linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/of_pci.h>
  19#include <linux/pci.h>
  20#include <linux/pm.h>
  21#include <linux/slab.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/log2.h>
  26#include <linux/logic_pio.h>
  27#include <linux/pm_wakeup.h>
  28#include <linux/interrupt.h>
  29#include <linux/device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/pci_hotplug.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pci-ats.h>
  34#include <asm/setup.h>
  35#include <asm/dma.h>
  36#include <linux/aer.h>
  37#include "pci.h"
  38
  39DEFINE_MUTEX(pci_slot_mutex);
  40
  41const char *pci_power_names[] = {
  42        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  43};
  44EXPORT_SYMBOL_GPL(pci_power_names);
  45
  46int isa_dma_bridge_buggy;
  47EXPORT_SYMBOL(isa_dma_bridge_buggy);
  48
  49int pci_pci_problems;
  50EXPORT_SYMBOL(pci_pci_problems);
  51
  52unsigned int pci_pm_d3_delay;
  53
  54static void pci_pme_list_scan(struct work_struct *work);
  55
  56static LIST_HEAD(pci_pme_list);
  57static DEFINE_MUTEX(pci_pme_list_mutex);
  58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  59
  60struct pci_pme_device {
  61        struct list_head list;
  62        struct pci_dev *dev;
  63};
  64
  65#define PME_TIMEOUT 1000 /* How long between PME checks */
  66
  67static void pci_dev_d3_sleep(struct pci_dev *dev)
  68{
  69        unsigned int delay = dev->d3_delay;
  70
  71        if (delay < pci_pm_d3_delay)
  72                delay = pci_pm_d3_delay;
  73
  74        if (delay)
  75                msleep(delay);
  76}
  77
  78#ifdef CONFIG_PCI_DOMAINS
  79int pci_domains_supported = 1;
  80#endif
  81
  82#define DEFAULT_CARDBUS_IO_SIZE         (256)
  83#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  84/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  85unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  86unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  87
  88#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  89#define DEFAULT_HOTPLUG_MMIO_SIZE       (2*1024*1024)
  90#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE  (2*1024*1024)
  91/* hpiosize=nn can override this */
  92unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  93/*
  94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  96 * pci=hpmemsize=nnM overrides both
  97 */
  98unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  99unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
 100
 101#define DEFAULT_HOTPLUG_BUS_SIZE        1
 102unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 103
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 105
 106/*
 107 * The default CLS is used if arch didn't set CLS explicitly and not
 108 * all pci devices agree on the same value.  Arch can override either
 109 * the dfl or actual value as it sees fit.  Don't forget this is
 110 * measured in 32-bit words, not bytes.
 111 */
 112u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 113u8 pci_cache_line_size;
 114
 115/*
 116 * If we set up a device for bus mastering, we need to check the latency
 117 * timer as certain BIOSes forget to set it properly.
 118 */
 119unsigned int pcibios_max_latency = 255;
 120
 121/* If set, the PCIe ARI capability will not be used. */
 122static bool pcie_ari_disabled;
 123
 124/* If set, the PCIe ATS capability will not be used. */
 125static bool pcie_ats_disabled;
 126
 127/* If set, the PCI config space of each device is printed during boot. */
 128bool pci_early_dump;
 129
 130bool pci_ats_disabled(void)
 131{
 132        return pcie_ats_disabled;
 133}
 134EXPORT_SYMBOL_GPL(pci_ats_disabled);
 135
 136/* Disable bridge_d3 for all PCIe ports */
 137static bool pci_bridge_d3_disable;
 138/* Force bridge_d3 for all PCIe ports */
 139static bool pci_bridge_d3_force;
 140
 141static int __init pcie_port_pm_setup(char *str)
 142{
 143        if (!strcmp(str, "off"))
 144                pci_bridge_d3_disable = true;
 145        else if (!strcmp(str, "force"))
 146                pci_bridge_d3_force = true;
 147        return 1;
 148}
 149__setup("pcie_port_pm=", pcie_port_pm_setup);
 150
 151/* Time to wait after a reset for device to become responsive */
 152#define PCIE_RESET_READY_POLL_MS 60000
 153
 154/**
 155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 156 * @bus: pointer to PCI bus structure to search
 157 *
 158 * Given a PCI bus, returns the highest PCI bus number present in the set
 159 * including the given PCI bus and its list of child PCI buses.
