linux/drivers/net/hippi/rrunner.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
   4 *
   5 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
   6 *
   7 * Thanks to Essential Communication for providing us with hardware
   8 * and very comprehensive documentation without which I would not have
   9 * been able to write this driver. A special thank you to John Gibbon
  10 * for sorting out the legal issues, with the NDA, allowing the code to
  11 * be released under the GPL.
  12 *
  13 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  14 * stupid bugs in my code.
  15 *
  16 * Softnet support and various other patches from Val Henson of
  17 * ODS/Essential.
  18 *
  19 * PCI DMA mapping code partly based on work by Francois Romieu.
  20 */
  21
  22
  23#define DEBUG 1
  24#define RX_DMA_SKBUFF 1
  25#define PKT_COPY_THRESHOLD 512
  26
  27#include <linux/module.h>
  28#include <linux/types.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/pci.h>
  32#include <linux/kernel.h>
  33#include <linux/netdevice.h>
  34#include <linux/hippidevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/delay.h>
  37#include <linux/mm.h>
  38#include <linux/slab.h>
  39#include <net/sock.h>
  40
  41#include <asm/cache.h>
  42#include <asm/byteorder.h>
  43#include <asm/io.h>
  44#include <asm/irq.h>
  45#include <linux/uaccess.h>
  46
  47#define rr_if_busy(dev)     netif_queue_stopped(dev)
  48#define rr_if_running(dev)  netif_running(dev)
  49
  50#include "rrunner.h"
  51
  52#define RUN_AT(x) (jiffies + (x))
  53
  54
  55MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  56MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  57MODULE_LICENSE("GPL");
  58
  59static const char version[] =
  60"rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
  61
  62
  63static const struct net_device_ops rr_netdev_ops = {
  64        .ndo_open               = rr_open,
  65        .ndo_stop               = rr_close,
  66        .ndo_do_ioctl           = rr_ioctl,
  67        .ndo_start_xmit         = rr_start_xmit,
  68        .ndo_set_mac_address    = hippi_mac_addr,
  69};
  70
  71/*
  72 * Implementation notes:
  73 *
  74 * The DMA engine only allows for DMA within physical 64KB chunks of
  75 * memory. The current approach of the driver (and stack) is to use
  76 * linear blocks of memory for the skbuffs. However, as the data block
  77 * is always the first part of the skb and skbs are 2^n aligned so we
  78 * are guarantted to get the whole block within one 64KB align 64KB
  79 * chunk.
  80 *
  81 * On the long term, relying on being able to allocate 64KB linear
  82 * chunks of memory is not feasible and the skb handling code and the
  83 * stack will need to know about I/O vectors or something similar.
  84 */
  85
  86static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  87{
  88        struct net_device *dev;
  89        static int version_disp;
  90        u8 pci_latency;
  91        struct rr_private *rrpriv;
  92        void *tmpptr;
  93        dma_addr_t ring_dma;
  94        int ret = -ENOMEM;
  95
  96        dev = alloc_hippi_dev(sizeof(struct rr_private));
  97        if (!dev)
  98                goto out3;
  99
 100        ret = pci_enable_device(pdev);
 101        if (ret) {
 102                ret = -ENODEV;
 103                goto out2;
 104        }
 105
 106        rrpriv = netdev_priv(dev);
 107
 108        SET_NETDEV_DEV(dev, &pdev->dev);
 109
 110        ret = pci_request_regions(pdev, "rrunner");
 111        if (ret < 0)
 112                goto out;
 113
 114        pci_set_drvdata(pdev, dev);
 115
 116        rrpriv->pci_dev = pdev;
 117
 118        spin_lock_init(&rrpriv->lock);
 119
 120        dev->netdev_ops = &rr_netdev_ops;
 121
 122        /* display version info if adapter is found */
 123        if (!version_disp) {
 124                /* set display flag to TRUE so that */
 125                /* we only display this string ONCE */
 126                version_disp = 1;
 127                printk(version);
 128        }
 129
 130        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
 131        if (pci_latency <= 0x58){
 132                pci_latency = 0x58;
 133                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
 134        }
 135
 136        pci_set_master(pdev);
 137
 138        printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
 139               "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
 140               (unsigned long long)pci_resource_start(pdev, 0),
 141               pdev->irq, pci_latency);
 142
 143        /*
 144         * Remap the MMIO regs into kernel space.
 145         */
 146        rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
 147        if (!rrpriv->regs) {
 148                printk(KERN_ERR "%s:  Unable to map I/O register, "
 149                        "RoadRunner will be disabled.\n", dev->name);
 150                ret = -EIO;
 151                goto out;
 152        }
 153
 154        tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
 155        rrpriv->tx_ring = tmpptr;
 156        rrpriv->tx_ring_dma = ring_dma;
 157
 158        if (!tmpptr) {
 159                ret = -ENOMEM;
 160                goto out;
 161        }
 162
 163        tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
 164        rrpriv->rx_ring = tmpptr;
 165        rrpriv->rx_ring_dma = ring_dma;
 166
 167        if (!tmpptr) {
 168                ret = -ENOMEM;
 169                goto out;
 170        }
 171
 172        tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
 173        rrpriv->evt_ring = tmpptr;
 174        rrpriv->evt_ring_dma = ring_dma;
 175
 176        if (!tmpptr) {
 177                ret = -ENOMEM;
 178                goto out;
 179        }
 180
 181        /*
 182         * Don't access any register before this point!
 183         */
 184#ifdef __BIG_ENDIAN
 185        writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
 186                &rrpriv->regs->HostCtrl);
 187#endif
 188        /*
 189         * Need to add a case for little-endian 64-bit hosts here.
 190         */
 191
 192        rr_init(dev);
 193
 194        ret = register_netdev(dev);
 195        if (ret)
 196                goto out;
 197        return 0;
 198
 199 out:
 200        if (rrpriv->evt_ring)
 201                pci_free_consistent(pdev, EVT_RING_SIZE, rrpriv->evt_ring,
 202                                    rrpriv->evt_ring_dma);
 203        if (rrpriv->rx_ring)
 204                pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
 205                                    rrpriv->rx_ring_dma);
 206        if (rrpriv->tx_ring)
 207                pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
 208                                    rrpriv->tx_ring_dma);
 209        if (rrpriv->regs)
 210                pci_iounmap(pdev, rrpriv->regs);
 211        if (pdev)
 212                pci_release_regions(pdev);
 213 out2:
 214        free_netdev(dev);
 215 out3:
 216        return ret;
 217}
 218
 219static void rr_remove_one(struct pci_dev *pdev)
 220{
 221        struct net_device *dev = pci_get_drvdata(pdev);
 222        struct rr_private *rr = netdev_priv(dev);
 223
 224        if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
 225                printk(KERN_ERR "%s: trying to unload running NIC\n",
 226                       dev->name);
 227                writel(HALT_NIC, &rr->regs->HostCtrl);
 228        }
 229
 230        unregister_netdev(dev);
 231        pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
 232                            rr->evt_ring_dma);
 233        pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
 234                            rr->rx_ring_dma);
 235        pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
 236                            rr->tx_ring_dma);
 237        pci_iounmap(pdev, rr->regs);
 238        pci_release_regions(pdev);
 239        pci_disable_device(pdev);
 240        free_netdev(dev);
 241}
 242
 243
 244/*
 245 * Commands are considered to be slow, thus there is no reason to
 246 * inline this.
