linux/drivers/net/ipa/gsi_trans.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (C) 2019-2020 Linaro Ltd.
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/bits.h>
   9#include <linux/bitfield.h>
  10#include <linux/refcount.h>
  11#include <linux/scatterlist.h>
  12#include <linux/dma-direction.h>
  13
  14#include "gsi.h"
  15#include "gsi_private.h"
  16#include "gsi_trans.h"
  17#include "ipa_gsi.h"
  18#include "ipa_data.h"
  19#include "ipa_cmd.h"
  20
  21/**
  22 * DOC: GSI Transactions
  23 *
  24 * A GSI transaction abstracts the behavior of a GSI channel by representing
  25 * everything about a related group of IPA commands in a single structure.
  26 * (A "command" in this sense is either a data transfer or an IPA immediate
  27 * command.)  Most details of interaction with the GSI hardware are managed
  28 * by the GSI transaction core, allowing users to simply describe commands
  29 * to be performed.  When a transaction has completed a callback function
  30 * (dependent on the type of endpoint associated with the channel) allows
  31 * cleanup of resources associated with the transaction.
  32 *
  33 * To perform a command (or set of them), a user of the GSI transaction
  34 * interface allocates a transaction, indicating the number of TREs required
  35 * (one per command).  If sufficient TREs are available, they are reserved
  36 * for use in the transaction and the allocation succeeds.  This way
  37 * exhaustion of the available TREs in a channel ring is detected
  38 * as early as possible.  All resources required to complete a transaction
  39 * are allocated at transaction allocation time.
  40 *
  41 * Commands performed as part of a transaction are represented in an array
  42 * of Linux scatterlist structures.  This array is allocated with the
  43 * transaction, and its entries are initialized using standard scatterlist
  44 * functions (such as sg_set_buf() or skb_to_sgvec()).
  45 *
  46 * Once a transaction's scatterlist structures have been initialized, the
  47 * transaction is committed.  The caller is responsible for mapping buffers
  48 * for DMA if necessary, and this should be done *before* allocating
  49 * the transaction.  Between a successful allocation and commit of a
  50 * transaction no errors should occur.
  51 *
  52 * Committing transfers ownership of the entire transaction to the GSI
  53 * transaction core.  The GSI transaction code formats the content of
  54 * the scatterlist array into the channel ring buffer and informs the
  55 * hardware that new TREs are available to process.
  56 *
  57 * The last TRE in each transaction is marked to interrupt the AP when the
  58 * GSI hardware has completed it.  Because transfers described by TREs are
  59 * performed strictly in order, signaling the completion of just the last
  60 * TRE in the transaction is sufficient to indicate the full transaction
  61 * is complete.
  62 *
  63 * When a transaction is complete, ipa_gsi_trans_complete() is called by the
  64 * GSI code into the IPA layer, allowing it to perform any final cleanup
  65 * required before the transaction is freed.
  66 */
  67
  68/* Hardware values representing a transfer element type */
  69enum gsi_tre_type {
  70        GSI_RE_XFER     = 0x2,
  71        GSI_RE_IMMD_CMD = 0x3,
  72};
  73
  74/* An entry in a channel ring */
  75struct gsi_tre {
  76        __le64 addr;            /* DMA address */
  77        __le16 len_opcode;      /* length in bytes or enum IPA_CMD_* */
  78        __le16 reserved;
  79        __le32 flags;           /* TRE_FLAGS_* */
  80};
  81
  82/* gsi_tre->flags mask values (in CPU byte order) */
  83#define TRE_FLAGS_CHAIN_FMASK   GENMASK(0, 0)
  84#define TRE_FLAGS_IEOB_FMASK    GENMASK(8, 8)
  85#define TRE_FLAGS_IEOT_FMASK    GENMASK(9, 9)
  86#define TRE_FLAGS_BEI_FMASK     GENMASK(10, 10)
  87#define TRE_FLAGS_TYPE_FMASK    GENMASK(23, 16)
  88
  89int gsi_trans_pool_init(struct gsi_trans_pool *pool, size_t size, u32 count,
  90                        u32 max_alloc)
  91{
  92        void *virt;
  93
  94#ifdef IPA_VALIDATE
  95        if (!size || size % 8)
  96                return -EINVAL;
  97        if (count < max_alloc)
  98                return -EINVAL;
  99        if (!max_alloc)
 100                return -EINVAL;
 101#endif /* IPA_VALIDATE */
 102
 103        /* By allocating a few extra entries in our pool (one less
 104         * than the maximum number that will be requested in a
 105         * single allocation), we can always satisfy requests without
 106         * ever worrying about straddling the end of the pool array.
