linux/drivers/nvme/host/fc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   4 */
   5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   6#include <linux/module.h>
   7#include <linux/parser.h>
   8#include <uapi/scsi/fc/fc_fs.h>
   9#include <uapi/scsi/fc/fc_els.h>
  10#include <linux/delay.h>
  11#include <linux/overflow.h>
  12
  13#include "nvme.h"
  14#include "fabrics.h"
  15#include <linux/nvme-fc-driver.h>
  16#include <linux/nvme-fc.h>
  17#include <scsi/scsi_transport_fc.h>
  18
  19/* *************************** Data Structures/Defines ****************** */
  20
  21
  22enum nvme_fc_queue_flags {
  23        NVME_FC_Q_CONNECTED = 0,
  24        NVME_FC_Q_LIVE,
  25};
  26
  27#define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
  28
  29struct nvme_fc_queue {
  30        struct nvme_fc_ctrl     *ctrl;
  31        struct device           *dev;
  32        struct blk_mq_hw_ctx    *hctx;
  33        void                    *lldd_handle;
  34        size_t                  cmnd_capsule_len;
  35        u32                     qnum;
  36        u32                     rqcnt;
  37        u32                     seqno;
  38
  39        u64                     connection_id;
  40        atomic_t                csn;
  41
  42        unsigned long           flags;
  43} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  44
  45enum nvme_fcop_flags {
  46        FCOP_FLAGS_TERMIO       = (1 << 0),
  47        FCOP_FLAGS_AEN          = (1 << 1),
  48};
  49
  50struct nvmefc_ls_req_op {
  51        struct nvmefc_ls_req    ls_req;
  52
  53        struct nvme_fc_rport    *rport;
  54        struct nvme_fc_queue    *queue;
  55        struct request          *rq;
  56        u32                     flags;
  57
  58        int                     ls_error;
  59        struct completion       ls_done;
  60        struct list_head        lsreq_list;     /* rport->ls_req_list */
  61        bool                    req_queued;
  62};
  63
  64enum nvme_fcpop_state {
  65        FCPOP_STATE_UNINIT      = 0,
  66        FCPOP_STATE_IDLE        = 1,
  67        FCPOP_STATE_ACTIVE      = 2,
  68        FCPOP_STATE_ABORTED     = 3,
  69        FCPOP_STATE_COMPLETE    = 4,
  70};
  71
  72struct nvme_fc_fcp_op {
  73        struct nvme_request     nreq;           /*
  74                                                 * nvme/host/core.c
  75                                                 * requires this to be
  76                                                 * the 1st element in the
  77                                                 * private structure
  78                                                 * associated with the
  79                                                 * request.
  80                                                 */
  81        struct nvmefc_fcp_req   fcp_req;
  82
  83        struct nvme_fc_ctrl     *ctrl;
  84        struct nvme_fc_queue    *queue;
  85        struct request          *rq;
  86
  87        atomic_t                state;
  88        u32                     flags;
  89        u32                     rqno;
  90        u32                     nents;
  91
  92        struct nvme_fc_cmd_iu   cmd_iu;
  93        struct nvme_fc_ersp_iu  rsp_iu;
  94};
  95
  96struct nvme_fcp_op_w_sgl {
  97        struct nvme_fc_fcp_op   op;
  98        struct scatterlist      sgl[NVME_INLINE_SG_CNT];
  99        uint8_t                 priv[0];
 100};
 101
 102struct nvme_fc_lport {
 103        struct nvme_fc_local_port       localport;
 104
 105        struct ida                      endp_cnt;
 106        struct list_head                port_list;      /* nvme_fc_port_list */
 107        struct list_head                endp_list;
 108        struct device                   *dev;   /* physical device for dma */
 109        struct nvme_fc_port_template    *ops;
 110        struct kref                     ref;
 111        atomic_t                        act_rport_cnt;
 112} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 113
 114struct nvme_fc_rport {
 115        struct nvme_fc_remote_port      remoteport;
 116
 117        struct list_head                endp_list; /* for lport->endp_list */
 118        struct list_head                ctrl_list;
 119        struct list_head                ls_req_list;
 120        struct list_head                disc_list;
 121        struct device                   *dev;   /* physical device for dma */
 122        struct nvme_fc_lport            *lport;
 123        spinlock_t                      lock;
 124        struct kref                     ref;
 125        atomic_t                        act_ctrl_cnt;
 126        unsigned long                   dev_loss_end;
 127} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 128
 129enum nvme_fcctrl_flags {
 130        FCCTRL_TERMIO           = (1 << 0),
 131};
 132
 133struct nvme_fc_ctrl {
 134        spinlock_t              lock;
 135        struct nvme_fc_queue    *queues;
 136        struct device           *dev;
 137        struct nvme_fc_lport    *lport;
 138        struct nvme_fc_rport    *rport;
 139        u32                     cnum;
 140
 141        bool                    ioq_live;
 142        bool                    assoc_active;
 143        atomic_t                err_work_active;
 144        u64                     association_id;
 145
 146        struct list_head        ctrl_list;      /* rport->ctrl_list */
 147
 148        struct blk_mq_tag_set   admin_tag_set;
 149        struct blk_mq_tag_set   tag_set;
 150
 151        struct delayed_work     connect_work;
 152        struct work_struct      err_work;
 153
 154        struct kref             ref;
 155        u32                     flags;
 156        u32                     iocnt;
 157        wait_queue_head_t       ioabort_wait;
 158
 159        struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
 160
 161        struct nvme_ctrl        ctrl;
 162};
 163
 164static inline struct nvme_fc_ctrl *
 165to_fc_ctrl(struct nvme_ctrl *ctrl)
 166{
 167        return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
 168}
 169
 170static inline struct nvme_fc_lport *
 171localport_to_lport(struct nvme_fc_local_port *portptr)
 172{
 173        return container_of(portptr, struct nvme_fc_lport, localport);
 174}
 175
 176static inline struct nvme_fc_rport *
 177remoteport_to_rport(struct nvme_fc_remote_port *portptr)
 178{
 179        return container_of(portptr, struct nvme_fc_rport, remoteport);
 180}
 181
 182static inline struct nvmefc_ls_req_op *
 183ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
 184{
 185        return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
 186}
 187
 188static inline struct nvme_fc_fcp_op *
 189fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
 190{
 191        return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
 192}
 193
 194
 195
 196/* *************************** Globals **************************** */
 197
 198
 199static DEFINE_SPINLOCK(nvme_fc_lock);
 200
 201static LIST_HEAD(nvme_fc_lport_list);
 202static DEFINE_IDA(nvme_fc_local_port_cnt);
 203static DEFINE_IDA(nvme_fc_ctrl_cnt);
 204
 205static struct workqueue_struct *nvme_fc_wq;
 206
 207static bool nvme_fc_waiting_to_unload;
 208static DECLARE_COMPLETION(nvme_fc_unload_proceed);
 209
 210/*
 211 * These items are short-term. They will eventually be moved into
 212 * a generic FC class. See comments in module init.
 213 */
 214static struct device *fc_udev_device;
 215
 216
 217/* *********************** FC-NVME Port Management ************************ */
 218
 219static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
 220                        struct nvme_fc_queue *, unsigned int);
 221
 222static void
 223nvme_fc_free_lport(struct kref *ref)
 224{
 225        struct nvme_fc_lport *lport =
 226                container_of(ref, struct nvme_fc_lport, ref);
 227        unsigned long flags;
 228
 229        WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
 230        WARN_ON(!list_empty(&lport->endp_list));
 231
 232        /* remove from transport list */
 233        spin_lock_irqsave(&nvme_fc_lock, flags);
 234        list_del(&lport->port_list);
 235        if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
 236                complete(&nvme_fc_unload_proceed);
 237        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 238
 239        ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
 240        ida_destroy(&lport->endp_cnt);
 241
 242        put_device(lport->dev);
 243
 244        kfree(lport);
 245}
 246
 247static void
 248nvme_fc_lport_put(struct nvme_fc_lport *lport)
 249{
 250        kref_put(&lport->ref, nvme_fc_free_lport);
 251}
 252
 253static int
 254nvme_fc_lport_get(struct nvme_fc_lport *lport)
 255{
 256        return kref_get_unless_zero(&lport->ref);
 257}
 258
 259
 260static struct nvme_fc_lport *
 261nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
 262                        struct nvme_fc_port_template *ops,
 263                        struct device *dev)
 264{
 265        struct nvme_fc_lport *lport;
 266        unsigned long flags;
 267
 268        spin_lock_irqsave(&nvme_fc_lock, flags);
 269
 270        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
 271                if (lport->localport.node_name != pinfo->node_name ||
 272                    lport->localport.port_name != pinfo->port_name)
 273                        continue;
 274
 275                if (lport->dev != dev) {
 276                        lport = ERR_PTR(-EXDEV);
 277                        goto out_done;
 278                }
 279
 280                if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
 281                        lport = ERR_PTR(-EEXIST);
 282                        goto out_done;
 283                }
 284
 285                if (!nvme_fc_lport_get(lport)) {
 286                        /*
 287                         * fails if ref cnt already 0. If so,
 288                         * act as if lport already deleted
 289                         */
 290                        lport = NULL;
 291                        goto out_done;
 292                }
 293
 294                /* resume the lport */
 295
 296                lport->ops = ops;
 297                lport->localport.port_role = pinfo->port_role;
 298                lport->localport.port_id = pinfo->port_id;
 299                lport->localport.port_state = FC_OBJSTATE_ONLINE;
 300
 301                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 302
 303                return lport;
 304        }
 305
 306        lport = NULL;
 307
 308out_done:
 309        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 310
 311        return lport;
 312}
 313
 314/**
 315 * nvme_fc_register_localport - transport entry point called by an
 316 *                              LLDD to register the existence of a NVME
 317 *                              host FC port.
 318 * @pinfo:     pointer to information about the port to be registered
 319 * @template:  LLDD entrypoints and operational parameters for the port
 320 * @dev:       physical hardware device node port corresponds to. Will be
 321 *             used for DMA mappings
 322 * @portptr:   pointer to a local port pointer. Upon success, the routine
 323 *             will allocate a nvme_fc_local_port structure and place its
 324 *             address in the local port pointer. Upon failure, local port
 325 *             pointer will be set to 0.
 326 *
 327 * Returns:
 328 * a completion status. Must be 0 upon success; a negative errno
 329 * (ex: -ENXIO) upon failure.
 330 */
 331int
 332nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
 333                        struct nvme_fc_port_template *template,
 334                        struct device *dev,
 335                        struct nvme_fc_local_port **portptr)
 336{
 337        struct nvme_fc_lport *newrec;
 338        unsigned long flags;
 339        int ret, idx;
 340
 341        if (!template->localport_delete || !template->remoteport_delete ||
 342            !template->ls_req || !template->fcp_io ||
 343            !template->ls_abort || !template->fcp_abort ||
 344            !template->max_hw_queues || !template->max_sgl_segments ||
 345            !template->max_dif_sgl_segments || !template->dma_boundary) {
 346                ret = -EINVAL;
 347                goto out_reghost_failed;
 348        }
 349
 350        /*
 351         * look to see if there is already a localport that had been
 352         * deregistered and in the process of waiting for all the
 353         * references to fully be removed.  If the references haven't
 354         * expired, we can simply re-enable the localport. Remoteports
 355         * and controller reconnections should resume naturally.
 356         */
 357        newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
 358
 359        /* found an lport, but something about its state is bad */
 360        if (IS_ERR(newrec)) {
 361                ret = PTR_ERR(newrec);
 362                goto out_reghost_failed;
 363
 364        /* found existing lport, which was resumed */
 365        } else if (newrec) {
 366                *portptr = &newrec->localport;
 367                return 0;
 368        }
 369
 370        /* nothing found - allocate a new localport struct */
 371
 372        newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
 373                         GFP_KERNEL);
 374        if (!newrec) {
 375                ret = -ENOMEM;
 376                goto out_reghost_failed;
 377        }
 378
 379        idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
 380        if (idx < 0) {
 381                ret = -ENOSPC;
 382                goto out_fail_kfree;
 383        }
 384
 385        if (!get_device(dev) && dev) {
 386                ret = -ENODEV;
 387                goto out_ida_put;
 388        }
 389
 390        INIT_LIST_HEAD(&newrec->port_list);
 391        INIT_LIST_HEAD(&newrec->endp_list);
 392        kref_init(&newrec->ref);
 393        atomic_set(&newrec->act_rport_cnt, 0);
 394        newrec->ops = template;
 395        newrec->dev = dev;
 396        ida_init(&newrec->endp_cnt);
 397        newrec->localport.private = &newrec[1];
 398        newrec->localport.node_name = pinfo->node_name;
 399        newrec->localport.port_name = pinfo->port_name;
 400        newrec->localport.port_role = pinfo->port_role;
 401        newrec->localport.port_id = pinfo->port_id;
 402        newrec->localport.port_state = FC_OBJSTATE_ONLINE;
 403        newrec->localport.port_num = idx;
 404
 405        spin_lock_irqsave(&nvme_fc_lock, flags);
 406        list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
 407        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 408
 409        if (dev)
 410                dma_set_seg_boundary(dev, template->dma_boundary);
 411
 412        *portptr = &newrec->localport;
 413        return 0;
 414
 415out_ida_put:
 416        ida_simple_remove(&nvme_fc_local_port_cnt, idx);
 417out_fail_kfree:
 418        kfree(newrec);
 419out_reghost_failed:
 420        *portptr = NULL;
 421
 422        return ret;
 423}
 424EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
 425
 426/**
 427 * nvme_fc_unregister_localport - transport entry point called by an
 428 *                              LLDD to deregister/remove a previously
 429 *                              registered a NVME host FC port.