 247 */
 248static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
 249{
 250        struct rr_regs __iomem *regs;
 251        u32 idx;
 252
 253        regs = rrpriv->regs;
 254        /*
 255         * This is temporary - it will go away in the final version.
 256         * We probably also want to make this function inline.
 257         */
 258        if (readl(&regs->HostCtrl) & NIC_HALTED){
 259                printk("issuing command for halted NIC, code 0x%x, "
 260                       "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
 261                if (readl(&regs->Mode) & FATAL_ERR)
 262                        printk("error codes Fail1 %02x, Fail2 %02x\n",
 263                               readl(&regs->Fail1), readl(&regs->Fail2));
 264        }
 265
 266        idx = rrpriv->info->cmd_ctrl.pi;
 267
 268        writel(*(u32*)(cmd), &regs->CmdRing[idx]);
 269        wmb();
 270
 271        idx = (idx - 1) % CMD_RING_ENTRIES;
 272        rrpriv->info->cmd_ctrl.pi = idx;
 273        wmb();
 274
 275        if (readl(&regs->Mode) & FATAL_ERR)
 276                printk("error code %02x\n", readl(&regs->Fail1));
 277}
 278
 279
 280/*
 281 * Reset the board in a sensible manner. The NIC is already halted
 282 * when we get here and a spin-lock is held.
 283 */
 284static int rr_reset(struct net_device *dev)
 285{
 286        struct rr_private *rrpriv;
 287        struct rr_regs __iomem *regs;
 288        u32 start_pc;
 289        int i;
 290
 291        rrpriv = netdev_priv(dev);
 292        regs = rrpriv->regs;
 293
 294        rr_load_firmware(dev);
 295
 296        writel(0x01000000, &regs->TX_state);
 297        writel(0xff800000, &regs->RX_state);
 298        writel(0, &regs->AssistState);
 299        writel(CLEAR_INTA, &regs->LocalCtrl);
 300        writel(0x01, &regs->BrkPt);
 301        writel(0, &regs->Timer);
 302        writel(0, &regs->TimerRef);
 303        writel(RESET_DMA, &regs->DmaReadState);
 304        writel(RESET_DMA, &regs->DmaWriteState);
 305        writel(0, &regs->DmaWriteHostHi);
 306        writel(0, &regs->DmaWriteHostLo);
 307        writel(0, &regs->DmaReadHostHi);
 308        writel(0, &regs->DmaReadHostLo);
 309        writel(0, &regs->DmaReadLen);
 310        writel(0, &regs->DmaWriteLen);
 311        writel(0, &regs->DmaWriteLcl);
 312        writel(0, &regs->DmaWriteIPchecksum);
 313        writel(0, &regs->DmaReadLcl);
 314        writel(0, &regs->DmaReadIPchecksum);
 315        writel(0, &regs->PciState);
 316#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
 317        writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
 318#elif (BITS_PER_LONG == 64)
 319        writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
 320#else
 321        writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
 322#endif
 323
 324#if 0
 325        /*
 326         * Don't worry, this is just black magic.
 327         */
 328        writel(0xdf000, &regs->RxBase);
 329        writel(0xdf000, &regs->RxPrd);
 330        writel(0xdf000, &regs->RxCon);
 331        writel(0xce000, &regs->TxBase);
 332        writel(0xce000, &regs->TxPrd);
 333        writel(0xce000, &regs->TxCon);
 334        writel(0, &regs->RxIndPro);
 335        writel(0, &regs->RxIndCon);
 336        writel(0, &regs->RxIndRef);
 337        writel(0, &regs->TxIndPro);
 338        writel(0, &regs->TxIndCon);
 339        writel(0, &regs->TxIndRef);
 340        writel(0xcc000, &regs->pad10[0]);
 341        writel(0, &regs->DrCmndPro);
 342        writel(0, &regs->DrCmndCon);
 343        writel(0, &regs->DwCmndPro);
 344        writel(0, &regs->DwCmndCon);
 345        writel(0, &regs->DwCmndRef);
 346        writel(0, &regs->DrDataPro);
 347        writel(0, &regs->DrDataCon);
 348        writel(0, &regs->DrDataRef);
 349        writel(0, &regs->DwDataPro);
 350        writel(0, &regs->DwDataCon);
 351        writel(0, &regs->DwDataRef);
 352#endif
 353
 354        writel(0xffffffff, &regs->MbEvent);
 355        writel(0, &regs->Event);
 356
 357        writel(0, &regs->TxPi);
 358        writel(0, &regs->IpRxPi);
 359
 360        writel(0, &regs->EvtCon);
 361        writel(0, &regs->EvtPrd);
 362
 363        rrpriv->info->evt_ctrl.pi = 0;
 364
 365        for (i = 0; i < CMD_RING_ENTRIES; i++)
 366                writel(0, &regs->CmdRing[i]);
 367
 368/*
 369 * Why 32 ? is this not cache line size dependent?
 370 */
 371        writel(RBURST_64|WBURST_64, &regs->PciState);
 372        wmb();
 373
 374        start_pc = rr_read_eeprom_word(rrpriv,
 375                        offsetof(struct eeprom, rncd_info.FwStart));
 376
 377#if (DEBUG > 1)
 378        printk("%s: Executing firmware at address 0x%06x\n",
 379               dev->name, start_pc);
 380#endif
 381
 382        writel(start_pc + 0x800, &regs->Pc);
 383        wmb();
 384        udelay(5);
 385
 386        writel(start_pc, &regs->Pc);
 387        wmb();
 388
 389        return 0;
 390}
 391
 392
 393/*
 394 * Read a string from the EEPROM.
 395 */
 396static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
 397                                unsigned long offset,
 398                                unsigned char *buf,
 399                                unsigned long length)
 400{
 401        struct rr_regs __iomem *regs = rrpriv->regs;
 402        u32 misc, io, host, i;
 403
 404        io = readl(&regs->ExtIo);
 405        writel(0, &regs->ExtIo);
 406        misc = readl(&regs->LocalCtrl);
 407        writel(0, &regs->LocalCtrl);
 408        host = readl(&regs->HostCtrl);
 409        writel(host | HALT_NIC, &regs->HostCtrl);
 410        mb();
 411
 412        for (i = 0; i < length; i++){
 413                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 414                mb();
 415                buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
 416                mb();
 417        }
 418
 419        writel(host, &regs->HostCtrl);
 420        writel(misc, &regs->LocalCtrl);
 421        writel(io, &regs->ExtIo);
 422        mb();
 423        return i;
 424}
 425
 426
 427/*
 428 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
 429 * it to our CPU byte-order.
