }
4133
4134        if (reset)
4135                goto done;
4136
4137        /* check for tx state machine confusion */
4138        if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4139                u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4140                u32 wptr, rptr;
4141                int tlm  = CAS_VAL(MAC_SM_TLM, val);
4142
4143                if (((tlm == 0x5) || (tlm == 0x3)) &&
4144                    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4145                        netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4146                                     "tx err: MAC_STATE[%08x]\n", val);
4147                        reset = 1;
4148                        goto done;
4149                }
4150
4151                val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4152                wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4153                rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4154                if ((val == 0) && (wptr != rptr)) {
4155                        netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4156                                     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4157                                     val, wptr, rptr);
4158                        reset = 1;
4159                }
4160
4161                if (reset)
4162                        cas_hard_reset(cp);
4163        }
4164
4165done:
4166        if (reset) {
4167#if 1
4168                atomic_inc(&cp->reset_task_pending);
4169                atomic_inc(&cp->reset_task_pending_all);
4170                schedule_work(&cp->reset_task);
4171#else
4172                atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4173                pr_err("reset called in cas_link_timer\n");
4174                schedule_work(&cp->reset_task);
4175#endif
4176        }
4177
4178        if (!pending)
4179                mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4180        cas_unlock_tx(cp);
4181        spin_unlock_irqrestore(&cp->lock, flags);
4182}
4183
4184/* tiny buffers are used to avoid target abort issues with
4185 * older cassini's
4186 */
4187static void cas_tx_tiny_free(struct cas *cp)
4188{
4189        struct pci_dev *pdev = cp->pdev;
4190        int i;
4191
4192        for (i = 0; i < N_TX_RINGS; i++) {
4193                if (!cp->tx_tiny_bufs[i])
4194                        continue;
4195
4196                pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4197                                    cp->tx_tiny_bufs[i],
4198                                    cp->tx_tiny_dvma[i]);
4199                cp->tx_tiny_bufs[i] = NULL;
4200        }
4201}
4202
4203static int cas_tx_tiny_alloc(struct cas *cp)
4204{
4205        struct pci_dev *pdev = cp->pdev;
4206        int i;
4207
4208        for (i = 0; i < N_TX_RINGS; i++) {
4209                cp->tx_tiny_bufs[i] =
4210                        pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4211                                             &cp->tx_tiny_dvma[i]);
4212                if (!cp->tx_tiny_bufs[i]) {
4213                        cas_tx_tiny_free(cp);
4214                        return -1;
4215                }
4216        }
4217        return 0;
4218}
4219
4220
4221static int cas_open(struct net_device *dev)
4222{
4223        struct cas *cp = netdev_priv(dev);
4224        int hw_was_up, err;
4225        unsigned long flags;
4226
4227        mutex_lock(&cp->pm_mutex);
4228
4229        hw_was_up = cp->hw_running;
4230
4231        /* The power-management mutex protects the hw_running
4232         * etc. state so it is safe to do this bit without cp->lock
4233         */
4234        if (!cp->hw_running) {
4235                /* Reset the chip */
4236                cas_lock_all_save(cp, flags);
4237                /* We set the second arg to cas_reset to zero
4238                 * because cas_init_hw below will have its second
4239                 * argument set to non-zero, which will force
4240                 * autonegotiation to start.
4241                 */
4242                cas_reset(cp, 0);
4243                cp->hw_running = 1;
4244                cas_unlock_all_restore(cp, flags);
4245        }
4246
4247        err = -ENOMEM;
4248        if (cas_tx_tiny_alloc(cp) < 0)
4249                goto err_unlock;
4250
4251        /* alloc rx descriptors */
4252        if (cas_alloc_rxds(cp) < 0)
4253                goto err_tx_tiny;
4254
4255        /* allocate spares */
4256        cas_spare_init(cp);
4257        cas_spare_recover(cp, GFP_KERNEL);
4258
4259        /* We can now request the interrupt as we know it's masked
4260         * on the controller. cassini+ has up to 4 interrupts
4261         * that can be used, but you need to do explicit pci interrupt
4262         * mapping to expose them
4263         */
4264        if (request_irq(cp->pdev->irq, cas_interrupt,