 430 * @portptr: pointer to the (registered) local port that is to be deregistered.
 431 *
 432 * Returns:
 433 * a completion status. Must be 0 upon success; a negative errno
 434 * (ex: -ENXIO) upon failure.
 435 */
 436int
 437nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
 438{
 439        struct nvme_fc_lport *lport = localport_to_lport(portptr);
 440        unsigned long flags;
 441
 442        if (!portptr)
 443                return -EINVAL;
 444
 445        spin_lock_irqsave(&nvme_fc_lock, flags);
 446
 447        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 448                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 449                return -EINVAL;
 450        }
 451        portptr->port_state = FC_OBJSTATE_DELETED;
 452
 453        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 454
 455        if (atomic_read(&lport->act_rport_cnt) == 0)
 456                lport->ops->localport_delete(&lport->localport);
 457
 458        nvme_fc_lport_put(lport);
 459
 460        return 0;
 461}
 462EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
 463
 464/*
 465 * TRADDR strings, per FC-NVME are fixed format:
 466 *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
 467 * udev event will only differ by prefix of what field is
 468 * being specified:
 469 *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
 470 *  19 + 43 + null_fudge = 64 characters
 471 */
 472#define FCNVME_TRADDR_LENGTH            64
 473
 474static void
 475nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
 476                struct nvme_fc_rport *rport)
 477{
 478        char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
 479        char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
 480        char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
 481
 482        if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
 483                return;
 484
 485        snprintf(hostaddr, sizeof(hostaddr),
 486                "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
 487                lport->localport.node_name, lport->localport.port_name);
 488        snprintf(tgtaddr, sizeof(tgtaddr),
 489                "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
 490                rport->remoteport.node_name, rport->remoteport.port_name);
 491        kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
 492}
 493
 494static void
 495nvme_fc_free_rport(struct kref *ref)
 496{
 497        struct nvme_fc_rport *rport =
 498                container_of(ref, struct nvme_fc_rport, ref);
 499        struct nvme_fc_lport *lport =
 500                        localport_to_lport(rport->remoteport.localport);
 501        unsigned long flags;
 502
 503        WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
 504        WARN_ON(!list_empty(&rport->ctrl_list));
 505
 506        /* remove from lport list */
 507        spin_lock_irqsave(&nvme_fc_lock, flags);
 508        list_del(&rport->endp_list);
 509        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 510
 511        WARN_ON(!list_empty(&rport->disc_list));
 512        ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
 513
 514        kfree(rport);
 515
 516        nvme_fc_lport_put(lport);
 517}
 518
 519static void
 520nvme_fc_rport_put(struct nvme_fc_rport *rport)
 521{
 522        kref_put(&rport->ref, nvme_fc_free_rport);
 523}
 524
 525static int
 526nvme_fc_rport_get(struct nvme_fc_rport *rport)
 527{
 528        return kref_get_unless_zero(&rport->ref);
 529}
 530
 531static void
 532nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
 533{
 534        switch (ctrl->ctrl.state) {
 535        case NVME_CTRL_NEW:
 536        case NVME_CTRL_CONNECTING:
 537                /*
 538                 * As all reconnects were suppressed, schedule a
 539                 * connect.
 540                 */
 541                dev_info(ctrl->ctrl.device,
 542                        "NVME-FC{%d}: connectivity re-established. "
 543                        "Attempting reconnect\n", ctrl->cnum);
 544
 545                queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
 546                break;
 547
 548        case NVME_CTRL_RESETTING:
 549                /*
 550                 * Controller is already in the process of terminating the
 551                 * association. No need to do anything further. The reconnect
 552                 * step will naturally occur after the reset completes.
 553                 */
 554                break;
 555
 556        default:
 557                /* no action to take - let it delete */
 558                break;
 559        }
 560}
 561
 562static struct nvme_fc_rport *
 563nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
 564                                struct nvme_fc_port_info *pinfo)
 565{
 566        struct nvme_fc_rport *rport;
 567        struct nvme_fc_ctrl *ctrl;
 568        unsigned long flags;
 569
 570        spin_lock_irqsave(&nvme_fc_lock, flags);
 571
 572        list_for_each_entry(rport, &lport->endp_list, endp_list) {
 573                if (rport->remoteport.node_name != pinfo->node_name ||
 574                    rport->remoteport.port_name != pinfo->port_name)
 575                        continue;
 576
 577                if (!nvme_fc_rport_get(rport)) {
 578                        rport = ERR_PTR(-ENOLCK);
 579                        goto out_done;
 580                }
 581
 582                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 583
 584                spin_lock_irqsave(&rport->lock, flags);
 585
 586                /* has it been unregistered */
 587                if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
 588                        /* means lldd called us twice */
 589                        spin_unlock_irqrestore(&rport->lock, flags);
 590                        nvme_fc_rport_put(rport);
 591                        return ERR_PTR(-ESTALE);
 592                }
 593
 594                rport->remoteport.port_role = pinfo->port_role;
 595                rport->remoteport.port_id = pinfo->port_id;
 596                rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
 597                rport->dev_loss_end = 0;
 598
 599                /*
 600                 * kick off a reconnect attempt on all associations to the
 601                 * remote port. A successful reconnects will resume i/o.
 602                 */
 603                list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
 604                        nvme_fc_resume_controller(ctrl);
 605
 606                spin_unlock_irqrestore(&rport->lock, flags);
 607
 608                return rport;
 609        }
 610
 611        rport = NULL;
 612
 613out_done:
 614        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 615
 616        return rport;
 617}
 618
 619static inline void
 620__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
 621                        struct nvme_fc_port_info *pinfo)
 622{
 623        if (pinfo->dev_loss_tmo)
 624                rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
 625        else
 626                rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
 627}
 628
 629/**
 630 * nvme_fc_register_remoteport - transport entry point called by an
 631 *                              LLDD to register the existence of a NVME
 632 *                              subsystem FC port on its fabric.
 633 * @localport: pointer to the (registered) local port that the remote
 634 *             subsystem port is connected to.
 635 * @pinfo:     pointer to information about the port to be registered
 636 * @portptr:   pointer to a remote port pointer. Upon success, the routine
 637 *             will allocate a nvme_fc_remote_port structure and place its
 638 *             address in the remote port pointer. Upon failure, remote port
 639 *             pointer will be set to 0.
 640 *
 641 * Returns:
 642 * a completion status. Must be 0 upon success; a negative errno
 643 * (ex: -ENXIO) upon failure.
 644 */
 645int
 646nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
 647                                struct nvme_fc_port_info *pinfo,
 648                                struct nvme_fc_remote_port **portptr)
 649{
 650        struct nvme_fc_lport *lport = localport_to_lport(localport);
 651        struct nvme_fc_rport *newrec;
 652        unsigned long flags;
 653        int ret, idx;
 654
 655        if (!nvme_fc_lport_get(lport)) {
 656                ret = -ESHUTDOWN;
 657                goto out_reghost_failed;
 658        }
 659
 660        /*
 661         * look to see if there is already a remoteport that is waiting
 662         * for a reconnect (within dev_loss_tmo) with the same WWN's.
 663         * If so, transition to it and reconnect.
 664         */
 665        newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
 666
 667        /* found an rport, but something about its state is bad */
 668        if (IS_ERR(newrec)) {
 669                ret = PTR_ERR(newrec);
 670                goto out_lport_put;
 671
 672        /* found existing rport, which was resumed */
 673        } else if (newrec) {
 674                nvme_fc_lport_put(lport);
 675                __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 676                nvme_fc_signal_discovery_scan(lport, newrec);
 677                *portptr = &newrec->remoteport;
 678                return 0;
 679        }
 680
 681        /* nothing found - allocate a new remoteport struct */
 682
 683        newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
 684                         GFP_KERNEL);
 685        if (!newrec) {
 686                ret = -ENOMEM;
 687                goto out_lport_put;
 688        }
 689
 690        idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
 691        if (idx < 0) {
 692                ret = -ENOSPC;
 693                goto out_kfree_rport;
 694        }
 695
 696        INIT_LIST_HEAD(&newrec->endp_list);
 697        INIT_LIST_HEAD(&newrec->ctrl_list);
 698        INIT_LIST_HEAD(&newrec->ls_req_list);
 699        INIT_LIST_HEAD(&newrec->disc_list);
 700        kref_init(&newrec->ref);
 701        atomic_set(&newrec->act_ctrl_cnt, 0);
 702        spin_lock_init(&newrec->lock);
 703        newrec->remoteport.localport = &lport->localport;
 704        newrec->dev = lport->dev;
 705        newrec->lport = lport;
 706        newrec->remoteport.private = &newrec[1];
 707        newrec->remoteport.port_role = pinfo->port_role;
 708        newrec->remoteport.node_name = pinfo->node_name;
 709        newrec->remoteport.port_name = pinfo->port_name;
 710        newrec->remoteport.port_id = pinfo->port_id;
 711        newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
 712        newrec->remoteport.port_num = idx;
 713        __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 714
 715        spin_lock_irqsave(&nvme_fc_lock, flags);
 716        list_add_tail(&newrec->endp_list, &lport->endp_list);
 717        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 718
 719        nvme_fc_signal_discovery_scan(lport, newrec);
 720
 721        *portptr = &newrec->remoteport;
 722        return 0;
 723
 724out_kfree_rport:
 725        kfree(newrec);
 726out_lport_put:
 727        nvme_fc_lport_put(lport);
 728out_reghost_failed:
 729        *portptr = NULL;
 730        return ret;
 731}
 732EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
 733
 734static int
 735nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
 736{
 737        struct nvmefc_ls_req_op *lsop;
 738        unsigned long flags;
 739
 740restart:
 741        spin_lock_irqsave(&rport->lock, flags);
 742
 743        list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
 744                if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
 745                        lsop->flags |= FCOP_FLAGS_TERMIO;
 746                        spin_unlock_irqrestore(&rport->lock, flags);
 747                        rport->lport->ops->ls_abort(&rport->lport->localport,
 748                                                &rport->remoteport,
 749                                                &lsop->ls_req);
 750                        goto restart;
 751                }
 752        }
 753        spin_unlock_irqrestore(&rport->lock, flags);
 754
 755        return 0;
 756}
 757
 758static void
 759nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
 760{
 761        dev_info(ctrl->ctrl.device,
 762                "NVME-FC{%d}: controller connectivity lost. Awaiting "
 763                "Reconnect", ctrl->cnum);
 764
 765        switch (ctrl->ctrl.state) {
 766        case NVME_CTRL_NEW:
 767        case NVME_CTRL_LIVE:
 768                /*
 769                 * Schedule a controller reset. The reset will terminate the
 770                 * association and schedule the reconnect timer.  Reconnects
 771                 * will be attempted until either the ctlr_loss_tmo
 772                 * (max_retries * connect_delay) expires or the remoteport's
 773                 * dev_loss_tmo expires.
 774                 */
 775                if (nvme_reset_ctrl(&ctrl->ctrl)) {
 776                        dev_warn(ctrl->ctrl.device,
 777                                "NVME-FC{%d}: Couldn't schedule reset.\n",
 778                                ctrl->cnum);
 779                        nvme_delete_ctrl(&ctrl->ctrl);
 780                }
 781                break;
 782
 783        case NVME_CTRL_CONNECTING:
 784                /*
 785                 * The association has already been terminated and the
 786                 * controller is attempting reconnects.  No need to do anything
 787                 * futher.  Reconnects will be attempted until either the
 788                 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
 789                 * remoteport's dev_loss_tmo expires.
 790                 */
 791                break;
 792
 793        case NVME_CTRL_RESETTING:
 794                /*
 795                 * Controller is already in the process of terminating the
 796                 * association.  No need to do anything further. The reconnect
 797                 * step will kick in naturally after the association is
 798                 * terminated.
 799                 */
 800                break;
 801
 802        case NVME_CTRL_DELETING:
 803        default:
 804                /* no action to take - let it delete */
 805                break;
 806        }
 807}
 808
 809/**
 810 * nvme_fc_unregister_remoteport - transport entry point called by an
 811 *                              LLDD to deregister/remove a previously
 812 *                              registered a NVME subsystem FC port.
 813 * @portptr: pointer to the (registered) remote port that is to be
 814 *           deregistered.
 815 *
 816 * Returns:
 817 * a completion status. Must be 0 upon success; a negative errno
 818 * (ex: -ENXIO) upon failure.
 819 */
 820int
 821nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
 822{
 823        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 824        struct nvme_fc_ctrl *ctrl;
 825        unsigned long flags;
 826
 827        if (!portptr)
 828                return -EINVAL;
 829
 830        spin_lock_irqsave(&rport->lock, flags);
 831
 832        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 833                spin_unlock_irqrestore(&rport->lock, flags);
 834                return -EINVAL;
 835        }
 836        portptr->port_state = FC_OBJSTATE_DELETED;
 837
 838        rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
 839
 840        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
 841                /* if dev_loss_tmo==0, dev loss is immediate */
 842                if (!portptr->dev_loss_tmo) {
 843                        dev_warn(ctrl->ctrl.device,
 844                                "NVME-FC{%d}: controller connectivity lost.\n",
 845                                ctrl->cnum);
 846                        nvme_delete_ctrl(&ctrl->ctrl);
 847                } else
 848                        nvme_fc_ctrl_connectivity_loss(ctrl);
 849        }
 850
 851        spin_unlock_irqrestore(&rport->lock, flags);
 852
 853        nvme_fc_abort_lsops(rport);
 854
 855        if (atomic_read(&rport->act_ctrl_cnt) == 0)
 856                rport->lport->ops->remoteport_delete(portptr);
 857
 858        /*
 859         * release the reference, which will allow, if all controllers
 860         * go away, which should only occur after dev_loss_tmo occurs,
 861         * for the rport to be torn down.