 107         * If there aren't enough entries starting at the free index,
 108         * we just allocate free entries from the beginning of the pool.
 109         */
 110        virt = kcalloc(count + max_alloc - 1, size, GFP_KERNEL);
 111        if (!virt)
 112                return -ENOMEM;
 113
 114        pool->base = virt;
 115        /* If the allocator gave us any extra memory, use it */
 116        pool->count = ksize(pool->base) / size;
 117        pool->free = 0;
 118        pool->max_alloc = max_alloc;
 119        pool->size = size;
 120        pool->addr = 0;         /* Only used for DMA pools */
 121
 122        return 0;
 123}
 124
 125void gsi_trans_pool_exit(struct gsi_trans_pool *pool)
 126{
 127        kfree(pool->base);
 128        memset(pool, 0, sizeof(*pool));
 129}
 130
 131/* Allocate the requested number of (zeroed) entries from the pool */
 132/* Home-grown DMA pool.  This way we can preallocate and use the tre_count
 133 * to guarantee allocations will succeed.  Even though we specify max_alloc
 134 * (and it can be more than one), we only allow allocation of a single
 135 * element from a DMA pool.
 136 */
 137int gsi_trans_pool_init_dma(struct device *dev, struct gsi_trans_pool *pool,
 138                            size_t size, u32 count, u32 max_alloc)
 139{
 140        size_t total_size;
 141        dma_addr_t addr;
 142        void *virt;
 143
 144#ifdef IPA_VALIDATE
 145        if (!size || size % 8)
 146                return -EINVAL;
 147        if (count < max_alloc)
 148                return -EINVAL;
 149        if (!max_alloc)
 150                return -EINVAL;
 151#endif /* IPA_VALIDATE */
 152
 153        /* Don't let allocations cross a power-of-two boundary */
 154        size = __roundup_pow_of_two(size);
 155        total_size = (count + max_alloc - 1) * size;
 156
 157        /* The allocator will give us a power-of-2 number of pages.  But we
 158         * can't guarantee that, so request it.  That way we won't waste any
 159         * memory that would be available beyond the required space.
 160         */
 161        total_size = get_order(total_size) << PAGE_SHIFT;
 162
 163        virt = dma_alloc_coherent(dev, total_size, &addr, GFP_KERNEL);
 164        if (!virt)
 165                return -ENOMEM;
 166
 167        pool->base = virt;
 168        pool->count = total_size / size;
 169        pool->free = 0;
 170        pool->size = size;
 171        pool->max_alloc = max_alloc;
 172        pool->addr = addr;
 173
 174        return 0;
 175}
 176
 177void gsi_trans_pool_exit_dma(struct device *dev, struct gsi_trans_pool *pool)
 178{
 179        dma_free_coherent(dev, pool->size, pool->base, pool->addr);
 180        memset(pool, 0, sizeof(*pool));
 181}
 182
 183/* Return the byte offset of the next free entry in the pool */
 184static u32 gsi_trans_pool_alloc_common(struct gsi_trans_pool *pool, u32 count)
 185{
 186        u32 offset;
 187
 188        /* assert(count > 0); */
 189        /* assert(count <= pool->max_alloc); */
 190
 191        /* Allocate from beginning if wrap would occur */
 192        if (count > pool->count - pool->free)
 193                pool->free = 0;
 194
 195        offset = pool->free * pool->size;
 196        pool->free += count;
 197        memset(pool->base + offset, 0, count * pool->size);
 198
 199        return offset;
 200}
 201
 202/* Allocate a contiguous block of zeroed entries from a pool */
 203void *gsi_trans_pool_alloc(struct gsi_trans_pool *pool, u32 count)
 204{
 205        return pool->base + gsi_trans_pool_alloc_common(pool, count);
 206}
 207
 208/* Allocate a single zeroed entry from a DMA pool */
 209void *gsi_trans_pool_alloc_dma(struct gsi_trans_pool *pool, dma_addr_t *addr)
 210{
 211        u32 offset = gsi_trans_pool_alloc_common(pool, 1);
 212
 213        *addr = pool->addr + offset;
 214
 215        return pool->base + offset;
 216}
 217
 218/* Return the pool element that immediately follows the one given.