4265                        IRQF_SHARED, dev->name, (void *) dev)) {
4266                netdev_err(cp->dev, "failed to request irq !\n");
4267                err = -EAGAIN;
4268                goto err_spare;
4269        }
4270
4271#ifdef USE_NAPI
4272        napi_enable(&cp->napi);
4273#endif
4274        /* init hw */
4275        cas_lock_all_save(cp, flags);
4276        cas_clean_rings(cp);
4277        cas_init_hw(cp, !hw_was_up);
4278        cp->opened = 1;
4279        cas_unlock_all_restore(cp, flags);
4280
4281        netif_start_queue(dev);
4282        mutex_unlock(&cp->pm_mutex);
4283        return 0;
4284
4285err_spare:
4286        cas_spare_free(cp);
4287        cas_free_rxds(cp);
4288err_tx_tiny:
4289        cas_tx_tiny_free(cp);
4290err_unlock:
4291        mutex_unlock(&cp->pm_mutex);
4292        return err;
4293}
4294
4295static int cas_close(struct net_device *dev)
4296{
4297        unsigned long flags;
4298        struct cas *cp = netdev_priv(dev);
4299
4300#ifdef USE_NAPI
4301        napi_disable(&cp->napi);
4302#endif
4303        /* Make sure we don't get distracted by suspend/resume */
4304        mutex_lock(&cp->pm_mutex);
4305
4306        netif_stop_queue(dev);
4307
4308        /* Stop traffic, mark us closed */
4309        cas_lock_all_save(cp, flags);
4310        cp->opened = 0;
4311        cas_reset(cp, 0);
4312        cas_phy_init(cp);
4313        cas_begin_auto_negotiation(cp, NULL);
4314        cas_clean_rings(cp);
4315        cas_unlock_all_restore(cp, flags);
4316
4317        free_irq(cp->pdev->irq, (void *) dev);
4318        cas_spare_free(cp);
4319        cas_free_rxds(cp);
4320        cas_tx_tiny_free(cp);
4321        mutex_unlock(&cp->pm_mutex);
4322        return 0;
4323}
4324
4325static struct {
4326        const char name[ETH_GSTRING_LEN];
4327} ethtool_cassini_statnames[] = {
4328        {"collisions"},
4329        {"rx_bytes"},
4330        {"rx_crc_errors"},
4331        {"rx_dropped"},
4332        {"rx_errors"},
4333        {"rx_fifo_errors"},
4334        {"rx_frame_errors"},
4335        {"rx_length_errors"},
4336        {"rx_over_errors"},
4337        {"rx_packets"},
4338        {"tx_aborted_errors"},
4339        {"tx_bytes"},
4340        {"tx_dropped"},
4341        {"tx_errors"},
4342        {"tx_fifo_errors"},
4343        {"tx_packets"}
4344};
4345#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4346
4347static struct {
4348        const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4349} ethtool_register_table[] = {
4350        {-MII_BMSR},
4351        {-MII_BMCR},
4352        {REG_CAWR},
4353        {REG_INF_BURST},
4354        {REG_BIM_CFG},
4355        {REG_RX_CFG},
4356        {REG_HP_CFG},
4357        {REG_MAC_TX_CFG},
4358        {REG_MAC_RX_CFG},
4359        {REG_MAC_CTRL_CFG},
4360        {REG_MAC_XIF_CFG},
4361        {REG_MIF_CFG},
4362        {REG_PCS_CFG},
4363        {REG_SATURN_PCFG},
4364        {REG_PCS_MII_STATUS},
4365        {REG_PCS_STATE_MACHINE},
4366        {REG_MAC_COLL_EXCESS},
4367        {REG_MAC_COLL_LATE}
4368};
4369#define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4370#define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4371
4372static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4373{
4374        u8 *p;
4375        int i;
4376        unsigned long flags;
4377
4378        spin_lock_irqsave(&cp->lock, flags);
4379        for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4380                u16 hval;
4381                u32 val;
4382                if (ethtool_register_table[i].offsets < 0) {
4383                        hval = cas_phy_read(cp,
4384                                    -ethtool_register_table[i].offsets);
4385                        val = hval;
4386                } else {
4387                        val= readl(cp->regs+ethtool_register_table[i].offsets);
4388                }
4389                memcpy(p, (u8 *)&val, sizeof(u32));
4390        }
4391        spin_unlock_irqrestore(&cp->lock, flags);
4392}
4393
4394static struct net_device_stats *cas_get_stats(struct net_device *dev)
4395{
4396        struct cas *cp = netdev_priv(dev);
4397        struct net_device_stats *stats = cp->net_stats;
4398        unsigned long flags;
4399        int i;
4400        unsigned long tmp;
4401
4402        /* we collate all of the stats into net_stats[N_TX_RING] */
4403        if (!cp->hw_running)
4404                return stats + N_TX_RINGS;
4405
4406        /* collect outstanding stats */
4407        /* WTZ: the Cassini spec gives these as 16 bit counters but
4408         * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4409         * in case the chip somehow puts any garbage in the other bits.
4410         * Also, counter usage didn't seem to mach what Adrian did
4411         * in the parts of the code that set these quantities. Made
4412         * that consistent.
