linux/drivers/nvme/host/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/blk-mq.h>
   9#include <linux/compat.h>
  10#include <linux/delay.h>
  11#include <linux/errno.h>
  12#include <linux/hdreg.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/backing-dev.h>
  16#include <linux/list_sort.h>
  17#include <linux/slab.h>
  18#include <linux/types.h>
  19#include <linux/pr.h>
  20#include <linux/ptrace.h>
  21#include <linux/nvme_ioctl.h>
  22#include <linux/t10-pi.h>
  23#include <linux/pm_qos.h>
  24#include <asm/unaligned.h>
  25
  26#include "nvme.h"
  27#include "fabrics.h"
  28
  29#define CREATE_TRACE_POINTS
  30#include "trace.h"
  31
  32#define NVME_MINORS             (1U << MINORBITS)
  33
  34unsigned int admin_timeout = 60;
  35module_param(admin_timeout, uint, 0644);
  36MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  37EXPORT_SYMBOL_GPL(admin_timeout);
  38
  39unsigned int nvme_io_timeout = 30;
  40module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
  41MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  42EXPORT_SYMBOL_GPL(nvme_io_timeout);
  43
  44static unsigned char shutdown_timeout = 5;
  45module_param(shutdown_timeout, byte, 0644);
  46MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  47
  48static u8 nvme_max_retries = 5;
  49module_param_named(max_retries, nvme_max_retries, byte, 0644);
  50MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
  51
  52static unsigned long default_ps_max_latency_us = 100000;
  53module_param(default_ps_max_latency_us, ulong, 0644);
  54MODULE_PARM_DESC(default_ps_max_latency_us,
  55                 "max power saving latency for new devices; use PM QOS to change per device");
  56
  57static bool force_apst;
  58module_param(force_apst, bool, 0644);
  59MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
  60
  61static bool streams;
  62module_param(streams, bool, 0644);
  63MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
  64
  65/*
  66 * nvme_wq - hosts nvme related works that are not reset or delete
  67 * nvme_reset_wq - hosts nvme reset works
  68 * nvme_delete_wq - hosts nvme delete works
  69 *
  70 * nvme_wq will host works such as scan, aen handling, fw activation,
  71 * keep-alive, periodic reconnects etc. nvme_reset_wq
  72 * runs reset works which also flush works hosted on nvme_wq for
  73 * serialization purposes. nvme_delete_wq host controller deletion
  74 * works which flush reset works for serialization.
  75 */
  76struct workqueue_struct *nvme_wq;
  77EXPORT_SYMBOL_GPL(nvme_wq);
  78
  79struct workqueue_struct *nvme_reset_wq;
  80EXPORT_SYMBOL_GPL(nvme_reset_wq);
  81
  82struct workqueue_struct *nvme_delete_wq;
  83EXPORT_SYMBOL_GPL(nvme_delete_wq);
  84
  85static LIST_HEAD(nvme_subsystems);
  86static DEFINE_MUTEX(nvme_subsystems_lock);
  87
  88static DEFINE_IDA(nvme_instance_ida);
  89static dev_t nvme_chr_devt;
  90static struct class *nvme_class;
  91static struct class *nvme_subsys_class;
  92
  93static int nvme_revalidate_disk(struct gendisk *disk);
  94static void nvme_put_subsystem(struct nvme_subsystem *subsys);
  95static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
  96                                           unsigned nsid);
  97
  98static void nvme_set_queue_dying(struct nvme_ns *ns)
  99{
 100        /*
 101         * Revalidating a dead namespace sets capacity to 0. This will end
 102         * buffered writers dirtying pages that can't be synced.
 103         */
 104        if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
 105                return;
 106        blk_set_queue_dying(ns->queue);
 107        /* Forcibly unquiesce queues to avoid blocking dispatch */
 108        blk_mq_unquiesce_queue(ns->queue);
 109        /*
 110         * Revalidate after unblocking dispatchers that may be holding bd_butex
 111         */
 112        revalidate_disk(ns->disk);
 113}
 114
 115static void nvme_queue_scan(struct nvme_ctrl *ctrl)
 116{
 117        /*
 118         * Only new queue scan work when admin and IO queues are both alive
 119         */
 120        if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
 121                queue_work(nvme_wq, &ctrl->scan_work);
 122}
 123
 124/*
 125 * Use this function to proceed with scheduling reset_work for a controller
 126 * that had previously been set to the resetting state. This is intended for
 127 * code paths that can't be interrupted by other reset attempts. A hot removal
 128 * may prevent this from succeeding.
 129 */
 130int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
 131{
 132        if (ctrl->state != NVME_CTRL_RESETTING)
 133                return -EBUSY;
 134        if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
 135                return -EBUSY;
 136        return 0;
 137}
 138EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
 139
 140int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
 141{
 142        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
 143                return -EBUSY;
 144        if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
 145                return -EBUSY;
 146        return 0;
 147}
 148EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
 149
 150int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
 151{
 152        int ret;
 153
 154        ret = nvme_reset_ctrl(ctrl);
 155        if (!ret) {
 156                flush_work(&ctrl->reset_work);
 157                if (ctrl->state != NVME_CTRL_LIVE)
 158                        ret = -ENETRESET;
 159        }
 160
 161        return ret;
 162}
 163EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
 164
 165static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
 166{
 167        dev_info(ctrl->device,
 168                 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
 169
 170        flush_work(&ctrl->reset_work);
 171        nvme_stop_ctrl(ctrl);
 172        nvme_remove_namespaces(ctrl);
 173        ctrl->ops->delete_ctrl(ctrl);
 174        nvme_uninit_ctrl(ctrl);
 175}
 176
 177static void nvme_delete_ctrl_work(struct work_struct *work)
 178{
 179        struct nvme_ctrl *ctrl =
 180                container_of(work, struct nvme_ctrl, delete_work);
 181
 182        nvme_do_delete_ctrl(ctrl);
 183}
 184
 185int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
 186{
 187        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 188                return -EBUSY;
 189        if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
 190                return -EBUSY;
 191        return 0;
 192}
 193EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
 194
 195static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
 196{
 197        /*
 198         * Keep a reference until nvme_do_delete_ctrl() complete,
 199         * since ->delete_ctrl can free the controller.
 200         */
 201        nvme_get_ctrl(ctrl);
 202        if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
 203                nvme_do_delete_ctrl(ctrl);
 204        nvme_put_ctrl(ctrl);
 205}
 206
 207static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
 208{
 209        return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
 210}
 211
 212static blk_status_t nvme_error_status(u16 status)
 213{
 214        switch (status & 0x7ff) {
 215        case NVME_SC_SUCCESS:
 216                return BLK_STS_OK;
 217        case NVME_SC_CAP_EXCEEDED:
 218                return BLK_STS_NOSPC;
 219        case NVME_SC_LBA_RANGE:
 220        case NVME_SC_CMD_INTERRUPTED:
 221        case NVME_SC_NS_NOT_READY:
 222                return BLK_STS_TARGET;
 223        case NVME_SC_BAD_ATTRIBUTES:
 224        case NVME_SC_ONCS_NOT_SUPPORTED:
 225        case NVME_SC_INVALID_OPCODE:
 226        case NVME_SC_INVALID_FIELD:
 227        case NVME_SC_INVALID_NS:
 228                return BLK_STS_NOTSUPP;
 229        case NVME_SC_WRITE_FAULT:
 230        case NVME_SC_READ_ERROR:
 231        case NVME_SC_UNWRITTEN_BLOCK:
 232        case NVME_SC_ACCESS_DENIED:
 233        case NVME_SC_READ_ONLY:
 234        case NVME_SC_COMPARE_FAILED:
 235                return BLK_STS_MEDIUM;
 236        case NVME_SC_GUARD_CHECK:
 237        case NVME_SC_APPTAG_CHECK:
 238        case NVME_SC_REFTAG_CHECK:
 239        case NVME_SC_INVALID_PI:
 240                return BLK_STS_PROTECTION;
 241        case NVME_SC_RESERVATION_CONFLICT:
 242                return BLK_STS_NEXUS;
 243        case NVME_SC_HOST_PATH_ERROR:
 244                return BLK_STS_TRANSPORT;
 245        default:
 246                return BLK_STS_IOERR;
 247        }
 248}
 249
 250static inline bool nvme_req_needs_retry(struct request *req)
 251{
 252        if (blk_noretry_request(req))
 253                return false;
 254        if (nvme_req(req)->status & NVME_SC_DNR)
 255                return false;
 256        if (nvme_req(req)->retries >= nvme_max_retries)
 257                return false;
 258        return true;
 259}
 260
 261static void nvme_retry_req(struct request *req)
 262{
 263        struct nvme_ns *ns = req->q->queuedata;
 264        unsigned long delay = 0;
 265        u16 crd;
 266
 267        /* The mask and shift result must be <= 3 */
 268        crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
 269        if (ns && crd)
 270                delay = ns->ctrl->crdt[crd - 1] * 100;
 271
 272        nvme_req(req)->retries++;
 273        blk_mq_requeue_request(req, false);
 274        blk_mq_delay_kick_requeue_list(req->q, delay);
 275}
 276
 277void nvme_complete_rq(struct request *req)
 278{
 279        blk_status_t status = nvme_error_status(nvme_req(req)->status);
 280
 281        trace_nvme_complete_rq(req);
 282
 283        nvme_cleanup_cmd(req);
 284
 285        if (nvme_req(req)->ctrl->kas)
 286                nvme_req(req)->ctrl->comp_seen = true;
 287
 288        if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
 289                if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req))
 290                        return;
 291
 292                if (!blk_queue_dying(req->q)) {
 293                        nvme_retry_req(req);
 294                        return;
 295                }
 296        }
 297
 298        nvme_trace_bio_complete(req, status);
 299        blk_mq_end_request(req, status);
 300}
 301EXPORT_SYMBOL_GPL(nvme_complete_rq);
 302
 303bool nvme_cancel_request(struct request *req, void *data, bool reserved)
 304{
 305        dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
 306                                "Cancelling I/O %d", req->tag);
 307
 308        /* don't abort one completed request */
 309        if (blk_mq_request_completed(req))
 310                return true;
 311
 312        nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
 313        blk_mq_complete_request(req);
 314        return true;
 315}
 316EXPORT_SYMBOL_GPL(nvme_cancel_request);
 317
 318bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
 319                enum nvme_ctrl_state new_state)
 320{
 321        enum nvme_ctrl_state old_state;
 322        unsigned long flags;
 323        bool changed = false;
 324
 325        spin_lock_irqsave(&ctrl->lock, flags);
 326
 327        old_state = ctrl->state;
 328        switch (new_state) {
 329        case NVME_CTRL_LIVE:
 330                switch (old_state) {
 331                case NVME_CTRL_NEW:
 332                case NVME_CTRL_RESETTING:
 333                case NVME_CTRL_CONNECTING:
 334                        changed = true;
 335                        /* FALLTHRU */
 336                default:
 337                        break;
 338                }
 339                break;
 340        case NVME_CTRL_RESETTING:
 341                switch (old_state) {
 342                case NVME_CTRL_NEW:
 343                case NVME_CTRL_LIVE:
 344                        changed = true;
 345                        /* FALLTHRU */
 346                default:
 347                        break;
 348                }
 349                break;
 350        case NVME_CTRL_CONNECTING:
 351                switch (old_state) {
 352                case NVME_CTRL_NEW:
 353                case NVME_CTRL_RESETTING:
 354                        changed = true;
 355                        /* FALLTHRU */
 356                default:
 357                        break;
 358                }
 359                break;
 360        case NVME_CTRL_DELETING:
 361                switch (old_state) {
 362                case NVME_CTRL_LIVE:
 363                case NVME_CTRL_RESETTING:
 364                case NVME_CTRL_CONNECTING:
 365                        changed = true;
 366                        /* FALLTHRU */
 367                default:
 368                        break;
 369                }
 370                break;
 371        case NVME_CTRL_DEAD:
 372                switch (old_state) {
 373                case NVME_CTRL_DELETING:
 374                        changed = true;
 375                        /* FALLTHRU */
 376                default:
 377                        break;
 378                }
 379                break;
 380        default:
 381                break;
 382        }
 383
 384        if (changed) {
 385                ctrl->state = new_state;
 386                wake_up_all(&ctrl->state_wq);
 387        }
 388
 389        spin_unlock_irqrestore(&ctrl->lock, flags);
 390        if (changed && ctrl->state == NVME_CTRL_LIVE)
 391                nvme_kick_requeue_lists(ctrl);
 392        return changed;
 393}
 394EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
 395
 396/*
 397 * Returns true for sink states that can't ever transition back to live.
 398 */
 399static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
 400{
 401        switch (ctrl->state) {
 402        case NVME_CTRL_NEW:
 403        case NVME_CTRL_LIVE:
 404        case NVME_CTRL_RESETTING:
 405        case NVME_CTRL_CONNECTING:
 406                return false;
 407        case NVME_CTRL_DELETING:
 408        case NVME_CTRL_DEAD:
 409                return true;
 410        default:
 411                WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
 412                return true;
 413        }
 414}
 415
 416/*
 417 * Waits for the controller state to be resetting, or returns false if it is
 418 * not possible to ever transition to that state.
 419 */
 420bool nvme_wait_reset(struct nvme_ctrl *ctrl)
 421{
 422        wait_event(ctrl->state_wq,
 423                   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
 424                   nvme_state_terminal(ctrl));
 425        return ctrl->state == NVME_CTRL_RESETTING;
 426}
 427EXPORT_SYMBOL_GPL(nvme_wait_reset);
 428
 429static void nvme_free_ns_head(struct kref *ref)
 430{
 431        struct nvme_ns_head *head =
 432                container_of(ref, struct nvme_ns_head, ref);
 433
 434        nvme_mpath_remove_disk(head);
 435        ida_simple_remove(&head->subsys->ns_ida, head->instance);
 436        list_del_init(&head->entry);
 437        cleanup_srcu_struct(&head->srcu);
 438        nvme_put_subsystem(head->subsys);
 439        kfree(head);
 440}
 441
 442static void nvme_put_ns_head(struct nvme_ns_head *head)
 443{
 444        kref_put(&head->ref, nvme_free_ns_head);
 445}
 446
 447static void nvme_free_ns(struct kref *kref)
 448{
 449        struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
 450
 451        if (ns->ndev)
 452                nvme_nvm_unregister(ns);
 453
 454        put_disk(ns->disk);
 455        nvme_put_ns_head(ns->head);
 456        nvme_put_ctrl(ns->ctrl);
 457        kfree(ns);
 458}
 459
 460static void nvme_put_ns(struct nvme_ns *ns)
 461{
 462        kref_put(&ns->kref, nvme_free_ns);
 463}
 464
 465static inline void nvme_clear_nvme_request(struct request *req)
 466{
 467        if (!(req->rq_flags & RQF_DONTPREP)) {
 468                nvme_req(req)->retries = 0;
 469                nvme_req(req)->flags = 0;
 470                req->rq_flags |= RQF_DONTPREP;
 471        }
 472}
 473
 474struct request *nvme_alloc_request(struct request_queue *q,
 475                struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
 476{
 477        unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
 478        struct request *req;
 479
 480        if (qid == NVME_QID_ANY) {
 481                req = blk_mq_alloc_request(q, op, flags);
 482        } else {
 483                req = blk_mq_alloc_request_hctx(q, op, flags,
 484                                qid ? qid - 1 : 0);
 485        }
 486        if (IS_ERR(req))
 487                return req;
 488
 489        req->cmd_flags |= REQ_FAILFAST_DRIVER;
 490        nvme_clear_nvme_request(req);
 491        nvme_req(req)->cmd = cmd;
 492
 493        return req;
 494}
 495EXPORT_SYMBOL_GPL(nvme_alloc_request);
 496
 497static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
 498{
 499        struct nvme_command c;
 500
 501        memset(&c, 0, sizeof(c));
 502
 503        c.directive.opcode = nvme_admin_directive_send;
 504        c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
 505        c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
 506        c.directive.dtype = NVME_DIR_IDENTIFY;
 507        c.directive.tdtype = NVME_DIR_STREAMS;
 508        c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
 509
 510        return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
 511}
 512
 513static int nvme_disable_streams(struct nvme_ctrl *ctrl)
 514{
 515        return nvme_toggle_streams(ctrl, false);
 516}
 517
 518static int nvme_enable_streams(struct nvme_ctrl *ctrl)
 519{
 520        return nvme_toggle_streams(ctrl, true);
 521}
 522
 523static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
 524                                  struct streams_directive_params *s, u32 nsid)
 525{
 526        struct nvme_command c;
 527
 528        memset(&c, 0, sizeof(c));
 529        memset(s, 0, sizeof(*s));
 530
 531        c.directive.opcode = nvme_admin_directive_recv;
 532        c.directive.nsid = cpu_to_le32(nsid);
 533        c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
 534        c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
 535        c.directive.dtype = NVME_DIR_STREAMS;
 536
 537        return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
 538}
 539
 540static int nvme_configure_directives(struct nvme_ctrl *ctrl)
 541{
 542        struct streams_directive_params s;
 543        int ret;
 544
 545        if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
 546                return 0;
 547        if (!streams)
 548                return 0;
 549
 550        ret = nvme_enable_streams(ctrl);
 551        if (ret)
 552                return ret;
 553
 554        ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
 555        if (ret)
 556                return ret;
 557
 558        ctrl->nssa = le16_to_cpu(s.nssa);
 559        if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
 560                dev_info(ctrl->device, "too few streams (%u) available\n",
 561                                        ctrl->nssa);
 562                nvme_disable_streams(ctrl);
 563                return 0;
 564        }
 565
 566        ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
 567        dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
 568        return 0;
 569}
 570
 571/*
 572 * Check if 'req' has a write hint associated with it. If it does, assign
 573 * a valid namespace stream to the write.