 219 * This only works done if elements are allocated one at a time.
 220 */
 221void *gsi_trans_pool_next(struct gsi_trans_pool *pool, void *element)
 222{
 223        void *end = pool->base + pool->count * pool->size;
 224
 225        /* assert(element >= pool->base); */
 226        /* assert(element < end); */
 227        /* assert(pool->max_alloc == 1); */
 228        element += pool->size;
 229
 230        return element < end ? element : pool->base;
 231}
 232
 233/* Map a given ring entry index to the transaction associated with it */
 234static void gsi_channel_trans_map(struct gsi_channel *channel, u32 index,
 235                                  struct gsi_trans *trans)
 236{
 237        /* Note: index *must* be used modulo the ring count here */
 238        channel->trans_info.map[index % channel->tre_ring.count] = trans;
 239}
 240
 241/* Return the transaction mapped to a given ring entry */
 242struct gsi_trans *
 243gsi_channel_trans_mapped(struct gsi_channel *channel, u32 index)
 244{
 245        /* Note: index *must* be used modulo the ring count here */
 246        return channel->trans_info.map[index % channel->tre_ring.count];
 247}
 248
 249/* Return the oldest completed transaction for a channel (or null) */
 250struct gsi_trans *gsi_channel_trans_complete(struct gsi_channel *channel)
 251{
 252        return list_first_entry_or_null(&channel->trans_info.complete,
 253                                        struct gsi_trans, links);
 254}
 255
 256/* Move a transaction from the allocated list to the pending list */
 257static void gsi_trans_move_pending(struct gsi_trans *trans)
 258{
 259        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 260        struct gsi_trans_info *trans_info = &channel->trans_info;
 261
 262        spin_lock_bh(&trans_info->spinlock);
 263
 264        list_move_tail(&trans->links, &trans_info->pending);
 265
 266        spin_unlock_bh(&trans_info->spinlock);
 267}
 268
 269/* Move a transaction and all of its predecessors from the pending list
 270 * to the completed list.