4413         */
4414        spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4415        stats[N_TX_RINGS].rx_crc_errors +=
4416          readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4417        stats[N_TX_RINGS].rx_frame_errors +=
4418                readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4419        stats[N_TX_RINGS].rx_length_errors +=
4420                readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4421#if 1
4422        tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4423                (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4424        stats[N_TX_RINGS].tx_aborted_errors += tmp;
4425        stats[N_TX_RINGS].collisions +=
4426          tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4427#else
4428        stats[N_TX_RINGS].tx_aborted_errors +=
4429                readl(cp->regs + REG_MAC_COLL_EXCESS);
4430        stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4431                readl(cp->regs + REG_MAC_COLL_LATE);
4432#endif
4433        cas_clear_mac_err(cp);
4434
4435        /* saved bits that are unique to ring 0 */
4436        spin_lock(&cp->stat_lock[0]);
4437        stats[N_TX_RINGS].collisions        += stats[0].collisions;
4438        stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4439        stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4440        stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4441        stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4442        stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4443        spin_unlock(&cp->stat_lock[0]);
4444
4445        for (i = 0; i < N_TX_RINGS; i++) {
4446                spin_lock(&cp->stat_lock[i]);
4447                stats[N_TX_RINGS].rx_length_errors +=
4448                        stats[i].rx_length_errors;
4449                stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4450                stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4451                stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4452                stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4453                stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4454                stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4455                stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4456                stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4457                stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4458                memset(stats + i, 0, sizeof(struct net_device_stats));
4459                spin_unlock(&cp->stat_lock[i]);
4460        }
4461        spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4462        return stats + N_TX_RINGS;
4463}
4464
4465
4466static void cas_set_multicast(struct net_device *dev)
4467{
4468        struct cas *cp = netdev_priv(dev);
4469        u32 rxcfg, rxcfg_new;
4470        unsigned long flags;
4471        int limit = STOP_TRIES;
4472
4473        if (!cp->hw_running)
4474                return;
4475
4476        spin_lock_irqsave(&cp->lock, flags);
4477        rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4478
4479        /* disable RX MAC and wait for completion */
4480        writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4481        while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4482                if (!limit--)
4483                        break;
4484                udelay(10);
4485        }
4486
4487        /* disable hash filter and wait for completion */
4488        limit = STOP_TRIES;
4489        rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4490        writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4491        while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4492                if (!limit--)
4493                        break;
4494                udelay(10);
4495        }
4496
4497        /* program hash filters */
4498        cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4499        rxcfg |= rxcfg_new;
4500        writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4501        spin_unlock_irqrestore(&cp->lock, flags);
4502}
4503
4504static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4505{
4506        struct cas *cp = netdev_priv(dev);
4507        strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4508        strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4509        strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4510}
4511
4512static int cas_get_link_ksettings(struct net_device *dev,
4513                                  struct ethtool_link_ksettings *cmd)
4514{
4515        struct cas *cp = netdev_priv(dev);
4516        u16 bmcr;
4517        int full_duplex, speed, pause;
4518        unsigned long flags;
4519        enum link_state linkstate = link_up;
4520        u32 supported, advertising;
4521
4522        advertising = 0;
4523        supported = SUPPORTED_Autoneg;
4524        if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4525                supported |= SUPPORTED_1000baseT_Full;
4526                advertising |= ADVERTISED_1000baseT_Full;
4527        }
4528
4529        /* Record PHY settings if HW is on. */
4530        spin_lock_irqsave(&cp->lock, flags);
4531        bmcr = 0;
4532        linkstate = cp->lstate;
4533        if (CAS_PHY_MII(cp->phy_type)) {
4534                cmd->base.port = PORT_MII;
4535                cmd->base.phy_address = cp->phy_addr;
4536                advertising |= ADVERTISED_TP | ADVERTISED_MII |
4537                        ADVERTISED_10baseT_Half |
4538                        ADVERTISED_10baseT_Full |
4539                        ADVERTISED_100baseT_Half |
4540                        ADVERTISED_100baseT_Full;
4541
4542                supported |=
4543                        (SUPPORTED_10baseT_Half |
4544                         SUPPORTED_10baseT_Full |
4545                         SUPPORTED_100baseT_Half |
4546                         SUPPORTED_100baseT_Full |
4547                         SUPPORTED_TP | SUPPORTED_MII);
4548
4549                if (cp->hw_running) {
4550                        cas_mif_poll(cp, 0);
4551                        bmcr = cas_phy_read(cp, MII_BMCR);
4552                        cas_read_mii_link_mode(cp, &full_duplex,
4553                                               &speed, &pause);
4554                        cas_mif_poll(cp, 1);
4555                }
4556
4557        } else {
4558                cmd->base.port = PORT_FIBRE;
4559                cmd->base.phy_address = 0;
4560                supported   |= SUPPORTED_FIBRE;
4561                advertising |= ADVERTISED_FIBRE;
4562
4563                if (cp->hw_running) {
4564                        /* pcs uses the same bits as mii */
4565                        bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4566                        cas_read_pcs_link_mode(cp, &full_duplex,
4567                                               &speed, &pause);
4568                }
4569        }
4570        spin_unlock_irqrestore(&cp->lock, flags);
4571
4572        if (bmcr & BMCR_ANENABLE) {
4573                advertising |= ADVERTISED_Autoneg;
4574                cmd->base.autoneg = AUTONEG_ENABLE;
4575                cmd->base.speed =  ((speed == 10) ?