 574 */
 575static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
 576                                     struct request *req, u16 *control,
 577                                     u32 *dsmgmt)
 578{
 579        enum rw_hint streamid = req->write_hint;
 580
 581        if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
 582                streamid = 0;
 583        else {
 584                streamid--;
 585                if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
 586                        return;
 587
 588                *control |= NVME_RW_DTYPE_STREAMS;
 589                *dsmgmt |= streamid << 16;
 590        }
 591
 592        if (streamid < ARRAY_SIZE(req->q->write_hints))
 593                req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
 594}
 595
 596static inline void nvme_setup_flush(struct nvme_ns *ns,
 597                struct nvme_command *cmnd)
 598{
 599        cmnd->common.opcode = nvme_cmd_flush;
 600        cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
 601}
 602
 603static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
 604                struct nvme_command *cmnd)
 605{
 606        unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
 607        struct nvme_dsm_range *range;
 608        struct bio *bio;
 609
 610        /*
 611         * Some devices do not consider the DSM 'Number of Ranges' field when
 612         * determining how much data to DMA. Always allocate memory for maximum
 613         * number of segments to prevent device reading beyond end of buffer.
 614         */
 615        static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
 616
 617        range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
 618        if (!range) {
 619                /*
 620                 * If we fail allocation our range, fallback to the controller
 621                 * discard page. If that's also busy, it's safe to return
 622                 * busy, as we know we can make progress once that's freed.
 623                 */
 624                if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
 625                        return BLK_STS_RESOURCE;
 626
 627                range = page_address(ns->ctrl->discard_page);
 628        }
 629
 630        __rq_for_each_bio(bio, req) {
 631                u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
 632                u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
 633
 634                if (n < segments) {
 635                        range[n].cattr = cpu_to_le32(0);
 636                        range[n].nlb = cpu_to_le32(nlb);
 637                        range[n].slba = cpu_to_le64(slba);
 638                }
 639                n++;
 640        }
 641
 642        if (WARN_ON_ONCE(n != segments)) {
 643                if (virt_to_page(range) == ns->ctrl->discard_page)
 644                        clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
 645                else
 646                        kfree(range);
 647                return BLK_STS_IOERR;
 648        }
 649
 650        cmnd->dsm.opcode = nvme_cmd_dsm;
 651        cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
 652        cmnd->dsm.nr = cpu_to_le32(segments - 1);
 653        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 654
 655        req->special_vec.bv_page = virt_to_page(range);
 656        req->special_vec.bv_offset = offset_in_page(range);
 657        req->special_vec.bv_len = alloc_size;
 658        req->rq_flags |= RQF_SPECIAL_PAYLOAD;
 659
 660        return BLK_STS_OK;
 661}
 662
 663static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
 664                struct request *req, struct nvme_command *cmnd)
 665{
 666        if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
 667                return nvme_setup_discard(ns, req, cmnd);
 668
 669        cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
 670        cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
 671        cmnd->write_zeroes.slba =
 672                cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
 673        cmnd->write_zeroes.length =
 674                cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 675        cmnd->write_zeroes.control = 0;
 676        return BLK_STS_OK;
 677}
 678
 679static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
 680                struct request *req, struct nvme_command *cmnd)
 681{
 682        struct nvme_ctrl *ctrl = ns->ctrl;
 683        u16 control = 0;
 684        u32 dsmgmt = 0;
 685
 686        if (req->cmd_flags & REQ_FUA)
 687                control |= NVME_RW_FUA;
 688        if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 689                control |= NVME_RW_LR;
 690
 691        if (req->cmd_flags & REQ_RAHEAD)
 692                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 693
 694        cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
 695        cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
 696        cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
 697        cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
 698
 699        if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
 700                nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
 701
 702        if (ns->ms) {
 703                /*
 704                 * If formated with metadata, the block layer always provides a
 705                 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
 706                 * we enable the PRACT bit for protection information or set the
 707                 * namespace capacity to zero to prevent any I/O.
 708                 */
 709                if (!blk_integrity_rq(req)) {
 710                        if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
 711                                return BLK_STS_NOTSUPP;
 712                        control |= NVME_RW_PRINFO_PRACT;
 713                }
 714
 715                switch (ns->pi_type) {
 716                case NVME_NS_DPS_PI_TYPE3:
 717                        control |= NVME_RW_PRINFO_PRCHK_GUARD;
 718                        break;
 719                case NVME_NS_DPS_PI_TYPE1:
 720                case NVME_NS_DPS_PI_TYPE2:
 721                        control |= NVME_RW_PRINFO_PRCHK_GUARD |
 722                                        NVME_RW_PRINFO_PRCHK_REF;
 723                        cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
 724                        break;
 725                }
 726        }
 727
 728        cmnd->rw.control = cpu_to_le16(control);
 729        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 730        return 0;
 731}
 732
 733void nvme_cleanup_cmd(struct request *req)
 734{
 735        if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
 736                struct nvme_ns *ns = req->rq_disk->private_data;
 737                struct page *page = req->special_vec.bv_page;
 738
 739                if (page == ns->ctrl->discard_page)
 740                        clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
 741                else
 742                        kfree(page_address(page) + req->special_vec.bv_offset);
 743        }
 744}
 745EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
 746
 747blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
 748                struct nvme_command *cmd)
 749{
 750        blk_status_t ret = BLK_STS_OK;
 751
 752        nvme_clear_nvme_request(req);
 753
 754        memset(cmd, 0, sizeof(*cmd));
 755        switch (req_op(req)) {
 756        case REQ_OP_DRV_IN:
 757        case REQ_OP_DRV_OUT:
 758                memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
 759                break;
 760        case REQ_OP_FLUSH:
 761                nvme_setup_flush(ns, cmd);
 762                break;
 763        case REQ_OP_WRITE_ZEROES:
 764                ret = nvme_setup_write_zeroes(ns, req, cmd);
 765                break;
 766        case REQ_OP_DISCARD:
 767                ret = nvme_setup_discard(ns, req, cmd);
 768                break;
 769        case REQ_OP_READ:
 770        case REQ_OP_WRITE:
 771                ret = nvme_setup_rw(ns, req, cmd);
 772                break;
 773        default:
 774                WARN_ON_ONCE(1);
 775                return BLK_STS_IOERR;
 776        }
 777
 778        cmd->common.command_id = req->tag;
 779        trace_nvme_setup_cmd(req, cmd);
 780        return ret;
 781}
 782EXPORT_SYMBOL_GPL(nvme_setup_cmd);
 783
 784static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
 785{
 786        struct completion *waiting = rq->end_io_data;
 787
 788        rq->end_io_data = NULL;
 789        complete(waiting);
 790}
 791
 792static void nvme_execute_rq_polled(struct request_queue *q,
 793                struct gendisk *bd_disk, struct request *rq, int at_head)
 794{
 795        DECLARE_COMPLETION_ONSTACK(wait);
 796
 797        WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
 798
 799        rq->cmd_flags |= REQ_HIPRI;
 800        rq->end_io_data = &wait;
 801        blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
 802
 803        while (!completion_done(&wait)) {
 804                blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
 805                cond_resched();
 806        }
 807}
 808
 809/*
 810 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 811 * if the result is positive, it's an NVM Express status code
 812 */
 813int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
 814                union nvme_result *result, void *buffer, unsigned bufflen,
 815                unsigned timeout, int qid, int at_head,
 816                blk_mq_req_flags_t flags, bool poll)
 817{
 818        struct request *req;
 819        int ret;
 820
 821        req = nvme_alloc_request(q, cmd, flags, qid);
 822        if (IS_ERR(req))
 823                return PTR_ERR(req);
 824
 825        req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
 826
 827        if (buffer && bufflen) {
 828                ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
 829                if (ret)
 830                        goto out;
 831        }
 832
 833        if (poll)
 834                nvme_execute_rq_polled(req->q, NULL, req, at_head);
 835        else
 836                blk_execute_rq(req->q, NULL, req, at_head);
 837        if (result)
 838                *result = nvme_req(req)->result;
 839        if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
 840                ret = -EINTR;
 841        else
 842                ret = nvme_req(req)->status;
 843 out:
 844        blk_mq_free_request(req);
 845        return ret;
 846}
 847EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
 848
 849int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
 850                void *buffer, unsigned bufflen)
 851{
 852        return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
 853                        NVME_QID_ANY, 0, 0, false);
 854}
 855EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
 856
 857static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
 858                unsigned len, u32 seed, bool write)
 859{
 860        struct bio_integrity_payload *bip;
 861        int ret = -ENOMEM;
 862        void *buf;
 863
 864        buf = kmalloc(len, GFP_KERNEL);
 865        if (!buf)
 866                goto out;
 867
 868        ret = -EFAULT;
 869        if (write && copy_from_user(buf, ubuf, len))
 870                goto out_free_meta;
 871
 872        bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
 873        if (IS_ERR(bip)) {
 874                ret = PTR_ERR(bip);
 875                goto out_free_meta;
 876        }
 877
 878        bip->bip_iter.bi_size = len;
 879        bip->bip_iter.bi_sector = seed;
 880        ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
 881                        offset_in_page(buf));
 882        if (ret == len)
 883                return buf;
 884        ret = -ENOMEM;
 885out_free_meta:
 886        kfree(buf);
 887out:
 888        return ERR_PTR(ret);
 889}
 890
 891static int nvme_submit_user_cmd(struct request_queue *q,
 892                struct nvme_command *cmd, void __user *ubuffer,
 893                unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
 894                u32 meta_seed, u64 *result, unsigned timeout)
 895{
 896        bool write = nvme_is_write(cmd);
 897        struct nvme_ns *ns = q->queuedata;
 898        struct gendisk *disk = ns ? ns->disk : NULL;
 899        struct request *req;
 900        struct bio *bio = NULL;
 901        void *meta = NULL;
 902        int ret;
 903
 904        req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
 905        if (IS_ERR(req))
 906                return PTR_ERR(req);
 907
 908        req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
 909        nvme_req(req)->flags |= NVME_REQ_USERCMD;
 910
 911        if (ubuffer && bufflen) {
 912                ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
 913                                GFP_KERNEL);
 914                if (ret)
 915                        goto out;
 916                bio = req->bio;
 917                bio->bi_disk = disk;
 918                if (disk && meta_buffer && meta_len) {
 919                        meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
 920                                        meta_seed, write);
 921                        if (IS_ERR(meta)) {
 922                                ret = PTR_ERR(meta);
 923                                goto out_unmap;
 924                        }
 925                        req->cmd_flags |= REQ_INTEGRITY;
 926                }
 927        }
 928
 929        blk_execute_rq(req->q, disk, req, 0);
 930        if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
 931                ret = -EINTR;
 932        else
 933                ret = nvme_req(req)->status;
 934        if (result)
 935                *result = le64_to_cpu(nvme_req(req)->result.u64);
 936        if (meta && !ret && !write) {
 937                if (copy_to_user(meta_buffer, meta, meta_len))
 938                        ret = -EFAULT;
 939        }
 940        kfree(meta);
 941 out_unmap:
 942        if (bio)
 943                blk_rq_unmap_user(bio);
 944 out:
 945        blk_mq_free_request(req);
 946        return ret;
 947}
 948
 949static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
 950{
 951        struct nvme_ctrl *ctrl = rq->end_io_data;
 952        unsigned long flags;
 953        bool startka = false;
 954
 955        blk_mq_free_request(rq);
 956
 957        if (status) {
 958                dev_err(ctrl->device,
 959                        "failed nvme_keep_alive_end_io error=%d\n",
 960                                status);
 961                return;
 962        }
 963
 964        ctrl->comp_seen = false;
 965        spin_lock_irqsave(&ctrl->lock, flags);
 966        if (ctrl->state == NVME_CTRL_LIVE ||
 967            ctrl->state == NVME_CTRL_CONNECTING)
 968                startka = true;
 969        spin_unlock_irqrestore(&ctrl->lock, flags);
 970        if (startka)
 971                queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
 972}
 973
 974static int nvme_keep_alive(struct nvme_ctrl *ctrl)
 975{
 976        struct request *rq;
 977
 978        rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
 979                        NVME_QID_ANY);
 980        if (IS_ERR(rq))
 981                return PTR_ERR(rq);
 982
 983        rq->timeout = ctrl->kato * HZ;
 984        rq->end_io_data = ctrl;
 985
 986        blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
 987
 988        return 0;
 989}
 990
 991static void nvme_keep_alive_work(struct work_struct *work)
 992{
 993        struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
 994                        struct nvme_ctrl, ka_work);
 995        bool comp_seen = ctrl->comp_seen;
 996
 997        if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
 998                dev_dbg(ctrl->device,
 999                        "reschedule traffic based keep-alive timer\n");
1000                ctrl->comp_seen = false;
1001                queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1002                return;
1003        }
1004
1005        if (nvme_keep_alive(ctrl)) {
1006                /* allocation failure, reset the controller */
1007                dev_err(ctrl->device, "keep-alive failed\n");
1008                nvme_reset_ctrl(ctrl);
1009                return;
1010        }
1011}
1012
1013static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1014{
1015        if (unlikely(ctrl->kato == 0))
1016                return;
1017
1018        queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1019}
1020
1021void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1022{
1023        if (unlikely(ctrl->kato == 0))
1024                return;
1025
1026        cancel_delayed_work_sync(&ctrl->ka_work);
1027}
1028EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1029
1030static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1031{
1032        struct nvme_command c = { };
1033        int error;
1034
1035        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1036        c.identify.opcode = nvme_admin_identify;
1037        c.identify.cns = NVME_ID_CNS_CTRL;
1038
1039        *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1040        if (!*id)
1041                return -ENOMEM;
1042
1043        error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1044                        sizeof(struct nvme_id_ctrl));
1045        if (error)
1046                kfree(*id);
1047        return error;
1048}
1049
1050static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1051                struct nvme_ns_id_desc *cur)
1052{
1053        const char *warn_str = "ctrl returned bogus length:";
1054        void *data = cur;
1055
1056        switch (cur->nidt) {
1057        case NVME_NIDT_EUI64:
1058                if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1059                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1060                                 warn_str, cur->nidl);
1061                        return -1;
1062                }
1063                memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1064                return NVME_NIDT_EUI64_LEN;
1065        case NVME_NIDT_NGUID:
1066                if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1067                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1068                                 warn_str, cur->nidl);
1069                        return -1;
1070                }
1071                memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1072                return NVME_NIDT_NGUID_LEN;
1073        case NVME_NIDT_UUID:
1074                if (cur->nidl != NVME_NIDT_UUID_LEN) {
1075                        dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1076                                 warn_str, cur->nidl);
1077                        return -1;
1078                }
1079                uuid_copy(&ids->uuid, data + sizeof(*cur));
1080                return NVME_NIDT_UUID_LEN;
1081        default:
1082                /* Skip unknown types */
1083                return cur->nidl;
1084        }
1085}
1086
1087static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1088                struct nvme_ns_ids *ids)
1089{
1090        struct nvme_command c = { };
1091        int status;
1092        void *data;
1093        int pos;
1094        int len;
1095
1096        c.identify.opcode = nvme_admin_identify;
1097        c.identify.nsid = cpu_to_le32(nsid);
1098        c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1099
1100        data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1101        if (!data)
1102                return -ENOMEM;
1103
1104        status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1105                                      NVME_IDENTIFY_DATA_SIZE);
1106        if (status) {
1107                dev_warn(ctrl->device,
1108                        "Identify Descriptors failed (%d)\n", status);
1109                 /*
1110                  * Don't treat an error as fatal, as we potentially already
1111                  * have a NGUID or EUI-64.