 271 */
 272void gsi_trans_move_complete(struct gsi_trans *trans)
 273{
 274        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 275        struct gsi_trans_info *trans_info = &channel->trans_info;
 276        struct list_head list;
 277
 278        spin_lock_bh(&trans_info->spinlock);
 279
 280        /* Move this transaction and all predecessors to completed list */
 281        list_cut_position(&list, &trans_info->pending, &trans->links);
 282        list_splice_tail(&list, &trans_info->complete);
 283
 284        spin_unlock_bh(&trans_info->spinlock);
 285}
 286
 287/* Move a transaction from the completed list to the polled list */
 288void gsi_trans_move_polled(struct gsi_trans *trans)
 289{
 290        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 291        struct gsi_trans_info *trans_info = &channel->trans_info;
 292
 293        spin_lock_bh(&trans_info->spinlock);
 294
 295        list_move_tail(&trans->links, &trans_info->polled);
 296
 297        spin_unlock_bh(&trans_info->spinlock);
 298}
 299
 300/* Reserve some number of TREs on a channel.  Returns true if successful */
 301static bool
 302gsi_trans_tre_reserve(struct gsi_trans_info *trans_info, u32 tre_count)
 303{
 304        int avail = atomic_read(&trans_info->tre_avail);
 305        int new;
 306
 307        do {
 308                new = avail - (int)tre_count;
 309                if (unlikely(new < 0))
 310                        return false;
 311        } while (!atomic_try_cmpxchg(&trans_info->tre_avail, &avail, new));
 312
 313        return true;
 314}
 315
 316/* Release previously-reserved TRE entries to a channel */
 317static void
 318gsi_trans_tre_release(struct gsi_trans_info *trans_info, u32 tre_count)
 319{
 320        atomic_add(tre_count, &trans_info->tre_avail);
 321}
 322
 323/* Allocate a GSI transaction on a channel */
 324struct gsi_trans *gsi_channel_trans_alloc(struct gsi *gsi, u32 channel_id,
 325                                          u32 tre_count,
 326                                          enum dma_data_direction direction)
 327{
 328        struct gsi_channel *channel = &gsi->channel[channel_id];
 329        struct gsi_trans_info *trans_info;
 330        struct gsi_trans *trans;
 331
 332        /* assert(tre_count <= gsi_channel_trans_tre_max(gsi, channel_id)); */
 333
 334        trans_info = &channel->trans_info;
 335
 336        /* We reserve the TREs now, but consume them at commit time.
 337         * If there aren't enough available, we're done.
 338         */
 339        if (!gsi_trans_tre_reserve(trans_info, tre_count))
 340                return NULL;
 341
 342        /* Allocate and initialize non-zero fields in the the transaction */
 343        trans = gsi_trans_pool_alloc(&trans_info->pool, 1);
 344        trans->gsi = gsi;
 345        trans->channel_id = channel_id;
 346        trans->tre_count = tre_count;
 347        init_completion(&trans->completion);
 348
 349        /* Allocate the scatterlist and (if requested) info entries. */
 350        trans->sgl = gsi_trans_pool_alloc(&trans_info->sg_pool, tre_count);
 351        sg_init_marker(trans->sgl, tre_count);
 352
 353        trans->direction = direction;
 354
 355        spin_lock_bh(&trans_info->spinlock);
 356
 357        list_add_tail(&trans->links, &trans_info->alloc);
 358
 359        spin_unlock_bh(&trans_info->spinlock);
 360
 361        refcount_set(&trans->refcount, 1);
 362
 363        return trans;
 364}
 365
 366/* Free a previously-allocated transaction (used only in case of error) */
 367void gsi_trans_free(struct gsi_trans *trans)
 368{
 369        struct gsi_trans_info *trans_info;
 370
 371        if (!refcount_dec_and_test(&trans->refcount))
 372                return;
 373
 374        trans_info = &trans->gsi->channel[trans->channel_id].trans_info;
 375
 376        spin_lock_bh(&trans_info->spinlock);
 377
 378        list_del(&trans->links);
 379
 380        spin_unlock_bh(&trans_info->spinlock);
 381
 382        ipa_gsi_trans_release(trans);
 383
 384        /* Releasing the reserved TREs implicitly frees the sgl[] and
 385         * (if present) info[] arrays, plus the transaction itself.
 386         */
 387        gsi_trans_tre_release(trans_info, trans->tre_count);
 388}
 389
 390/* Add an immediate command to a transaction */
 391void gsi_trans_cmd_add(struct gsi_trans *trans, void *buf, u32 size,
 392                       dma_addr_t addr, enum dma_data_direction direction,
 393                       enum ipa_cmd_opcode opcode)
 394{
 395        struct ipa_cmd_info *info;
 396        u32 which = trans->used++;
 397        struct scatterlist *sg;
 398
 399        /* assert(which < trans->tre_count); */
 400
 401        /* Set the page information for the buffer.  We also need to fill in
 402         * the DMA address and length for the buffer (something dma_map_sg()
 403         * normally does).