4576                                            SPEED_10 :
4577                                            ((speed == 1000) ?
4578                                             SPEED_1000 : SPEED_100));
4579                cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4580        } else {
4581                cmd->base.autoneg = AUTONEG_DISABLE;
4582                cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4583                                            SPEED_1000 :
4584                                            ((bmcr & BMCR_SPEED100) ?
4585                                             SPEED_100 : SPEED_10));
4586                cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4587                        DUPLEX_FULL : DUPLEX_HALF;
4588        }
4589        if (linkstate != link_up) {
4590                /* Force these to "unknown" if the link is not up and
4591                 * autonogotiation in enabled. We can set the link
4592                 * speed to 0, but not cmd->duplex,
4593                 * because its legal values are 0 and 1.  Ethtool will
4594                 * print the value reported in parentheses after the
4595                 * word "Unknown" for unrecognized values.
4596                 *
4597                 * If in forced mode, we report the speed and duplex
4598                 * settings that we configured.
4599                 */
4600                if (cp->link_cntl & BMCR_ANENABLE) {
4601                        cmd->base.speed = 0;
4602                        cmd->base.duplex = 0xff;
4603                } else {
4604                        cmd->base.speed = SPEED_10;
4605                        if (cp->link_cntl & BMCR_SPEED100) {
4606                                cmd->base.speed = SPEED_100;
4607                        } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4608                                cmd->base.speed = SPEED_1000;
4609                        }
4610                        cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4611                                DUPLEX_FULL : DUPLEX_HALF;
4612                }
4613        }
4614
4615        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4616                                                supported);
4617        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4618                                                advertising);
4619
4620        return 0;
4621}
4622
4623static int cas_set_link_ksettings(struct net_device *dev,
4624                                  const struct ethtool_link_ksettings *cmd)
4625{
4626        struct cas *cp = netdev_priv(dev);
4627        unsigned long flags;
4628        u32 speed = cmd->base.speed;
4629
4630        /* Verify the settings we care about. */
4631        if (cmd->base.autoneg != AUTONEG_ENABLE &&
4632            cmd->base.autoneg != AUTONEG_DISABLE)
4633                return -EINVAL;
4634
4635        if (cmd->base.autoneg == AUTONEG_DISABLE &&
4636            ((speed != SPEED_1000 &&
4637              speed != SPEED_100 &&
4638              speed != SPEED_10) ||
4639             (cmd->base.duplex != DUPLEX_HALF &&
4640              cmd->base.duplex != DUPLEX_FULL)))
4641                return -EINVAL;
4642
4643        /* Apply settings and restart link process. */
4644        spin_lock_irqsave(&cp->lock, flags);
4645        cas_begin_auto_negotiation(cp, cmd);
4646        spin_unlock_irqrestore(&cp->lock, flags);
4647        return 0;
4648}
4649
4650static int cas_nway_reset(struct net_device *dev)
4651{
4652        struct cas *cp = netdev_priv(dev);
4653        unsigned long flags;
4654
4655        if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4656                return -EINVAL;
4657
4658        /* Restart link process. */
4659        spin_lock_irqsave(&cp->lock, flags);
4660        cas_begin_auto_negotiation(cp, NULL);
4661        spin_unlock_irqrestore(&cp->lock, flags);
4662
4663        return 0;
4664}
4665
4666static u32 cas_get_link(struct net_device *dev)
4667{
4668        struct cas *cp = netdev_priv(dev);
4669        return cp->lstate == link_up;
4670}
4671
4672static u32 cas_get_msglevel(struct net_device *dev)
4673{
4674        struct cas *cp = netdev_priv(dev);
4675        return cp->msg_enable;
4676}
4677
4678static void cas_set_msglevel(struct net_device *dev, u32 value)
4679{
4680        struct cas *cp = netdev_priv(dev);
4681        cp->msg_enable = value;
4682}
4683
4684static int cas_get_regs_len(struct net_device *dev)
4685{
4686        struct cas *cp = netdev_priv(dev);
4687        return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4688}
4689
4690static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4691                             void *p)
4692{
4693        struct cas *cp = netdev_priv(dev);
4694        regs->version = 0;
4695        /* cas_read_regs handles locks (cp->lock).  */
4696        cas_read_regs(cp, p, regs->len / sizeof(u32));
4697}
4698
4699static int cas_get_sset_count(struct net_device *dev, int sset)
4700{
4701        switch (sset) {
4702        case ETH_SS_STATS:
4703                return CAS_NUM_STAT_KEYS;
4704        default:
4705                return -EOPNOTSUPP;
4706        }
4707}
4708
4709static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4710{
4711         memcpy(data, &ethtool_cassini_statnames,