 430 */
 431static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
 432                            size_t offset)
 433{
 434        __be32 word;
 435
 436        if ((rr_read_eeprom(rrpriv, offset,
 437                            (unsigned char *)&word, 4) == 4))
 438                return be32_to_cpu(word);
 439        return 0;
 440}
 441
 442
 443/*
 444 * Write a string to the EEPROM.
 445 *
 446 * This is only called when the firmware is not running.
 447 */
 448static unsigned int write_eeprom(struct rr_private *rrpriv,
 449                                 unsigned long offset,
 450                                 unsigned char *buf,
 451                                 unsigned long length)
 452{
 453        struct rr_regs __iomem *regs = rrpriv->regs;
 454        u32 misc, io, data, i, j, ready, error = 0;
 455
 456        io = readl(&regs->ExtIo);
 457        writel(0, &regs->ExtIo);
 458        misc = readl(&regs->LocalCtrl);
 459        writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
 460        mb();
 461
 462        for (i = 0; i < length; i++){
 463                writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
 464                mb();
 465                data = buf[i] << 24;
 466                /*
 467                 * Only try to write the data if it is not the same
 468                 * value already.
 469                 */
 470                if ((readl(&regs->WinData) & 0xff000000) != data){
 471                        writel(data, &regs->WinData);
 472                        ready = 0;
 473                        j = 0;
 474                        mb();
 475                        while(!ready){
 476                                udelay(20);
 477                                if ((readl(&regs->WinData) & 0xff000000) ==
 478                                    data)
 479                                        ready = 1;
 480                                mb();
 481                                if (j++ > 5000){
 482                                        printk("data mismatch: %08x, "
 483                                               "WinData %08x\n", data,
 484                                               readl(&regs->WinData));
 485                                        ready = 1;
 486                                        error = 1;
 487                                }
 488                        }
 489                }
 490        }
 491
 492        writel(misc, &regs->LocalCtrl);
 493        writel(io, &regs->ExtIo);
 494        mb();
 495
 496        return error;
 497}
 498
 499
 500static int rr_init(struct net_device *dev)
 501{
 502        struct rr_private *rrpriv;
 503        struct rr_regs __iomem *regs;
 504        u32 sram_size, rev;
 505
 506        rrpriv = netdev_priv(dev);
 507        regs = rrpriv->regs;
 508
 509        rev = readl(&regs->FwRev);
 510        rrpriv->fw_rev = rev;
 511        if (rev > 0x00020024)
 512                printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
 513                       ((rev >> 8) & 0xff), (rev & 0xff));
 514        else if (rev >= 0x00020000) {
 515                printk("  Firmware revision: %i.%i.%i (2.0.37 or "
 516                       "later is recommended)\n", (rev >> 16),
 517                       ((rev >> 8) & 0xff), (rev & 0xff));
 518        }else{
 519                printk("  Firmware revision too old: %i.%i.%i, please "
 520                       "upgrade to 2.0.37 or later.\n",
 521                       (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
 522        }
 523
 524#if (DEBUG > 2)
 525        printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
 526#endif
 527
 528        /*
 529         * Read the hardware address from the eeprom.  The HW address
 530         * is not really necessary for HIPPI but awfully convenient.
 531         * The pointer arithmetic to put it in dev_addr is ugly, but
 532         * Donald Becker does it this way for the GigE version of this
 533         * card and it's shorter and more portable than any
 534         * other method I've seen.  -VAL
 535         */
 536
 537        *(__be16 *)(dev->dev_addr) =
 538          htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
 539        *(__be32 *)(dev->dev_addr+2) =
 540          htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
 541
 542        printk("  MAC: %pM\n", dev->dev_addr);
 543
 544        sram_size = rr_read_eeprom_word(rrpriv, 8);
 545        printk("  SRAM size 0x%06x\n", sram_size);
 546
 547        return 0;
 548}
 549
 550
 551static int rr_init1(struct net_device *dev)
 552{
 553        struct rr_private *rrpriv;
 554        struct rr_regs __iomem *regs;
 555        unsigned long myjif, flags;
 556        struct cmd cmd;
 557        u32 hostctrl;
 558        int ecode = 0;
 559        short i;
 560
 561        rrpriv = netdev_priv(dev);
 562        regs = rrpriv->regs;
 563
 564        spin_lock_irqsave(&rrpriv->lock, flags);
 565
 566        hostctrl = readl(&regs->HostCtrl);
 567        writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
 568        wmb();
 569
 570        if (hostctrl & PARITY_ERR){
 571                printk("%s: Parity error halting NIC - this is serious!\n",
 572                       dev->name);
 573                spin_unlock_irqrestore(&rrpriv->lock, flags);
 574                ecode = -EFAULT;
 575                goto error;
 576        }
 577
 578        set_rxaddr(regs, rrpriv->rx_ctrl_dma);
 579        set_infoaddr(regs, rrpriv->info_dma);
 580
 581        rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
 582        rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
 583        rrpriv->info->evt_ctrl.mode = 0;
 584        rrpriv->info->evt_ctrl.pi = 0;
 585        set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
 586
 587        rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
 588        rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
 589        rrpriv->info->cmd_ctrl.mode = 0;
 590        rrpriv->info->cmd_ctrl.pi = 15;
 591
 592        for (i = 0; i < CMD_RING_ENTRIES; i++) {
 593                writel(0, &regs->CmdRing[i]);
 594        }
 595
 596        for (i = 0; i < TX_RING_ENTRIES; i++) {
 597                rrpriv->tx_ring[i].size = 0;
 598                set_rraddr(&rrpriv->tx_ring[i].addr, 0);
 599                rrpriv->tx_skbuff[i] = NULL;
 600        }
 601        rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
 602        rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
 603        rrpriv->info->tx_ctrl.mode = 0;
 604        rrpriv->info->tx_ctrl.pi = 0;
 605        set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
 606
 607        /*
 608         * Set dirty_tx before we start receiving interrupts, otherwise
 609         * the interrupt handler might think it is supposed to process
 610         * tx ints before we are up and running, which may cause a null
 611         * pointer access in the int handler.
 612         */
 613        rrpriv->tx_full = 0;
 614        rrpriv->cur_rx = 0;
 615        rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
 616
 617        rr_reset(dev);
 618
 619        /* Tuning values */
 620        writel(0x5000, &regs->ConRetry);
 621        writel(0x100, &regs->ConRetryTmr);
 622        writel(0x500000, &regs->ConTmout);
 623        writel(0x60, &regs->IntrTmr);
 624        writel(0x500000, &regs->TxDataMvTimeout);
 625        writel(0x200000, &regs->RxDataMvTimeout);
 626        writel(0x80, &regs->WriteDmaThresh);
 627        writel(0x80, &regs->ReadDmaThresh);
 628
 629        rrpriv->fw_running = 0;
 630        wmb();
 631
 632        hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
 633        writel(hostctrl, &regs->HostCtrl);
 634        wmb();
 635
 636        spin_unlock_irqrestore(&rrpriv->lock, flags);
 637
 638        for (i = 0; i < RX_RING_ENTRIES; i++) {
 639                struct sk_buff *skb;
 640                dma_addr_t addr;
 641
 642                rrpriv->rx_ring[i].mode = 0;
 643                skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
 644                if (!skb) {
 645                        printk(KERN_WARNING "%s: Unable to allocate memory "
 646                               "for receive ring - halting NIC\n", dev->name);
 647                        ecode = -ENOMEM;
 648                        goto error;
 649                }
 650                rrpriv->rx_skbuff[i] = skb;
 651                addr = pci_map_single(rrpriv->pci_dev, skb->data,
 652                        dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 653                /*
 654                 * Sanity test to see if we conflict with the DMA
 655                 * limitations of the Roadrunner.