1112                  */
1113                if (status > 0 && !(status & NVME_SC_DNR))
1114                        status = 0;
1115                goto free_data;
1116        }
1117
1118        for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1119                struct nvme_ns_id_desc *cur = data + pos;
1120
1121                if (cur->nidl == 0)
1122                        break;
1123
1124                len = nvme_process_ns_desc(ctrl, ids, cur);
1125                if (len < 0)
1126                        goto free_data;
1127
1128                len += sizeof(*cur);
1129        }
1130free_data:
1131        kfree(data);
1132        return status;
1133}
1134
1135static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1136{
1137        struct nvme_command c = { };
1138
1139        c.identify.opcode = nvme_admin_identify;
1140        c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1141        c.identify.nsid = cpu_to_le32(nsid);
1142        return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1143                                    NVME_IDENTIFY_DATA_SIZE);
1144}
1145
1146static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1147                unsigned nsid, struct nvme_id_ns **id)
1148{
1149        struct nvme_command c = { };
1150        int error;
1151
1152        /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1153        c.identify.opcode = nvme_admin_identify;
1154        c.identify.nsid = cpu_to_le32(nsid);
1155        c.identify.cns = NVME_ID_CNS_NS;
1156
1157        *id = kmalloc(sizeof(**id), GFP_KERNEL);
1158        if (!*id)
1159                return -ENOMEM;
1160
1161        error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1162        if (error) {
1163                dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1164                kfree(*id);
1165        }
1166
1167        return error;
1168}
1169
1170static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1171                unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1172{
1173        union nvme_result res = { 0 };
1174        struct nvme_command c;
1175        int ret;
1176
1177        memset(&c, 0, sizeof(c));
1178        c.features.opcode = op;
1179        c.features.fid = cpu_to_le32(fid);
1180        c.features.dword11 = cpu_to_le32(dword11);
1181
1182        ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1183                        buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1184        if (ret >= 0 && result)
1185                *result = le32_to_cpu(res.u32);
1186        return ret;
1187}
1188
1189int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1190                      unsigned int dword11, void *buffer, size_t buflen,
1191                      u32 *result)
1192{
1193        return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1194                             buflen, result);
1195}
1196EXPORT_SYMBOL_GPL(nvme_set_features);
1197
1198int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1199                      unsigned int dword11, void *buffer, size_t buflen,
1200                      u32 *result)
1201{
1202        return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1203                             buflen, result);
1204}
1205EXPORT_SYMBOL_GPL(nvme_get_features);
1206
1207int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1208{
1209        u32 q_count = (*count - 1) | ((*count - 1) << 16);
1210        u32 result;
1211        int status, nr_io_queues;
1212
1213        status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1214                        &result);
1215        if (status < 0)
1216                return status;
1217
1218        /*
1219         * Degraded controllers might return an error when setting the queue
1220         * count.  We still want to be able to bring them online and offer
1221         * access to the admin queue, as that might be only way to fix them up.
1222         */
1223        if (status > 0) {
1224                dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1225                *count = 0;
1226        } else {
1227                nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1228                *count = min(*count, nr_io_queues);
1229        }
1230
1231        return 0;
1232}
1233EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1234
1235#define NVME_AEN_SUPPORTED \
1236        (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1237         NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1238
1239static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1240{
1241        u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1242        int status;
1243
1244        if (!supported_aens)
1245                return;
1246
1247        status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1248                        NULL, 0, &result);
1249        if (status)
1250                dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1251                         supported_aens);
1252
1253        queue_work(nvme_wq, &ctrl->async_event_work);
1254}
1255
1256/*
1257 * Convert integer values from ioctl structures to user pointers, silently
1258 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1259 * kernels.
1260 */
1261static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1262{
1263        if (in_compat_syscall())
1264                ptrval = (compat_uptr_t)ptrval;
1265        return (void __user *)ptrval;
1266}
1267
1268static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1269{
1270        struct nvme_user_io io;
1271        struct nvme_command c;
1272        unsigned length, meta_len;
1273        void __user *metadata;
1274
1275        if (copy_from_user(&io, uio, sizeof(io)))
1276                return -EFAULT;
1277        if (io.flags)
1278                return -EINVAL;
1279
1280        switch (io.opcode) {
1281        case nvme_cmd_write:
1282        case nvme_cmd_read:
1283        case nvme_cmd_compare:
1284                break;
1285        default:
1286                return -EINVAL;
1287        }
1288
1289        length = (io.nblocks + 1) << ns->lba_shift;
1290        meta_len = (io.nblocks + 1) * ns->ms;
1291        metadata = nvme_to_user_ptr(io.metadata);
1292
1293        if (ns->ext) {
1294                length += meta_len;
1295                meta_len = 0;
1296        } else if (meta_len) {
1297                if ((io.metadata & 3) || !io.metadata)
1298                        return -EINVAL;
1299        }
1300
1301        memset(&c, 0, sizeof(c));
1302        c.rw.opcode = io.opcode;
1303        c.rw.flags = io.flags;
1304        c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1305        c.rw.slba = cpu_to_le64(io.slba);
1306        c.rw.length = cpu_to_le16(io.nblocks);
1307        c.rw.control = cpu_to_le16(io.control);
1308        c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1309        c.rw.reftag = cpu_to_le32(io.reftag);
1310        c.rw.apptag = cpu_to_le16(io.apptag);
1311        c.rw.appmask = cpu_to_le16(io.appmask);
1312
1313        return nvme_submit_user_cmd(ns->queue, &c,
1314                        nvme_to_user_ptr(io.addr), length,
1315                        metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1316}
1317
1318static u32 nvme_known_admin_effects(u8 opcode)
1319{
1320        switch (opcode) {
1321        case nvme_admin_format_nvm:
1322                return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1323                                        NVME_CMD_EFFECTS_CSE_MASK;
1324        case nvme_admin_sanitize_nvm:
1325                return NVME_CMD_EFFECTS_CSE_MASK;
1326        default:
1327                break;
1328        }
1329        return 0;
1330}
1331
1332static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1333                                                                u8 opcode)
1334{
1335        u32 effects = 0;
1336
1337        if (ns) {
1338                if (ctrl->effects)
1339                        effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1340                if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1341                        dev_warn(ctrl->device,
1342                                 "IO command:%02x has unhandled effects:%08x\n",
1343                                 opcode, effects);
1344                return 0;
1345        }
1346
1347        if (ctrl->effects)
1348                effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1349        effects |= nvme_known_admin_effects(opcode);
1350
1351        /*
1352         * For simplicity, IO to all namespaces is quiesced even if the command
1353         * effects say only one namespace is affected.
1354         */
1355        if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1356                mutex_lock(&ctrl->scan_lock);
1357                mutex_lock(&ctrl->subsys->lock);
1358                nvme_mpath_start_freeze(ctrl->subsys);
1359                nvme_mpath_wait_freeze(ctrl->subsys);
1360                nvme_start_freeze(ctrl);
1361                nvme_wait_freeze(ctrl);
1362        }
1363        return effects;
1364}
1365
1366static void nvme_update_formats(struct nvme_ctrl *ctrl)
1367{
1368        struct nvme_ns *ns;
1369
1370        down_read(&ctrl->namespaces_rwsem);
1371        list_for_each_entry(ns, &ctrl->namespaces, list)
1372                if (ns->disk && nvme_revalidate_disk(ns->disk))
1373                        nvme_set_queue_dying(ns);
1374        up_read(&ctrl->namespaces_rwsem);
1375}
1376
1377static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1378{
1379        /*
1380         * Revalidate LBA changes prior to unfreezing. This is necessary to
1381         * prevent memory corruption if a logical block size was changed by
1382         * this command.
1383         */
1384        if (effects & NVME_CMD_EFFECTS_LBCC)
1385                nvme_update_formats(ctrl);
1386        if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1387                nvme_unfreeze(ctrl);
1388                nvme_mpath_unfreeze(ctrl->subsys);
1389                mutex_unlock(&ctrl->subsys->lock);
1390                nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1391                mutex_unlock(&ctrl->scan_lock);
1392        }
1393        if (effects & NVME_CMD_EFFECTS_CCC)
1394                nvme_init_identify(ctrl);
1395        if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1396                nvme_queue_scan(ctrl);
1397}
1398
1399static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1400                        struct nvme_passthru_cmd __user *ucmd)
1401{
1402        struct nvme_passthru_cmd cmd;
1403        struct nvme_command c;
1404        unsigned timeout = 0;
1405        u32 effects;
1406        u64 result;
1407        int status;
1408
1409        if (!capable(CAP_SYS_ADMIN))
1410                return -EACCES;
1411        if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1412                return -EFAULT;
1413        if (cmd.flags)
1414                return -EINVAL;
1415
1416        memset(&c, 0, sizeof(c));
1417        c.common.opcode = cmd.opcode;
1418        c.common.flags = cmd.flags;
1419        c.common.nsid = cpu_to_le32(cmd.nsid);
1420        c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1421        c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1422        c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1423        c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1424        c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1425        c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1426        c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1427        c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1428
1429        if (cmd.timeout_ms)
1430                timeout = msecs_to_jiffies(cmd.timeout_ms);
1431
1432        effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1433        status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1434                        nvme_to_user_ptr(cmd.addr), cmd.data_len,
1435                        nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1436                        0, &result, timeout);
1437        nvme_passthru_end(ctrl, effects);
1438
1439        if (status >= 0) {
1440                if (put_user(result, &ucmd->result))
1441                        return -EFAULT;
1442        }
1443
1444        return status;
1445}
1446
1447static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1448                        struct nvme_passthru_cmd64 __user *ucmd)
1449{
1450        struct nvme_passthru_cmd64 cmd;
1451        struct nvme_command c;
1452        unsigned timeout = 0;
1453        u32 effects;
1454        int status;
1455
1456        if (!capable(CAP_SYS_ADMIN))
1457                return -EACCES;
1458        if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1459                return -EFAULT;
1460        if (cmd.flags)
1461                return -EINVAL;
1462
1463        memset(&c, 0, sizeof(c));
1464        c.common.opcode = cmd.opcode;
1465        c.common.flags = cmd.flags;
1466        c.common.nsid = cpu_to_le32(cmd.nsid);
1467        c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1468        c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1469        c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1470        c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1471        c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1472        c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1473        c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1474        c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1475
1476        if (cmd.timeout_ms)
1477                timeout = msecs_to_jiffies(cmd.timeout_ms);
1478
1479        effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1480        status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1481                        nvme_to_user_ptr(cmd.addr), cmd.data_len,
1482                        nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1483                        0, &cmd.result, timeout);
1484        nvme_passthru_end(ctrl, effects);
1485
1486        if (status >= 0) {
1487                if (put_user(cmd.result, &ucmd->result))
1488                        return -EFAULT;
1489        }
1490
1491        return status;
1492}
1493
1494/*
1495 * Issue ioctl requests on the first available path.  Note that unlike normal
1496 * block layer requests we will not retry failed request on another controller.
1497 */
1498static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1499                struct nvme_ns_head **head, int *srcu_idx)
1500{
1501#ifdef CONFIG_NVME_MULTIPATH
1502        if (disk->fops == &nvme_ns_head_ops) {
1503                struct nvme_ns *ns;
1504
1505                *head = disk->private_data;
1506                *srcu_idx = srcu_read_lock(&(*head)->srcu);
1507                ns = nvme_find_path(*head);
1508                if (!ns)
1509                        srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1510                return ns;
1511        }
1512#endif
1513        *head = NULL;
1514        *srcu_idx = -1;
1515        return disk->private_data;
1516}
1517
1518static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1519{
1520        if (head)
1521                srcu_read_unlock(&head->srcu, idx);
1522}
1523
1524static bool is_ctrl_ioctl(unsigned int cmd)
1525{
1526        if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1527                return true;
1528        if (is_sed_ioctl(cmd))
1529                return true;
1530        return false;
1531}
1532
1533static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1534                                  void __user *argp,
1535                                  struct nvme_ns_head *head,
1536                                  int srcu_idx)
1537{
1538        struct nvme_ctrl *ctrl = ns->ctrl;
1539        int ret;
1540
1541        nvme_get_ctrl(ns->ctrl);
1542        nvme_put_ns_from_disk(head, srcu_idx);
1543
1544        switch (cmd) {
1545        case NVME_IOCTL_ADMIN_CMD:
1546                ret = nvme_user_cmd(ctrl, NULL, argp);
1547                break;
1548        case NVME_IOCTL_ADMIN64_CMD:
1549                ret = nvme_user_cmd64(ctrl, NULL, argp);
1550                break;
1551        default:
1552                ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1553                break;
1554        }
1555        nvme_put_ctrl(ctrl);
1556        return ret;
1557}
1558
1559static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1560                unsigned int cmd, unsigned long arg)
1561{
1562        struct nvme_ns_head *head = NULL;
1563        void __user *argp = (void __user *)arg;
1564        struct nvme_ns *ns;
1565        int srcu_idx, ret;
1566
1567        ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1568        if (unlikely(!ns))
1569                return -EWOULDBLOCK;
1570
1571        /*
1572         * Handle ioctls that apply to the controller instead of the namespace
1573         * seperately and drop the ns SRCU reference early.  This avoids a
1574         * deadlock when deleting namespaces using the passthrough interface.
1575         */
1576        if (is_ctrl_ioctl(cmd))
1577                return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1578
1579        switch (cmd) {
1580        case NVME_IOCTL_ID:
1581                force_successful_syscall_return();
1582                ret = ns->head->ns_id;
1583                break;
1584        case NVME_IOCTL_IO_CMD:
1585                ret = nvme_user_cmd(ns->ctrl, ns, argp);
1586                break;
1587        case NVME_IOCTL_SUBMIT_IO:
1588                ret = nvme_submit_io(ns, argp);
1589                break;
1590        case NVME_IOCTL_IO64_CMD:
1591                ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1592                break;
1593        default:
1594                if (ns->ndev)
1595                        ret = nvme_nvm_ioctl(ns, cmd, arg);
1596                else
1597                        ret = -ENOTTY;
1598        }
1599
1600        nvme_put_ns_from_disk(head, srcu_idx);
1601        return ret;
1602}
1603
1604#ifdef CONFIG_COMPAT
1605struct nvme_user_io32 {
1606        __u8    opcode;
1607        __u8    flags;
1608        __u16   control;
1609        __u16   nblocks;
1610        __u16   rsvd;
1611        __u64   metadata;
1612        __u64   addr;
1613        __u64   slba;
1614        __u32   dsmgmt;
1615        __u32   reftag;
1616        __u16   apptag;
1617        __u16   appmask;
1618} __attribute__((__packed__));
1619
1620#define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1621
1622static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1623                unsigned int cmd, unsigned long arg)
1624{
1625        /*
1626         * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1627         * between 32 bit programs and 64 bit kernel.
1628         * The cause is that the results of sizeof(struct nvme_user_io),
1629         * which is used to define NVME_IOCTL_SUBMIT_IO,
1630         * are not same between 32 bit compiler and 64 bit compiler.
1631         * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1632         * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1633         * Other IOCTL numbers are same between 32 bit and 64 bit.
1634         * So there is nothing to do regarding to other IOCTL numbers.