 862         */
 863        nvme_fc_rport_put(rport);
 864
 865        return 0;
 866}
 867EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
 868
 869/**
 870 * nvme_fc_rescan_remoteport - transport entry point called by an
 871 *                              LLDD to request a nvme device rescan.
 872 * @remoteport: pointer to the (registered) remote port that is to be
 873 *              rescanned.
 874 *
 875 * Returns: N/A
 876 */
 877void
 878nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
 879{
 880        struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
 881
 882        nvme_fc_signal_discovery_scan(rport->lport, rport);
 883}
 884EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
 885
 886int
 887nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
 888                        u32 dev_loss_tmo)
 889{
 890        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 891        unsigned long flags;
 892
 893        spin_lock_irqsave(&rport->lock, flags);
 894
 895        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 896                spin_unlock_irqrestore(&rport->lock, flags);
 897                return -EINVAL;
 898        }
 899
 900        /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
 901        rport->remoteport.dev_loss_tmo = dev_loss_tmo;
 902
 903        spin_unlock_irqrestore(&rport->lock, flags);
 904
 905        return 0;
 906}
 907EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
 908
 909
 910/* *********************** FC-NVME DMA Handling **************************** */
 911
 912/*
 913 * The fcloop device passes in a NULL device pointer. Real LLD's will
 914 * pass in a valid device pointer. If NULL is passed to the dma mapping
 915 * routines, depending on the platform, it may or may not succeed, and
 916 * may crash.
 917 *
 918 * As such:
 919 * Wrapper all the dma routines and check the dev pointer.
 920 *
 921 * If simple mappings (return just a dma address, we'll noop them,
 922 * returning a dma address of 0.
 923 *
 924 * On more complex mappings (dma_map_sg), a pseudo routine fills
 925 * in the scatter list, setting all dma addresses to 0.
 926 */
 927
 928static inline dma_addr_t
 929fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 930                enum dma_data_direction dir)
 931{
 932        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 933}
 934
 935static inline int
 936fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 937{
 938        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 939}
 940
 941static inline void
 942fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 943        enum dma_data_direction dir)
 944{
 945        if (dev)
 946                dma_unmap_single(dev, addr, size, dir);
 947}
 948
 949static inline void
 950fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 951                enum dma_data_direction dir)
 952{
 953        if (dev)
 954                dma_sync_single_for_cpu(dev, addr, size, dir);
 955}
 956
 957static inline void
 958fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 959                enum dma_data_direction dir)
 960{
 961        if (dev)
 962                dma_sync_single_for_device(dev, addr, size, dir);
 963}
 964
 965/* pseudo dma_map_sg call */
 966static int
 967fc_map_sg(struct scatterlist *sg, int nents)
 968{
 969        struct scatterlist *s;
 970        int i;
 971
 972        WARN_ON(nents == 0 || sg[0].length == 0);
 973
 974        for_each_sg(sg, s, nents, i) {
 975                s->dma_address = 0L;
 976#ifdef CONFIG_NEED_SG_DMA_LENGTH
 977                s->dma_length = s->length;
 978#endif
 979        }
 980        return nents;
 981}
 982
 983static inline int
 984fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 985                enum dma_data_direction dir)
 986{
 987        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 988}
 989
 990static inline void
 991fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 992                enum dma_data_direction dir)
 993{
 994        if (dev)
 995                dma_unmap_sg(dev, sg, nents, dir);
 996}
 997
 998/* *********************** FC-NVME LS Handling **************************** */
 999
1000static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002
1003
1004static void
1005__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006{
1007        struct nvme_fc_rport *rport = lsop->rport;
1008        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009        unsigned long flags;
1010
1011        spin_lock_irqsave(&rport->lock, flags);
1012
1013        if (!lsop->req_queued) {
1014                spin_unlock_irqrestore(&rport->lock, flags);
1015                return;
1016        }
1017
1018        list_del(&lsop->lsreq_list);
1019
1020        lsop->req_queued = false;
1021
1022        spin_unlock_irqrestore(&rport->lock, flags);
1023
1024        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025                                  (lsreq->rqstlen + lsreq->rsplen),
1026                                  DMA_BIDIRECTIONAL);
1027
1028        nvme_fc_rport_put(rport);
1029}
1030
1031static int
1032__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033                struct nvmefc_ls_req_op *lsop,
1034                void (*done)(struct nvmefc_ls_req *req, int status))
1035{
1036        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037        unsigned long flags;
1038        int ret = 0;
1039
1040        if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041                return -ECONNREFUSED;
1042
1043        if (!nvme_fc_rport_get(rport))
1044                return -ESHUTDOWN;
1045
1046        lsreq->done = done;
1047        lsop->rport = rport;
1048        lsop->req_queued = false;
1049        INIT_LIST_HEAD(&lsop->lsreq_list);
1050        init_completion(&lsop->ls_done);
1051
1052        lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053                                  lsreq->rqstlen + lsreq->rsplen,
1054                                  DMA_BIDIRECTIONAL);
1055        if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056                ret = -EFAULT;
1057                goto out_putrport;
1058        }
1059        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060
1061        spin_lock_irqsave(&rport->lock, flags);
1062
1063        list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064
1065        lsop->req_queued = true;
1066
1067        spin_unlock_irqrestore(&rport->lock, flags);
1068
1069        ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070                                        &rport->remoteport, lsreq);
1071        if (ret)
1072                goto out_unlink;
1073
1074        return 0;
1075
1076out_unlink:
1077        lsop->ls_error = ret;
1078        spin_lock_irqsave(&rport->lock, flags);
1079        lsop->req_queued = false;
1080        list_del(&lsop->lsreq_list);
1081        spin_unlock_irqrestore(&rport->lock, flags);
1082        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083                                  (lsreq->rqstlen + lsreq->rsplen),
1084                                  DMA_BIDIRECTIONAL);
1085out_putrport:
1086        nvme_fc_rport_put(rport);
1087
1088        return ret;
1089}
1090
1091static void
1092nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093{
1094        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095
1096        lsop->ls_error = status;
1097        complete(&lsop->ls_done);
1098}
1099
1100static int
1101nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102{
1103        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104        struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105        int ret;
1106
1107        ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108
1109        if (!ret) {
1110                /*
1111                 * No timeout/not interruptible as we need the struct
1112                 * to exist until the lldd calls us back. Thus mandate
1113                 * wait until driver calls back. lldd responsible for
1114                 * the timeout action
1115                 */
1116                wait_for_completion(&lsop->ls_done);
1117
1118                __nvme_fc_finish_ls_req(lsop);
1119
1120                ret = lsop->ls_error;
1121        }
1122
1123        if (ret)
1124                return ret;
1125
1126        /* ACC or RJT payload ? */
1127        if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128                return -ENXIO;
1129
1130        return 0;
1131}
1132
1133static int
1134nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135                struct nvmefc_ls_req_op *lsop,
1136                void (*done)(struct nvmefc_ls_req *req, int status))
1137{
1138        /* don't wait for completion */
1139
1140        return __nvme_fc_send_ls_req(rport, lsop, done);
1141}
1142
1143/* Validation Error indexes into the string table below */
1144enum {
1145        VERR_NO_ERROR           = 0,
1146        VERR_LSACC              = 1,
1147        VERR_LSDESC_RQST        = 2,
1148        VERR_LSDESC_RQST_LEN    = 3,
1149        VERR_ASSOC_ID           = 4,
1150        VERR_ASSOC_ID_LEN       = 5,
1151        VERR_CONN_ID            = 6,
1152        VERR_CONN_ID_LEN        = 7,
1153        VERR_CR_ASSOC           = 8,
1154        VERR_CR_ASSOC_ACC_LEN   = 9,
1155        VERR_CR_CONN            = 10,
1156        VERR_CR_CONN_ACC_LEN    = 11,
1157        VERR_DISCONN            = 12,
1158        VERR_DISCONN_ACC_LEN    = 13,
1159};
1160
1161static char *validation_errors[] = {
1162        "OK",
1163        "Not LS_ACC",
1164        "Not LSDESC_RQST",
1165        "Bad LSDESC_RQST Length",
1166        "Not Association ID",
1167        "Bad Association ID Length",
1168        "Not Connection ID",
1169        "Bad Connection ID Length",
1170        "Not CR_ASSOC Rqst",
1171        "Bad CR_ASSOC ACC Length",
1172        "Not CR_CONN Rqst",
1173        "Bad CR_CONN ACC Length",
1174        "Not Disconnect Rqst",
1175        "Bad Disconnect ACC Length",
1176};
1177
1178static int
1179nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180        struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181{
1182        struct nvmefc_ls_req_op *lsop;
1183        struct nvmefc_ls_req *lsreq;
1184        struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185        struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186        int ret, fcret = 0;
1187
1188        lsop = kzalloc((sizeof(*lsop) +
1189                         ctrl->lport->ops->lsrqst_priv_sz +
1190                         sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191        if (!lsop) {
1192                ret = -ENOMEM;
1193                goto out_no_memory;
1194        }
1195        lsreq = &lsop->ls_req;
1196
1197        lsreq->private = (void *)&lsop[1];
1198        assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200        assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201
1202        assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203        assoc_rqst->desc_list_len =
1204                        cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205
1206        assoc_rqst->assoc_cmd.desc_tag =
1207                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208        assoc_rqst->assoc_cmd.desc_len =
1209                        fcnvme_lsdesc_len(
1210                                sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211
1212        assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213        assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1214        /* Linux supports only Dynamic controllers */
1215        assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216        uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217        strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218                min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219        strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220                min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221
1222        lsop->queue = queue;
1223        lsreq->rqstaddr = assoc_rqst;
1224        lsreq->rqstlen = sizeof(*assoc_rqst);
1225        lsreq->rspaddr = assoc_acc;
1226        lsreq->rsplen = sizeof(*assoc_acc);
1227        lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1228
1229        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230        if (ret)
1231                goto out_free_buffer;
1232
1233        /* process connect LS completion */
1234
1235        /* validate the ACC response */
1236        if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237                fcret = VERR_LSACC;
1238        else if (assoc_acc->hdr.desc_list_len !=
1239                        fcnvme_lsdesc_len(
1240                                sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241                fcret = VERR_CR_ASSOC_ACC_LEN;
1242        else if (assoc_acc->hdr.rqst.desc_tag !=
1243                        cpu_to_be32(FCNVME_LSDESC_RQST))
1244                fcret = VERR_LSDESC_RQST;
1245        else if (assoc_acc->hdr.rqst.desc_len !=
1246                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247                fcret = VERR_LSDESC_RQST_LEN;
1248        else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249                fcret = VERR_CR_ASSOC;
1250        else if (assoc_acc->associd.desc_tag !=
1251                        cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252                fcret = VERR_ASSOC_ID;
1253        else if (assoc_acc->associd.desc_len !=
1254                        fcnvme_lsdesc_len(
1255                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1256                fcret = VERR_ASSOC_ID_LEN;
1257        else if (assoc_acc->connectid.desc_tag !=
1258                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259                fcret = VERR_CONN_ID;
1260        else if (assoc_acc->connectid.desc_len !=
1261                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262                fcret = VERR_CONN_ID_LEN;
1263
1264        if (fcret) {
1265                ret = -EBADF;
1266                dev_err(ctrl->dev,
1267                        "q %d Create Association LS failed: %s\n",
1268                        queue->qnum, validation_errors[fcret]);
1269        } else {
1270                ctrl->association_id =
1271                        be64_to_cpu(assoc_acc->associd.association_id);
1272                queue->connection_id =
1273                        be64_to_cpu(assoc_acc->connectid.connection_id);
1274                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275        }
1276
1277out_free_buffer:
1278        kfree(lsop);
1279out_no_memory:
1280        if (ret)
1281                dev_err(ctrl->dev,
1282                        "queue %d connect admin queue failed (%d).\n",
1283                        queue->qnum, ret);
1284        return ret;
1285}
1286
1287static int
1288nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289                        u16 qsize, u16 ersp_ratio)
1290{
1291        struct nvmefc_ls_req_op *lsop;
1292        struct nvmefc_ls_req *lsreq;
1293        struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294        struct fcnvme_ls_cr_conn_acc *conn_acc;
1295        int ret, fcret = 0;
1296
1297        lsop = kzalloc((sizeof(*lsop) +
1298                         ctrl->lport->ops->lsrqst_priv_sz +
1299                         sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300        if (!lsop) {
1301                ret = -ENOMEM;
1302                goto out_no_memory;
1303        }
1304        lsreq = &lsop->ls_req;
1305
1306        lsreq->private = (void *)&lsop[1];
1307        conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309        conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310
1311        conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312        conn_rqst->desc_list_len = cpu_to_be32(
1313                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1314                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315
1316        conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317        conn_rqst->associd.desc_len =
1318                        fcnvme_lsdesc_len(
1319                                sizeof(struct fcnvme_lsdesc_assoc_id));
1320        conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321        conn_rqst->connect_cmd.desc_tag =
1322                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323        conn_rqst->connect_cmd.desc_len =
1324                        fcnvme_lsdesc_len(
1325                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326        conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327        conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328        conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1329
1330        lsop->queue = queue;
1331        lsreq->rqstaddr = conn_rqst;
1332        lsreq->rqstlen = sizeof(*conn_rqst);
1333        lsreq->rspaddr = conn_acc;
1334        lsreq->rsplen = sizeof(*conn_acc);
1335        lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1336
1337        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338        if (ret)
1339                goto out_free_buffer;
1340
1341        /* process connect LS completion */
1342
1343        /* validate the ACC response */
1344        if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345                fcret = VERR_LSACC;
1346        else if (conn_acc->hdr.desc_list_len !=
1347                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348                fcret = VERR_CR_CONN_ACC_LEN;
1349        else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350                fcret = VERR_LSDESC_RQST;
1351        else if (conn_acc->hdr.rqst.desc_len !=
1352                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353                fcret = VERR_LSDESC_RQST_LEN;
1354        else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355                fcret = VERR_CR_CONN;
1356        else if (conn_acc->connectid.desc_tag !=
1357                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358                fcret = VERR_CONN_ID;
1359        else if (conn_acc->connectid.desc_len !=
1360                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361                fcret = VERR_CONN_ID_LEN;
1362
1363        if (fcret) {
1364                ret = -EBADF;
1365                dev_err(ctrl->dev,
1366                        "q %d Create I/O Connection LS failed: %s\n",
1367                        queue->qnum, validation_errors[fcret]);
1368        } else {
1369                queue->connection_id =
1370                        be64_to_cpu(conn_acc->connectid.connection_id);
1371                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372        }
1373
1374out_free_buffer:
1375        kfree(lsop);
1376out_no_memory:
1377        if (ret)
1378                dev_err(ctrl->dev,
1379                        "queue %d connect I/O queue failed (%d).\n",
1380                        queue->qnum, ret);
1381        return ret;
1382}
1383
1384static void
1385nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386{
1387        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388
1389        __nvme_fc_finish_ls_req(lsop);
1390
1391        /* fc-nvme initiator doesn't care about success or failure of cmd */
1392
1393        kfree(lsop);
1394}
1395
1396/*
1397 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398 * the FC-NVME Association.  Terminating the association also
1399 * terminates the FC-NVME connections (per queue, both admin and io
1400 * queues) that are part of the association. E.g. things are torn
1401 * down, and the related FC-NVME Association ID and Connection IDs
1402 * become invalid.