 404         */
 405        sg = &trans->sgl[which];
 406
 407        sg_set_buf(sg, buf, size);
 408        sg_dma_address(sg) = addr;
 409        sg_dma_len(sg) = sg->length;
 410
 411        info = &trans->info[which];
 412        info->opcode = opcode;
 413        info->direction = direction;
 414}
 415
 416/* Add a page transfer to a transaction.  It will fill the only TRE. */
 417int gsi_trans_page_add(struct gsi_trans *trans, struct page *page, u32 size,
 418                       u32 offset)
 419{
 420        struct scatterlist *sg = &trans->sgl[0];
 421        int ret;
 422
 423        /* assert(trans->tre_count == 1); */
 424        /* assert(!trans->used); */
 425
 426        sg_set_page(sg, page, size, offset);
 427        ret = dma_map_sg(trans->gsi->dev, sg, 1, trans->direction);
 428        if (!ret)
 429                return -ENOMEM;
 430
 431        trans->used++;  /* Transaction now owns the (DMA mapped) page */
 432
 433        return 0;
 434}
 435
 436/* Add an SKB transfer to a transaction.  No other TREs will be used. */
 437int gsi_trans_skb_add(struct gsi_trans *trans, struct sk_buff *skb)
 438{
 439        struct scatterlist *sg = &trans->sgl[0];
 440        u32 used;
 441        int ret;
 442
 443        /* assert(trans->tre_count == 1); */
 444        /* assert(!trans->used); */
 445
 446        /* skb->len will not be 0 (checked early) */
 447        ret = skb_to_sgvec(skb, sg, 0, skb->len);
 448        if (ret < 0)
 449                return ret;
 450        used = ret;
 451
 452        ret = dma_map_sg(trans->gsi->dev, sg, used, trans->direction);
 453        if (!ret)
 454                return -ENOMEM;
 455
 456        trans->used += used;    /* Transaction now owns the (DMA mapped) skb */
 457
 458        return 0;
 459}
 460
 461/* Compute the length/opcode value to use for a TRE */
 462static __le16 gsi_tre_len_opcode(enum ipa_cmd_opcode opcode, u32 len)
 463{
 464        return opcode == IPA_CMD_NONE ? cpu_to_le16((u16)len)
 465                                      : cpu_to_le16((u16)opcode);
 466}
 467
 468/* Compute the flags value to use for a given TRE */
 469static __le32 gsi_tre_flags(bool last_tre, bool bei, enum ipa_cmd_opcode opcode)
 470{
 471        enum gsi_tre_type tre_type;
 472        u32 tre_flags;
 473
 474        tre_type = opcode == IPA_CMD_NONE ? GSI_RE_XFER : GSI_RE_IMMD_CMD;
 475        tre_flags = u32_encode_bits(tre_type, TRE_FLAGS_TYPE_FMASK);
 476
 477        /* Last TRE contains interrupt flags */
 478        if (last_tre) {
 479                /* All transactions end in a transfer completion interrupt */
 480                tre_flags |= TRE_FLAGS_IEOT_FMASK;
 481                /* Don't interrupt when outbound commands are acknowledged */
 482                if (bei)
 483                        tre_flags |= TRE_FLAGS_BEI_FMASK;
 484        } else {        /* All others indicate there's more to come */
 485                tre_flags |= TRE_FLAGS_CHAIN_FMASK;
 486        }
 487
 488        return cpu_to_le32(tre_flags);
 489}
 490
 491static void gsi_trans_tre_fill(struct gsi_tre *dest_tre, dma_addr_t addr,
 492                               u32 len, bool last_tre, bool bei,
 493                               enum ipa_cmd_opcode opcode)
 494{
 495        struct gsi_tre tre;
 496
 497        tre.addr = cpu_to_le64(addr);
 498        tre.len_opcode = gsi_tre_len_opcode(opcode, len);
 499        tre.reserved = 0;
 500        tre.flags = gsi_tre_flags(last_tre, bei, opcode);
 501
 502        /* ARM64 can write 16 bytes as a unit with a single instruction.