 656                 */
 657                if ((((unsigned long)skb->data) & 0xfff) > ~65320)
 658                        printk("skb alloc error\n");
 659
 660                set_rraddr(&rrpriv->rx_ring[i].addr, addr);
 661                rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
 662        }
 663
 664        rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
 665        rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
 666        rrpriv->rx_ctrl[4].mode = 8;
 667        rrpriv->rx_ctrl[4].pi = 0;
 668        wmb();
 669        set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
 670
 671        udelay(1000);
 672
 673        /*
 674         * Now start the FirmWare.
 675         */
 676        cmd.code = C_START_FW;
 677        cmd.ring = 0;
 678        cmd.index = 0;
 679
 680        rr_issue_cmd(rrpriv, &cmd);
 681
 682        /*
 683         * Give the FirmWare time to chew on the `get running' command.
 684         */
 685        myjif = jiffies + 5 * HZ;
 686        while (time_before(jiffies, myjif) && !rrpriv->fw_running)
 687                cpu_relax();
 688
 689        netif_start_queue(dev);
 690
 691        return ecode;
 692
 693 error:
 694        /*
 695         * We might have gotten here because we are out of memory,
 696         * make sure we release everything we allocated before failing
 697         */
 698        for (i = 0; i < RX_RING_ENTRIES; i++) {
 699                struct sk_buff *skb = rrpriv->rx_skbuff[i];
 700
 701                if (skb) {
 702                        pci_unmap_single(rrpriv->pci_dev,
 703                                         rrpriv->rx_ring[i].addr.addrlo,
 704                                         dev->mtu + HIPPI_HLEN,
 705                                         PCI_DMA_FROMDEVICE);
 706                        rrpriv->rx_ring[i].size = 0;
 707                        set_rraddr(&rrpriv->rx_ring[i].addr, 0);
 708                        dev_kfree_skb(skb);
 709                        rrpriv->rx_skbuff[i] = NULL;
 710                }
 711        }
 712        return ecode;
 713}
 714
 715
 716/*
 717 * All events are considered to be slow (RX/TX ints do not generate
 718 * events) and are handled here, outside the main interrupt handler,
 719 * to reduce the size of the handler.
 720 */
 721static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
 722{
 723        struct rr_private *rrpriv;
 724        struct rr_regs __iomem *regs;
 725        u32 tmp;
 726
 727        rrpriv = netdev_priv(dev);
 728        regs = rrpriv->regs;
 729
 730        while (prodidx != eidx){
 731                switch (rrpriv->evt_ring[eidx].code){
 732                case E_NIC_UP:
 733                        tmp = readl(&regs->FwRev);
 734                        printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
 735                               "up and running\n", dev->name,
 736                               (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
 737                        rrpriv->fw_running = 1;
 738                        writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
 739                        wmb();
 740                        break;
 741                case E_LINK_ON:
 742                        printk(KERN_INFO "%s: Optical link ON\n", dev->name);
 743                        break;
 744                case E_LINK_OFF:
 745                        printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
 746                        break;
 747                case E_RX_IDLE:
 748                        printk(KERN_WARNING "%s: RX data not moving\n",
 749                               dev->name);
 750                        goto drop;
 751                case E_WATCHDOG:
 752                        printk(KERN_INFO "%s: The watchdog is here to see "
 753                               "us\n", dev->name);
 754                        break;
 755                case E_INTERN_ERR:
 756                        printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
 757                               dev->name);
 758                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 759                               &regs->HostCtrl);
 760                        wmb();
 761                        break;
 762                case E_HOST_ERR:
 763                        printk(KERN_ERR "%s: Host software error\n",
 764                               dev->name);
 765                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 766                               &regs->HostCtrl);
 767                        wmb();
 768                        break;
 769                /*
 770                 * TX events.
 771                 */
 772                case E_CON_REJ:
 773                        printk(KERN_WARNING "%s: Connection rejected\n",
 774                               dev->name);
 775                        dev->stats.tx_aborted_errors++;
 776                        break;
 777                case E_CON_TMOUT:
 778                        printk(KERN_WARNING "%s: Connection timeout\n",
 779                               dev->name);
 780                        break;
 781                case E_DISC_ERR:
 782                        printk(KERN_WARNING "%s: HIPPI disconnect error\n",
 783                               dev->name);
 784                        dev->stats.tx_aborted_errors++;
 785                        break;
 786                case E_INT_PRTY:
 787                        printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
 788                               dev->name);
 789                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 790                               &regs->HostCtrl);
 791                        wmb();
 792                        break;
 793                case E_TX_IDLE:
 794                        printk(KERN_WARNING "%s: Transmitter idle\n",
 795                               dev->name);
 796                        break;
 797                case E_TX_LINK_DROP:
 798                        printk(KERN_WARNING "%s: Link lost during transmit\n",
 799                               dev->name);
 800                        dev->stats.tx_aborted_errors++;
 801                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 802                               &regs->HostCtrl);
 803                        wmb();
 804                        break;
 805                case E_TX_INV_RNG:
 806                        printk(KERN_ERR "%s: Invalid send ring block\n",
 807                               dev->name);
 808                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 809                               &regs->HostCtrl);
 810                        wmb();
 811                        break;
 812                case E_TX_INV_BUF:
 813                        printk(KERN_ERR "%s: Invalid send buffer address\n",
 814                               dev->name);
 815                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 816                               &regs->HostCtrl);
 817                        wmb();
 818                        break;
 819                case E_TX_INV_DSC:
 820                        printk(KERN_ERR "%s: Invalid descriptor address\n",
 821                               dev->name);
 822                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 823                               &regs->HostCtrl);
 824                        wmb();
 825                        break;
 826                /*
 827                 * RX events.