1403 *
1404 * The behavior of the fc-nvme initiator is such that it's
1405 * understanding of the association and connections will implicitly
1406 * be torn down. The action is implicit as it may be due to a loss of
1407 * connectivity with the fc-nvme target, so you may never get a
1408 * response even if you tried.  As such, the action of this routine
1409 * is to asynchronously send the LS, ignore any results of the LS, and
1410 * continue on with terminating the association. If the fc-nvme target
1411 * is present and receives the LS, it too can tear down.
1412 */
1413static void
1414nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415{
1416        struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1417        struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1418        struct nvmefc_ls_req_op *lsop;
1419        struct nvmefc_ls_req *lsreq;
1420        int ret;
1421
1422        lsop = kzalloc((sizeof(*lsop) +
1423                         ctrl->lport->ops->lsrqst_priv_sz +
1424                         sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425                        GFP_KERNEL);
1426        if (!lsop)
1427                /* couldn't sent it... too bad */
1428                return;
1429
1430        lsreq = &lsop->ls_req;
1431
1432        lsreq->private = (void *)&lsop[1];
1433        discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)
1434                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435        discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1436
1437        discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC;
1438        discon_rqst->desc_list_len = cpu_to_be32(
1439                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1440                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441
1442        discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443        discon_rqst->associd.desc_len =
1444                        fcnvme_lsdesc_len(
1445                                sizeof(struct fcnvme_lsdesc_assoc_id));
1446
1447        discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448
1449        discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450                                                FCNVME_LSDESC_DISCONN_CMD);
1451        discon_rqst->discon_cmd.desc_len =
1452                        fcnvme_lsdesc_len(
1453                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454
1455        lsreq->rqstaddr = discon_rqst;
1456        lsreq->rqstlen = sizeof(*discon_rqst);
1457        lsreq->rspaddr = discon_acc;
1458        lsreq->rsplen = sizeof(*discon_acc);
1459        lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1460
1461        ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1462                                nvme_fc_disconnect_assoc_done);
1463        if (ret)
1464                kfree(lsop);
1465}
1466
1467
1468/* *********************** NVME Ctrl Routines **************************** */
1469
1470static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1471
1472static void
1473__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1474                struct nvme_fc_fcp_op *op)
1475{
1476        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1477                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1478        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1479                                sizeof(op->cmd_iu), DMA_TO_DEVICE);
1480
1481        atomic_set(&op->state, FCPOP_STATE_UNINIT);
1482}
1483
1484static void
1485nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1486                unsigned int hctx_idx)
1487{
1488        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1489
1490        return __nvme_fc_exit_request(set->driver_data, op);
1491}
1492
1493static int
1494__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1495{
1496        unsigned long flags;
1497        int opstate;
1498
1499        spin_lock_irqsave(&ctrl->lock, flags);
1500        opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1501        if (opstate != FCPOP_STATE_ACTIVE)
1502                atomic_set(&op->state, opstate);
1503        else if (ctrl->flags & FCCTRL_TERMIO)
1504                ctrl->iocnt++;
1505        spin_unlock_irqrestore(&ctrl->lock, flags);
1506
1507        if (opstate != FCPOP_STATE_ACTIVE)
1508                return -ECANCELED;
1509
1510        ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1511                                        &ctrl->rport->remoteport,
1512                                        op->queue->lldd_handle,
1513                                        &op->fcp_req);
1514
1515        return 0;
1516}
1517
1518static void
1519nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1520{
1521        struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1522        int i;
1523
1524        /* ensure we've initialized the ops once */
1525        if (!(aen_op->flags & FCOP_FLAGS_AEN))
1526                return;
1527
1528        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1529                __nvme_fc_abort_op(ctrl, aen_op);
1530}
1531
1532static inline void
1533__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1534                struct nvme_fc_fcp_op *op, int opstate)
1535{
1536        unsigned long flags;
1537
1538        if (opstate == FCPOP_STATE_ABORTED) {
1539                spin_lock_irqsave(&ctrl->lock, flags);
1540                if (ctrl->flags & FCCTRL_TERMIO) {
1541                        if (!--ctrl->iocnt)
1542                                wake_up(&ctrl->ioabort_wait);
1543                }
1544                spin_unlock_irqrestore(&ctrl->lock, flags);
1545        }
1546}
1547
1548static void
1549nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1550{
1551        struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1552        struct request *rq = op->rq;
1553        struct nvmefc_fcp_req *freq = &op->fcp_req;
1554        struct nvme_fc_ctrl *ctrl = op->ctrl;
1555        struct nvme_fc_queue *queue = op->queue;
1556        struct nvme_completion *cqe = &op->rsp_iu.cqe;
1557        struct nvme_command *sqe = &op->cmd_iu.sqe;
1558        __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1559        union nvme_result result;
1560        bool terminate_assoc = true;
1561        int opstate;
1562
1563        /*
1564         * WARNING:
1565         * The current linux implementation of a nvme controller
1566         * allocates a single tag set for all io queues and sizes
1567         * the io queues to fully hold all possible tags. Thus, the
1568         * implementation does not reference or care about the sqhd
1569         * value as it never needs to use the sqhd/sqtail pointers
1570         * for submission pacing.
1571         *
1572         * This affects the FC-NVME implementation in two ways:
1573         * 1) As the value doesn't matter, we don't need to waste
1574         *    cycles extracting it from ERSPs and stamping it in the
1575         *    cases where the transport fabricates CQEs on successful
1576         *    completions.
1577         * 2) The FC-NVME implementation requires that delivery of
1578         *    ERSP completions are to go back to the nvme layer in order
1579         *    relative to the rsn, such that the sqhd value will always
1580         *    be "in order" for the nvme layer. As the nvme layer in
1581         *    linux doesn't care about sqhd, there's no need to return
1582         *    them in order.
1583         *
1584         * Additionally:
1585         * As the core nvme layer in linux currently does not look at
1586         * every field in the cqe - in cases where the FC transport must
1587         * fabricate a CQE, the following fields will not be set as they
1588         * are not referenced:
1589         *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1590         *
1591         * Failure or error of an individual i/o, in a transport
1592         * detected fashion unrelated to the nvme completion status,
1593         * potentially cause the initiator and target sides to get out
1594         * of sync on SQ head/tail (aka outstanding io count allowed).
1595         * Per FC-NVME spec, failure of an individual command requires
1596         * the connection to be terminated, which in turn requires the
1597         * association to be terminated.
1598         */
1599
1600        opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1601
1602        fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1603                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1604
1605        if (opstate == FCPOP_STATE_ABORTED)
1606                status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1607        else if (freq->status) {
1608                status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1609                dev_info(ctrl->ctrl.device,
1610                        "NVME-FC{%d}: io failed due to lldd error %d\n",
1611                        ctrl->cnum, freq->status);
1612        }
1613
1614        /*
1615         * For the linux implementation, if we have an unsuccesful
1616         * status, they blk-mq layer can typically be called with the
1617         * non-zero status and the content of the cqe isn't important.
1618         */
1619        if (status)
1620                goto done;
1621
1622        /*
1623         * command completed successfully relative to the wire
1624         * protocol. However, validate anything received and
1625         * extract the status and result from the cqe (create it
1626         * where necessary).
1627         */
1628
1629        switch (freq->rcv_rsplen) {
1630
1631        case 0:
1632        case NVME_FC_SIZEOF_ZEROS_RSP:
1633                /*
1634                 * No response payload or 12 bytes of payload (which
1635                 * should all be zeros) are considered successful and
1636                 * no payload in the CQE by the transport.
1637                 */
1638                if (freq->transferred_length !=
1639                    be32_to_cpu(op->cmd_iu.data_len)) {
1640                        status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1641                        dev_info(ctrl->ctrl.device,
1642                                "NVME-FC{%d}: io failed due to bad transfer "
1643                                "length: %d vs expected %d\n",
1644                                ctrl->cnum, freq->transferred_length,
1645                                be32_to_cpu(op->cmd_iu.data_len));
1646                        goto done;
1647                }
1648                result.u64 = 0;
1649                break;
1650
1651        case sizeof(struct nvme_fc_ersp_iu):
1652                /*
1653                 * The ERSP IU contains a full completion with CQE.
1654                 * Validate ERSP IU and look at cqe.