 503         * Doing the assignment this way is an attempt to make that happen.
 504         */
 505        *dest_tre = tre;
 506}
 507
 508/**
 509 * __gsi_trans_commit() - Common GSI transaction commit code
 510 * @trans:      Transaction to commit
 511 * @ring_db:    Whether to tell the hardware about these queued transfers
 512 *
 513 * Formats channel ring TRE entries based on the content of the scatterlist.
 514 * Maps a transaction pointer to the last ring entry used for the transaction,
 515 * so it can be recovered when it completes.  Moves the transaction to the
 516 * pending list.  Finally, updates the channel ring pointer and optionally
 517 * rings the doorbell.
 518 */
 519static void __gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
 520{
 521        struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
 522        struct gsi_ring *ring = &channel->tre_ring;
 523        enum ipa_cmd_opcode opcode = IPA_CMD_NONE;
 524        bool bei = channel->toward_ipa;
 525        struct ipa_cmd_info *info;
 526        struct gsi_tre *dest_tre;
 527        struct scatterlist *sg;
 528        u32 byte_count = 0;
 529        u32 avail;
 530        u32 i;
 531
 532        /* assert(trans->used > 0); */
 533
 534        /* Consume the entries.  If we cross the end of the ring while
 535         * filling them we'll switch to the beginning to finish.
 536         * If there is no info array we're doing a simple data
 537         * transfer request, whose opcode is IPA_CMD_NONE.
 538         */
 539        info = trans->info ? &trans->info[0] : NULL;
 540        avail = ring->count - ring->index % ring->count;
 541        dest_tre = gsi_ring_virt(ring, ring->index);
 542        for_each_sg(trans->sgl, sg, trans->used, i) {
 543                bool last_tre = i == trans->used - 1;
 544                dma_addr_t addr = sg_dma_address(sg);
 545                u32 len = sg_dma_len(sg);
 546
 547                byte_count += len;
 548                if (!avail--)
 549                        dest_tre = gsi_ring_virt(ring, 0);
 550                if (info)
 551                        opcode = info++->opcode;
 552
 553                gsi_trans_tre_fill(dest_tre, addr, len, last_tre, bei, opcode);
 554                dest_tre++;
 555        }
 556        ring->index += trans->used;
 557
 558        if (channel->toward_ipa) {
 559                /* We record TX bytes when they are sent */
 560                trans->len = byte_count;
 561                trans->trans_count = channel->trans_count;
 562                trans->byte_count = channel->byte_count;
 563                channel->trans_count++;
 564                channel->byte_count += byte_count;
 565        }
 566
 567        /* Associate the last TRE with the transaction */
 568        gsi_channel_trans_map(channel, ring->index - 1, trans);
 569
 570        gsi_trans_move_pending(trans);
 571
 572        /* Ring doorbell if requested, or if all TREs are allocated */
 573        if (ring_db || !atomic_read(&channel->trans_info.tre_avail)) {
 574                /* Report what we're handing off to hardware for TX channels */
 575                if (channel->toward_ipa)
 576                        gsi_channel_tx_queued(channel);
 577                gsi_channel_doorbell(channel);
 578        }
 579}
 580
 581/* Commit a GSI transaction */
 582void gsi_trans_commit(struct gsi_trans *trans, bool ring_db)
 583{
 584        if (trans->used)
 585                __gsi_trans_commit(trans, ring_db);
 586        else
 587                gsi_trans_free(trans);
 588}
 589
 590/* Commit a GSI transaction and wait for it to complete */
 591void gsi_trans_commit_wait(struct gsi_trans *trans)
 592{
 593        if (!trans->used)
 594                goto out_trans_free;
 595
 596        refcount_inc(&trans->refcount);
 597
 598        __gsi_trans_commit(trans, true);
 599
 600        wait_for_completion(&trans->completion);
 601
 602out_trans_free:
 603        gsi_trans_free(trans);