 828                 */
 829                case E_RX_RNG_OUT:
 830                        printk(KERN_INFO "%s: Receive ring full\n", dev->name);
 831                        break;
 832
 833                case E_RX_PAR_ERR:
 834                        printk(KERN_WARNING "%s: Receive parity error\n",
 835                               dev->name);
 836                        goto drop;
 837                case E_RX_LLRC_ERR:
 838                        printk(KERN_WARNING "%s: Receive LLRC error\n",
 839                               dev->name);
 840                        goto drop;
 841                case E_PKT_LN_ERR:
 842                        printk(KERN_WARNING "%s: Receive packet length "
 843                               "error\n", dev->name);
 844                        goto drop;
 845                case E_DTA_CKSM_ERR:
 846                        printk(KERN_WARNING "%s: Data checksum error\n",
 847                               dev->name);
 848                        goto drop;
 849                case E_SHT_BST:
 850                        printk(KERN_WARNING "%s: Unexpected short burst "
 851                               "error\n", dev->name);
 852                        goto drop;
 853                case E_STATE_ERR:
 854                        printk(KERN_WARNING "%s: Recv. state transition"
 855                               " error\n", dev->name);
 856                        goto drop;
 857                case E_UNEXP_DATA:
 858                        printk(KERN_WARNING "%s: Unexpected data error\n",
 859                               dev->name);
 860                        goto drop;
 861                case E_LST_LNK_ERR:
 862                        printk(KERN_WARNING "%s: Link lost error\n",
 863                               dev->name);
 864                        goto drop;
 865                case E_FRM_ERR:
 866                        printk(KERN_WARNING "%s: Framing Error\n",
 867                               dev->name);
 868                        goto drop;
 869                case E_FLG_SYN_ERR:
 870                        printk(KERN_WARNING "%s: Flag sync. lost during "
 871                               "packet\n", dev->name);
 872                        goto drop;
 873                case E_RX_INV_BUF:
 874                        printk(KERN_ERR "%s: Invalid receive buffer "
 875                               "address\n", dev->name);
 876                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 877                               &regs->HostCtrl);
 878                        wmb();
 879                        break;
 880                case E_RX_INV_DSC:
 881                        printk(KERN_ERR "%s: Invalid receive descriptor "
 882                               "address\n", dev->name);
 883                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 884                               &regs->HostCtrl);
 885                        wmb();
 886                        break;
 887                case E_RNG_BLK:
 888                        printk(KERN_ERR "%s: Invalid ring block\n",
 889                               dev->name);
 890                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
 891                               &regs->HostCtrl);
 892                        wmb();
 893                        break;
 894                drop:
 895                        /* Label packet to be dropped.
 896                         * Actual dropping occurs in rx
 897                         * handling.
 898                         *
 899                         * The index of packet we get to drop is
 900                         * the index of the packet following
 901                         * the bad packet. -kbf
 902                         */
 903                        {
 904                                u16 index = rrpriv->evt_ring[eidx].index;
 905                                index = (index + (RX_RING_ENTRIES - 1)) %
 906                                        RX_RING_ENTRIES;
 907                                rrpriv->rx_ring[index].mode |=
 908                                        (PACKET_BAD | PACKET_END);
 909                        }
 910                        break;
 911                default:
 912                        printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
 913                               dev->name, rrpriv->evt_ring[eidx].code);
 914                }
 915                eidx = (eidx + 1) % EVT_RING_ENTRIES;
 916        }
 917
 918        rrpriv->info->evt_ctrl.pi = eidx;
 919        wmb();
 920        return eidx;
 921}
 922
 923
 924static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
 925{
 926        struct rr_private *rrpriv = netdev_priv(dev);
 927        struct rr_regs __iomem *regs = rrpriv->regs;
 928
 929        do {
 930                struct rx_desc *desc;
 931                u32 pkt_len;
 932
 933                desc = &(rrpriv->rx_ring[index]);
 934                pkt_len = desc->size;
 935#if (DEBUG > 2)
 936                printk("index %i, rxlimit %i\n", index, rxlimit);
 937                printk("len %x, mode %x\n", pkt_len, desc->mode);
 938#endif
 939                if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
 940                        dev->stats.rx_dropped++;
 941                        goto defer;
 942                }
 943
 944                if (pkt_len > 0){
 945                        struct sk_buff *skb, *rx_skb;
 946
 947                        rx_skb = rrpriv->rx_skbuff[index];
 948
 949                        if (pkt_len < PKT_COPY_THRESHOLD) {
 950                                skb = alloc_skb(pkt_len, GFP_ATOMIC);
 951                                if (skb == NULL){
 952                                        printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
 953                                        dev->stats.rx_dropped++;
 954                                        goto defer;
 955                                } else {
 956                                        pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
 957                                                                    desc->addr.addrlo,
 958                                                                    pkt_len,
 959                                                                    PCI_DMA_FROMDEVICE);
 960
 961                                        skb_put_data(skb, rx_skb->data,
 962                                                     pkt_len);
 963
 964                                        pci_dma_sync_single_for_device(rrpriv->pci_dev,
 965                                                                       desc->addr.addrlo,
 966                                                                       pkt_len,
 967                                                                       PCI_DMA_FROMDEVICE);
 968                                }
 969                        }else{
 970                                struct sk_buff *newskb;
 971
 972                                newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
 973                                        GFP_ATOMIC);
 974                                if (newskb){
 975                                        dma_addr_t addr;
 976
 977                                        pci_unmap_single(rrpriv->pci_dev,
 978                                                desc->addr.addrlo, dev->mtu +
 979                                                HIPPI_HLEN, PCI_DMA_FROMDEVICE);
 980                                        skb = rx_skb;
 981                                        skb_put(skb, pkt_len);
 982                                        rrpriv->rx_skbuff[index] = newskb;
 983                                        addr = pci_map_single(rrpriv->pci_dev,
 984                                                newskb->data,
 985                                                dev->mtu + HIPPI_HLEN,
 986                                                PCI_DMA_FROMDEVICE);
 987                                        set_rraddr(&desc->addr, addr);
 988                                } else {
 989                                        printk("%s: Out of memory, deferring "
 990                                               "packet\n", dev->name);
 991                                        dev->stats.rx_dropped++;
 992                                        goto defer;
 993                                }
 994                        }
 995                        skb->protocol = hippi_type_trans(skb, dev);