4712                                         CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4713}
4714
4715static void cas_get_ethtool_stats(struct net_device *dev,
4716                                      struct ethtool_stats *estats, u64 *data)
4717{
4718        struct cas *cp = netdev_priv(dev);
4719        struct net_device_stats *stats = cas_get_stats(cp->dev);
4720        int i = 0;
4721        data[i++] = stats->collisions;
4722        data[i++] = stats->rx_bytes;
4723        data[i++] = stats->rx_crc_errors;
4724        data[i++] = stats->rx_dropped;
4725        data[i++] = stats->rx_errors;
4726        data[i++] = stats->rx_fifo_errors;
4727        data[i++] = stats->rx_frame_errors;
4728        data[i++] = stats->rx_length_errors;
4729        data[i++] = stats->rx_over_errors;
4730        data[i++] = stats->rx_packets;
4731        data[i++] = stats->tx_aborted_errors;
4732        data[i++] = stats->tx_bytes;
4733        data[i++] = stats->tx_dropped;
4734        data[i++] = stats->tx_errors;
4735        data[i++] = stats->tx_fifo_errors;
4736        data[i++] = stats->tx_packets;
4737        BUG_ON(i != CAS_NUM_STAT_KEYS);
4738}
4739
4740static const struct ethtool_ops cas_ethtool_ops = {
4741        .get_drvinfo            = cas_get_drvinfo,
4742        .nway_reset             = cas_nway_reset,
4743        .get_link               = cas_get_link,
4744        .get_msglevel           = cas_get_msglevel,
4745        .set_msglevel           = cas_set_msglevel,
4746        .get_regs_len           = cas_get_regs_len,
4747        .get_regs               = cas_get_regs,
4748        .get_sset_count         = cas_get_sset_count,
4749        .get_strings            = cas_get_strings,
4750        .get_ethtool_stats      = cas_get_ethtool_stats,
4751        .get_link_ksettings     = cas_get_link_ksettings,
4752        .set_link_ksettings     = cas_set_link_ksettings,
4753};
4754
4755static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4756{
4757        struct cas *cp = netdev_priv(dev);
4758        struct mii_ioctl_data *data = if_mii(ifr);
4759        unsigned long flags;
4760        int rc = -EOPNOTSUPP;
4761
4762        /* Hold the PM mutex while doing ioctl's or we may collide
4763         * with open/close and power management and oops.
4764         */
4765        mutex_lock(&cp->pm_mutex);
4766        switch (cmd) {
4767        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4768                data->phy_id = cp->phy_addr;
4769                /* Fallthrough... */
4770
4771        case SIOCGMIIREG:               /* Read MII PHY register. */
4772                spin_lock_irqsave(&cp->lock, flags);
4773                cas_mif_poll(cp, 0);
4774                data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4775                cas_mif_poll(cp, 1);
4776                spin_unlock_irqrestore(&cp->lock, flags);
4777                rc = 0;
4778                break;
4779
4780        case SIOCSMIIREG:               /* Write MII PHY register. */
4781                spin_lock_irqsave(&cp->lock, flags);
4782                cas_mif_poll(cp, 0);
4783                rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4784                cas_mif_poll(cp, 1);
4785                spin_unlock_irqrestore(&cp->lock, flags);
4786                break;
4787        default:
4788                break;
4789        }
4790
4791        mutex_unlock(&cp->pm_mutex);
4792        return rc;
4793}
4794
4795/* When this chip sits underneath an Intel 31154 bridge, it is the
4796 * only subordinate device and we can tweak the bridge settings to
4797 * reflect that fact.
4798 */
4799static void cas_program_bridge(struct pci_dev *cas_pdev)
4800{
4801        struct pci_dev *pdev = cas_pdev->bus->self;
4802        u32 val;
4803
4804        if (!pdev)
4805                return;
4806
4807        if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4808                return;
4809
4810        /* Clear bit 10 (Bus Parking Control) in the Secondary
4811         * Arbiter Control/Status Register which lives at offset
4812         * 0x41.  Using a 32-bit word read/modify/write at 0x40
4813         * is much simpler so that's how we do this.
4814         */
4815        pci_read_config_dword(pdev, 0x40, &val);
4816        val &= ~0x00040000;
4817        pci_write_config_dword(pdev, 0x40, val);
4818
4819        /* Max out the Multi-Transaction Timer settings since
4820         * Cassini is the only device present.
4821         *
4822         * The register is 16-bit and lives at 0x50.  When the
4823         * settings are enabled, it extends the GRANT# signal
4824         * for a requestor after a transaction is complete.  This
4825         * allows the next request to run without first needing
4826         * to negotiate the GRANT# signal back.
4827         *
4828         * Bits 12:10 define the grant duration:
4829         *
4830         *      1       --      16 clocks
4831         *      2       --      32 clocks
4832         *      3       --      64 clocks
4833         *      4       --      128 clocks
4834         *      5       --      256 clocks
4835         *
4836         * All other values are illegal.
4837         *
4838         * Bits 09:00 define which REQ/GNT signal pairs get the
4839         * GRANT# signal treatment.  We set them all.