 604}
 605
 606/* Commit a GSI transaction and wait for it to complete, with timeout */
 607int gsi_trans_commit_wait_timeout(struct gsi_trans *trans,
 608                                  unsigned long timeout)
 609{
 610        unsigned long timeout_jiffies = msecs_to_jiffies(timeout);
 611        unsigned long remaining = 1;    /* In case of empty transaction */
 612
 613        if (!trans->used)
 614                goto out_trans_free;
 615
 616        refcount_inc(&trans->refcount);
 617
 618        __gsi_trans_commit(trans, true);
 619
 620        remaining = wait_for_completion_timeout(&trans->completion,
 621                                                timeout_jiffies);
 622out_trans_free:
 623        gsi_trans_free(trans);
 624
 625        return remaining ? 0 : -ETIMEDOUT;
 626}
 627
 628/* Process the completion of a transaction; called while polling */
 629void gsi_trans_complete(struct gsi_trans *trans)
 630{
 631        /* If the entire SGL was mapped when added, unmap it now */
 632        if (trans->direction != DMA_NONE)
 633                dma_unmap_sg(trans->gsi->dev, trans->sgl, trans->used,
 634                             trans->direction);
 635
 636        ipa_gsi_trans_complete(trans);
 637
 638        complete(&trans->completion);
 639
 640        gsi_trans_free(trans);
 641}
 642
 643/* Cancel a channel's pending transactions */
 644void gsi_channel_trans_cancel_pending(struct gsi_channel *channel)
 645{
 646        struct gsi_trans_info *trans_info = &channel->trans_info;
 647        struct gsi_trans *trans;
 648        bool cancelled;
 649
 650        /* channel->gsi->mutex is held by caller */
 651        spin_lock_bh(&trans_info->spinlock);
 652
 653        cancelled = !list_empty(&trans_info->pending);
 654        list_for_each_entry(trans, &trans_info->pending, links)
 655                trans->cancelled = true;
 656
 657        list_splice_tail_init(&trans_info->pending, &trans_info->complete);
 658
 659        spin_unlock_bh(&trans_info->spinlock);
 660
 661        /* Schedule NAPI polling to complete the cancelled transactions */
 662        if (cancelled)
 663                napi_schedule(&channel->napi);
 664}
 665
 666/* Issue a command to read a single byte from a channel */
 667int gsi_trans_read_byte(struct gsi *gsi, u32 channel_id, dma_addr_t addr)
 668{
 669        struct gsi_channel *channel = &gsi->channel[channel_id];
 670        struct gsi_ring *ring = &channel->tre_ring;
 671        struct gsi_trans_info *trans_info;
 672        struct gsi_tre *dest_tre;
 673
 674        trans_info = &channel->trans_info;
 675
 676        /* First reserve the TRE, if possible */
 677        if (!gsi_trans_tre_reserve(trans_info, 1))
 678                return -EBUSY;
 679
 680        /* Now fill the the reserved TRE and tell the hardware */
 681
 682        dest_tre = gsi_ring_virt(ring, ring->index);
 683        gsi_trans_tre_fill(dest_tre, addr, 1, true, false, IPA_CMD_NONE);
 684
 685        ring->index++;
 686        gsi_channel_doorbell(channel);
 687
 688        return 0;
 689}
 690
 691/* Mark a gsi_trans_read_byte() request done */
 692void gsi_trans_read_byte_done(struct gsi *gsi, u32 channel_id)
 693{
 694        struct gsi_channel *channel = &gsi->channel[channel_id];
 695
 696        gsi_trans_tre_release(&channel->trans_info, 1);
 697}
 698
 699/* Initialize a channel's GSI transaction info */
 700int gsi_channel_trans_init(struct gsi *gsi, u32 channel_id)
 701{
 702        struct gsi_channel *channel = &gsi->channel[channel_id];
 703        struct gsi_trans_info *trans_info;
 704        u32 tre_max;
 705        int ret;
 706
 707        /* Ensure the size of a channel element is what's expected */
 708        BUILD_BUG_ON(sizeof(struct gsi_tre) != GSI_RING_ELEMENT_SIZE);
 709
 710        /* The map array is used to determine what transaction is associated
 711         * with a TRE that the hardware reports has completed.  We need one
 712         * map entry per TRE.