1655                 */
1656                if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1657                                        (freq->rcv_rsplen / 4) ||
1658                             be32_to_cpu(op->rsp_iu.xfrd_len) !=
1659                                        freq->transferred_length ||
1660                             op->rsp_iu.ersp_result ||
1661                             sqe->common.command_id != cqe->command_id)) {
1662                        status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1663                        dev_info(ctrl->ctrl.device,
1664                                "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1665                                "iu len %d, xfr len %d vs %d, status code "
1666                                "%d, cmdid %d vs %d\n",
1667                                ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
1668                                be32_to_cpu(op->rsp_iu.xfrd_len),
1669                                freq->transferred_length,
1670                                op->rsp_iu.ersp_result,
1671                                sqe->common.command_id,
1672                                cqe->command_id);
1673                        goto done;
1674                }
1675                result = cqe->result;
1676                status = cqe->status;
1677                break;
1678
1679        default:
1680                status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1681                dev_info(ctrl->ctrl.device,
1682                        "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1683                        "len %d\n",
1684                        ctrl->cnum, freq->rcv_rsplen);
1685                goto done;
1686        }
1687
1688        terminate_assoc = false;
1689
1690done:
1691        if (op->flags & FCOP_FLAGS_AEN) {
1692                nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1693                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1694                atomic_set(&op->state, FCPOP_STATE_IDLE);
1695                op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1696                nvme_fc_ctrl_put(ctrl);
1697                goto check_error;
1698        }
1699
1700        __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1701        nvme_end_request(rq, status, result);
1702
1703check_error:
1704        if (terminate_assoc)
1705                nvme_fc_error_recovery(ctrl, "transport detected io error");
1706}
1707
1708static int
1709__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1710                struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1711                struct request *rq, u32 rqno)
1712{
1713        struct nvme_fcp_op_w_sgl *op_w_sgl =
1714                container_of(op, typeof(*op_w_sgl), op);
1715        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1716        int ret = 0;
1717
1718        memset(op, 0, sizeof(*op));
1719        op->fcp_req.cmdaddr = &op->cmd_iu;
1720        op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1721        op->fcp_req.rspaddr = &op->rsp_iu;
1722        op->fcp_req.rsplen = sizeof(op->rsp_iu);
1723        op->fcp_req.done = nvme_fc_fcpio_done;
1724        op->ctrl = ctrl;
1725        op->queue = queue;
1726        op->rq = rq;
1727        op->rqno = rqno;
1728
1729        cmdiu->format_id = NVME_CMD_FORMAT_ID;
1730        cmdiu->fc_id = NVME_CMD_FC_ID;
1731        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1732        if (queue->qnum)
1733                cmdiu->rsv_cat = fccmnd_set_cat_css(0,
1734                                        (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
1735        else
1736                cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
1737
1738        op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1739                                &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1740        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1741                dev_err(ctrl->dev,
1742                        "FCP Op failed - cmdiu dma mapping failed.\n");
1743                ret = EFAULT;
1744                goto out_on_error;
1745        }
1746
1747        op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1748                                &op->rsp_iu, sizeof(op->rsp_iu),
1749                                DMA_FROM_DEVICE);
1750        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1751                dev_err(ctrl->dev,
1752                        "FCP Op failed - rspiu dma mapping failed.\n");
1753                ret = EFAULT;
1754        }
1755
1756        atomic_set(&op->state, FCPOP_STATE_IDLE);
1757out_on_error:
1758        return ret;
1759}
1760
1761static int
1762nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1763                unsigned int hctx_idx, unsigned int numa_node)
1764{
1765        struct nvme_fc_ctrl *ctrl = set->driver_data;
1766        struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1767        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1768        struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1769        int res;
1770
1771        res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1772        if (res)
1773                return res;
1774        op->op.fcp_req.first_sgl = &op->sgl[0];
1775        op->op.fcp_req.private = &op->priv[0];
1776        nvme_req(rq)->ctrl = &ctrl->ctrl;
1777        return res;
1778}
1779
1780static int
1781nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1782{
1783        struct nvme_fc_fcp_op *aen_op;
1784        struct nvme_fc_cmd_iu *cmdiu;
1785        struct nvme_command *sqe;
1786        void *private;
1787        int i, ret;
1788
1789        aen_op = ctrl->aen_ops;
1790        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1791                private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1792                                                GFP_KERNEL);
1793                if (!private)
1794                        return -ENOMEM;
1795
1796                cmdiu = &aen_op->cmd_iu;
1797                sqe = &cmdiu->sqe;
1798                ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1799                                aen_op, (struct request *)NULL,
1800                                (NVME_AQ_BLK_MQ_DEPTH + i));
1801                if (ret) {
1802                        kfree(private);
1803                        return ret;
1804                }
1805
1806                aen_op->flags = FCOP_FLAGS_AEN;
1807                aen_op->fcp_req.private = private;
1808
1809                memset(sqe, 0, sizeof(*sqe));
1810                sqe->common.opcode = nvme_admin_async_event;
1811                /* Note: core layer may overwrite the sqe.command_id value */
1812                sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1813        }
1814        return 0;
1815}
1816
1817static void
1818nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1819{
1820        struct nvme_fc_fcp_op *aen_op;
1821        int i;
1822
1823        aen_op = ctrl->aen_ops;
1824        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1825                if (!aen_op->fcp_req.private)
1826                        continue;
1827
1828                __nvme_fc_exit_request(ctrl, aen_op);
1829
1830                kfree(aen_op->fcp_req.private);
1831                aen_op->fcp_req.private = NULL;
1832        }
1833}
1834
1835static inline void
1836__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1837                unsigned int qidx)
1838{
1839        struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1840
1841        hctx->driver_data = queue;
1842        queue->hctx = hctx;
1843}
1844
1845static int
1846nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1847                unsigned int hctx_idx)
1848{
1849        struct nvme_fc_ctrl *ctrl = data;
1850
1851        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1852
1853        return 0;
1854}
1855
1856static int
1857nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858                unsigned int hctx_idx)
1859{
1860        struct nvme_fc_ctrl *ctrl = data;
1861
1862        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1863
1864        return 0;
1865}
1866
1867static void
1868nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1869{
1870        struct nvme_fc_queue *queue;
1871
1872        queue = &ctrl->queues[idx];
1873        memset(queue, 0, sizeof(*queue));
1874        queue->ctrl = ctrl;
1875        queue->qnum = idx;
1876        atomic_set(&queue->csn, 0);
1877        queue->dev = ctrl->dev;
1878
1879        if (idx > 0)
1880                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1881        else
1882                queue->cmnd_capsule_len = sizeof(struct nvme_command);
1883
1884        /*
1885         * Considered whether we should allocate buffers for all SQEs
1886         * and CQEs and dma map them - mapping their respective entries
1887         * into the request structures (kernel vm addr and dma address)
1888         * thus the driver could use the buffers/mappings directly.
1889         * It only makes sense if the LLDD would use them for its
1890         * messaging api. It's very unlikely most adapter api's would use
1891         * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1892         * structures were used instead.
1893         */
1894}
1895
1896/*
1897 * This routine terminates a queue at the transport level.
1898 * The transport has already ensured that all outstanding ios on
1899 * the queue have been terminated.
1900 * The transport will send a Disconnect LS request to terminate
1901 * the queue's connection. Termination of the admin queue will also
1902 * terminate the association at the target.
1903 */
1904static void
1905nvme_fc_free_queue(struct nvme_fc_queue *queue)
1906{
1907        if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1908                return;
1909
1910        clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1911        /*
1912         * Current implementation never disconnects a single queue.
1913         * It always terminates a whole association. So there is never
1914         * a disconnect(queue) LS sent to the target.
1915         */
1916
1917        queue->connection_id = 0;
1918        atomic_set(&queue->csn, 0);
1919}
1920
1921static void
1922__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1923        struct nvme_fc_queue *queue, unsigned int qidx)
1924{
1925        if (ctrl->lport->ops->delete_queue)
1926                ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1927                                queue->lldd_handle);
1928        queue->lldd_handle = NULL;
1929}
1930
1931static void
1932nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1933{
1934        int i;
1935
1936        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1937                nvme_fc_free_queue(&ctrl->queues[i]);
1938}
1939
1940static int
1941__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1942        struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1943{
1944        int ret = 0;
1945
1946        queue->lldd_handle = NULL;
1947        if (ctrl->lport->ops->create_queue)
1948                ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1949                                qidx, qsize, &queue->lldd_handle);
1950
1951        return ret;
1952}
1953
1954static void
1955nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1956{
1957        struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1958        int i;
1959
1960        for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1961                __nvme_fc_delete_hw_queue(ctrl, queue, i);
1962}
1963
1964static int
1965nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1966{
1967        struct nvme_fc_queue *queue = &ctrl->queues[1];
1968        int i, ret;
1969
1970        for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1971                ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1972                if (ret)
1973                        goto delete_queues;
1974        }
1975
1976        return 0;
1977
1978delete_queues:
1979        for (; i >= 0; i--)
1980                __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1981        return ret;
1982}
1983
1984static int
1985nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1986{
1987        int i, ret = 0;
1988
1989        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1990                ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1991                                        (qsize / 5));
1992                if (ret)
1993                        break;
1994                ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1995                if (ret)
1996                        break;
1997
1998                set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1999        }
2000
2001        return ret;
2002}
2003
2004static void
2005nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2006{
2007        int i;
2008
2009        for (i = 1; i < ctrl->ctrl.queue_count; i++)
2010                nvme_fc_init_queue(ctrl, i);
2011}
2012
2013static void
2014nvme_fc_ctrl_free(struct kref *ref)
2015{
2016        struct nvme_fc_ctrl *ctrl =
2017                container_of(ref, struct nvme_fc_ctrl, ref);
2018        unsigned long flags;
2019
2020        if (ctrl->ctrl.tagset) {
2021                blk_cleanup_queue(ctrl->ctrl.connect_q);
2022                blk_mq_free_tag_set(&ctrl->tag_set);
2023        }
2024
2025        /* remove from rport list */
2026        spin_lock_irqsave(&ctrl->rport->lock, flags);
2027        list_del(&ctrl->ctrl_list);
2028        spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2029
2030        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2031        blk_cleanup_queue(ctrl->ctrl.admin_q);
2032        blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2033        blk_mq_free_tag_set(&ctrl->admin_tag_set);
2034
2035        kfree(ctrl->queues);
2036
2037        put_device(ctrl->dev);
2038        nvme_fc_rport_put(ctrl->rport);
2039
2040        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2041        if (ctrl->ctrl.opts)
2042                nvmf_free_options(ctrl->ctrl.opts);
2043        kfree(ctrl);
2044}
2045
2046static void
2047nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2048{
2049        kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2050}
2051
2052static int
2053nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2054{
2055        return kref_get_unless_zero(&ctrl->ref);
2056}
2057
2058/*
2059 * All accesses from nvme core layer done - can now free the
2060 * controller. Called after last nvme_put_ctrl() call
2061 */
2062static void
2063nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2064{
2065        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2066
2067        WARN_ON(nctrl != &ctrl->ctrl);
2068
2069        nvme_fc_ctrl_put(ctrl);
2070}
2071
2072static void
2073nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2074{
2075        int active;
2076
2077        /*
2078         * if an error (io timeout, etc) while (re)connecting,
2079         * it's an error on creating the new association.
2080         * Start the error recovery thread if it hasn't already
2081         * been started. It is expected there could be multiple
2082         * ios hitting this path before things are cleaned up.
2083         */
2084        if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2085                active = atomic_xchg(&ctrl->err_work_active, 1);
2086                if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2087                        atomic_set(&ctrl->err_work_active, 0);
2088                        WARN_ON(1);
2089                }
2090                return;
2091        }
2092
2093        /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2094        if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2095                return;
2096
2097        dev_warn(ctrl->ctrl.device,
2098                "NVME-FC{%d}: transport association error detected: %s\n",
2099                ctrl->cnum, errmsg);
2100        dev_warn(ctrl->ctrl.device,
2101                "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2102
2103        nvme_reset_ctrl(&ctrl->ctrl);
2104}
2105
2106static enum blk_eh_timer_return
2107nvme_fc_timeout(struct request *rq, bool reserved)
2108{
2109        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2110        struct nvme_fc_ctrl *ctrl = op->ctrl;
2111
2112        /*
2113         * we can't individually ABTS an io without affecting the queue,
2114         * thus killing the queue, and thus the association.
2115         * So resolve by performing a controller reset, which will stop
2116         * the host/io stack, terminate the association on the link,
2117         * and recreate an association on the link.
2118         */
2119        nvme_fc_error_recovery(ctrl, "io timeout error");
2120
2121        /*
2122         * the io abort has been initiated. Have the reset timer
2123         * restarted and the abort completion will complete the io
2124         * shortly. Avoids a synchronous wait while the abort finishes.
2125         */
2126        return BLK_EH_RESET_TIMER;
2127}
2128
2129static int
2130nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2131                struct nvme_fc_fcp_op *op)
2132{
2133        struct nvmefc_fcp_req *freq = &op->fcp_req;
2134        int ret;
2135
2136        freq->sg_cnt = 0;
2137
2138        if (!blk_rq_nr_phys_segments(rq))
2139                return 0;
2140
2141        freq->sg_table.sgl = freq->first_sgl;
2142        ret = sg_alloc_table_chained(&freq->sg_table,
2143                        blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2144                        NVME_INLINE_SG_CNT);
2145        if (ret)
2146                return -ENOMEM;
2147
2148        op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2149        WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2150        freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2151                                op->nents, rq_dma_dir(rq));
2152        if (unlikely(freq->sg_cnt <= 0)) {
2153                sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2154                freq->sg_cnt = 0;
2155                return -EFAULT;
2156        }
2157
2158        /*
2159         * TODO: blk_integrity_rq(rq)  for DIF
2160         */
2161        return 0;
2162}
2163
2164static void
2165nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2166                struct nvme_fc_fcp_op *op)
2167{
2168        struct nvmefc_fcp_req *freq = &op->fcp_req;
2169
2170        if (!freq->sg_cnt)
2171                return;
2172
2173        fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2174                        rq_dma_dir(rq));
2175
2176        sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2177
2178        freq->sg_cnt = 0;
2179}
2180
2181/*
2182 * In FC, the queue is a logical thing. At transport connect, the target
2183 * creates its "queue" and returns a handle that is to be given to the
2184 * target whenever it posts something to the corresponding SQ.  When an
2185 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2186 * command contained within the SQE, an io, and assigns a FC exchange
2187 * to it. The SQE and the associated SQ handle are sent in the initial
2188 * CMD IU sents on the exchange. All transfers relative to the io occur
2189 * as part of the exchange.  The CQE is the last thing for the io,
2190 * which is transferred (explicitly or implicitly) with the RSP IU
2191 * sent on the exchange. After the CQE is received, the FC exchange is
2192 * terminaed and the Exchange may be used on a different io.
2193 *
2194 * The transport to LLDD api has the transport making a request for a
2195 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2196 * resource and transfers the command. The LLDD will then process all
2197 * steps to complete the io. Upon completion, the transport done routine
2198 * is called.
2199 *
2200 * So - while the operation is outstanding to the LLDD, there is a link
2201 * level FC exchange resource that is also outstanding. This must be
2202 * considered in all cleanup operations.
2203 */
2204static blk_status_t
2205nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2206        struct nvme_fc_fcp_op *op, u32 data_len,
2207        enum nvmefc_fcp_datadir io_dir)
2208{
2209        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2210        struct nvme_command *sqe = &cmdiu->sqe;
2211        int ret, opstate;
2212
2213        /*
2214         * before attempting to send the io, check to see if we believe
2215         * the target device is present
2216         */
2217        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2218                return BLK_STS_RESOURCE;
2219
2220        if (!nvme_fc_ctrl_get(ctrl))
2221                return BLK_STS_IOERR;
2222
2223        /* format the FC-NVME CMD IU and fcp_req */
2224        cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2225        cmdiu->data_len = cpu_to_be32(data_len);
2226        switch (io_dir) {
2227        case NVMEFC_FCP_WRITE:
2228                cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2229                break;
2230        case NVMEFC_FCP_READ:
2231                cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2232                break;
2233        case NVMEFC_FCP_NODATA:
2234                cmdiu->flags = 0;
2235                break;
2236        }
2237        op->fcp_req.payload_length = data_len;
2238        op->fcp_req.io_dir = io_dir;
2239        op->fcp_req.transferred_length = 0;
2240        op->fcp_req.rcv_rsplen = 0;
2241        op->fcp_req.status = NVME_SC_SUCCESS;
2242        op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2243
2244        /*
2245         * validate per fabric rules, set fields mandated by fabric spec
2246         * as well as those by FC-NVME spec.