1635         */
1636        if (cmd == NVME_IOCTL_SUBMIT_IO32)
1637                return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1638
1639        return nvme_ioctl(bdev, mode, cmd, arg);
1640}
1641#else
1642#define nvme_compat_ioctl       NULL
1643#endif /* CONFIG_COMPAT */
1644
1645static int nvme_open(struct block_device *bdev, fmode_t mode)
1646{
1647        struct nvme_ns *ns = bdev->bd_disk->private_data;
1648
1649#ifdef CONFIG_NVME_MULTIPATH
1650        /* should never be called due to GENHD_FL_HIDDEN */
1651        if (WARN_ON_ONCE(ns->head->disk))
1652                goto fail;
1653#endif
1654        if (!kref_get_unless_zero(&ns->kref))
1655                goto fail;
1656        if (!try_module_get(ns->ctrl->ops->module))
1657                goto fail_put_ns;
1658
1659        return 0;
1660
1661fail_put_ns:
1662        nvme_put_ns(ns);
1663fail:
1664        return -ENXIO;
1665}
1666
1667static void nvme_release(struct gendisk *disk, fmode_t mode)
1668{
1669        struct nvme_ns *ns = disk->private_data;
1670
1671        module_put(ns->ctrl->ops->module);
1672        nvme_put_ns(ns);
1673}
1674
1675static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1676{
1677        /* some standard values */
1678        geo->heads = 1 << 6;
1679        geo->sectors = 1 << 5;
1680        geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1681        return 0;
1682}
1683
1684#ifdef CONFIG_BLK_DEV_INTEGRITY
1685static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1686{
1687        struct blk_integrity integrity;
1688
1689        memset(&integrity, 0, sizeof(integrity));
1690        switch (pi_type) {
1691        case NVME_NS_DPS_PI_TYPE3:
1692                integrity.profile = &t10_pi_type3_crc;
1693                integrity.tag_size = sizeof(u16) + sizeof(u32);
1694                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1695                break;
1696        case NVME_NS_DPS_PI_TYPE1:
1697        case NVME_NS_DPS_PI_TYPE2:
1698                integrity.profile = &t10_pi_type1_crc;
1699                integrity.tag_size = sizeof(u16);
1700                integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1701                break;
1702        default:
1703                integrity.profile = NULL;
1704                break;
1705        }
1706        integrity.tuple_size = ms;
1707        blk_integrity_register(disk, &integrity);
1708        blk_queue_max_integrity_segments(disk->queue, 1);
1709}
1710#else
1711static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1712{
1713}
1714#endif /* CONFIG_BLK_DEV_INTEGRITY */
1715
1716static void nvme_set_chunk_size(struct nvme_ns *ns)
1717{
1718        u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1719        blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1720}
1721
1722static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1723{
1724        struct nvme_ctrl *ctrl = ns->ctrl;
1725        struct request_queue *queue = disk->queue;
1726        u32 size = queue_logical_block_size(queue);
1727
1728        if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1729                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1730                return;
1731        }
1732
1733        if (ctrl->nr_streams && ns->sws && ns->sgs)
1734                size *= ns->sws * ns->sgs;
1735
1736        BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1737                        NVME_DSM_MAX_RANGES);
1738
1739        queue->limits.discard_alignment = 0;
1740        queue->limits.discard_granularity = size;
1741
1742        /* If discard is already enabled, don't reset queue limits */
1743        if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1744                return;
1745
1746        blk_queue_max_discard_sectors(queue, UINT_MAX);
1747        blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1748
1749        if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1750                blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1751}
1752
1753static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1754{
1755        u64 max_blocks;
1756
1757        if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1758            (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1759                return;
1760        /*
1761         * Even though NVMe spec explicitly states that MDTS is not
1762         * applicable to the write-zeroes:- "The restriction does not apply to
1763         * commands that do not transfer data between the host and the
1764         * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1765         * In order to be more cautious use controller's max_hw_sectors value
1766         * to configure the maximum sectors for the write-zeroes which is
1767         * configured based on the controller's MDTS field in the
1768         * nvme_init_identify() if available.
1769         */
1770        if (ns->ctrl->max_hw_sectors == UINT_MAX)
1771                max_blocks = (u64)USHRT_MAX + 1;
1772        else
1773                max_blocks = ns->ctrl->max_hw_sectors + 1;
1774
1775        blk_queue_max_write_zeroes_sectors(disk->queue,
1776                                           nvme_lba_to_sect(ns, max_blocks));
1777}
1778
1779static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1780                struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1781{
1782        memset(ids, 0, sizeof(*ids));
1783
1784        if (ctrl->vs >= NVME_VS(1, 1, 0))
1785                memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1786        if (ctrl->vs >= NVME_VS(1, 2, 0))
1787                memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1788        if (ctrl->vs >= NVME_VS(1, 3, 0))
1789                return nvme_identify_ns_descs(ctrl, nsid, ids);
1790        return 0;
1791}
1792
1793static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1794{
1795        return !uuid_is_null(&ids->uuid) ||
1796                memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1797                memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1798}
1799
1800static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1801{
1802        return uuid_equal(&a->uuid, &b->uuid) &&
1803                memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1804                memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1805}
1806
1807static void nvme_update_disk_info(struct gendisk *disk,
1808                struct nvme_ns *ns, struct nvme_id_ns *id)
1809{
1810        sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1811        unsigned short bs = 1 << ns->lba_shift;
1812        u32 atomic_bs, phys_bs, io_opt;
1813
1814        if (ns->lba_shift > PAGE_SHIFT) {
1815                /* unsupported block size, set capacity to 0 later */
1816                bs = (1 << 9);
1817        }
1818        blk_mq_freeze_queue(disk->queue);
1819        blk_integrity_unregister(disk);
1820
1821        if (id->nabo == 0) {
1822                /*
1823                 * Bit 1 indicates whether NAWUPF is defined for this namespace
1824                 * and whether it should be used instead of AWUPF. If NAWUPF ==
1825                 * 0 then AWUPF must be used instead.
1826                 */
1827                if (id->nsfeat & (1 << 1) && id->nawupf)
1828                        atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1829                else
1830                        atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1831        } else {
1832                atomic_bs = bs;
1833        }
1834        phys_bs = bs;
1835        io_opt = bs;
1836        if (id->nsfeat & (1 << 4)) {
1837                /* NPWG = Namespace Preferred Write Granularity */
1838                phys_bs *= 1 + le16_to_cpu(id->npwg);
1839                /* NOWS = Namespace Optimal Write Size */
1840                io_opt *= 1 + le16_to_cpu(id->nows);
1841        }
1842
1843        blk_queue_logical_block_size(disk->queue, bs);
1844        /*
1845         * Linux filesystems assume writing a single physical block is
1846         * an atomic operation. Hence limit the physical block size to the
1847         * value of the Atomic Write Unit Power Fail parameter.
1848         */
1849        blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1850        blk_queue_io_min(disk->queue, phys_bs);
1851        blk_queue_io_opt(disk->queue, io_opt);
1852
1853        if (ns->ms && !ns->ext &&
1854            (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1855                nvme_init_integrity(disk, ns->ms, ns->pi_type);
1856        if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1857            ns->lba_shift > PAGE_SHIFT)
1858                capacity = 0;
1859
1860        set_capacity_revalidate_and_notify(disk, capacity, false);
1861
1862        nvme_config_discard(disk, ns);
1863        nvme_config_write_zeroes(disk, ns);
1864
1865        if (id->nsattr & (1 << 0))
1866                set_disk_ro(disk, true);
1867        else
1868                set_disk_ro(disk, false);
1869
1870        blk_mq_unfreeze_queue(disk->queue);
1871}
1872
1873static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1874{
1875        struct nvme_ns *ns = disk->private_data;
1876
1877        /*
1878         * If identify namespace failed, use default 512 byte block size so
1879         * block layer can use before failing read/write for 0 capacity.
1880         */
1881        ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1882        if (ns->lba_shift == 0)
1883                ns->lba_shift = 9;
1884        ns->noiob = le16_to_cpu(id->noiob);
1885        ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1886        ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1887        /* the PI implementation requires metadata equal t10 pi tuple size */
1888        if (ns->ms == sizeof(struct t10_pi_tuple))
1889                ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1890        else
1891                ns->pi_type = 0;
1892
1893        if (ns->noiob)
1894                nvme_set_chunk_size(ns);
1895        nvme_update_disk_info(disk, ns, id);
1896#ifdef CONFIG_NVME_MULTIPATH
1897        if (ns->head->disk) {
1898                nvme_update_disk_info(ns->head->disk, ns, id);
1899                blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1900                if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) {
1901                        struct backing_dev_info *info =
1902                                ns->head->disk->queue->backing_dev_info;
1903
1904                        info->capabilities |= BDI_CAP_STABLE_WRITES;
1905                }
1906
1907                revalidate_disk(ns->head->disk);
1908        }
1909#endif
1910}
1911
1912static int nvme_revalidate_disk(struct gendisk *disk)
1913{
1914        struct nvme_ns *ns = disk->private_data;
1915        struct nvme_ctrl *ctrl = ns->ctrl;
1916        struct nvme_id_ns *id;
1917        struct nvme_ns_ids ids;
1918        int ret = 0;
1919
1920        if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1921                set_capacity(disk, 0);
1922                return -ENODEV;
1923        }
1924
1925        ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1926        if (ret)
1927                goto out;
1928
1929        if (id->ncap == 0) {
1930                ret = -ENODEV;
1931                goto free_id;
1932        }
1933
1934        __nvme_revalidate_disk(disk, id);
1935        ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1936        if (ret)
1937                goto free_id;
1938
1939        if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1940                dev_err(ctrl->device,
1941                        "identifiers changed for nsid %d\n", ns->head->ns_id);
1942                ret = -ENODEV;
1943        }
1944
1945free_id:
1946        kfree(id);
1947out:
1948        /*
1949         * Only fail the function if we got a fatal error back from the
1950         * device, otherwise ignore the error and just move on.
1951         */
1952        if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1953                ret = 0;
1954        else if (ret > 0)
1955                ret = blk_status_to_errno(nvme_error_status(ret));
1956        return ret;
1957}
1958
1959static char nvme_pr_type(enum pr_type type)
1960{
1961        switch (type) {
1962        case PR_WRITE_EXCLUSIVE:
1963                return 1;
1964        case PR_EXCLUSIVE_ACCESS:
1965                return 2;
1966        case PR_WRITE_EXCLUSIVE_REG_ONLY:
1967                return 3;
1968        case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1969                return 4;
1970        case PR_WRITE_EXCLUSIVE_ALL_REGS:
1971                return 5;
1972        case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1973                return 6;
1974        default:
1975                return 0;
1976        }
1977};
1978
1979static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1980                                u64 key, u64 sa_key, u8 op)
1981{
1982        struct nvme_ns_head *head = NULL;
1983        struct nvme_ns *ns;
1984        struct nvme_command c;
1985        int srcu_idx, ret;
1986        u8 data[16] = { 0, };
1987
1988        ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1989        if (unlikely(!ns))
1990                return -EWOULDBLOCK;
1991
1992        put_unaligned_le64(key, &data[0]);
1993        put_unaligned_le64(sa_key, &data[8]);
1994
1995        memset(&c, 0, sizeof(c));
1996        c.common.opcode = op;
1997        c.common.nsid = cpu_to_le32(ns->head->ns_id);
1998        c.common.cdw10 = cpu_to_le32(cdw10);
1999
2000        ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2001        nvme_put_ns_from_disk(head, srcu_idx);
2002        return ret;
2003}
2004
2005static int nvme_pr_register(struct block_device *bdev, u64 old,
2006                u64 new, unsigned flags)
2007{
2008        u32 cdw10;
2009
2010        if (flags & ~PR_FL_IGNORE_KEY)
2011                return -EOPNOTSUPP;
2012
2013        cdw10 = old ? 2 : 0;
2014        cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2015        cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2016        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2017}
2018
2019static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2020                enum pr_type type, unsigned flags)
2021{
2022        u32 cdw10;
2023
2024        if (flags & ~PR_FL_IGNORE_KEY)
2025                return -EOPNOTSUPP;
2026
2027        cdw10 = nvme_pr_type(type) << 8;
2028        cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2029        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2030}
2031
2032static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2033                enum pr_type type, bool abort)
2034{
2035        u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2036        return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2037}
2038
2039static int nvme_pr_clear(struct block_device *bdev, u64 key)
2040{
2041        u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2042        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2043}
2044
2045static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2046{
2047        u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2048        return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2049}
2050
2051static const struct pr_ops nvme_pr_ops = {
2052        .pr_register    = nvme_pr_register,
2053        .pr_reserve     = nvme_pr_reserve,
2054        .pr_release     = nvme_pr_release,
2055        .pr_preempt     = nvme_pr_preempt,
2056        .pr_clear       = nvme_pr_clear,
2057};
2058
2059#ifdef CONFIG_BLK_SED_OPAL
2060int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2061                bool send)
2062{
2063        struct nvme_ctrl *ctrl = data;
2064        struct nvme_command cmd;
2065
2066        memset(&cmd, 0, sizeof(cmd));
2067        if (send)
2068                cmd.common.opcode = nvme_admin_security_send;
2069        else
2070                cmd.common.opcode = nvme_admin_security_recv;
2071        cmd.common.nsid = 0;
2072        cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2073        cmd.common.cdw11 = cpu_to_le32(len);
2074
2075        return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2076                                      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2077}
2078EXPORT_SYMBOL_GPL(nvme_sec_submit);
2079#endif /* CONFIG_BLK_SED_OPAL */
2080
2081static const struct block_device_operations nvme_fops = {
2082        .owner          = THIS_MODULE,
2083        .ioctl          = nvme_ioctl,
2084        .compat_ioctl   = nvme_compat_ioctl,
2085        .open           = nvme_open,
2086        .release        = nvme_release,
2087        .getgeo         = nvme_getgeo,
2088        .revalidate_disk= nvme_revalidate_disk,
2089        .pr_ops         = &nvme_pr_ops,
2090};
2091
2092#ifdef CONFIG_NVME_MULTIPATH
2093static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2094{
2095        struct nvme_ns_head *head = bdev->bd_disk->private_data;
2096
2097        if (!kref_get_unless_zero(&head->ref))
2098                return -ENXIO;
2099        return 0;
2100}
2101
2102static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2103{
2104        nvme_put_ns_head(disk->private_data);
2105}
2106
2107const struct block_device_operations nvme_ns_head_ops = {
2108        .owner          = THIS_MODULE,
2109        .open           = nvme_ns_head_open,
2110        .release        = nvme_ns_head_release,
2111        .ioctl          = nvme_ioctl,
2112        .compat_ioctl   = nvme_compat_ioctl,
2113        .getgeo         = nvme_getgeo,
2114        .pr_ops         = &nvme_pr_ops,
2115};
2116#endif /* CONFIG_NVME_MULTIPATH */
2117
2118static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2119{
2120        unsigned long timeout =
2121                ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2122        u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2123        int ret;
2124
2125        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2126                if (csts == ~0)
2127                        return -ENODEV;
2128                if ((csts & NVME_CSTS_RDY) == bit)
2129                        break;
2130
2131                usleep_range(1000, 2000);
2132                if (fatal_signal_pending(current))
2133                        return -EINTR;
2134                if (time_after(jiffies, timeout)) {
2135                        dev_err(ctrl->device,
2136                                "Device not ready; aborting %s, CSTS=0x%x\n",
2137                                enabled ? "initialisation" : "reset", csts);
2138                        return -ENODEV;
2139                }
2140        }
2141
2142        return ret;
2143}
2144
2145/*
2146 * If the device has been passed off to us in an enabled state, just clear
2147 * the enabled bit.  The spec says we should set the 'shutdown notification
2148 * bits', but doing so may cause the device to complete commands to the
2149 * admin queue ... and we don't know what memory that might be pointing at!
2150 */
2151int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2152{
2153        int ret;
2154
2155        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2156        ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2157
2158        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2159        if (ret)
2160                return ret;
2161
2162        if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2163                msleep(NVME_QUIRK_DELAY_AMOUNT);
2164
2165        return nvme_wait_ready(ctrl, ctrl->cap, false);
2166}
2167EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2168
2169int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2170{
2171        /*
2172         * Default to a 4K page size, with the intention to update this
2173         * path in the future to accomodate architectures with differing
2174         * kernel and IO page sizes.