 713         */
 714        trans_info = &channel->trans_info;
 715        trans_info->map = kcalloc(channel->tre_count, sizeof(*trans_info->map),
 716                                  GFP_KERNEL);
 717        if (!trans_info->map)
 718                return -ENOMEM;
 719
 720        /* We can't use more TREs than there are available in the ring.
 721         * This limits the number of transactions that can be oustanding.
 722         * Worst case is one TRE per transaction (but we actually limit
 723         * it to something a little less than that).  We allocate resources
 724         * for transactions (including transaction structures) based on
 725         * this maximum number.
 726         */
 727        tre_max = gsi_channel_tre_max(channel->gsi, channel_id);
 728
 729        /* Transactions are allocated one at a time. */
 730        ret = gsi_trans_pool_init(&trans_info->pool, sizeof(struct gsi_trans),
 731                                  tre_max, 1);
 732        if (ret)
 733                goto err_kfree;
 734
 735        /* A transaction uses a scatterlist array to represent the data
 736         * transfers implemented by the transaction.  Each scatterlist
 737         * element is used to fill a single TRE when the transaction is
 738         * committed.  So we need as many scatterlist elements as the
 739         * maximum number of TREs that can be outstanding.
 740         *
 741         * All TREs in a transaction must fit within the channel's TLV FIFO.
 742         * A transaction on a channel can allocate as many TREs as that but
 743         * no more.
 744         */
 745        ret = gsi_trans_pool_init(&trans_info->sg_pool,
 746                                  sizeof(struct scatterlist),
 747                                  tre_max, channel->tlv_count);
 748        if (ret)
 749                goto err_trans_pool_exit;
 750
 751        /* Finally, the tre_avail field is what ultimately limits the number
 752         * of outstanding transactions and their resources.  A transaction
 753         * allocation succeeds only if the TREs available are sufficient for
 754         * what the transaction might need.  Transaction resource pools are
 755         * sized based on the maximum number of outstanding TREs, so there
 756         * will always be resources available if there are TREs available.
 757         */
 758        atomic_set(&trans_info->tre_avail, tre_max);
 759
 760        spin_lock_init(&trans_info->spinlock);
 761        INIT_LIST_HEAD(&trans_info->alloc);
 762        INIT_LIST_HEAD(&trans_info->pending);
 763        INIT_LIST_HEAD(&trans_info->complete);
 764        INIT_LIST_HEAD(&trans_info->polled);
 765
 766        return 0;
 767
 768err_trans_pool_exit:
 769        gsi_trans_pool_exit(&trans_info->pool);
 770err_kfree:
 771        kfree(trans_info->map);
 772
 773        dev_err(gsi->dev, "error %d initializing channel %u transactions\n",
 774                ret, channel_id);
 775
 776        return ret;
 777}
 778
 779/* Inverse of gsi_channel_trans_init() */
 780void gsi_channel_trans_exit(struct gsi_channel *channel)
 781{
 782        struct gsi_trans_info *trans_info = &channel->trans_info;
 783
 784        gsi_trans_pool_exit(&trans_info->sg_pool);
 785        gsi_trans_pool_exit(&trans_info->pool);
 786        kfree(trans_info->map);
 787}
 788