2247         */
2248        WARN_ON_ONCE(sqe->common.metadata);
2249        sqe->common.flags |= NVME_CMD_SGL_METABUF;
2250
2251        /*
2252         * format SQE DPTR field per FC-NVME rules:
2253         *    type=0x5     Transport SGL Data Block Descriptor
2254         *    subtype=0xA  Transport-specific value
2255         *    address=0
2256         *    length=length of the data series
2257         */
2258        sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2259                                        NVME_SGL_FMT_TRANSPORT_A;
2260        sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2261        sqe->rw.dptr.sgl.addr = 0;
2262
2263        if (!(op->flags & FCOP_FLAGS_AEN)) {
2264                ret = nvme_fc_map_data(ctrl, op->rq, op);
2265                if (ret < 0) {
2266                        nvme_cleanup_cmd(op->rq);
2267                        nvme_fc_ctrl_put(ctrl);
2268                        if (ret == -ENOMEM || ret == -EAGAIN)
2269                                return BLK_STS_RESOURCE;
2270                        return BLK_STS_IOERR;
2271                }
2272        }
2273
2274        fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2275                                  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2276
2277        atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2278
2279        if (!(op->flags & FCOP_FLAGS_AEN))
2280                blk_mq_start_request(op->rq);
2281
2282        cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2283        ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2284                                        &ctrl->rport->remoteport,
2285                                        queue->lldd_handle, &op->fcp_req);
2286
2287        if (ret) {
2288                /*
2289                 * If the lld fails to send the command is there an issue with
2290                 * the csn value?  If the command that fails is the Connect,
2291                 * no - as the connection won't be live.  If it is a command
2292                 * post-connect, it's possible a gap in csn may be created.
2293                 * Does this matter?  As Linux initiators don't send fused
2294                 * commands, no.  The gap would exist, but as there's nothing
2295                 * that depends on csn order to be delivered on the target
2296                 * side, it shouldn't hurt.  It would be difficult for a
2297                 * target to even detect the csn gap as it has no idea when the
2298                 * cmd with the csn was supposed to arrive.
2299                 */
2300                opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2301                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2302
2303                if (!(op->flags & FCOP_FLAGS_AEN))
2304                        nvme_fc_unmap_data(ctrl, op->rq, op);
2305
2306                nvme_cleanup_cmd(op->rq);
2307                nvme_fc_ctrl_put(ctrl);
2308
2309                if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2310                                ret != -EBUSY)
2311                        return BLK_STS_IOERR;
2312
2313                return BLK_STS_RESOURCE;
2314        }
2315
2316        return BLK_STS_OK;
2317}
2318
2319static blk_status_t
2320nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2321                        const struct blk_mq_queue_data *bd)
2322{
2323        struct nvme_ns *ns = hctx->queue->queuedata;
2324        struct nvme_fc_queue *queue = hctx->driver_data;
2325        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2326        struct request *rq = bd->rq;
2327        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2328        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2329        struct nvme_command *sqe = &cmdiu->sqe;
2330        enum nvmefc_fcp_datadir io_dir;
2331        bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2332        u32 data_len;
2333        blk_status_t ret;
2334
2335        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2336            !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2337                return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2338
2339        ret = nvme_setup_cmd(ns, rq, sqe);
2340        if (ret)
2341                return ret;
2342
2343        /*
2344         * nvme core doesn't quite treat the rq opaquely. Commands such
2345         * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2346         * there is no actual payload to be transferred.
2347         * To get it right, key data transmission on there being 1 or
2348         * more physical segments in the sg list. If there is no
2349         * physical segments, there is no payload.
2350         */
2351        if (blk_rq_nr_phys_segments(rq)) {
2352                data_len = blk_rq_payload_bytes(rq);
2353                io_dir = ((rq_data_dir(rq) == WRITE) ?
2354                                        NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2355        } else {
2356                data_len = 0;
2357                io_dir = NVMEFC_FCP_NODATA;
2358        }
2359
2360
2361        return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2362}
2363
2364static void
2365nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2366{
2367        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2368        struct nvme_fc_fcp_op *aen_op;
2369        unsigned long flags;
2370        bool terminating = false;
2371        blk_status_t ret;
2372
2373        spin_lock_irqsave(&ctrl->lock, flags);
2374        if (ctrl->flags & FCCTRL_TERMIO)
2375                terminating = true;
2376        spin_unlock_irqrestore(&ctrl->lock, flags);
2377
2378        if (terminating)
2379                return;
2380
2381        aen_op = &ctrl->aen_ops[0];
2382
2383        ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2384                                        NVMEFC_FCP_NODATA);
2385        if (ret)
2386                dev_err(ctrl->ctrl.device,
2387                        "failed async event work\n");
2388}
2389
2390static void
2391nvme_fc_complete_rq(struct request *rq)
2392{
2393        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2394        struct nvme_fc_ctrl *ctrl = op->ctrl;
2395
2396        atomic_set(&op->state, FCPOP_STATE_IDLE);
2397
2398        nvme_fc_unmap_data(ctrl, rq, op);
2399        nvme_complete_rq(rq);
2400        nvme_fc_ctrl_put(ctrl);
2401}
2402
2403/*
2404 * This routine is used by the transport when it needs to find active
2405 * io on a queue that is to be terminated. The transport uses
2406 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2407 * this routine to kill them on a 1 by 1 basis.
2408 *
2409 * As FC allocates FC exchange for each io, the transport must contact
2410 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2411 * After terminating the exchange the LLDD will call the transport's
2412 * normal io done path for the request, but it will have an aborted
2413 * status. The done path will return the io request back to the block
2414 * layer with an error status.
2415 */
2416static bool
2417nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2418{
2419        struct nvme_ctrl *nctrl = data;
2420        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2421        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2422
2423        __nvme_fc_abort_op(ctrl, op);
2424        return true;
2425}
2426
2427
2428static const struct blk_mq_ops nvme_fc_mq_ops = {
2429        .queue_rq       = nvme_fc_queue_rq,
2430        .complete       = nvme_fc_complete_rq,
2431        .init_request   = nvme_fc_init_request,
2432        .exit_request   = nvme_fc_exit_request,
2433        .init_hctx      = nvme_fc_init_hctx,
2434        .timeout        = nvme_fc_timeout,
2435};
2436
2437static int
2438nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2439{
2440        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2441        unsigned int nr_io_queues;
2442        int ret;
2443
2444        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2445                                ctrl->lport->ops->max_hw_queues);
2446        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2447        if (ret) {
2448                dev_info(ctrl->ctrl.device,
2449                        "set_queue_count failed: %d\n", ret);
2450                return ret;
2451        }
2452
2453        ctrl->ctrl.queue_count = nr_io_queues + 1;
2454        if (!nr_io_queues)
2455                return 0;
2456
2457        nvme_fc_init_io_queues(ctrl);
2458
2459        memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2460        ctrl->tag_set.ops = &nvme_fc_mq_ops;
2461        ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2462        ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2463        ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2464        ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2465        ctrl->tag_set.cmd_size =
2466                struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2467                            ctrl->lport->ops->fcprqst_priv_sz);
2468        ctrl->tag_set.driver_data = ctrl;
2469        ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2470        ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2471
2472        ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2473        if (ret)
2474                return ret;
2475
2476        ctrl->ctrl.tagset = &ctrl->tag_set;
2477
2478        ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2479        if (IS_ERR(ctrl->ctrl.connect_q)) {
2480                ret = PTR_ERR(ctrl->ctrl.connect_q);
2481                goto out_free_tag_set;
2482        }
2483
2484        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2485        if (ret)
2486                goto out_cleanup_blk_queue;
2487
2488        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2489        if (ret)
2490                goto out_delete_hw_queues;
2491
2492        ctrl->ioq_live = true;
2493
2494        return 0;
2495
2496out_delete_hw_queues:
2497        nvme_fc_delete_hw_io_queues(ctrl);
2498out_cleanup_blk_queue:
2499        blk_cleanup_queue(ctrl->ctrl.connect_q);
2500out_free_tag_set:
2501        blk_mq_free_tag_set(&ctrl->tag_set);
2502        nvme_fc_free_io_queues(ctrl);
2503
2504        /* force put free routine to ignore io queues */
2505        ctrl->ctrl.tagset = NULL;
2506
2507        return ret;
2508}
2509
2510static int
2511nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2512{
2513        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2514        u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2515        unsigned int nr_io_queues;
2516        int ret;
2517
2518        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2519                                ctrl->lport->ops->max_hw_queues);
2520        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2521        if (ret) {
2522                dev_info(ctrl->ctrl.device,
2523                        "set_queue_count failed: %d\n", ret);
2524                return ret;
2525        }
2526
2527        if (!nr_io_queues && prior_ioq_cnt) {
2528                dev_info(ctrl->ctrl.device,
2529                        "Fail Reconnect: At least 1 io queue "
2530                        "required (was %d)\n", prior_ioq_cnt);
2531                return -ENOSPC;
2532        }
2533
2534        ctrl->ctrl.queue_count = nr_io_queues + 1;
2535        /* check for io queues existing */
2536        if (ctrl->ctrl.queue_count == 1)
2537                return 0;
2538
2539        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2540        if (ret)
2541                goto out_free_io_queues;
2542
2543        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2544        if (ret)
2545                goto out_delete_hw_queues;
2546
2547        if (prior_ioq_cnt != nr_io_queues)
2548                dev_info(ctrl->ctrl.device,
2549                        "reconnect: revising io queue count from %d to %d\n",
2550                        prior_ioq_cnt, nr_io_queues);
2551        blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2552
2553        return 0;
2554
2555out_delete_hw_queues:
2556        nvme_fc_delete_hw_io_queues(ctrl);
2557out_free_io_queues:
2558        nvme_fc_free_io_queues(ctrl);
2559        return ret;
2560}
2561
2562static void
2563nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2564{
2565        struct nvme_fc_lport *lport = rport->lport;
2566
2567        atomic_inc(&lport->act_rport_cnt);
2568}
2569
2570static void
2571nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2572{
2573        struct nvme_fc_lport *lport = rport->lport;
2574        u32 cnt;
2575
2576        cnt = atomic_dec_return(&lport->act_rport_cnt);
2577        if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2578                lport->ops->localport_delete(&lport->localport);
2579}
2580
2581static int
2582nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2583{
2584        struct nvme_fc_rport *rport = ctrl->rport;
2585        u32 cnt;
2586
2587        if (ctrl->assoc_active)
2588                return 1;
2589
2590        ctrl->assoc_active = true;
2591        cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2592        if (cnt == 1)
2593                nvme_fc_rport_active_on_lport(rport);
2594
2595        return 0;
2596}
2597
2598static int
2599nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2600{
2601        struct nvme_fc_rport *rport = ctrl->rport;
2602        struct nvme_fc_lport *lport = rport->lport;
2603        u32 cnt;
2604
2605        /* ctrl->assoc_active=false will be set independently */
2606
2607        cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2608        if (cnt == 0) {
2609                if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2610                        lport->ops->remoteport_delete(&rport->remoteport);
2611                nvme_fc_rport_inactive_on_lport(rport);
2612        }
2613
2614        return 0;
2615}
2616
2617/*
2618 * This routine restarts the controller on the host side, and
2619 * on the link side, recreates the controller association.
2620 */
2621static int
2622nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2623{
2624        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2625        int ret;
2626        bool changed;
2627
2628        ++ctrl->ctrl.nr_reconnects;
2629
2630        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2631                return -ENODEV;
2632
2633        if (nvme_fc_ctlr_active_on_rport(ctrl))
2634                return -ENOTUNIQ;
2635
2636        dev_info(ctrl->ctrl.device,
2637                "NVME-FC{%d}: create association : host wwpn 0x%016llx "
2638                " rport wwpn 0x%016llx: NQN \"%s\"\n",
2639                ctrl->cnum, ctrl->lport->localport.port_name,
2640                ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2641
2642        /*
2643         * Create the admin queue
2644         */
2645
2646        ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2647                                NVME_AQ_DEPTH);
2648        if (ret)
2649                goto out_free_queue;
2650
2651        ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2652                                NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2653        if (ret)
2654                goto out_delete_hw_queue;
2655
2656        ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2657        if (ret)
2658                goto out_disconnect_admin_queue;
2659
2660        set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2661
2662        /*
2663         * Check controller capabilities
2664         *
2665         * todo:- add code to check if ctrl attributes changed from
2666         * prior connection values
2667         */
2668
2669        ret = nvme_enable_ctrl(&ctrl->ctrl);
2670        if (ret)
2671                goto out_disconnect_admin_queue;
2672
2673        ctrl->ctrl.max_hw_sectors =
2674                (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2675
2676        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2677
2678        ret = nvme_init_identify(&ctrl->ctrl);
2679        if (ret)
2680                goto out_disconnect_admin_queue;
2681
2682        /* sanity checks */
2683
2684        /* FC-NVME does not have other data in the capsule */
2685        if (ctrl->ctrl.icdoff) {
2686                dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2687                                ctrl->ctrl.icdoff);
2688                goto out_disconnect_admin_queue;
2689        }
2690
2691        /* FC-NVME supports normal SGL Data Block Descriptors */
2692
2693        if (opts->queue_size > ctrl->ctrl.maxcmd) {
2694                /* warn if maxcmd is lower than queue_size */
2695                dev_warn(ctrl->ctrl.device,
2696                        "queue_size %zu > ctrl maxcmd %u, reducing "
2697                        "to maxcmd\n",
2698                        opts->queue_size, ctrl->ctrl.maxcmd);
2699                opts->queue_size = ctrl->ctrl.maxcmd;
2700        }
2701
2702        if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2703                /* warn if sqsize is lower than queue_size */
2704                dev_warn(ctrl->ctrl.device,
2705                        "queue_size %zu > ctrl sqsize %u, reducing "
2706                        "to sqsize\n",
2707                        opts->queue_size, ctrl->ctrl.sqsize + 1);
2708                opts->queue_size = ctrl->ctrl.sqsize + 1;
2709        }
2710
2711        ret = nvme_fc_init_aen_ops(ctrl);
2712        if (ret)
2713                goto out_term_aen_ops;
2714
2715        /*
2716         * Create the io queues
2717         */
2718
2719        if (ctrl->ctrl.queue_count > 1) {
2720                if (!ctrl->ioq_live)
2721                        ret = nvme_fc_create_io_queues(ctrl);
2722                else
2723                        ret = nvme_fc_recreate_io_queues(ctrl);
2724                if (ret)
2725                        goto out_term_aen_ops;
2726        }
2727
2728        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2729
2730        ctrl->ctrl.nr_reconnects = 0;
2731
2732        if (changed)
2733                nvme_start_ctrl(&ctrl->ctrl);
2734
2735        return 0;       /* Success */
2736
2737out_term_aen_ops:
2738        nvme_fc_term_aen_ops(ctrl);
2739out_disconnect_admin_queue:
2740        /* send a Disconnect(association) LS to fc-nvme target */
2741        nvme_fc_xmt_disconnect_assoc(ctrl);
2742        ctrl->association_id = 0;
2743out_delete_hw_queue:
2744        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2745out_free_queue:
2746        nvme_fc_free_queue(&ctrl->queues[0]);
2747        ctrl->assoc_active = false;
2748        nvme_fc_ctlr_inactive_on_rport(ctrl);
2749
2750        return ret;
2751}
2752
2753/*
2754 * This routine stops operation of the controller on the host side.