 996
 997                        netif_rx(skb);          /* send it up */
 998
 999                        dev->stats.rx_packets++;
1000                        dev->stats.rx_bytes += pkt_len;
1001                }
1002        defer:
1003                desc->mode = 0;
1004                desc->size = dev->mtu + HIPPI_HLEN;
1005
1006                if ((index & 7) == 7)
1007                        writel(index, &regs->IpRxPi);
1008
1009                index = (index + 1) % RX_RING_ENTRIES;
1010        } while(index != rxlimit);
1011
1012        rrpriv->cur_rx = index;
1013        wmb();
1014}
1015
1016
1017static irqreturn_t rr_interrupt(int irq, void *dev_id)
1018{
1019        struct rr_private *rrpriv;
1020        struct rr_regs __iomem *regs;
1021        struct net_device *dev = (struct net_device *)dev_id;
1022        u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1023
1024        rrpriv = netdev_priv(dev);
1025        regs = rrpriv->regs;
1026
1027        if (!(readl(&regs->HostCtrl) & RR_INT))
1028                return IRQ_NONE;
1029
1030        spin_lock(&rrpriv->lock);
1031
1032        prodidx = readl(&regs->EvtPrd);
1033        txcsmr = (prodidx >> 8) & 0xff;
1034        rxlimit = (prodidx >> 16) & 0xff;
1035        prodidx &= 0xff;
1036
1037#if (DEBUG > 2)
1038        printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1039               prodidx, rrpriv->info->evt_ctrl.pi);
1040#endif
1041        /*
1042         * Order here is important.  We must handle events
1043         * before doing anything else in order to catch
1044         * such things as LLRC errors, etc -kbf
1045         */
1046
1047        eidx = rrpriv->info->evt_ctrl.pi;
1048        if (prodidx != eidx)
1049                eidx = rr_handle_event(dev, prodidx, eidx);
1050
1051        rxindex = rrpriv->cur_rx;
1052        if (rxindex != rxlimit)
1053                rx_int(dev, rxlimit, rxindex);
1054
1055        txcon = rrpriv->dirty_tx;
1056        if (txcsmr != txcon) {
1057                do {
1058                        /* Due to occational firmware TX producer/consumer out
1059                         * of sync. error need to check entry in ring -kbf
1060                         */
1061                        if(rrpriv->tx_skbuff[txcon]){
1062                                struct tx_desc *desc;
1063                                struct sk_buff *skb;
1064
1065                                desc = &(rrpriv->tx_ring[txcon]);
1066                                skb = rrpriv->tx_skbuff[txcon];
1067
1068                                dev->stats.tx_packets++;
1069                                dev->stats.tx_bytes += skb->len;
1070
1071                                pci_unmap_single(rrpriv->pci_dev,
1072                                                 desc->addr.addrlo, skb->len,
1073                                                 PCI_DMA_TODEVICE);
1074                                dev_kfree_skb_irq(skb);
1075
1076                                rrpriv->tx_skbuff[txcon] = NULL;
1077                                desc->size = 0;
1078                                set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1079                                desc->mode = 0;
1080                        }
1081                        txcon = (txcon + 1) % TX_RING_ENTRIES;
1082                } while (txcsmr != txcon);
1083                wmb();
1084
1085                rrpriv->dirty_tx = txcon;
1086                if (rrpriv->tx_full && rr_if_busy(dev) &&
1087                    (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1088                     != rrpriv->dirty_tx)){
1089                        rrpriv->tx_full = 0;
1090                        netif_wake_queue(dev);
1091                }
1092        }
1093
1094        eidx |= ((txcsmr << 8) | (rxlimit << 16));
1095        writel(eidx, &regs->EvtCon);
1096        wmb();
1097
1098        spin_unlock(&rrpriv->lock);
1099        return IRQ_HANDLED;
1100}
1101
1102static inline void rr_raz_tx(struct rr_private *rrpriv,
1103                             struct net_device *dev)
1104{
1105        int i;
1106
1107        for (i = 0; i < TX_RING_ENTRIES; i++) {
1108                struct sk_buff *skb = rrpriv->tx_skbuff[i];
1109
1110                if (skb) {
1111                        struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1112
1113                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1114                                skb->len, PCI_DMA_TODEVICE);
1115                        desc->size = 0;
1116                        set_rraddr(&desc->addr, 0);
1117                        dev_kfree_skb(skb);
1118                        rrpriv->tx_skbuff[i] = NULL;
1119                }
1120        }
1121}
1122
1123
1124static inline void rr_raz_rx(struct rr_private *rrpriv,
1125                             struct net_device *dev)
1126{
1127        int i;
1128
1129        for (i = 0; i < RX_RING_ENTRIES; i++) {
1130                struct sk_buff *skb = rrpriv->rx_skbuff[i];
1131
1132                if (skb) {
1133                        struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1134
1135                        pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1136                                dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1137                        desc->size = 0;
1138                        set_rraddr(&desc->addr, 0);
1139                        dev_kfree_skb(skb);
1140                        rrpriv->rx_skbuff[i] = NULL;
1141                }
1142        }
1143}
1144
1145static void rr_timer(struct timer_list *t)
1146{
1147        struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1148        struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1149        struct rr_regs __iomem *regs = rrpriv->regs;
1150        unsigned long flags;
1151
1152        if (readl(&regs->HostCtrl) & NIC_HALTED){
1153                printk("%s: Restarting nic\n", dev->name);
1154                memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1155                memset(rrpriv->info, 0, sizeof(struct rr_info));
1156                wmb();
1157
1158                rr_raz_tx(rrpriv, dev);
1159                rr_raz_rx(rrpriv, dev);
1160
1161                if (rr_init1(dev)) {
1162                        spin_lock_irqsave(&rrpriv->lock, flags);
1163                        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1164                               &regs->HostCtrl);
1165                        spin_unlock_irqrestore(&rrpriv->lock, flags);
1166                }
1167        }
1168        rrpriv->timer.expires = RUN_AT(5*HZ);
1169        add_timer(&rrpriv->timer);
1170}
1171
1172
1173static int rr_open(struct net_device *dev)
1174{
1175        struct rr_private *rrpriv = netdev_priv(dev);
1176        struct pci_dev *pdev = rrpriv->pci_dev;
1177        struct rr_regs __iomem *regs;
1178        int ecode = 0;
1179        unsigned long flags;
1180        dma_addr_t dma_addr;
1181
1182        regs = rrpriv->regs;
1183
1184        if (rrpriv->fw_rev < 0x00020000) {
1185                printk(KERN_WARNING "%s: trying to configure device with "
1186                       "obsolete firmware\n", dev->name);
1187                ecode = -EBUSY;
1188                goto error;
1189        }
1190
1191        rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1192                                               256 * sizeof(struct ring_ctrl),
1193                                               &dma_addr);
1194        if (!rrpriv->rx_ctrl) {
1195                ecode = -ENOMEM;
1196                goto error;
1197        }
1198        rrpriv->rx_ctrl_dma = dma_addr;
1199
1200        rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1201                                            &dma_addr);
1202        if (!rrpriv->info) {
1203                ecode = -ENOMEM;
1204                goto error;
1205        }
1206        rrpriv->info_dma = dma_addr;
1207        wmb();
1208
1209        spin_lock_irqsave(&rrpriv->lock, flags);
1210        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1211        readl(&regs->HostCtrl);
1212        spin_unlock_irqrestore(&rrpriv->lock, flags);
1213
1214        if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1215                printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1216                       dev->name, pdev->irq);
1217                ecode = -EAGAIN;
1218                goto error;
1219        }
1220
1221        if ((ecode = rr_init1(dev)))
1222                goto error;