4840         */
4841        pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4842
4843        /* The Read Prefecth Policy register is 16-bit and sits at
4844         * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4845         * enable it and max out all of the settings since only one
4846         * device is sitting underneath and thus bandwidth sharing is
4847         * not an issue.
4848         *
4849         * The register has several 3 bit fields, which indicates a
4850         * multiplier applied to the base amount of prefetching the
4851         * chip would do.  These fields are at:
4852         *
4853         *      15:13   ---     ReRead Primary Bus
4854         *      12:10   ---     FirstRead Primary Bus
4855         *      09:07   ---     ReRead Secondary Bus
4856         *      06:04   ---     FirstRead Secondary Bus
4857         *
4858         * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4859         * get enabled on.  Bit 3 is a grouped enabler which controls
4860         * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4861         * the individual REQ/GNT pairs [2:0].
4862         */
4863        pci_write_config_word(pdev, 0x52,
4864                              (0x7 << 13) |
4865                              (0x7 << 10) |
4866                              (0x7 <<  7) |
4867                              (0x7 <<  4) |
4868                              (0xf <<  0));
4869
4870        /* Force cacheline size to 0x8 */
4871        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4872
4873        /* Force latency timer to maximum setting so Cassini can
4874         * sit on the bus as long as it likes.
4875         */
4876        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4877}
4878
4879static const struct net_device_ops cas_netdev_ops = {
4880        .ndo_open               = cas_open,
4881        .ndo_stop               = cas_close,
4882        .ndo_start_xmit         = cas_start_xmit,
4883        .ndo_get_stats          = cas_get_stats,
4884        .ndo_set_rx_mode        = cas_set_multicast,
4885        .ndo_do_ioctl           = cas_ioctl,
4886        .ndo_tx_timeout         = cas_tx_timeout,
4887        .ndo_change_mtu         = cas_change_mtu,
4888        .ndo_set_mac_address    = eth_mac_addr,
4889        .ndo_validate_addr      = eth_validate_addr,
4890#ifdef CONFIG_NET_POLL_CONTROLLER
4891        .ndo_poll_controller    = cas_netpoll,
4892#endif
4893};
4894
4895static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4896{
4897        static int cas_version_printed = 0;
4898        unsigned long casreg_len;
4899        struct net_device *dev;
4900        struct cas *cp;
4901        int i, err, pci_using_dac;
4902        u16 pci_cmd;
4903        u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4904
4905        if (cas_version_printed++ == 0)
4906                pr_info("%s", version);
4907
4908        err = pci_enable_device(pdev);
4909        if (err) {
4910                dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4911                return err;
4912        }
4913
4914        if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4915                dev_err(&pdev->dev, "Cannot find proper PCI device "
4916                       "base address, aborting\n");
4917                err = -ENODEV;
4918                goto err_out_disable_pdev;
4919        }
4920
4921        dev = alloc_etherdev(sizeof(*cp));
4922        if (!dev) {
4923                err = -ENOMEM;
4924                goto err_out_disable_pdev;
4925        }
4926        SET_NETDEV_DEV(dev, &pdev->dev);
4927
4928        err = pci_request_regions(pdev, dev->name);
4929        if (err) {
4930                dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4931                goto err_out_free_netdev;
4932        }
4933        pci_set_master(pdev);
4934
4935        /* we must always turn on parity response or else parity
4936         * doesn't get generated properly. disable SERR/PERR as well.
4937         * in addition, we want to turn MWI on.
4938         */
4939        pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4940        pci_cmd &= ~PCI_COMMAND_SERR;
4941        pci_cmd |= PCI_COMMAND_PARITY;
4942        pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4943        if (pci_try_set_mwi(pdev))
4944                pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4945
4946        cas_program_bridge(pdev);
4947
4948        /*
4949         * On some architectures, the default cache line size set
4950         * by pci_try_set_mwi reduces perforamnce.  We have to increase
4951         * it for this case.  To start, we'll print some configuration
4952         * data.