 160 */
 161unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 162{
 163        struct pci_bus *tmp;
 164        unsigned char max, n;
 165
 166        max = bus->busn_res.end;
 167        list_for_each_entry(tmp, &bus->children, node) {
 168                n = pci_bus_max_busnr(tmp);
 169                if (n > max)
 170                        max = n;
 171        }
 172        return max;
 173}
 174EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 175
 176/**
 177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 178 * @pdev: the PCI device
 179 *
 180 * Returns error bits set in PCI_STATUS and clears them.
 181 */
 182int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 183{
 184        u16 status;
 185        int ret;
 186
 187        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 188        if (ret != PCIBIOS_SUCCESSFUL)
 189                return -EIO;
 190
 191        status &= PCI_STATUS_ERROR_BITS;
 192        if (status)
 193                pci_write_config_word(pdev, PCI_STATUS, status);
 194
 195        return status;
 196}
 197EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 198
 199#ifdef CONFIG_HAS_IOMEM
 200void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 201{
 202        struct resource *res = &pdev->resource[bar];
 203
 204        /*
 205         * Make sure the BAR is actually a memory resource, not an IO resource
 206         */
 207        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 208                pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 209                return NULL;
 210        }
 211        return ioremap(res->start, resource_size(res));
 212}
 213EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 214
 215void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 216{
 217        /*
 218         * Make sure the BAR is actually a memory resource, not an IO resource
 219         */
 220        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 221                WARN_ON(1);
 222                return NULL;
 223        }
 224        return ioremap_wc(pci_resource_start(pdev, bar),
 225                          pci_resource_len(pdev, bar));
 226}
 227EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 228#endif
 229
 230/**
 231 * pci_dev_str_match_path - test if a path string matches a device
 232 * @dev: the PCI device to test
 233 * @path: string to match the device against
 234 * @endptr: pointer to the string after the match
 235 *
 236 * Test if a string (typically from a kernel parameter) formatted as a
 237 * path of device/function addresses matches a PCI device. The string must
 238 * be of the form:
 239 *
 240 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 241 *
 242 * A path for a device can be obtained using 'lspci -t'.  Using a path
 243 * is more robust against bus renumbering than using only a single bus,
 244 * device and function address.
 245 *
 246 * Returns 1 if the string matches the device, 0 if it does not and
 247 * a negative error code if it fails to parse the string.
 248 */
 249static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 250                                  const char **endptr)
 251{
 252        int ret;
 253        int seg, bus, slot, func;
 254        char *wpath, *p;
 255        char end;
 256
 257        *endptr = strchrnul(path, ';');
 258
 259        wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 260        if (!wpath)
 261                return -ENOMEM;
 262
 263        while (1) {
 264                p = strrchr(wpath, '/');
 265                if (!p)
 266                        break;
 267                ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 268                if (ret != 2) {
 269                        ret = -EINVAL;
 270                        goto free_and_exit;
 271                }
 272
 273                if (dev->devfn != PCI_DEVFN(slot, func)) {
 274                        ret = 0;
 275                        goto free_and_exit;
 276                }
 277
 278                /*
 279                 * Note: we don't need to get a reference to the upstream
 280                 * bridge because we hold a reference to the top level
 281                 * device which should hold a reference to the bridge,
 282                 * and so on.
 283                 */
 284                dev = pci_upstream_bridge(dev);
 285                if (!dev) {
 286                        ret = 0;
 287                        goto free_and_exit;
 288                }
 289
 290                *p = 0;
 291        }
 292
 293        ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 294                     &func, &end);
 295        if (ret != 4) {
 296                seg = 0;
 297                ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 298                if (ret != 3) {
 299                        ret = -EINVAL;
 300                        goto free_and_exit;
 301                }
 302        }
 303
 304        ret = (seg == pci_domain_nr(dev->bus) &&
 305               bus == dev->bus->number &&
 306               dev->devfn == PCI_DEVFN(slot, func));
 307
 308free_and_exit:
 309        kfree(wpath);
 310        return ret;
 311}
 312
 313/**
 314 * pci_dev_str_match - test if a string matches a device
 315 * @dev: the PCI device to test
 316 * @p: string to match the device against
 317 * @endptr: pointer to the string after the match
 318 *
 319 * Test if a string (typically from a kernel parameter) matches a specified
 320 * PCI device. The string may be of one of the following formats:
 321 *
 322 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 323 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 324 *
 325 * The first format specifies a PCI bus/device/function address which
 326 * may change if new hardware is inserted, if motherboard firmware changes,
 327 * or due to changes caused in kernel parameters. If the domain is
 328 * left unspecified, it is taken to be 0.  In order to be robust against
 329 * bus renumbering issues, a path of PCI device/function numbers may be used
 330 * to address the specific device.  The path for a device can be determined
 331 * through the use of 'lspci -t'.