2755 * On the host os stack side: Admin and IO queues are stopped,
2756 *   outstanding ios on them terminated via FC ABTS.
2757 * On the link side: the association is terminated.
2758 */
2759static void
2760nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2761{
2762        unsigned long flags;
2763
2764        if (!ctrl->assoc_active)
2765                return;
2766        ctrl->assoc_active = false;
2767
2768        spin_lock_irqsave(&ctrl->lock, flags);
2769        ctrl->flags |= FCCTRL_TERMIO;
2770        ctrl->iocnt = 0;
2771        spin_unlock_irqrestore(&ctrl->lock, flags);
2772
2773        /*
2774         * If io queues are present, stop them and terminate all outstanding
2775         * ios on them. As FC allocates FC exchange for each io, the
2776         * transport must contact the LLDD to terminate the exchange,
2777         * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2778         * to tell us what io's are busy and invoke a transport routine
2779         * to kill them with the LLDD.  After terminating the exchange
2780         * the LLDD will call the transport's normal io done path, but it
2781         * will have an aborted status. The done path will return the
2782         * io requests back to the block layer as part of normal completions
2783         * (but with error status).
2784         */
2785        if (ctrl->ctrl.queue_count > 1) {
2786                nvme_stop_queues(&ctrl->ctrl);
2787                blk_mq_tagset_busy_iter(&ctrl->tag_set,
2788                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2789                blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2790        }
2791
2792        /*
2793         * Other transports, which don't have link-level contexts bound
2794         * to sqe's, would try to gracefully shutdown the controller by
2795         * writing the registers for shutdown and polling (call
2796         * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2797         * just aborted and we will wait on those contexts, and given
2798         * there was no indication of how live the controlelr is on the
2799         * link, don't send more io to create more contexts for the
2800         * shutdown. Let the controller fail via keepalive failure if
2801         * its still present.
2802         */
2803
2804        /*
2805         * clean up the admin queue. Same thing as above.
2806         * use blk_mq_tagset_busy_itr() and the transport routine to
2807         * terminate the exchanges.
2808         */
2809        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2810        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2811                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2812        blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2813
2814        /* kill the aens as they are a separate path */
2815        nvme_fc_abort_aen_ops(ctrl);
2816
2817        /* wait for all io that had to be aborted */
2818        spin_lock_irq(&ctrl->lock);
2819        wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2820        ctrl->flags &= ~FCCTRL_TERMIO;
2821        spin_unlock_irq(&ctrl->lock);
2822
2823        nvme_fc_term_aen_ops(ctrl);
2824
2825        /*
2826         * send a Disconnect(association) LS to fc-nvme target
2827         * Note: could have been sent at top of process, but
2828         * cleaner on link traffic if after the aborts complete.
2829         * Note: if association doesn't exist, association_id will be 0
2830         */
2831        if (ctrl->association_id)
2832                nvme_fc_xmt_disconnect_assoc(ctrl);
2833
2834        ctrl->association_id = 0;
2835
2836        if (ctrl->ctrl.tagset) {
2837                nvme_fc_delete_hw_io_queues(ctrl);
2838                nvme_fc_free_io_queues(ctrl);
2839        }
2840
2841        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2842        nvme_fc_free_queue(&ctrl->queues[0]);
2843
2844        /* re-enable the admin_q so anything new can fast fail */
2845        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2846
2847        /* resume the io queues so that things will fast fail */
2848        nvme_start_queues(&ctrl->ctrl);
2849
2850        nvme_fc_ctlr_inactive_on_rport(ctrl);
2851}
2852
2853static void
2854nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2855{
2856        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2857
2858        cancel_work_sync(&ctrl->err_work);
2859        cancel_delayed_work_sync(&ctrl->connect_work);
2860        /*
2861         * kill the association on the link side.  this will block
2862         * waiting for io to terminate
2863         */
2864        nvme_fc_delete_association(ctrl);
2865}
2866
2867static void
2868nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2869{
2870        struct nvme_fc_rport *rport = ctrl->rport;
2871        struct nvme_fc_remote_port *portptr = &rport->remoteport;
2872        unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2873        bool recon = true;
2874
2875        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2876                return;
2877
2878        if (portptr->port_state == FC_OBJSTATE_ONLINE)
2879                dev_info(ctrl->ctrl.device,
2880                        "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2881                        ctrl->cnum, status);
2882        else if (time_after_eq(jiffies, rport->dev_loss_end))
2883                recon = false;
2884
2885        if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2886                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2887                        dev_info(ctrl->ctrl.device,
2888                                "NVME-FC{%d}: Reconnect attempt in %ld "
2889                                "seconds\n",
2890                                ctrl->cnum, recon_delay / HZ);
2891                else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2892                        recon_delay = rport->dev_loss_end - jiffies;
2893
2894                queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2895        } else {
2896                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2897                        dev_warn(ctrl->ctrl.device,
2898                                "NVME-FC{%d}: Max reconnect attempts (%d) "
2899                                "reached.\n",
2900                                ctrl->cnum, ctrl->ctrl.nr_reconnects);
2901                else
2902                        dev_warn(ctrl->ctrl.device,
2903                                "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2904                                "while waiting for remoteport connectivity.\n",
2905                                ctrl->cnum, portptr->dev_loss_tmo);
2906                WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2907        }
2908}
2909
2910static void
2911__nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2912{
2913        /*
2914         * if state is connecting - the error occurred as part of a
2915         * reconnect attempt. The create_association error paths will
2916         * clean up any outstanding io.
2917         *
2918         * if it's a different state - ensure all pending io is
2919         * terminated. Given this can delay while waiting for the
2920         * aborted io to return, we recheck adapter state below
2921         * before changing state.
2922         */
2923        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
2924                nvme_stop_keep_alive(&ctrl->ctrl);
2925
2926                /* will block will waiting for io to terminate */
2927                nvme_fc_delete_association(ctrl);
2928        }
2929
2930        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2931            !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2932                dev_err(ctrl->ctrl.device,
2933                        "NVME-FC{%d}: error_recovery: Couldn't change state "
2934                        "to CONNECTING\n", ctrl->cnum);
2935}
2936
2937static void
2938nvme_fc_reset_ctrl_work(struct work_struct *work)
2939{
2940        struct nvme_fc_ctrl *ctrl =
2941                container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2942        int ret;
2943
2944        __nvme_fc_terminate_io(ctrl);
2945
2946        nvme_stop_ctrl(&ctrl->ctrl);
2947
2948        if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2949                ret = nvme_fc_create_association(ctrl);
2950        else
2951                ret = -ENOTCONN;
2952
2953        if (ret)
2954                nvme_fc_reconnect_or_delete(ctrl, ret);
2955        else
2956                dev_info(ctrl->ctrl.device,
2957                        "NVME-FC{%d}: controller reset complete\n",
2958                        ctrl->cnum);
2959}
2960
2961static void
2962nvme_fc_connect_err_work(struct work_struct *work)
2963{
2964        struct nvme_fc_ctrl *ctrl =
2965                        container_of(work, struct nvme_fc_ctrl, err_work);
2966
2967        __nvme_fc_terminate_io(ctrl);
2968
2969        atomic_set(&ctrl->err_work_active, 0);
2970
2971        /*
2972         * Rescheduling the connection after recovering
2973         * from the io error is left to the reconnect work
2974         * item, which is what should have stalled waiting on
2975         * the io that had the error that scheduled this work.
2976         */
2977}
2978
2979static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2980        .name                   = "fc",
2981        .module                 = THIS_MODULE,
2982        .flags                  = NVME_F_FABRICS,
2983        .reg_read32             = nvmf_reg_read32,
2984        .reg_read64             = nvmf_reg_read64,
2985        .reg_write32            = nvmf_reg_write32,
2986        .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2987        .submit_async_event     = nvme_fc_submit_async_event,
2988        .delete_ctrl            = nvme_fc_delete_ctrl,
2989        .get_address            = nvmf_get_address,
2990};
2991
2992static void
2993nvme_fc_connect_ctrl_work(struct work_struct *work)
2994{
2995        int ret;
2996
2997        struct nvme_fc_ctrl *ctrl =
2998                        container_of(to_delayed_work(work),
2999                                struct nvme_fc_ctrl, connect_work);
3000
3001        ret = nvme_fc_create_association(ctrl);
3002        if (ret)
3003                nvme_fc_reconnect_or_delete(ctrl, ret);
3004        else
3005                dev_info(ctrl->ctrl.device,
3006                        "NVME-FC{%d}: controller connect complete\n",
3007                        ctrl->cnum);
3008}
3009
3010
3011static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3012        .queue_rq       = nvme_fc_queue_rq,
3013        .complete       = nvme_fc_complete_rq,
3014        .init_request   = nvme_fc_init_request,
3015        .exit_request   = nvme_fc_exit_request,
3016        .init_hctx      = nvme_fc_init_admin_hctx,
3017        .timeout        = nvme_fc_timeout,
3018};
3019
3020
3021/*
3022 * Fails a controller request if it matches an existing controller
3023 * (association) with the same tuple:
3024 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3025 *
3026 * The ports don't need to be compared as they are intrinsically
3027 * already matched by the port pointers supplied.
3028 */
3029static bool
3030nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3031                struct nvmf_ctrl_options *opts)
3032{
3033        struct nvme_fc_ctrl *ctrl;
3034        unsigned long flags;
3035        bool found = false;
3036
3037        spin_lock_irqsave(&rport->lock, flags);
3038        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3039                found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3040                if (found)
3041                        break;
3042        }
3043        spin_unlock_irqrestore(&rport->lock, flags);
3044
3045        return found;
3046}
3047
3048static struct nvme_ctrl *
3049nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3050        struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3051{
3052        struct nvme_fc_ctrl *ctrl;
3053        unsigned long flags;
3054        int ret, idx;
3055
3056        if (!(rport->remoteport.port_role &
3057            (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3058                ret = -EBADR;
3059                goto out_fail;
3060        }
3061
3062        if (!opts->duplicate_connect &&
3063            nvme_fc_existing_controller(rport, opts)) {
3064                ret = -EALREADY;
3065                goto out_fail;
3066        }
3067
3068        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3069        if (!ctrl) {
3070                ret = -ENOMEM;
3071                goto out_fail;
3072        }
3073
3074        idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3075        if (idx < 0) {
3076                ret = -ENOSPC;
3077                goto out_free_ctrl;
3078        }
3079
3080        ctrl->ctrl.opts = opts;
3081        ctrl->ctrl.nr_reconnects = 0;
3082        if (lport->dev)
3083                ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3084        else
3085                ctrl->ctrl.numa_node = NUMA_NO_NODE;
3086        INIT_LIST_HEAD(&ctrl->ctrl_list);
3087        ctrl->lport = lport;
3088        ctrl->rport = rport;
3089        ctrl->dev = lport->dev;
3090        ctrl->cnum = idx;
3091        ctrl->ioq_live = false;
3092        ctrl->assoc_active = false;
3093        atomic_set(&ctrl->err_work_active, 0);
3094        init_waitqueue_head(&ctrl->ioabort_wait);
3095
3096        get_device(ctrl->dev);
3097        kref_init(&ctrl->ref);
3098
3099        INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3100        INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3101        INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3102        spin_lock_init(&ctrl->lock);
3103
3104        /* io queue count */
3105        ctrl->ctrl.queue_count = min_t(unsigned int,
3106                                opts->nr_io_queues,
3107                                lport->ops->max_hw_queues);
3108        ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3109
3110        ctrl->ctrl.sqsize = opts->queue_size - 1;
3111        ctrl->ctrl.kato = opts->kato;
3112        ctrl->ctrl.cntlid = 0xffff;
3113
3114        ret = -ENOMEM;
3115        ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3116                                sizeof(struct nvme_fc_queue), GFP_KERNEL);
3117        if (!ctrl->queues)
3118                goto out_free_ida;
3119
3120        nvme_fc_init_queue(ctrl, 0);
3121
3122        memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3123        ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3124        ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3125        ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3126        ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3127        ctrl->admin_tag_set.cmd_size =
3128                struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3129                            ctrl->lport->ops->fcprqst_priv_sz);
3130        ctrl->admin_tag_set.driver_data = ctrl;
3131        ctrl->admin_tag_set.nr_hw_queues = 1;
3132        ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3133        ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3134
3135        ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3136        if (ret)
3137                goto out_free_queues;
3138        ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3139
3140        ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3141        if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3142                ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3143                goto out_free_admin_tag_set;
3144        }
3145
3146        ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3147        if (IS_ERR(ctrl->ctrl.admin_q)) {
3148                ret = PTR_ERR(ctrl->ctrl.admin_q);
3149                goto out_cleanup_fabrics_q;
3150        }
3151
3152        /*
3153         * Would have been nice to init io queues tag set as well.