4953         */
4954#if 1
4955        pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4956                             &orig_cacheline_size);
4957        if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4958                cas_cacheline_size =
4959                        (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4960                        CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4961                if (pci_write_config_byte(pdev,
4962                                          PCI_CACHE_LINE_SIZE,
4963                                          cas_cacheline_size)) {
4964                        dev_err(&pdev->dev, "Could not set PCI cache "
4965                               "line size\n");
4966                        goto err_out_free_res;
4967                }
4968        }
4969#endif
4970
4971
4972        /* Configure DMA attributes. */
4973        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4974                pci_using_dac = 1;
4975                err = pci_set_consistent_dma_mask(pdev,
4976                                                  DMA_BIT_MASK(64));
4977                if (err < 0) {
4978                        dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4979                               "for consistent allocations\n");
4980                        goto err_out_free_res;
4981                }
4982
4983        } else {
4984                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4985                if (err) {
4986                        dev_err(&pdev->dev, "No usable DMA configuration, "
4987                               "aborting\n");
4988                        goto err_out_free_res;
4989                }
4990                pci_using_dac = 0;
4991        }
4992
4993        casreg_len = pci_resource_len(pdev, 0);
4994
4995        cp = netdev_priv(dev);
4996        cp->pdev = pdev;
4997#if 1
4998        /* A value of 0 indicates we never explicitly set it */
4999        cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5000#endif
5001        cp->dev = dev;
5002        cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5003          cassini_debug;
5004
5005#if defined(CONFIG_SPARC)
5006        cp->of_node = pci_device_to_OF_node(pdev);
5007#endif
5008
5009        cp->link_transition = LINK_TRANSITION_UNKNOWN;
5010        cp->link_transition_jiffies_valid = 0;
5011
5012        spin_lock_init(&cp->lock);
5013        spin_lock_init(&cp->rx_inuse_lock);
5014        spin_lock_init(&cp->rx_spare_lock);
5015        for (i = 0; i < N_TX_RINGS; i++) {
5016                spin_lock_init(&cp->stat_lock[i]);
5017                spin_lock_init(&cp->tx_lock[i]);
5018        }
5019        spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5020        mutex_init(&cp->pm_mutex);
5021
5022        timer_setup(&cp->link_timer, cas_link_timer, 0);
5023
5024#if 1
5025        /* Just in case the implementation of atomic operations
5026         * change so that an explicit initialization is necessary.
5027         */
5028        atomic_set(&cp->reset_task_pending, 0);
5029        atomic_set(&cp->reset_task_pending_all, 0);
5030        atomic_set(&cp->reset_task_pending_spare, 0);
5031        atomic_set(&cp->reset_task_pending_mtu, 0);
5032#endif
5033        INIT_WORK(&cp->reset_task, cas_reset_task);
5034
5035        /* Default link parameters */
5036        if (link_mode >= 0 && link_mode < 6)
5037                cp->link_cntl = link_modes[link_mode];
5038        else
5039                cp->link_cntl = BMCR_ANENABLE;
5040        cp->lstate = link_down;
5041        cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5042        netif_carrier_off(cp->dev);
5043        cp->timer_ticks = 0;
5044
5045        /* give us access to cassini registers */
5046        cp->regs = pci_iomap(pdev, 0, casreg_len);
5047        if (!cp->regs) {
5048                dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5049                goto err_out_free_res;
5050        }
5051        cp->casreg_len = casreg_len;
5052
5053        pci_save_state(pdev);
5054        cas_check_pci_invariants(cp);
5055        cas_hard_reset(cp);
5056        cas_reset(cp, 0);
5057        if (cas_check_invariants(cp))
5058                goto err_out_iounmap;
5059        if (cp->cas_flags & CAS_FLAG_SATURN)
5060                cas_saturn_firmware_init(cp);
5061
5062        cp->init_block = (struct cas_init_block *)
5063                pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5064                                     &cp->block_dvma);
5065        if (!cp->init_block) {
5066                dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5067                goto err_out_iounmap;
5068        }
5069
5070        for (i = 0; i < N_TX_RINGS; i++)
5071                cp->init_txds[i] = cp->init_block->txds[i];
5072
5073        for (i = 0; i < N_RX_DESC_RINGS; i++)
5074                cp->init_rxds[i] = cp->init_block->rxds[i];
5075
5076        for (i = 0; i < N_RX_COMP_RINGS; i++)
5077                cp->init_rxcs[i] = cp->init_block->rxcs[i];
5078
5079        for (i = 0; i < N_RX_FLOWS; i++)
5080                skb_queue_head_init(&cp->rx_flows[i]);
5081
5082        dev->netdev_ops = &cas_netdev_ops;
5083        dev->ethtool_ops = &cas_ethtool_ops;
5084        dev->watchdog_timeo = CAS_TX_TIMEOUT;
5085
5086#ifdef USE_NAPI
5087        netif_napi_add(dev, &cp->napi, cas_poll, 64);
5088#endif
5089        dev->irq = pdev->irq;
5090        dev->dma = 0;
5091
5092        /* Cassini features. */
5093        if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5094                dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5095
5096        if (pci_using_dac)
5097                dev->features |= NETIF_F_HIGHDMA;
5098
5099        /* MTU range: 60 - varies or 9000 */
5100        dev->min_mtu = CAS_MIN_MTU;
5101        dev->max_mtu = CAS_MAX_MTU;
5102
5103        if (register_netdev(dev)) {
5104                dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5105                goto err_out_free_consistent;
5106        }
5107
5108        i = readl(cp->regs + REG_BIM_CFG);
5109        netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5110                    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5111                    (i & BIM_CFG_32BIT) ? "32" : "64",
5112                    (i & BIM_CFG_66MHZ) ? "66" : "33",
5113                    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5114                    dev->dev_addr);
5115
5116        pci_set_drvdata(pdev, dev);
5117        cp->hw_running = 1;
5118        cas_entropy_reset(cp);
5119        cas_phy_init(cp);
5120        cas_begin_auto_negotiation(cp, NULL);
5121        return 0;
5122
5123err_out_free_consistent:
5124        pci_free_consistent(pdev, sizeof(struct cas_init_block),
5125                            cp->init_block, cp->block_dvma);
5126
5127err_out_iounmap:
5128        mutex_lock(&cp->pm_mutex);
5129        if (cp->hw_running)
5130                cas_shutdown(cp);
5131        mutex_unlock(&cp->pm_mutex);
5132
5133        pci_iounmap(pdev, cp->regs);
5134
5135
5136err_out_free_res:
5137        pci_release_regions(pdev);
5138
5139        /* Try to restore it in case the error occurred after we
5140         * set it.