2175         */
2176        unsigned dev_page_min, page_shift = 12;
2177        int ret;
2178
2179        ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2180        if (ret) {
2181                dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2182                return ret;
2183        }
2184        dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2185
2186        if (page_shift < dev_page_min) {
2187                dev_err(ctrl->device,
2188                        "Minimum device page size %u too large for host (%u)\n",
2189                        1 << dev_page_min, 1 << page_shift);
2190                return -ENODEV;
2191        }
2192
2193        ctrl->page_size = 1 << page_shift;
2194
2195        ctrl->ctrl_config = NVME_CC_CSS_NVM;
2196        ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2197        ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2198        ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2199        ctrl->ctrl_config |= NVME_CC_ENABLE;
2200
2201        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2202        if (ret)
2203                return ret;
2204        return nvme_wait_ready(ctrl, ctrl->cap, true);
2205}
2206EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2207
2208int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2209{
2210        unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2211        u32 csts;
2212        int ret;
2213
2214        ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2215        ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2216
2217        ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2218        if (ret)
2219                return ret;
2220
2221        while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2222                if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2223                        break;
2224
2225                msleep(100);
2226                if (fatal_signal_pending(current))
2227                        return -EINTR;
2228                if (time_after(jiffies, timeout)) {
2229                        dev_err(ctrl->device,
2230                                "Device shutdown incomplete; abort shutdown\n");
2231                        return -ENODEV;
2232                }
2233        }
2234
2235        return ret;
2236}
2237EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2238
2239static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2240                struct request_queue *q)
2241{
2242        bool vwc = false;
2243
2244        if (ctrl->max_hw_sectors) {
2245                u32 max_segments =
2246                        (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2247
2248                max_segments = min_not_zero(max_segments, ctrl->max_segments);
2249                blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2250                blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2251        }
2252        if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2253            is_power_of_2(ctrl->max_hw_sectors))
2254                blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2255        blk_queue_virt_boundary(q, ctrl->page_size - 1);
2256        if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2257                vwc = true;
2258        blk_queue_write_cache(q, vwc, vwc);
2259}
2260
2261static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2262{
2263        __le64 ts;
2264        int ret;
2265
2266        if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2267                return 0;
2268
2269        ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2270        ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2271                        NULL);
2272        if (ret)
2273                dev_warn_once(ctrl->device,
2274                        "could not set timestamp (%d)\n", ret);
2275        return ret;
2276}
2277
2278static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2279{
2280        struct nvme_feat_host_behavior *host;
2281        int ret;
2282
2283        /* Don't bother enabling the feature if retry delay is not reported */
2284        if (!ctrl->crdt[0])
2285                return 0;
2286
2287        host = kzalloc(sizeof(*host), GFP_KERNEL);
2288        if (!host)
2289                return 0;
2290
2291        host->acre = NVME_ENABLE_ACRE;
2292        ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2293                                host, sizeof(*host), NULL);
2294        kfree(host);
2295        return ret;
2296}
2297
2298static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2299{
2300        /*
2301         * APST (Autonomous Power State Transition) lets us program a
2302         * table of power state transitions that the controller will
2303         * perform automatically.  We configure it with a simple
2304         * heuristic: we are willing to spend at most 2% of the time
2305         * transitioning between power states.  Therefore, when running
2306         * in any given state, we will enter the next lower-power
2307         * non-operational state after waiting 50 * (enlat + exlat)
2308         * microseconds, as long as that state's exit latency is under
2309         * the requested maximum latency.
2310         *
2311         * We will not autonomously enter any non-operational state for
2312         * which the total latency exceeds ps_max_latency_us.  Users
2313         * can set ps_max_latency_us to zero to turn off APST.
2314         */
2315
2316        unsigned apste;
2317        struct nvme_feat_auto_pst *table;
2318        u64 max_lat_us = 0;
2319        int max_ps = -1;
2320        int ret;
2321
2322        /*
2323         * If APST isn't supported or if we haven't been initialized yet,
2324         * then don't do anything.
2325         */
2326        if (!ctrl->apsta)
2327                return 0;
2328
2329        if (ctrl->npss > 31) {
2330                dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2331                return 0;
2332        }
2333
2334        table = kzalloc(sizeof(*table), GFP_KERNEL);
2335        if (!table)
2336                return 0;
2337
2338        if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2339                /* Turn off APST. */
2340                apste = 0;
2341                dev_dbg(ctrl->device, "APST disabled\n");
2342        } else {
2343                __le64 target = cpu_to_le64(0);
2344                int state;
2345
2346                /*
2347                 * Walk through all states from lowest- to highest-power.
2348                 * According to the spec, lower-numbered states use more
2349                 * power.  NPSS, despite the name, is the index of the
2350                 * lowest-power state, not the number of states.
2351                 */
2352                for (state = (int)ctrl->npss; state >= 0; state--) {
2353                        u64 total_latency_us, exit_latency_us, transition_ms;
2354
2355                        if (target)
2356                                table->entries[state] = target;
2357
2358                        /*
2359                         * Don't allow transitions to the deepest state
2360                         * if it's quirked off.
2361                         */
2362                        if (state == ctrl->npss &&
2363                            (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2364                                continue;
2365
2366                        /*
2367                         * Is this state a useful non-operational state for
2368                         * higher-power states to autonomously transition to?
2369                         */
2370                        if (!(ctrl->psd[state].flags &
2371                              NVME_PS_FLAGS_NON_OP_STATE))
2372                                continue;
2373
2374                        exit_latency_us =
2375                                (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2376                        if (exit_latency_us > ctrl->ps_max_latency_us)
2377                                continue;
2378
2379                        total_latency_us =
2380                                exit_latency_us +
2381                                le32_to_cpu(ctrl->psd[state].entry_lat);
2382
2383                        /*
2384                         * This state is good.  Use it as the APST idle
2385                         * target for higher power states.
2386                         */
2387                        transition_ms = total_latency_us + 19;
2388                        do_div(transition_ms, 20);
2389                        if (transition_ms > (1 << 24) - 1)
2390                                transition_ms = (1 << 24) - 1;
2391
2392                        target = cpu_to_le64((state << 3) |
2393                                             (transition_ms << 8));
2394
2395                        if (max_ps == -1)
2396                                max_ps = state;
2397
2398                        if (total_latency_us > max_lat_us)
2399                                max_lat_us = total_latency_us;
2400                }
2401
2402                apste = 1;
2403
2404                if (max_ps == -1) {
2405                        dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2406                } else {
2407                        dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2408                                max_ps, max_lat_us, (int)sizeof(*table), table);
2409                }
2410        }
2411
2412        ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2413                                table, sizeof(*table), NULL);
2414        if (ret)
2415                dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2416
2417        kfree(table);
2418        return ret;
2419}
2420
2421static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2422{
2423        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2424        u64 latency;
2425
2426        switch (val) {
2427        case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2428        case PM_QOS_LATENCY_ANY:
2429                latency = U64_MAX;
2430                break;
2431
2432        default:
2433                latency = val;
2434        }
2435
2436        if (ctrl->ps_max_latency_us != latency) {
2437                ctrl->ps_max_latency_us = latency;
2438                nvme_configure_apst(ctrl);
2439        }
2440}
2441
2442struct nvme_core_quirk_entry {
2443        /*
2444         * NVMe model and firmware strings are padded with spaces.  For
2445         * simplicity, strings in the quirk table are padded with NULLs
2446         * instead.
2447         */
2448        u16 vid;
2449        const char *mn;
2450        const char *fr;
2451        unsigned long quirks;
2452};
2453
2454static const struct nvme_core_quirk_entry core_quirks[] = {
2455        {
2456                /*
2457                 * This Toshiba device seems to die using any APST states.  See:
2458                 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2459                 */
2460                .vid = 0x1179,
2461                .mn = "THNSF5256GPUK TOSHIBA",
2462                .quirks = NVME_QUIRK_NO_APST,
2463        },
2464        {
2465                /*
2466                 * This LiteON CL1-3D*-Q11 firmware version has a race
2467                 * condition associated with actions related to suspend to idle
2468                 * LiteON has resolved the problem in future firmware
2469                 */
2470                .vid = 0x14a4,
2471                .fr = "22301111",
2472                .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2473        }
2474};
2475
2476/* match is null-terminated but idstr is space-padded. */
2477static bool string_matches(const char *idstr, const char *match, size_t len)
2478{
2479        size_t matchlen;
2480
2481        if (!match)
2482                return true;
2483
2484        matchlen = strlen(match);
2485        WARN_ON_ONCE(matchlen > len);
2486
2487        if (memcmp(idstr, match, matchlen))
2488                return false;
2489
2490        for (; matchlen < len; matchlen++)
2491                if (idstr[matchlen] != ' ')
2492                        return false;
2493
2494        return true;
2495}
2496
2497static bool quirk_matches(const struct nvme_id_ctrl *id,
2498                          const struct nvme_core_quirk_entry *q)
2499{
2500        return q->vid == le16_to_cpu(id->vid) &&
2501                string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2502                string_matches(id->fr, q->fr, sizeof(id->fr));
2503}
2504
2505static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2506                struct nvme_id_ctrl *id)
2507{
2508        size_t nqnlen;
2509        int off;
2510
2511        if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2512                nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2513                if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2514                        strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2515                        return;
2516                }
2517
2518                if (ctrl->vs >= NVME_VS(1, 2, 1))
2519                        dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2520        }
2521
2522        /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2523        off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2524                        "nqn.2014.08.org.nvmexpress:%04x%04x",
2525                        le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2526        memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2527        off += sizeof(id->sn);
2528        memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2529        off += sizeof(id->mn);
2530        memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2531}
2532
2533static void nvme_release_subsystem(struct device *dev)
2534{
2535        struct nvme_subsystem *subsys =
2536                container_of(dev, struct nvme_subsystem, dev);
2537
2538        if (subsys->instance >= 0)
2539                ida_simple_remove(&nvme_instance_ida, subsys->instance);
2540        kfree(subsys);
2541}
2542
2543static void nvme_destroy_subsystem(struct kref *ref)
2544{
2545        struct nvme_subsystem *subsys =
2546                        container_of(ref, struct nvme_subsystem, ref);
2547
2548        mutex_lock(&nvme_subsystems_lock);
2549        list_del(&subsys->entry);
2550        mutex_unlock(&nvme_subsystems_lock);
2551
2552        ida_destroy(&subsys->ns_ida);
2553        device_del(&subsys->dev);
2554        put_device(&subsys->dev);
2555}
2556
2557static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2558{
2559        kref_put(&subsys->ref, nvme_destroy_subsystem);
2560}
2561
2562static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2563{
2564        struct nvme_subsystem *subsys;
2565
2566        lockdep_assert_held(&nvme_subsystems_lock);
2567
2568        /*
2569         * Fail matches for discovery subsystems. This results
2570         * in each discovery controller bound to a unique subsystem.
2571         * This avoids issues with validating controller values
2572         * that can only be true when there is a single unique subsystem.
2573         * There may be multiple and completely independent entities
2574         * that provide discovery controllers.
2575         */
2576        if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2577                return NULL;
2578
2579        list_for_each_entry(subsys, &nvme_subsystems, entry) {
2580                if (strcmp(subsys->subnqn, subsysnqn))
2581                        continue;
2582                if (!kref_get_unless_zero(&subsys->ref))
2583                        continue;
2584                return subsys;
2585        }
2586
2587        return NULL;
2588}
2589
2590#define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2591        struct device_attribute subsys_attr_##_name = \
2592                __ATTR(_name, _mode, _show, NULL)
2593
2594static ssize_t nvme_subsys_show_nqn(struct device *dev,
2595                                    struct device_attribute *attr,
2596                                    char *buf)
2597{
2598        struct nvme_subsystem *subsys =
2599                container_of(dev, struct nvme_subsystem, dev);
2600
2601        return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2602}
2603static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2604
2605#define nvme_subsys_show_str_function(field)                            \
2606static ssize_t subsys_##field##_show(struct device *dev,                \
2607                            struct device_attribute *attr, char *buf)   \
2608{                                                                       \
2609        struct nvme_subsystem *subsys =                                 \
2610                container_of(dev, struct nvme_subsystem, dev);          \
2611        return sprintf(buf, "%.*s\n",                                   \
2612                       (int)sizeof(subsys->field), subsys->field);      \
2613}                                                                       \
2614static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2615
2616nvme_subsys_show_str_function(model);
2617nvme_subsys_show_str_function(serial);
2618nvme_subsys_show_str_function(firmware_rev);
2619
2620static struct attribute *nvme_subsys_attrs[] = {
2621        &subsys_attr_model.attr,
2622        &subsys_attr_serial.attr,
2623        &subsys_attr_firmware_rev.attr,
2624        &subsys_attr_subsysnqn.attr,
2625#ifdef CONFIG_NVME_MULTIPATH
2626        &subsys_attr_iopolicy.attr,
2627#endif
2628        NULL,
2629};
2630
2631static struct attribute_group nvme_subsys_attrs_group = {
2632        .attrs = nvme_subsys_attrs,
2633};
2634
2635static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2636        &nvme_subsys_attrs_group,
2637        NULL,
2638};
2639
2640static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2641                struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2642{
2643        struct nvme_ctrl *tmp;
2644
2645        lockdep_assert_held(&nvme_subsystems_lock);
2646
2647        list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2648                if (nvme_state_terminal(tmp))
2649                        continue;
2650
2651                if (tmp->cntlid == ctrl->cntlid) {
2652                        dev_err(ctrl->device,
2653                                "Duplicate cntlid %u with %s, rejecting\n",
2654                                ctrl->cntlid, dev_name(tmp->device));
2655                        return false;
2656                }
2657
2658                if ((id->cmic & (1 << 1)) ||
2659                    (ctrl->opts && ctrl->opts->discovery_nqn))
2660                        continue;
2661
2662                dev_err(ctrl->device,
2663                        "Subsystem does not support multiple controllers\n");
2664                return false;
2665        }
2666
2667        return true;
2668}
2669
2670static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2671{
2672        struct nvme_subsystem *subsys, *found;
2673        int ret;
2674
2675        subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2676        if (!subsys)
2677                return -ENOMEM;
2678
2679        subsys->instance = -1;
2680        mutex_init(&subsys->lock);
2681        kref_init(&subsys->ref);
2682        INIT_LIST_HEAD(&subsys->ctrls);
2683        INIT_LIST_HEAD(&subsys->nsheads);
2684        nvme_init_subnqn(subsys, ctrl, id);
2685        memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2686        memcpy(subsys->model, id->mn, sizeof(subsys->model));
2687        memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2688        subsys->vendor_id = le16_to_cpu(id->vid);
2689        subsys->cmic = id->cmic;
2690        subsys->awupf = le16_to_cpu(id->awupf);
2691#ifdef CONFIG_NVME_MULTIPATH
2692        subsys->iopolicy = NVME_IOPOLICY_NUMA;
2693#endif
2694
2695        subsys->dev.class = nvme_subsys_class;
2696        subsys->dev.release = nvme_release_subsystem;
2697        subsys->dev.groups = nvme_subsys_attrs_groups;
2698        dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2699        device_initialize(&subsys->dev);
2700
2701        mutex_lock(&nvme_subsystems_lock);
2702        found = __nvme_find_get_subsystem(subsys->subnqn);
2703        if (found) {
2704                put_device(&subsys->dev);
2705                subsys = found;
2706
2707                if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2708                        ret = -EINVAL;
2709                        goto out_put_subsystem;
2710                }
2711        } else {
2712                ret = device_add(&subsys->dev);
2713                if (ret) {
2714                        dev_err(ctrl->device,
2715                                "failed to register subsystem device.\n");
2716                        put_device(&subsys->dev);
2717                        goto out_unlock;
2718                }
2719                ida_init(&subsys->ns_ida);
2720                list_add_tail(&subsys->entry, &nvme_subsystems);
2721        }
2722
2723        ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2724                                dev_name(ctrl->device));
2725        if (ret) {
2726                dev_err(ctrl->device,
2727                        "failed to create sysfs link from subsystem.\n");
2728                goto out_put_subsystem;
2729        }
2730
2731        if (!found)
2732                subsys->instance = ctrl->instance;
2733        ctrl->subsys = subsys;
2734        list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2735        mutex_unlock(&nvme_subsystems_lock);
2736        return 0;
2737
2738out_put_subsystem:
2739        nvme_put_subsystem(subsys);
2740out_unlock:
2741        mutex_unlock(&nvme_subsystems_lock);
2742        return ret;
2743}
2744
2745int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2746                void *log, size_t size, u64 offset)
2747{
2748        struct nvme_command c = { };
2749        unsigned long dwlen = size / 4 - 1;
2750
2751        c.get_log_page.opcode = nvme_admin_get_log_page;
2752        c.get_log_page.nsid = cpu_to_le32(nsid);
2753        c.get_log_page.lid = log_page;
2754        c.get_log_page.lsp = lsp;
2755        c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2756        c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2757        c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2758        c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2759
2760        return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2761}
2762
2763static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2764{
2765        int ret;
2766
2767        if (!ctrl->effects)
2768                ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2769
2770        if (!ctrl->effects)
2771                return 0;
2772
2773        ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2774                        ctrl->effects, sizeof(*ctrl->effects), 0);
2775        if (ret) {
2776                kfree(ctrl->effects);
2777                ctrl->effects = NULL;
2778        }
2779        return ret;
2780}
2781
2782/*
2783 * Initialize the cached copies of the Identify data and various controller
2784 * register in our nvme_ctrl structure.  This should be called as soon as
2785 * the admin queue is fully up and running.