3154         * However, we require interaction from the controller
3155         * for max io queue count before we can do so.
3156         * Defer this to the connect path.
3157         */
3158
3159        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3160        if (ret)
3161                goto out_cleanup_admin_q;
3162
3163        /* at this point, teardown path changes to ref counting on nvme ctrl */
3164
3165        spin_lock_irqsave(&rport->lock, flags);
3166        list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3167        spin_unlock_irqrestore(&rport->lock, flags);
3168
3169        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3170            !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3171                dev_err(ctrl->ctrl.device,
3172                        "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3173                goto fail_ctrl;
3174        }
3175
3176        if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3177                dev_err(ctrl->ctrl.device,
3178                        "NVME-FC{%d}: failed to schedule initial connect\n",
3179                        ctrl->cnum);
3180                goto fail_ctrl;
3181        }
3182
3183        flush_delayed_work(&ctrl->connect_work);
3184
3185        dev_info(ctrl->ctrl.device,
3186                "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3187                ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3188
3189        return &ctrl->ctrl;
3190
3191fail_ctrl:
3192        nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3193        cancel_work_sync(&ctrl->ctrl.reset_work);
3194        cancel_work_sync(&ctrl->err_work);
3195        cancel_delayed_work_sync(&ctrl->connect_work);
3196
3197        ctrl->ctrl.opts = NULL;
3198
3199        /* initiate nvme ctrl ref counting teardown */
3200        nvme_uninit_ctrl(&ctrl->ctrl);
3201
3202        /* Remove core ctrl ref. */
3203        nvme_put_ctrl(&ctrl->ctrl);
3204
3205        /* as we're past the point where we transition to the ref
3206         * counting teardown path, if we return a bad pointer here,
3207         * the calling routine, thinking it's prior to the
3208         * transition, will do an rport put. Since the teardown
3209         * path also does a rport put, we do an extra get here to
3210         * so proper order/teardown happens.
3211         */
3212        nvme_fc_rport_get(rport);
3213
3214        return ERR_PTR(-EIO);
3215
3216out_cleanup_admin_q:
3217        blk_cleanup_queue(ctrl->ctrl.admin_q);
3218out_cleanup_fabrics_q:
3219        blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3220out_free_admin_tag_set:
3221        blk_mq_free_tag_set(&ctrl->admin_tag_set);
3222out_free_queues:
3223        kfree(ctrl->queues);
3224out_free_ida:
3225        put_device(ctrl->dev);
3226        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3227out_free_ctrl:
3228        kfree(ctrl);
3229out_fail:
3230        /* exit via here doesn't follow ctlr ref points */
3231        return ERR_PTR(ret);
3232}
3233
3234
3235struct nvmet_fc_traddr {
3236        u64     nn;
3237        u64     pn;
3238};
3239
3240static int
3241__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3242{
3243        u64 token64;
3244
3245        if (match_u64(sstr, &token64))
3246                return -EINVAL;
3247        *val = token64;
3248
3249        return 0;
3250}
3251
3252/*
3253 * This routine validates and extracts the WWN's from the TRADDR string.
3254 * As kernel parsers need the 0x to determine number base, universally
3255 * build string to parse with 0x prefix before parsing name strings.
3256 */
3257static int
3258nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3259{
3260        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3261        substring_t wwn = { name, &name[sizeof(name)-1] };
3262        int nnoffset, pnoffset;
3263
3264        /* validate if string is one of the 2 allowed formats */
3265        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3266                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3267                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3268                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3269                nnoffset = NVME_FC_TRADDR_OXNNLEN;
3270                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3271                                                NVME_FC_TRADDR_OXNNLEN;
3272        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3273                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3274                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3275                                "pn-", NVME_FC_TRADDR_NNLEN))) {
3276                nnoffset = NVME_FC_TRADDR_NNLEN;
3277                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3278        } else
3279                goto out_einval;
3280
3281        name[0] = '0';
3282        name[1] = 'x';
3283        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3284
3285        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3286        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3287                goto out_einval;
3288
3289        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3290        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3291                goto out_einval;
3292
3293        return 0;
3294
3295out_einval:
3296        pr_warn("%s: bad traddr string\n", __func__);
3297        return -EINVAL;
3298}
3299
3300static struct nvme_ctrl *
3301nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3302{
3303        struct nvme_fc_lport *lport;
3304        struct nvme_fc_rport *rport;
3305        struct nvme_ctrl *ctrl;
3306        struct nvmet_fc_traddr laddr = { 0L, 0L };
3307        struct nvmet_fc_traddr raddr = { 0L, 0L };
3308        unsigned long flags;
3309        int ret;
3310
3311        ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3312        if (ret || !raddr.nn || !raddr.pn)
3313                return ERR_PTR(-EINVAL);
3314
3315        ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3316        if (ret || !laddr.nn || !laddr.pn)
3317                return ERR_PTR(-EINVAL);
3318
3319        /* find the host and remote ports to connect together */
3320        spin_lock_irqsave(&nvme_fc_lock, flags);
3321        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3322                if (lport->localport.node_name != laddr.nn ||
3323                    lport->localport.port_name != laddr.pn)
3324                        continue;
3325
3326                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3327                        if (rport->remoteport.node_name != raddr.nn ||
3328                            rport->remoteport.port_name != raddr.pn)
3329                                continue;
3330
3331                        /* if fail to get reference fall through. Will error */
3332                        if (!nvme_fc_rport_get(rport))
3333                                break;
3334
3335                        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3336
3337                        ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3338                        if (IS_ERR(ctrl))
3339                                nvme_fc_rport_put(rport);
3340                        return ctrl;
3341                }
3342        }
3343        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3344
3345        pr_warn("%s: %s - %s combination not found\n",
3346                __func__, opts->traddr, opts->host_traddr);
3347        return ERR_PTR(-ENOENT);
3348}
3349
3350
3351static struct nvmf_transport_ops nvme_fc_transport = {
3352        .name           = "fc",
3353        .module         = THIS_MODULE,
3354        .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3355        .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3356        .create_ctrl    = nvme_fc_create_ctrl,
3357};
3358
3359/* Arbitrary successive failures max. With lots of subsystems could be high */
3360#define DISCOVERY_MAX_FAIL      20
3361
3362static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3363                struct device_attribute *attr, const char *buf, size_t count)
3364{
3365        unsigned long flags;
3366        LIST_HEAD(local_disc_list);
3367        struct nvme_fc_lport *lport;
3368        struct nvme_fc_rport *rport;
3369        int failcnt = 0;
3370
3371        spin_lock_irqsave(&nvme_fc_lock, flags);
3372restart:
3373        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3374                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3375                        if (!nvme_fc_lport_get(lport))
3376                                continue;
3377                        if (!nvme_fc_rport_get(rport)) {
3378                                /*
3379                                 * This is a temporary condition. Upon restart
3380                                 * this rport will be gone from the list.
3381                                 *
3382                                 * Revert the lport put and retry.  Anything
3383                                 * added to the list already will be skipped (as
3384                                 * they are no longer list_empty).  Loops should
3385                                 * resume at rports that were not yet seen.
3386                                 */
3387                                nvme_fc_lport_put(lport);
3388
3389                                if (failcnt++ < DISCOVERY_MAX_FAIL)
3390                                        goto restart;
3391
3392                                pr_err("nvme_discovery: too many reference "
3393                                       "failures\n");
3394                                goto process_local_list;
3395                        }
3396                        if (list_empty(&rport->disc_list))
3397                                list_add_tail(&rport->disc_list,
3398                                              &local_disc_list);
3399                }
3400        }
3401
3402process_local_list:
3403        while (!list_empty(&local_disc_list)) {
3404                rport = list_first_entry(&local_disc_list,
3405                                         struct nvme_fc_rport, disc_list);
3406                list_del_init(&rport->disc_list);
3407                spin_unlock_irqrestore(&nvme_fc_lock, flags);
3408
3409                lport = rport->lport;
3410                /* signal discovery. Won't hurt if it repeats */
3411                nvme_fc_signal_discovery_scan(lport, rport);
3412                nvme_fc_rport_put(rport);
3413                nvme_fc_lport_put(lport);
3414
3415                spin_lock_irqsave(&nvme_fc_lock, flags);
3416        }
3417        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3418
3419        return count;
3420}
3421static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3422
3423static struct attribute *nvme_fc_attrs[] = {
3424        &dev_attr_nvme_discovery.attr,
3425        NULL
3426};
3427
3428static struct attribute_group nvme_fc_attr_group = {
3429        .attrs = nvme_fc_attrs,
3430};
3431
3432static const struct attribute_group *nvme_fc_attr_groups[] = {
3433        &nvme_fc_attr_group,
3434        NULL
3435};
3436
3437static struct class fc_class = {
3438        .name = "fc",
3439        .dev_groups = nvme_fc_attr_groups,
3440        .owner = THIS_MODULE,
3441};
3442
3443static int __init nvme_fc_init_module(void)
3444{
3445        int ret;
3446
3447        nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3448        if (!nvme_fc_wq)
3449                return -ENOMEM;
3450
3451        /*
3452         * NOTE:
3453         * It is expected that in the future the kernel will combine
3454         * the FC-isms that are currently under scsi and now being
3455         * added to by NVME into a new standalone FC class. The SCSI
3456         * and NVME protocols and their devices would be under this
3457         * new FC class.
3458         *
3459         * As we need something to post FC-specific udev events to,
3460         * specifically for nvme probe events, start by creating the
3461         * new device class.  When the new standalone FC class is
3462         * put in place, this code will move to a more generic
3463         * location for the class.
3464         */
3465        ret = class_register(&fc_class);
3466        if (ret) {
3467                pr_err("couldn't register class fc\n");
3468                goto out_destroy_wq;
3469        }
3470
3471        /*
3472         * Create a device for the FC-centric udev events
3473         */
3474        fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3475                                "fc_udev_device");
3476        if (IS_ERR(fc_udev_device)) {
3477                pr_err("couldn't create fc_udev device!\n");
3478                ret = PTR_ERR(fc_udev_device);
3479                goto out_destroy_class;
3480        }
3481
3482        ret = nvmf_register_transport(&nvme_fc_transport);
3483        if (ret)
3484                goto out_destroy_device;
3485
3486        return 0;
3487
3488out_destroy_device:
3489        device_destroy(&fc_class, MKDEV(0, 0));
3490out_destroy_class:
3491        class_unregister(&fc_class);
3492out_destroy_wq:
3493        destroy_workqueue(nvme_fc_wq);
3494
3495        return ret;
3496}
3497
3498static void
3499nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3500{
3501        struct nvme_fc_ctrl *ctrl;
3502
3503        spin_lock(&rport->lock);
3504        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3505                dev_warn(ctrl->ctrl.device,
3506                        "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3507                        ctrl->cnum);
3508                nvme_delete_ctrl(&ctrl->ctrl);
3509        }
3510        spin_unlock(&rport->lock);
3511}
3512
3513static void
3514nvme_fc_cleanup_for_unload(void)
3515{
3516        struct nvme_fc_lport *lport;
3517        struct nvme_fc_rport *rport;
3518
3519        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3520                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3521                        nvme_fc_delete_controllers(rport);
3522                }
3523        }
3524}
3525
3526static void __exit nvme_fc_exit_module(void)
3527{
3528        unsigned long flags;
3529        bool need_cleanup = false;
3530
3531        spin_lock_irqsave(&nvme_fc_lock, flags);
3532        nvme_fc_waiting_to_unload = true;
3533        if (!list_empty(&nvme_fc_lport_list)) {
3534                need_cleanup = true;
3535                nvme_fc_cleanup_for_unload();
3536        }
3537        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3538        if (need_cleanup) {
3539                pr_info("%s: waiting for ctlr deletes\n", __func__);
3540                wait_for_completion(&nvme_fc_unload_proceed);
3541                pr_info("%s: ctrl deletes complete\n", __func__);
3542        }
3543
3544        nvmf_unregister_transport(&nvme_fc_transport);
3545
3546        ida_destroy(&nvme_fc_local_port_cnt);
3547        ida_destroy(&nvme_fc_ctrl_cnt);
3548
3549        device_destroy(&fc_class, MKDEV(0, 0));
3550        class_unregister(&fc_class);
3551        destroy_workqueue(nvme_fc_wq);
3552}
3553
3554module_init(nvme_fc_init_module);
3555module_exit(nvme_fc_exit_module);
3556
3557MODULE_LICENSE("GPL v2");
3558