1223
1224        /* Set the timer to switch to check for link beat and perhaps switch
1225           to an alternate media type. */
1226        timer_setup(&rrpriv->timer, rr_timer, 0);
1227        rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1228        add_timer(&rrpriv->timer);
1229
1230        netif_start_queue(dev);
1231
1232        return ecode;
1233
1234 error:
1235        spin_lock_irqsave(&rrpriv->lock, flags);
1236        writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1237        spin_unlock_irqrestore(&rrpriv->lock, flags);
1238
1239        if (rrpriv->info) {
1240                pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1241                                    rrpriv->info_dma);
1242                rrpriv->info = NULL;
1243        }
1244        if (rrpriv->rx_ctrl) {
1245                pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1246                                    rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1247                rrpriv->rx_ctrl = NULL;
1248        }
1249
1250        netif_stop_queue(dev);
1251
1252        return ecode;
1253}
1254
1255
1256static void rr_dump(struct net_device *dev)
1257{
1258        struct rr_private *rrpriv;
1259        struct rr_regs __iomem *regs;
1260        u32 index, cons;
1261        short i;
1262        int len;
1263
1264        rrpriv = netdev_priv(dev);
1265        regs = rrpriv->regs;
1266
1267        printk("%s: dumping NIC TX rings\n", dev->name);
1268
1269        printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1270               readl(&regs->RxPrd), readl(&regs->TxPrd),
1271               readl(&regs->EvtPrd), readl(&regs->TxPi),
1272               rrpriv->info->tx_ctrl.pi);
1273
1274        printk("Error code 0x%x\n", readl(&regs->Fail1));
1275
1276        index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1277        cons = rrpriv->dirty_tx;
1278        printk("TX ring index %i, TX consumer %i\n",
1279               index, cons);
1280
1281        if (rrpriv->tx_skbuff[index]){
1282                len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1283                printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1284                for (i = 0; i < len; i++){
1285                        if (!(i & 7))
1286                                printk("\n");
1287                        printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1288                }
1289                printk("\n");
1290        }
1291
1292        if (rrpriv->tx_skbuff[cons]){
1293                len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1294                printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1295                printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1296                       rrpriv->tx_ring[cons].mode,
1297                       rrpriv->tx_ring[cons].size,
1298                       (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1299                       rrpriv->tx_skbuff[cons]->data,
1300                       (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1301                for (i = 0; i < len; i++){
1302                        if (!(i & 7))
1303                                printk("\n");
1304                        printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1305                }
1306                printk("\n");
1307        }
1308
1309        printk("dumping TX ring info:\n");
1310        for (i = 0; i < TX_RING_ENTRIES; i++)
1311                printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1312                       rrpriv->tx_ring[i].mode,
1313                       rrpriv->tx_ring[i].size,
1314                       (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1315
1316}
1317
1318
1319static int rr_close(struct net_device *dev)
1320{
1321        struct rr_private *rrpriv = netdev_priv(dev);
1322        struct rr_regs __iomem *regs = rrpriv->regs;
1323        struct pci_dev *pdev = rrpriv->pci_dev;
1324        unsigned long flags;
1325        u32 tmp;
1326        short i;
1327
1328        netif_stop_queue(dev);
1329
1330
1331        /*
1332         * Lock to make sure we are not cleaning up while another CPU
1333         * is handling interrupts.
1334         */
1335        spin_lock_irqsave(&rrpriv->lock, flags);
1336
1337        tmp = readl(&regs->HostCtrl);
1338        if (tmp & NIC_HALTED){
1339                printk("%s: NIC already halted\n", dev->name);
1340                rr_dump(dev);
1341        }else{
1342                tmp |= HALT_NIC | RR_CLEAR_INT;
1343                writel(tmp, &regs->HostCtrl);
1344                readl(&regs->HostCtrl);
1345        }
1346
1347        rrpriv->fw_running = 0;
1348
1349        del_timer_sync(&rrpriv->timer);
1350
1351        writel(0, &regs->TxPi);
1352        writel(0, &regs->IpRxPi);
1353
1354        writel(0, &regs->EvtCon);
1355        writel(0, &regs->EvtPrd);
1356
1357        for (i = 0; i < CMD_RING_ENTRIES; i++)
1358                writel(0, &regs->CmdRing[i]);
1359
1360        rrpriv->info->tx_ctrl.entries = 0;
1361        rrpriv->info->cmd_ctrl.pi = 0;
1362        rrpriv->info->evt_ctrl.pi = 0;
1363        rrpriv->rx_ctrl[4].entries = 0;
1364
1365        rr_raz_tx(rrpriv, dev);
1366        rr_raz_rx(rrpriv, dev);
1367
1368        pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1369                            rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1370        rrpriv->rx_ctrl = NULL;
1371
1372        pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1373                            rrpriv->info_dma);
1374        rrpriv->info = NULL;
1375
1376        spin_unlock_irqrestore(&rrpriv->lock, flags);
1377        free_irq(pdev->irq, dev);
1378
1379        return 0;
1380}
1381
1382
1383static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1384                                 struct net_device *dev)
1385{
1386        struct rr_private *rrpriv = netdev_priv(dev);
1387        struct rr_regs __iomem *regs = rrpriv->regs;
1388        struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1389        struct ring_ctrl *txctrl;
1390        unsigned long flags;
1391        u32 index, len = skb->len;
1392        u32 *ifield;
1393        struct sk_buff *new_skb;
1394
1395        if (readl(&regs->Mode) & FATAL_ERR)
1396                printk("error codes Fail1 %02x, Fail2 %02x\n",
1397                       readl(&regs->Fail1), readl(&regs->Fail2));
1398
1399        /*
1400         * We probably need to deal with tbusy here to prevent overruns.
1401         */
1402
1403        if (skb_headroom(skb) < 8){
1404                printk("incoming skb too small - reallocating\n");
1405                if (!(new_skb = dev_alloc_skb(len + 8))) {
1406                        dev_kfree_skb(skb);
1407                        netif_wake_queue(dev);
1408                        return NETDEV_TX_OK;
1409                }
1410                skb_reserve(new_skb, 8);
1411                skb_put(new_skb, len);
1412                skb_copy_from_linear_data(skb, new_skb->data, len);
1413                dev_kfree_skb(skb);
1414                skb = new_skb;
1415        }
1416
1417        ifield = skb_push(skb, 8);
1418
1419        ifield[0] = 0;
1420        ifield[1] = hcb->ifield;
1421
1422        /*
1423         * We don't need the lock before we are actually going to start
1424         * fiddling with the control blocks.
1425         */
1426        spin_lock_irqsave(&rrpriv->lock, flags);
1427
1428        txctrl = &rrpriv->info->tx_ctrl;
1429
1430        index = txctrl->pi;
1431
1432        rrpriv->tx_skbuff[index] = skb;
1433        set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1434                rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1435        rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1436        rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1437        txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1438        wmb();
1439        writel(txctrl->pi, &regs->TxPi);
1440
1441        if (txctrl->pi == rrpriv->dirty_tx){
1442                rrpriv->tx_full = 1;
1443                netif_stop_queue(dev);
1444        }
1445
1446        spin_unlock_irqrestore(&rrpriv->lock, flags);
1447
1448        return NETDEV_TX_OK;
1449}
1450
1451
1452/*
1453 * Read the firmware out of the EEPROM and put it into the SRAM
1454 * (or from user space - later)
1455 *
1456 * This operation requires the NIC to be halted and is performed with
1457 * interrupts disabled and with the spinlock hold.