2786 */
2787int nvme_init_identify(struct nvme_ctrl *ctrl)
2788{
2789        struct nvme_id_ctrl *id;
2790        int ret, page_shift;
2791        u32 max_hw_sectors;
2792        bool prev_apst_enabled;
2793
2794        ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2795        if (ret) {
2796                dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2797                return ret;
2798        }
2799        page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2800        ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2801
2802        if (ctrl->vs >= NVME_VS(1, 1, 0))
2803                ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2804
2805        ret = nvme_identify_ctrl(ctrl, &id);
2806        if (ret) {
2807                dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2808                return -EIO;
2809        }
2810
2811        if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2812                ret = nvme_get_effects_log(ctrl);
2813                if (ret < 0)
2814                        goto out_free;
2815        }
2816
2817        if (!(ctrl->ops->flags & NVME_F_FABRICS))
2818                ctrl->cntlid = le16_to_cpu(id->cntlid);
2819
2820        if (!ctrl->identified) {
2821                int i;
2822
2823                ret = nvme_init_subsystem(ctrl, id);
2824                if (ret)
2825                        goto out_free;
2826
2827                /*
2828                 * Check for quirks.  Quirk can depend on firmware version,
2829                 * so, in principle, the set of quirks present can change
2830                 * across a reset.  As a possible future enhancement, we
2831                 * could re-scan for quirks every time we reinitialize
2832                 * the device, but we'd have to make sure that the driver
2833                 * behaves intelligently if the quirks change.
2834                 */
2835                for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2836                        if (quirk_matches(id, &core_quirks[i]))
2837                                ctrl->quirks |= core_quirks[i].quirks;
2838                }
2839        }
2840
2841        if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2842                dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2843                ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2844        }
2845
2846        ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2847        ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2848        ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2849
2850        ctrl->oacs = le16_to_cpu(id->oacs);
2851        ctrl->oncs = le16_to_cpu(id->oncs);
2852        ctrl->mtfa = le16_to_cpu(id->mtfa);
2853        ctrl->oaes = le32_to_cpu(id->oaes);
2854        ctrl->wctemp = le16_to_cpu(id->wctemp);
2855        ctrl->cctemp = le16_to_cpu(id->cctemp);
2856
2857        atomic_set(&ctrl->abort_limit, id->acl + 1);
2858        ctrl->vwc = id->vwc;
2859        if (id->mdts)
2860                max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2861        else
2862                max_hw_sectors = UINT_MAX;
2863        ctrl->max_hw_sectors =
2864                min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2865
2866        nvme_set_queue_limits(ctrl, ctrl->admin_q);
2867        ctrl->sgls = le32_to_cpu(id->sgls);
2868        ctrl->kas = le16_to_cpu(id->kas);
2869        ctrl->max_namespaces = le32_to_cpu(id->mnan);
2870        ctrl->ctratt = le32_to_cpu(id->ctratt);
2871
2872        if (id->rtd3e) {
2873                /* us -> s */
2874                u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2875
2876                ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2877                                                 shutdown_timeout, 60);
2878
2879                if (ctrl->shutdown_timeout != shutdown_timeout)
2880                        dev_info(ctrl->device,
2881                                 "Shutdown timeout set to %u seconds\n",
2882                                 ctrl->shutdown_timeout);
2883        } else
2884                ctrl->shutdown_timeout = shutdown_timeout;
2885
2886        ctrl->npss = id->npss;
2887        ctrl->apsta = id->apsta;
2888        prev_apst_enabled = ctrl->apst_enabled;
2889        if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2890                if (force_apst && id->apsta) {
2891                        dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2892                        ctrl->apst_enabled = true;
2893                } else {
2894                        ctrl->apst_enabled = false;
2895                }
2896        } else {
2897                ctrl->apst_enabled = id->apsta;
2898        }
2899        memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2900
2901        if (ctrl->ops->flags & NVME_F_FABRICS) {
2902                ctrl->icdoff = le16_to_cpu(id->icdoff);
2903                ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2904                ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2905                ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2906
2907                /*
2908                 * In fabrics we need to verify the cntlid matches the
2909                 * admin connect
2910                 */
2911                if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2912                        dev_err(ctrl->device,
2913                                "Mismatching cntlid: Connect %u vs Identify "
2914                                "%u, rejecting\n",
2915                                ctrl->cntlid, le16_to_cpu(id->cntlid));
2916                        ret = -EINVAL;
2917                        goto out_free;
2918                }
2919
2920                if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2921                        dev_err(ctrl->device,
2922                                "keep-alive support is mandatory for fabrics\n");
2923                        ret = -EINVAL;
2924                        goto out_free;
2925                }
2926        } else {
2927                ctrl->hmpre = le32_to_cpu(id->hmpre);
2928                ctrl->hmmin = le32_to_cpu(id->hmmin);
2929                ctrl->hmminds = le32_to_cpu(id->hmminds);
2930                ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2931        }
2932
2933        ret = nvme_mpath_init(ctrl, id);
2934        kfree(id);
2935
2936        if (ret < 0)
2937                return ret;
2938
2939        if (ctrl->apst_enabled && !prev_apst_enabled)
2940                dev_pm_qos_expose_latency_tolerance(ctrl->device);
2941        else if (!ctrl->apst_enabled && prev_apst_enabled)
2942                dev_pm_qos_hide_latency_tolerance(ctrl->device);
2943
2944        ret = nvme_configure_apst(ctrl);
2945        if (ret < 0)
2946                return ret;
2947        
2948        ret = nvme_configure_timestamp(ctrl);
2949        if (ret < 0)
2950                return ret;
2951
2952        ret = nvme_configure_directives(ctrl);
2953        if (ret < 0)
2954                return ret;
2955
2956        ret = nvme_configure_acre(ctrl);
2957        if (ret < 0)
2958                return ret;
2959
2960        if (!ctrl->identified)
2961                nvme_hwmon_init(ctrl);
2962
2963        ctrl->identified = true;
2964
2965        return 0;
2966
2967out_free:
2968        kfree(id);
2969        return ret;
2970}
2971EXPORT_SYMBOL_GPL(nvme_init_identify);
2972
2973static int nvme_dev_open(struct inode *inode, struct file *file)
2974{
2975        struct nvme_ctrl *ctrl =
2976                container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2977
2978        switch (ctrl->state) {
2979        case NVME_CTRL_LIVE:
2980                break;
2981        default:
2982                return -EWOULDBLOCK;
2983        }
2984
2985        file->private_data = ctrl;
2986        return 0;
2987}
2988
2989static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2990{
2991        struct nvme_ns *ns;
2992        int ret;
2993
2994        down_read(&ctrl->namespaces_rwsem);
2995        if (list_empty(&ctrl->namespaces)) {
2996                ret = -ENOTTY;
2997                goto out_unlock;
2998        }
2999
3000        ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3001        if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3002                dev_warn(ctrl->device,
3003                        "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3004                ret = -EINVAL;
3005                goto out_unlock;
3006        }
3007
3008        dev_warn(ctrl->device,
3009                "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3010        kref_get(&ns->kref);
3011        up_read(&ctrl->namespaces_rwsem);
3012
3013        ret = nvme_user_cmd(ctrl, ns, argp);
3014        nvme_put_ns(ns);
3015        return ret;
3016
3017out_unlock:
3018        up_read(&ctrl->namespaces_rwsem);
3019        return ret;
3020}
3021
3022static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3023                unsigned long arg)
3024{
3025        struct nvme_ctrl *ctrl = file->private_data;
3026        void __user *argp = (void __user *)arg;
3027
3028        switch (cmd) {
3029        case NVME_IOCTL_ADMIN_CMD:
3030                return nvme_user_cmd(ctrl, NULL, argp);
3031        case NVME_IOCTL_ADMIN64_CMD:
3032                return nvme_user_cmd64(ctrl, NULL, argp);
3033        case NVME_IOCTL_IO_CMD:
3034                return nvme_dev_user_cmd(ctrl, argp);
3035        case NVME_IOCTL_RESET:
3036                dev_warn(ctrl->device, "resetting controller\n");
3037                return nvme_reset_ctrl_sync(ctrl);
3038        case NVME_IOCTL_SUBSYS_RESET:
3039                return nvme_reset_subsystem(ctrl);
3040        case NVME_IOCTL_RESCAN:
3041                nvme_queue_scan(ctrl);
3042                return 0;
3043        default:
3044                return -ENOTTY;
3045        }
3046}
3047
3048static const struct file_operations nvme_dev_fops = {
3049        .owner          = THIS_MODULE,
3050        .open           = nvme_dev_open,
3051        .unlocked_ioctl = nvme_dev_ioctl,
3052        .compat_ioctl   = compat_ptr_ioctl,
3053};
3054
3055static ssize_t nvme_sysfs_reset(struct device *dev,
3056                                struct device_attribute *attr, const char *buf,
3057                                size_t count)
3058{
3059        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3060        int ret;
3061
3062        ret = nvme_reset_ctrl_sync(ctrl);
3063        if (ret < 0)
3064                return ret;
3065        return count;
3066}
3067static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3068
3069static ssize_t nvme_sysfs_rescan(struct device *dev,
3070                                struct device_attribute *attr, const char *buf,
3071                                size_t count)
3072{
3073        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3074
3075        nvme_queue_scan(ctrl);
3076        return count;
3077}
3078static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3079
3080static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3081{
3082        struct gendisk *disk = dev_to_disk(dev);
3083
3084        if (disk->fops == &nvme_fops)
3085                return nvme_get_ns_from_dev(dev)->head;
3086        else
3087                return disk->private_data;
3088}
3089
3090static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3091                char *buf)
3092{
3093        struct nvme_ns_head *head = dev_to_ns_head(dev);
3094        struct nvme_ns_ids *ids = &head->ids;
3095        struct nvme_subsystem *subsys = head->subsys;
3096        int serial_len = sizeof(subsys->serial);
3097        int model_len = sizeof(subsys->model);
3098
3099        if (!uuid_is_null(&ids->uuid))
3100                return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3101
3102        if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3103                return sprintf(buf, "eui.%16phN\n", ids->nguid);
3104
3105        if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3106                return sprintf(buf, "eui.%8phN\n", ids->eui64);
3107
3108        while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3109                                  subsys->serial[serial_len - 1] == '\0'))
3110                serial_len--;
3111        while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3112                                 subsys->model[model_len - 1] == '\0'))
3113                model_len--;
3114
3115        return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3116                serial_len, subsys->serial, model_len, subsys->model,
3117                head->ns_id);
3118}
3119static DEVICE_ATTR_RO(wwid);
3120
3121static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3122                char *buf)
3123{
3124        return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3125}
3126static DEVICE_ATTR_RO(nguid);
3127
3128static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3129                char *buf)
3130{
3131        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3132
3133        /* For backward compatibility expose the NGUID to userspace if
3134         * we have no UUID set
3135         */
3136        if (uuid_is_null(&ids->uuid)) {
3137                printk_ratelimited(KERN_WARNING
3138                                   "No UUID available providing old NGUID\n");
3139                return sprintf(buf, "%pU\n", ids->nguid);
3140        }
3141        return sprintf(buf, "%pU\n", &ids->uuid);
3142}
3143static DEVICE_ATTR_RO(uuid);
3144
3145static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3146                char *buf)
3147{
3148        return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3149}
3150static DEVICE_ATTR_RO(eui);
3151
3152static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3153                char *buf)
3154{
3155        return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3156}
3157static DEVICE_ATTR_RO(nsid);
3158
3159static struct attribute *nvme_ns_id_attrs[] = {
3160        &dev_attr_wwid.attr,
3161        &dev_attr_uuid.attr,
3162        &dev_attr_nguid.attr,
3163        &dev_attr_eui.attr,
3164        &dev_attr_nsid.attr,
3165#ifdef CONFIG_NVME_MULTIPATH
3166        &dev_attr_ana_grpid.attr,
3167        &dev_attr_ana_state.attr,
3168#endif
3169        NULL,
3170};
3171
3172static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3173                struct attribute *a, int n)
3174{
3175        struct device *dev = container_of(kobj, struct device, kobj);
3176        struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3177
3178        if (a == &dev_attr_uuid.attr) {
3179                if (uuid_is_null(&ids->uuid) &&
3180                    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3181                        return 0;
3182        }
3183        if (a == &dev_attr_nguid.attr) {
3184                if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3185                        return 0;
3186        }
3187        if (a == &dev_attr_eui.attr) {
3188                if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3189                        return 0;
3190        }
3191#ifdef CONFIG_NVME_MULTIPATH
3192        if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3193                if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3194                        return 0;
3195                if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3196                        return 0;
3197        }
3198#endif
3199        return a->mode;
3200}
3201
3202static const struct attribute_group nvme_ns_id_attr_group = {
3203        .attrs          = nvme_ns_id_attrs,
3204        .is_visible     = nvme_ns_id_attrs_are_visible,
3205};
3206
3207const struct attribute_group *nvme_ns_id_attr_groups[] = {
3208        &nvme_ns_id_attr_group,
3209#ifdef CONFIG_NVM
3210        &nvme_nvm_attr_group,
3211#endif
3212        NULL,
3213};
3214
3215#define nvme_show_str_function(field)                                           \
3216static ssize_t  field##_show(struct device *dev,                                \
3217                            struct device_attribute *attr, char *buf)           \
3218{                                                                               \
3219        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3220        return sprintf(buf, "%.*s\n",                                           \
3221                (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3222}                                                                               \
3223static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3224
3225nvme_show_str_function(model);
3226nvme_show_str_function(serial);
3227nvme_show_str_function(firmware_rev);
3228
3229#define nvme_show_int_function(field)                                           \
3230static ssize_t  field##_show(struct device *dev,                                \
3231                            struct device_attribute *attr, char *buf)           \
3232{                                                                               \
3233        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3234        return sprintf(buf, "%d\n", ctrl->field);       \
3235}                                                                               \
3236static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3237
3238nvme_show_int_function(cntlid);
3239nvme_show_int_function(numa_node);
3240nvme_show_int_function(queue_count);
3241nvme_show_int_function(sqsize);
3242
3243static ssize_t nvme_sysfs_delete(struct device *dev,
3244                                struct device_attribute *attr, const char *buf,
3245                                size_t count)
3246{
3247        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3248
3249        /* Can't delete non-created controllers */
3250        if (!ctrl->created)
3251                return -EBUSY;
3252
3253        if (device_remove_file_self(dev, attr))
3254                nvme_delete_ctrl_sync(ctrl);
3255        return count;
3256}
3257static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3258
3259static ssize_t nvme_sysfs_show_transport(struct device *dev,
3260                                         struct device_attribute *attr,
3261                                         char *buf)
3262{
3263        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3264
3265        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3266}
3267static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3268
3269static ssize_t nvme_sysfs_show_state(struct device *dev,
3270                                     struct device_attribute *attr,
3271                                     char *buf)
3272{
3273        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3274        static const char *const state_name[] = {
3275                [NVME_CTRL_NEW]         = "new",
3276                [NVME_CTRL_LIVE]        = "live",
3277                [NVME_CTRL_RESETTING]   = "resetting",
3278                [NVME_CTRL_CONNECTING]  = "connecting",
3279                [NVME_CTRL_DELETING]    = "deleting",
3280                [NVME_CTRL_DEAD]        = "dead",
3281        };
3282
3283        if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3284            state_name[ctrl->state])
3285                return sprintf(buf, "%s\n", state_name[ctrl->state]);
3286
3287        return sprintf(buf, "unknown state\n");
3288}
3289
3290static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3291