5141         */
5142        pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5143
5144err_out_free_netdev:
5145        free_netdev(dev);
5146
5147err_out_disable_pdev:
5148        pci_disable_device(pdev);
5149        return -ENODEV;
5150}
5151
5152static void cas_remove_one(struct pci_dev *pdev)
5153{
5154        struct net_device *dev = pci_get_drvdata(pdev);
5155        struct cas *cp;
5156        if (!dev)
5157                return;
5158
5159        cp = netdev_priv(dev);
5160        unregister_netdev(dev);
5161
5162        vfree(cp->fw_data);
5163
5164        mutex_lock(&cp->pm_mutex);
5165        cancel_work_sync(&cp->reset_task);
5166        if (cp->hw_running)
5167                cas_shutdown(cp);
5168        mutex_unlock(&cp->pm_mutex);
5169
5170#if 1
5171        if (cp->orig_cacheline_size) {
5172                /* Restore the cache line size if we had modified
5173                 * it.
5174                 */
5175                pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5176                                      cp->orig_cacheline_size);
5177        }
5178#endif
5179        pci_free_consistent(pdev, sizeof(struct cas_init_block),
5180                            cp->init_block, cp->block_dvma);
5181        pci_iounmap(pdev, cp->regs);
5182        free_netdev(dev);
5183        pci_release_regions(pdev);
5184        pci_disable_device(pdev);
5185}
5186
5187#ifdef CONFIG_PM
5188static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5189{
5190        struct net_device *dev = pci_get_drvdata(pdev);
5191        struct cas *cp = netdev_priv(dev);
5192        unsigned long flags;
5193
5194        mutex_lock(&cp->pm_mutex);
5195
5196        /* If the driver is opened, we stop the DMA */
5197        if (cp->opened) {
5198                netif_device_detach(dev);
5199
5200                cas_lock_all_save(cp, flags);
5201
5202                /* We can set the second arg of cas_reset to 0
5203                 * because on resume, we'll call cas_init_hw with
5204                 * its second arg set so that autonegotiation is
5205                 * restarted.
5206                 */
5207                cas_reset(cp, 0);
5208                cas_clean_rings(cp);
5209                cas_unlock_all_restore(cp, flags);
5210        }
5211
5212        if (cp->hw_running)
5213                cas_shutdown(cp);
5214        mutex_unlock(&cp->pm_mutex);
5215
5216        return 0;
5217}
5218
5219static int cas_resume(struct pci_dev *pdev)
5220{
5221        struct net_device *dev = pci_get_drvdata(pdev);
5222        struct cas *cp = netdev_priv(dev);
5223
5224        netdev_info(dev, "resuming\n");
5225
5226        mutex_lock(&cp->pm_mutex);
5227        cas_hard_reset(cp);
5228        if (cp->opened) {
5229                unsigned long flags;
5230                cas_lock_all_save(cp, flags);
5231                cas_reset(cp, 0);
5232                cp->hw_running = 1;
5233                cas_clean_rings(cp);
5234                cas_init_hw(cp, 1);
5235                cas_unlock_all_restore(cp, flags);
5236
5237                netif_device_attach(dev);
5238        }
5239        mutex_unlock(&cp->pm_mutex);
5240        return 0;
5241}
5242#endif /* CONFIG_PM */
5243
5244static struct pci_driver cas_driver = {
5245        .name           = DRV_MODULE_NAME,
5246        .id_table       = cas_pci_tbl,
5247        .probe          = cas_init_one,
5248        .remove         = cas_remove_one,
5249#ifdef CONFIG_PM
5250        .suspend        = cas_suspend,
5251        .resume         = cas_resume
5252#endif
5253};
5254
5255static int __init cas_init(void)
5256{
5257        if (linkdown_timeout > 0)
5258                link_transition_timeout = linkdown_timeout * HZ;
5259        else
5260                link_transition_timeout = 0;
5261
5262        return pci_register_driver(&cas_driver);
5263}
5264
5265static void __exit cas_cleanup(void)
5266{
5267        pci_unregister_driver(&cas_driver);
5268}
5269
5270module_init(cas_init);
5271module_exit(cas_cleanup);
5272