1458 */
1459static int rr_load_firmware(struct net_device *dev)
1460{
1461        struct rr_private *rrpriv;
1462        struct rr_regs __iomem *regs;
1463        size_t eptr, segptr;
1464        int i, j;
1465        u32 localctrl, sptr, len, tmp;
1466        u32 p2len, p2size, nr_seg, revision, io, sram_size;
1467
1468        rrpriv = netdev_priv(dev);
1469        regs = rrpriv->regs;
1470
1471        if (dev->flags & IFF_UP)
1472                return -EBUSY;
1473
1474        if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1475                printk("%s: Trying to load firmware to a running NIC.\n",
1476                       dev->name);
1477                return -EBUSY;
1478        }
1479
1480        localctrl = readl(&regs->LocalCtrl);
1481        writel(0, &regs->LocalCtrl);
1482
1483        writel(0, &regs->EvtPrd);
1484        writel(0, &regs->RxPrd);
1485        writel(0, &regs->TxPrd);
1486
1487        /*
1488         * First wipe the entire SRAM, otherwise we might run into all
1489         * kinds of trouble ... sigh, this took almost all afternoon
1490         * to track down ;-(
1491         */
1492        io = readl(&regs->ExtIo);
1493        writel(0, &regs->ExtIo);
1494        sram_size = rr_read_eeprom_word(rrpriv, 8);
1495
1496        for (i = 200; i < sram_size / 4; i++){
1497                writel(i * 4, &regs->WinBase);
1498                mb();
1499                writel(0, &regs->WinData);
1500                mb();
1501        }
1502        writel(io, &regs->ExtIo);
1503        mb();
1504
1505        eptr = rr_read_eeprom_word(rrpriv,
1506                       offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1507        eptr = ((eptr & 0x1fffff) >> 3);
1508
1509        p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1510        p2len = (p2len << 2);
1511        p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1512        p2size = ((p2size & 0x1fffff) >> 3);
1513
1514        if ((eptr < p2size) || (eptr > (p2size + p2len))){
1515                printk("%s: eptr is invalid\n", dev->name);
1516                goto out;
1517        }
1518
1519        revision = rr_read_eeprom_word(rrpriv,
1520                        offsetof(struct eeprom, manf.HeaderFmt));
1521
1522        if (revision != 1){
1523                printk("%s: invalid firmware format (%i)\n",
1524                       dev->name, revision);
1525                goto out;
1526        }
1527
1528        nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1529        eptr +=4;
1530#if (DEBUG > 1)
1531        printk("%s: nr_seg %i\n", dev->name, nr_seg);
1532#endif
1533
1534        for (i = 0; i < nr_seg; i++){
1535                sptr = rr_read_eeprom_word(rrpriv, eptr);
1536                eptr += 4;
1537                len = rr_read_eeprom_word(rrpriv, eptr);
1538                eptr += 4;
1539                segptr = rr_read_eeprom_word(rrpriv, eptr);
1540                segptr = ((segptr & 0x1fffff) >> 3);
1541                eptr += 4;
1542#if (DEBUG > 1)
1543                printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1544                       dev->name, i, sptr, len, segptr);
1545#endif
1546                for (j = 0; j < len; j++){
1547                        tmp = rr_read_eeprom_word(rrpriv, segptr);
1548                        writel(sptr, &regs->WinBase);
1549                        mb();
1550                        writel(tmp, &regs->WinData);
1551                        mb();
1552                        segptr += 4;
1553                        sptr += 4;
1554                }
1555        }
1556
1557out:
1558        writel(localctrl, &regs->LocalCtrl);
1559        mb();
1560        return 0;
1561}
1562
1563
1564static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1565{
1566        struct rr_private *rrpriv;
1567        unsigned char *image, *oldimage;
1568        unsigned long flags;
1569        unsigned int i;
1570        int error = -EOPNOTSUPP;
1571
1572        rrpriv = netdev_priv(dev);
1573
1574        switch(cmd){
1575        case SIOCRRGFW:
1576                if (!capable(CAP_SYS_RAWIO)){
1577                        return -EPERM;
1578                }
1579
1580                image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1581                if (!image)
1582                        return -ENOMEM;
1583
1584                if (rrpriv->fw_running){
1585                        printk("%s: Firmware already running\n", dev->name);
1586                        error = -EPERM;
1587                        goto gf_out;
1588                }
1589
1590                spin_lock_irqsave(&rrpriv->lock, flags);
1591                i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1592                spin_unlock_irqrestore(&rrpriv->lock, flags);
1593                if (i != EEPROM_BYTES){
1594                        printk(KERN_ERR "%s: Error reading EEPROM\n",
1595                               dev->name);
1596                        error = -EFAULT;
1597                        goto gf_out;
1598                }
1599                error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1600                if (error)
1601                        error = -EFAULT;
1602        gf_out:
1603                kfree(image);
1604                return error;
1605
1606        case SIOCRRPFW:
1607                if (!capable(CAP_SYS_RAWIO)){
1608                        return -EPERM;
1609                }
1610
1611                image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1612                if (IS_ERR(image))
1613                        return PTR_ERR(image);
1614
1615                oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1616                if (!oldimage) {
1617                        kfree(image);
1618                        return -ENOMEM;
1619                }
1620
1621                if (rrpriv->fw_running){
1622                        printk("%s: Firmware already running\n", dev->name);
1623                        error = -EPERM;
1624                        goto wf_out;
1625                }
1626
1627                printk("%s: Updating EEPROM firmware\n", dev->name);
1628
1629                spin_lock_irqsave(&rrpriv->lock, flags);
1630                error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1631                if (error)
1632                        printk(KERN_ERR "%s: Error writing EEPROM\n",
1633                               dev->name);
1634
1635                i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1636                spin_unlock_irqrestore(&rrpriv->lock, flags);
1637
1638                if (i != EEPROM_BYTES)
1639                        printk(KERN_ERR "%s: Error reading back EEPROM "
1640                               "image\n", dev->name);
1641
1642                error = memcmp(image, oldimage, EEPROM_BYTES);
1643                if (error){
1644                        printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1645                               dev->name);
1646                        error = -EFAULT;
1647                }
1648        wf_out:
1649                kfree(oldimage);
1650                kfree(image);
1651                return error;
1652
1653        case SIOCRRID:
1654                return put_user(0x52523032, (int __user *)rq->ifr_data);
1655        default:
1656                return error;
1657        }
1658}
1659
1660static const struct pci_device_id rr_pci_tbl[] = {
1661        { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1662                PCI_ANY_ID, PCI_ANY_ID, },
1663        { 0,}
1664};
1665MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1666
1667static struct pci_driver rr_driver = {
1668        .name           = "rrunner",
1669        .id_table       = rr_pci_tbl,
1670        .probe          = rr_init_one,
1671        .remove         = rr_remove_one,
1672};
1673
1674module_pci_driver(rr_driver);
1675