3292static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3293                                         struct device_attribute *attr,
3294                                         char *buf)
3295{
3296        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3297
3298        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3299}
3300static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3301
3302static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3303                                        struct device_attribute *attr,
3304                                        char *buf)
3305{
3306        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3307
3308        return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3309}
3310static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3311
3312static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3313                                        struct device_attribute *attr,
3314                                        char *buf)
3315{
3316        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3317
3318        return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3319}
3320static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3321
3322static ssize_t nvme_sysfs_show_address(struct device *dev,
3323                                         struct device_attribute *attr,
3324                                         char *buf)
3325{
3326        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3327
3328        return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3329}
3330static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3331
3332static struct attribute *nvme_dev_attrs[] = {
3333        &dev_attr_reset_controller.attr,
3334        &dev_attr_rescan_controller.attr,
3335        &dev_attr_model.attr,
3336        &dev_attr_serial.attr,
3337        &dev_attr_firmware_rev.attr,
3338        &dev_attr_cntlid.attr,
3339        &dev_attr_delete_controller.attr,
3340        &dev_attr_transport.attr,
3341        &dev_attr_subsysnqn.attr,
3342        &dev_attr_address.attr,
3343        &dev_attr_state.attr,
3344        &dev_attr_numa_node.attr,
3345        &dev_attr_queue_count.attr,
3346        &dev_attr_sqsize.attr,
3347        &dev_attr_hostnqn.attr,
3348        &dev_attr_hostid.attr,
3349        NULL
3350};
3351
3352static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3353                struct attribute *a, int n)
3354{
3355        struct device *dev = container_of(kobj, struct device, kobj);
3356        struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3357
3358        if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3359                return 0;
3360        if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3361                return 0;
3362        if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3363                return 0;
3364        if (a == &dev_attr_hostid.attr && !ctrl->opts)
3365                return 0;
3366
3367        return a->mode;
3368}
3369
3370static struct attribute_group nvme_dev_attrs_group = {
3371        .attrs          = nvme_dev_attrs,
3372        .is_visible     = nvme_dev_attrs_are_visible,
3373};
3374
3375static const struct attribute_group *nvme_dev_attr_groups[] = {
3376        &nvme_dev_attrs_group,
3377        NULL,
3378};
3379
3380static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3381                unsigned nsid)
3382{
3383        struct nvme_ns_head *h;
3384
3385        lockdep_assert_held(&subsys->lock);
3386
3387        list_for_each_entry(h, &subsys->nsheads, entry) {
3388                if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3389                        return h;
3390        }
3391
3392        return NULL;
3393}
3394
3395static int __nvme_check_ids(struct nvme_subsystem *subsys,
3396                struct nvme_ns_head *new)
3397{
3398        struct nvme_ns_head *h;
3399
3400        lockdep_assert_held(&subsys->lock);
3401
3402        list_for_each_entry(h, &subsys->nsheads, entry) {
3403                if (nvme_ns_ids_valid(&new->ids) &&
3404                    !list_empty(&h->list) &&
3405                    nvme_ns_ids_equal(&new->ids, &h->ids))
3406                        return -EINVAL;
3407        }
3408
3409        return 0;
3410}
3411
3412static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3413                unsigned nsid, struct nvme_id_ns *id,
3414                struct nvme_ns_ids *ids)
3415{
3416        struct nvme_ns_head *head;
3417        size_t size = sizeof(*head);
3418        int ret = -ENOMEM;
3419
3420#ifdef CONFIG_NVME_MULTIPATH
3421        size += num_possible_nodes() * sizeof(struct nvme_ns *);
3422#endif
3423
3424        head = kzalloc(size, GFP_KERNEL);
3425        if (!head)
3426                goto out;
3427        ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3428        if (ret < 0)
3429                goto out_free_head;
3430        head->instance = ret;
3431        INIT_LIST_HEAD(&head->list);
3432        ret = init_srcu_struct(&head->srcu);
3433        if (ret)
3434                goto out_ida_remove;
3435        head->subsys = ctrl->subsys;
3436        head->ns_id = nsid;
3437        head->ids = *ids;
3438        kref_init(&head->ref);
3439
3440        ret = __nvme_check_ids(ctrl->subsys, head);
3441        if (ret) {
3442                dev_err(ctrl->device,
3443                        "duplicate IDs for nsid %d\n", nsid);
3444                goto out_cleanup_srcu;
3445        }
3446
3447        ret = nvme_mpath_alloc_disk(ctrl, head);
3448        if (ret)
3449                goto out_cleanup_srcu;
3450
3451        list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3452
3453        kref_get(&ctrl->subsys->ref);
3454
3455        return head;
3456out_cleanup_srcu:
3457        cleanup_srcu_struct(&head->srcu);
3458out_ida_remove:
3459        ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3460out_free_head:
3461        kfree(head);
3462out:
3463        if (ret > 0)
3464                ret = blk_status_to_errno(nvme_error_status(ret));
3465        return ERR_PTR(ret);
3466}
3467
3468static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3469                struct nvme_id_ns *id)
3470{
3471        struct nvme_ctrl *ctrl = ns->ctrl;
3472        bool is_shared = id->nmic & (1 << 0);
3473        struct nvme_ns_head *head = NULL;
3474        struct nvme_ns_ids ids;
3475        int ret = 0;
3476
3477        ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3478        if (ret)
3479                goto out;
3480
3481        mutex_lock(&ctrl->subsys->lock);
3482        if (is_shared)
3483                head = nvme_find_ns_head(ctrl->subsys, nsid);
3484        if (!head) {
3485                head = nvme_alloc_ns_head(ctrl, nsid, id, &ids);
3486                if (IS_ERR(head)) {
3487                        ret = PTR_ERR(head);
3488                        goto out_unlock;
3489                }
3490        } else {
3491                if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3492                        dev_err(ctrl->device,
3493                                "IDs don't match for shared namespace %d\n",
3494                                        nsid);
3495                        ret = -EINVAL;
3496                        goto out_unlock;
3497                }
3498        }
3499
3500        list_add_tail(&ns->siblings, &head->list);
3501        ns->head = head;
3502
3503out_unlock:
3504        mutex_unlock(&ctrl->subsys->lock);
3505out:
3506        if (ret > 0)
3507                ret = blk_status_to_errno(nvme_error_status(ret));
3508        return ret;
3509}
3510
3511static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3512{
3513        struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3514        struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3515
3516        return nsa->head->ns_id - nsb->head->ns_id;
3517}
3518
3519static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3520{
3521        struct nvme_ns *ns, *ret = NULL;
3522
3523        down_read(&ctrl->namespaces_rwsem);
3524        list_for_each_entry(ns, &ctrl->namespaces, list) {
3525                if (ns->head->ns_id == nsid) {
3526                        if (!kref_get_unless_zero(&ns->kref))
3527                                continue;
3528                        ret = ns;
3529                        break;
3530                }
3531                if (ns->head->ns_id > nsid)
3532                        break;
3533        }
3534        up_read(&ctrl->namespaces_rwsem);
3535        return ret;
3536}
3537
3538static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3539{
3540        struct streams_directive_params s;
3541        int ret;
3542
3543        if (!ctrl->nr_streams)
3544                return 0;
3545
3546        ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3547        if (ret)
3548                return ret;
3549
3550        ns->sws = le32_to_cpu(s.sws);
3551        ns->sgs = le16_to_cpu(s.sgs);
3552
3553        if (ns->sws) {
3554                unsigned int bs = 1 << ns->lba_shift;
3555
3556                blk_queue_io_min(ns->queue, bs * ns->sws);
3557                if (ns->sgs)
3558                        blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3559        }
3560
3561        return 0;
3562}
3563
3564static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3565{
3566        struct nvme_ns *ns;
3567        struct gendisk *disk;
3568        struct nvme_id_ns *id;
3569        char disk_name[DISK_NAME_LEN];
3570        int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3571
3572        ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3573        if (!ns)
3574                return;
3575
3576        ns->queue = blk_mq_init_queue(ctrl->tagset);
3577        if (IS_ERR(ns->queue))
3578                goto out_free_ns;
3579
3580        if (ctrl->opts && ctrl->opts->data_digest)
3581                ns->queue->backing_dev_info->capabilities
3582                        |= BDI_CAP_STABLE_WRITES;
3583
3584        blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3585        if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3586                blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3587
3588        ns->queue->queuedata = ns;
3589        ns->ctrl = ctrl;
3590
3591        kref_init(&ns->kref);
3592        ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3593
3594        blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3595        nvme_set_queue_limits(ctrl, ns->queue);
3596
3597        ret = nvme_identify_ns(ctrl, nsid, &id);
3598        if (ret)
3599                goto out_free_queue;
3600
3601        if (id->ncap == 0)      /* no namespace (legacy quirk) */
3602                goto out_free_id;
3603
3604        ret = nvme_init_ns_head(ns, nsid, id);
3605        if (ret)
3606                goto out_free_id;
3607        nvme_setup_streams_ns(ctrl, ns);
3608        nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3609
3610        disk = alloc_disk_node(0, node);
3611        if (!disk)
3612                goto out_unlink_ns;
3613
3614        disk->fops = &nvme_fops;
3615        disk->private_data = ns;
3616        disk->queue = ns->queue;
3617        disk->flags = flags;
3618        memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3619        ns->disk = disk;
3620
3621        __nvme_revalidate_disk(disk, id);
3622
3623        if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3624                ret = nvme_nvm_register(ns, disk_name, node);
3625                if (ret) {
3626                        dev_warn(ctrl->device, "LightNVM init failure\n");
3627                        goto out_put_disk;
3628                }
3629        }
3630
3631        down_write(&ctrl->namespaces_rwsem);
3632        list_add_tail(&ns->list, &ctrl->namespaces);
3633        up_write(&ctrl->namespaces_rwsem);
3634
3635        nvme_get_ctrl(ctrl);
3636
3637        device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3638
3639        nvme_mpath_add_disk(ns, id);
3640        nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3641        kfree(id);
3642
3643        return;
3644 out_put_disk:
3645        /* prevent double queue cleanup */
3646        ns->disk->queue = NULL;
3647        put_disk(ns->disk);
3648 out_unlink_ns:
3649        mutex_lock(&ctrl->subsys->lock);
3650        list_del_rcu(&ns->siblings);
3651        mutex_unlock(&ctrl->subsys->lock);
3652        nvme_put_ns_head(ns->head);
3653 out_free_id:
3654        kfree(id);
3655 out_free_queue:
3656        blk_cleanup_queue(ns->queue);
3657 out_free_ns:
3658        kfree(ns);
3659}
3660
3661static void nvme_ns_remove(struct nvme_ns *ns)
3662{
3663        if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3664                return;
3665
3666        nvme_fault_inject_fini(&ns->fault_inject);
3667
3668        mutex_lock(&ns->ctrl->subsys->lock);
3669        list_del_rcu(&ns->siblings);
3670        mutex_unlock(&ns->ctrl->subsys->lock);
3671        synchronize_rcu(); /* guarantee not available in head->list */
3672        nvme_mpath_clear_current_path(ns);
3673        synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3674
3675        if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3676                del_gendisk(ns->disk);
3677                blk_cleanup_queue(ns->queue);
3678                if (blk_get_integrity(ns->disk))
3679                        blk_integrity_unregister(ns->disk);
3680        }
3681
3682        down_write(&ns->ctrl->namespaces_rwsem);
3683        list_del_init(&ns->list);
3684        up_write(&ns->ctrl->namespaces_rwsem);
3685
3686        nvme_mpath_check_last_path(ns);
3687        nvme_put_ns(ns);
3688}
3689
3690static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3691{
3692        struct nvme_ns *ns;
3693
3694        ns = nvme_find_get_ns(ctrl, nsid);
3695        if (ns) {
3696                if (ns->disk && revalidate_disk(ns->disk))
3697                        nvme_ns_remove(ns);
3698                nvme_put_ns(ns);
3699        } else
3700                nvme_alloc_ns(ctrl, nsid);
3701}
3702
3703static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3704                                        unsigned nsid)
3705{
3706        struct nvme_ns *ns, *next;
3707        LIST_HEAD(rm_list);
3708
3709        down_write(&ctrl->namespaces_rwsem);
3710        list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3711                if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3712                        list_move_tail(&ns->list, &rm_list);
3713        }
3714        up_write(&ctrl->namespaces_rwsem);
3715
3716        list_for_each_entry_safe(ns, next, &rm_list, list)
3717                nvme_ns_remove(ns);
3718
3719}
3720
3721static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3722{
3723        struct nvme_ns *ns;
3724        __le32 *ns_list;
3725        unsigned i, j, nsid, prev = 0;
3726        unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3727        int ret = 0;
3728
3729        ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3730        if (!ns_list)
3731                return -ENOMEM;
3732
3733        for (i = 0; i < num_lists; i++) {
3734                ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3735                if (ret)
3736                        goto free;
3737
3738                for (j = 0; j < min(nn, 1024U); j++) {
3739                        nsid = le32_to_cpu(ns_list[j]);
3740                        if (!nsid)
3741                                goto out;
3742
3743                        nvme_validate_ns(ctrl, nsid);
3744
3745                        while (++prev < nsid) {
3746                                ns = nvme_find_get_ns(ctrl, prev);
3747                                if (ns) {
3748                                        nvme_ns_remove(ns);
3749                                        nvme_put_ns(ns);
3750                                }
3751                        }
3752                }
3753                nn -= j;
3754        }
3755 out:
3756        nvme_remove_invalid_namespaces(ctrl, prev);
3757 free:
3758        kfree(ns_list);
3759        return ret;
3760}
3761
3762static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3763{
3764        unsigned i;
3765
3766        for (i = 1; i <= nn; i++)
3767                nvme_validate_ns(ctrl, i);
3768
3769        nvme_remove_invalid_namespaces(ctrl, nn);
3770}
3771
3772static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3773{
3774        size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3775        __le32 *log;
3776        int error;
3777
3778        log = kzalloc(log_size, GFP_KERNEL);
3779        if (!log)
3780                return;
3781
3782        /*
3783         * We need to read the log to clear the AEN, but we don't want to rely
3784         * on it for the changed namespace information as userspace could have
3785         * raced with us in reading the log page, which could cause us to miss
3786         * updates.
3787         */
3788        error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3789                        log_size, 0);
3790        if (error)
3791                dev_warn(ctrl->device,
3792                        "reading changed ns log failed: %d\n", error);
3793
3794        kfree(log);
3795}
3796
3797static void nvme_scan_work(struct work_struct *work)
3798{
3799        struct nvme_ctrl *ctrl =
3800                container_of(work, struct nvme_ctrl, scan_work);
3801        struct nvme_id_ctrl *id;
3802        unsigned nn;
3803
3804        /* No tagset on a live ctrl means IO queues could not created */
3805        if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3806                return;
3807
3808        if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3809                dev_info(ctrl->device, "rescanning namespaces.\n");
3810                nvme_clear_changed_ns_log(ctrl);
3811        }
3812
3813        if (nvme_identify_ctrl(ctrl, &id))
3814                return;
3815
3816        mutex_lock(&ctrl->scan_lock);
3817        nn = le32_to_cpu(id->nn);
3818        if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3819            !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3820                if (!nvme_scan_ns_list(ctrl, nn))
3821                        goto out_free_id;
3822        }
3823        nvme_scan_ns_sequential(ctrl, nn);
3824out_free_id:
3825        mutex_unlock(&ctrl->scan_lock);
3826        kfree(id);
3827        down_write(&ctrl->namespaces_rwsem);
3828        list_sort(NULL, &ctrl->namespaces, ns_cmp);
3829        up_write(&ctrl->namespaces_rwsem);
3830}
3831
3832/*
3833 * This function iterates the namespace list unlocked to allow recovery from
3834 * controller failure. It is up to the caller to ensure the namespace list is
3835 * not modified by scan work while this function is executing.
3836 */
3837void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3838{
3839        struct nvme_ns *ns, *next;
3840        LIST_HEAD(ns_list);
3841
3842        /*
3843         * make sure to requeue I/O to all namespaces as these
3844         * might result from the scan itself and must complete
3845         * for the scan_work to make progress
3846         */
3847        nvme_mpath_clear_ctrl_paths(ctrl);
3848
3849        /* prevent racing with ns scanning */
3850        flush_work(&ctrl->scan_work);
3851
3852        /*
3853         * The dead states indicates the controller was not gracefully
3854         * disconnected. In that case, we won't be able to flush any data while
3855         * removing the namespaces' disks; fail all the queues now to avoid
3856         * potentially having to clean up the failed sync later.
3857         */
3858        if (ctrl->state == NVME_CTRL_DEAD)
3859                nvme_kill_queues(ctrl);
3860
3861        down_write(&ctrl->namespaces_rwsem);
3862        list_splice_init(&ctrl->namespaces, &ns_list);
3863        up_write(&ctrl->namespaces_rwsem);
3864
3865        list_for_each_entry_safe(ns, next, &ns_list, list)
3866                nvme_ns_remove(ns);
3867}
3868EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3869
3870static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3871{
3872        struct nvme_ctrl *ctrl =
3873                container_of(dev, struct nvme_ctrl, ctrl_device);
3874        struct nvmf_ctrl_options *opts = ctrl->opts;
3875        int ret;
3876
3877        ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3878        if (ret)
3879                return ret;
3880
3881        if (opts) {
3882                ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3883                if (ret)
3884                        return ret;
3885
3886                ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3887                                opts->trsvcid ?: "none");
3888                if (ret)
3889                        return ret;
3890
3891                ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3892                                opts->host_traddr ?: "none");
3893        }
3894        return ret;
3895}
3896
3897static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3898{
3899        char *envp[2] = { NULL, NULL };
3900        u32 aen_result = ctrl->aen_result;
3901
3902        ctrl->aen_result = 0;
3903        if (!aen_result)
3904                return;
3905
3906        envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3907        if (!envp[0])
3908                return;
3909        kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3910        kfree(envp[0]);
3911}
3912
3913static void nvme_async_event_work(struct work_struct *work)
3914{
3915        struct nvme_ctrl *ctrl =
3916                container_of(work, struct nvme_ctrl, async_event_work);
3917
3918        nvme_aen_uevent(ctrl);
3919        ctrl->ops->submit_async_event(ctrl);
3920}
3921
3922static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3923{
3924
3925        u32 csts;
3926
3927        if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3928                return false;
3929
3930        if (csts == ~0)
3931                return false;
3932
3933        return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3934}
3935
3936static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3937{
3938        struct nvme_fw_slot_info_log *log;
3939
3940        log = kmalloc(sizeof(*log), GFP_KERNEL);
3941        if (!log)
3942                return;
3943
3944        if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log,
3945                        sizeof(*log), 0))
3946                dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3947        kfree(log);
3948}
3949
3950static void nvme_fw_act_work(struct work_struct *work)
3951{
3952        struct nvme_ctrl *ctrl = container_of(work,
3953                                struct nvme_ctrl, fw_act_work);
3954        unsigned long fw_act_timeout;
3955
3956        if (ctrl->mtfa)
3957                fw_act_timeout = jiffies +
3958                                msecs_to_jiffies(ctrl->mtfa * 100);
3959        else
3960                fw_act_timeout = jiffies +
3961                                msecs_to_jiffies(admin_timeout * 1000);
3962
3963        nvme_stop_queues(ctrl);
3964        while (nvme_ctrl_pp_status(ctrl)) {
3965                if (time_after(jiffies, fw_act_timeout)) {
3966                        dev_warn(ctrl->device,
3967                                "Fw activation timeout, reset controller\n");
3968                        nvme_try_sched_reset(ctrl);
3969                        return;
3970                }
3971                msleep(100);
3972        }
3973
3974        if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3975                return;
3976
3977        nvme_start_queues(ctrl);
3978        /* read FW slot information to clear the AER */
3979        nvme_get_fw_slot_info(ctrl);
3980}
3981
3982static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3983{
3984        u32 aer_notice_type = (result & 0xff00) >> 8;
3985
3986        trace_nvme_async_event(ctrl, aer_notice_type);
3987
3988        switch (aer_notice_type) {
3989        case NVME_AER_NOTICE_NS_CHANGED:
3990                set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3991                nvme_queue_scan(ctrl);
3992                break;
3993        case NVME_AER_NOTICE_FW_ACT_STARTING:
3994                /*
3995                 * We are (ab)using the RESETTING state to prevent subsequent
3996                 * recovery actions from interfering with the controller's
3997                 * firmware activation.
3998                 */
3999                if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4000                        queue_work(nvme_wq, &ctrl->fw_act_work);
4001                break;
4002#ifdef CONFIG_NVME_MULTIPATH
4003        case NVME_AER_NOTICE_ANA:
4004                if (!ctrl->ana_log_buf)
4005                        break;
4006                queue_work(nvme_wq, &ctrl->ana_work);
4007                break;
4008#endif
4009        case NVME_AER_NOTICE_DISC_CHANGED:
4010                ctrl->aen_result = result;
4011                break;
4012        default:
4013                dev_warn(ctrl->device, "async event result %08x\n", result);
4014        }
4015}
4016
4017void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4018                volatile union nvme_result *res)
4019{
4020        u32 result = le32_to_cpu(res->u32);
4021        u32 aer_type = result & 0x07;
4022
4023        if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4024                return;
4025
4026        switch (aer_type) {
4027        case NVME_AER_NOTICE:
4028                nvme_handle_aen_notice(ctrl, result);
4029                break;
4030        case NVME_AER_ERROR:
4031        case NVME_AER_SMART:
4032        case NVME_AER_CSS:
4033        case NVME_AER_VS:
4034                trace_nvme_async_event(ctrl, aer_type);
4035                ctrl->aen_result = result;
4036                break;
4037        default:
4038                break;
4039        }
4040        queue_work(nvme_wq, &ctrl->async_event_work);
4041}
4042EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4043
4044void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4045{
4046        nvme_mpath_stop(ctrl);
4047        nvme_stop_keep_alive(ctrl);
4048        flush_work(&ctrl->async_event_work);
4049        cancel_work_sync(&ctrl->fw_act_work);
4050}
4051EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4052
4053void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4054{
4055        if (ctrl->kato)
4056                nvme_start_keep_alive(ctrl);
4057
4058        nvme_enable_aen(ctrl);
4059
4060        if (ctrl->queue_count > 1) {
4061                nvme_queue_scan(ctrl);
4062                nvme_start_queues(ctrl);
4063        }
4064        ctrl->created = true;
4065}
4066EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4067
4068void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4069{
4070        nvme_fault_inject_fini(&ctrl->fault_inject);
4071        dev_pm_qos_hide_latency_tolerance(ctrl->device);
4072        cdev_device_del(&ctrl->cdev, ctrl->device);
4073        nvme_put_ctrl(ctrl);
4074}
4075EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4076
4077static void nvme_free_ctrl(struct device *dev)
4078{
4079        struct nvme_ctrl *ctrl =
4080                container_of(dev, struct nvme_ctrl, ctrl_device);
4081        struct nvme_subsystem *subsys = ctrl->subsys;
4082
4083        if (subsys && ctrl->instance != subsys->instance)
4084                ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4085
4086        kfree(ctrl->effects);
4087        nvme_mpath_uninit(ctrl);
4088        __free_page(ctrl->discard_page);
4089
4090        if (subsys) {
4091                mutex_lock(&nvme_subsystems_lock);
4092                list_del(&ctrl->subsys_entry);
4093                sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4094                mutex_unlock(&nvme_subsystems_lock);
4095        }
4096
4097        ctrl->ops->free_ctrl(ctrl);
4098
4099        if (subsys)
4100                nvme_put_subsystem(subsys);
4101}
4102
4103/*
4104 * Initialize a NVMe controller structures.  This needs to be called during
4105 * earliest initialization so that we have the initialized structured around
4106 * during probing.
4107 */
4108int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4109                const struct nvme_ctrl_ops *ops, unsigned long quirks)
4110{
4111        int ret;
4112
4113        ctrl->state = NVME_CTRL_NEW;
4114        spin_lock_init(&ctrl->lock);
4115        mutex_init(&ctrl->scan_lock);
4116        INIT_LIST_HEAD(&ctrl->namespaces);
4117        init_rwsem(&ctrl->namespaces_rwsem);
4118        ctrl->dev = dev;
4119        ctrl->ops = ops;
4120        ctrl->quirks = quirks;
4121        INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4122        INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4123        INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4124        INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4125        init_waitqueue_head(&ctrl->state_wq);
4126
4127        INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4128        memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4129        ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4130
4131        BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4132                        PAGE_SIZE);
4133        ctrl->discard_page = alloc_page(GFP_KERNEL);
4134        if (!ctrl->discard_page) {
4135                ret = -ENOMEM;
4136                goto out;
4137        }
4138
4139        ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4140        if (ret < 0)
4141                goto out;
4142        ctrl->instance = ret;
4143
4144        device_initialize(&ctrl->ctrl_device);
4145        ctrl->device = &ctrl->ctrl_device;
4146        ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4147        ctrl->device->class = nvme_class;
4148        ctrl->device->parent = ctrl->dev;
4149        ctrl->device->groups = nvme_dev_attr_groups;
4150        ctrl->device->release = nvme_free_ctrl;
4151        dev_set_drvdata(ctrl->device, ctrl);
4152        ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4153        if (ret)
4154                goto out_release_instance;
4155
4156        nvme_get_ctrl(ctrl);
4157        cdev_init(&ctrl->cdev, &nvme_dev_fops);
4158        ctrl->cdev.owner = ops->module;
4159        ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4160        if (ret)
4161                goto out_free_name;
4162
4163        /*
4164         * Initialize latency tolerance controls.  The sysfs files won't
4165         * be visible to userspace unless the device actually supports APST.
4166         */
4167        ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4168        dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4169                min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4170
4171        nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4172
4173        return 0;
4174out_free_name:
4175        nvme_put_ctrl(ctrl);
4176        kfree_const(ctrl->device->kobj.name);
4177out_release_instance:
4178        ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4179out:
4180        if (ctrl->discard_page)
4181                __free_page(ctrl->discard_page);
4182        return ret;
4183}
4184EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4185
4186/**
4187 * nvme_kill_queues(): Ends all namespace queues
4188 * @ctrl: the dead controller that needs to end
4189 *
4190 * Call this function when the driver determines it is unable to get the
4191 * controller in a state capable of servicing IO.
4192 */
4193void nvme_kill_queues(struct nvme_ctrl *ctrl)
4194{
4195        struct nvme_ns *ns;
4196
4197        down_read(&ctrl->namespaces_rwsem);
4198
4199        /* Forcibly unquiesce queues to avoid blocking dispatch */
4200        if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4201                blk_mq_unquiesce_queue(ctrl->admin_q);
4202
4203        list_for_each_entry(ns, &ctrl->namespaces, list)
4204                nvme_set_queue_dying(ns);
4205
4206        up_read(&ctrl->namespaces_rwsem);
4207}
4208EXPORT_SYMBOL_GPL(nvme_kill_queues);
4209
4210void nvme_unfreeze(struct nvme_ctrl *ctrl)
4211{
4212        struct nvme_ns *ns;
4213
4214        down_read(&ctrl->namespaces_rwsem);
4215        list_for_each_entry(ns, &ctrl->namespaces, list)
4216                blk_mq_unfreeze_queue(ns->queue);
4217        up_read(&ctrl->namespaces_rwsem);
4218}
4219EXPORT_SYMBOL_GPL(nvme_unfreeze);
4220
4221void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4222{
4223        struct nvme_ns *ns;
4224
4225        down_read(&ctrl->namespaces_rwsem);
4226        list_for_each_entry(ns, &ctrl->namespaces, list) {
4227                timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4228                if (timeout <= 0)
4229                        break;
4230        }
4231        up_read(&ctrl->namespaces_rwsem);
4232}
4233EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4234
4235void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4236{
4237        struct nvme_ns *ns;
4238
4239        down_read(&ctrl->namespaces_rwsem);
4240        list_for_each_entry(ns, &ctrl->namespaces, list)
4241                blk_mq_freeze_queue_wait(ns->queue);
4242        up_read(&ctrl->namespaces_rwsem);
4243}
4244EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4245
4246void nvme_start_freeze(struct nvme_ctrl *ctrl)
4247{
4248        struct nvme_ns *ns;
4249
4250        down_read(&ctrl->namespaces_rwsem);
4251        list_for_each_entry(ns, &ctrl->namespaces, list)
4252                blk_freeze_queue_start(ns->queue);
4253        up_read(&ctrl->namespaces_rwsem);
4254}
4255EXPORT_SYMBOL_GPL(nvme_start_freeze);
4256
4257void nvme_stop_queues(struct nvme_ctrl *ctrl)
4258{
4259        struct nvme_ns *ns;
4260
4261        down_read(&ctrl->namespaces_rwsem);
4262        list_for_each_entry(ns, &ctrl->namespaces, list)
4263                blk_mq_quiesce_queue(ns->queue);
4264        up_read(&ctrl->namespaces_rwsem);
4265}
4266EXPORT_SYMBOL_GPL(nvme_stop_queues);
4267
4268void nvme_start_queues(struct nvme_ctrl *ctrl)
4269{
4270        struct nvme_ns *ns;
4271
4272        down_read(&ctrl->namespaces_rwsem);
4273        list_for_each_entry(ns, &ctrl->namespaces, list)
4274                blk_mq_unquiesce_queue(ns->queue);
4275        up_read(&ctrl->namespaces_rwsem);
4276}
4277EXPORT_SYMBOL_GPL(nvme_start_queues);
4278
4279
4280void nvme_sync_queues(struct nvme_ctrl *ctrl)
4281{
4282        struct nvme_ns *ns;
4283
4284        down_read(&ctrl->namespaces_rwsem);
4285        list_for_each_entry(ns, &ctrl->namespaces, list)
4286                blk_sync_queue(ns->queue);
4287        up_read(&ctrl->namespaces_rwsem);
4288
4289        if (ctrl->admin_q)
4290                blk_sync_queue(ctrl->admin_q);
4291}
4292EXPORT_SYMBOL_GPL(nvme_sync_queues);
4293
4294/*
4295 * Check we didn't inadvertently grow the command structure sizes:
4296 */
4297static inline void _nvme_check_size(void)
4298{
4299        BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4300        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4301        BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4302        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4303        BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4304        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4305        BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4306        BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4307        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4308        BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4309        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4310        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4311        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4312        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4313        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4314        BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4315        BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4316}
4317
4318
4319static int __init nvme_core_init(void)
4320{
4321        int result = -ENOMEM;
4322
4323        _nvme_check_size();
4324
4325        nvme_wq = alloc_workqueue("nvme-wq",
4326                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4327        if (!nvme_wq)
4328                goto out;
4329
4330        nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4331                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4332        if (!nvme_reset_wq)
4333                goto destroy_wq;
4334
4335        nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4336                        WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4337        if (!nvme_delete_wq)
4338                goto destroy_reset_wq;
4339
4340        result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4341        if (result < 0)
4342                goto destroy_delete_wq;
4343
4344        nvme_class = class_create(THIS_MODULE, "nvme");
4345        if (IS_ERR(nvme_class)) {
4346                result = PTR_ERR(nvme_class);
4347                goto unregister_chrdev;
4348        }
4349        nvme_class->dev_uevent = nvme_class_uevent;
4350
4351        nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4352        if (IS_ERR(nvme_subsys_class)) {
4353                result = PTR_ERR(nvme_subsys_class);
4354                goto destroy_class;
4355        }
4356        return 0;
4357
4358destroy_class:
4359        class_destroy(nvme_class);
4360unregister_chrdev:
4361        unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4362destroy_delete_wq:
4363        destroy_workqueue(nvme_delete_wq);
4364destroy_reset_wq:
4365        destroy_workqueue(nvme_reset_wq);
4366destroy_wq:
4367        destroy_workqueue(nvme_wq);
4368out:
4369        return result;
4370}
4371
4372static void __exit nvme_core_exit(void)
4373{
4374        class_destroy(nvme_subsys_class);
4375        class_destroy(nvme_class);
4376        unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4377        destroy_workqueue(nvme_delete_wq);
4378        destroy_workqueue(nvme_reset_wq);
4379        destroy_workqueue(nvme_wq);
4380        ida_destroy(&nvme_instance_ida);
4381}
4382
4383MODULE_LICENSE("GPL");
4384MODULE_VERSION("1.0");
4385module_init(nvme_core_init);
4386module_exit(nvme_core_exit);
4387