 332 *
 333 * The second format matches devices using IDs in the configuration
 334 * space which may match multiple devices in the system. A value of 0
 335 * for any field will match all devices. (Note: this differs from
 336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 337 * legacy reasons and convenience so users don't have to specify
 338 * FFFFFFFFs on the command line.)
 339 *
 340 * Returns 1 if the string matches the device, 0 if it does not and
 341 * a negative error code if the string cannot be parsed.
 342 */
 343static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 344                             const char **endptr)
 345{
 346        int ret;
 347        int count;
 348        unsigned short vendor, device, subsystem_vendor, subsystem_device;
 349
 350        if (strncmp(p, "pci:", 4) == 0) {
 351                /* PCI vendor/device (subvendor/subdevice) IDs are specified */
 352                p += 4;
 353                ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 354                             &subsystem_vendor, &subsystem_device, &count);
 355                if (ret != 4) {
 356                        ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 357                        if (ret != 2)
 358                                return -EINVAL;
 359
 360                        subsystem_vendor = 0;
 361                        subsystem_device = 0;
 362                }
 363
 364                p += count;
 365
 366                if ((!vendor || vendor == dev->vendor) &&
 367                    (!device || device == dev->device) &&
 368                    (!subsystem_vendor ||
 369                            subsystem_vendor == dev->subsystem_vendor) &&
 370                    (!subsystem_device ||
 371                            subsystem_device == dev->subsystem_device))
 372                        goto found;
 373        } else {
 374                /*
 375                 * PCI Bus, Device, Function IDs are specified
 376                 * (optionally, may include a path of devfns following it)
 377                 */
 378                ret = pci_dev_str_match_path(dev, p, &p);
 379                if (ret < 0)
 380                        return ret;
 381                else if (ret)
 382                        goto found;
 383        }
 384
 385        *endptr = p;
 386        return 0;
 387
 388found:
 389        *endptr = p;
 390        return 1;
 391}
 392
 393static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 394                                   u8 pos, int cap, int *ttl)
 395{
 396        u8 id;
 397        u16 ent;
 398
 399        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 400
 401        while ((*ttl)--) {
 402                if (pos < 0x40)
 403                        break;
 404                pos &= ~3;
 405                pci_bus_read_config_word(bus, devfn, pos, &ent);
 406
 407                id = ent & 0xff;
 408                if (id == 0xff)
 409                        break;
 410                if (id == cap)
 411                        return pos;
 412                pos = (ent >> 8);
 413        }
 414        return 0;
 415}
 416
 417static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 418                               u8 pos, int cap)
 419{
 420        int ttl = PCI_FIND_CAP_TTL;
 421
 422        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 423}
 424
 425int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 426{
 427        return __pci_find_next_cap(dev->bus, dev->devfn,
 428                                   pos + PCI_CAP_LIST_NEXT, cap);
 429}
 430EXPORT_SYMBOL_GPL(pci_find_next_capability);
 431
 432static int __pci_bus_find_cap_start(struct pci_bus *bus,
 433                                    unsigned int devfn, u8 hdr_type)
 434{
 435        u16 status;
 436
 437        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 438        if (!(status & PCI_STATUS_CAP_LIST))
 439                return 0;
 440
 441        switch (hdr_type) {
 442        case PCI_HEADER_TYPE_NORMAL:
 443        case PCI_HEADER_TYPE_BRIDGE:
 444                return PCI_CAPABILITY_LIST;
 445        case PCI_HEADER_TYPE_CARDBUS:
 446                return PCI_CB_CAPABILITY_LIST;
 447        }
 448
 449        return 0;
 450}
 451
 452/**
 453 * pci_find_capability - query for devices' capabilities
 454 * @dev: PCI device to query
 455 * @cap: capability code
 456 *
 457 * Tell if a device supports a given PCI capability.
 458 * Returns the address of the requested capability structure within the
 459 * device's PCI configuration space or 0 in case the device does not
 460 * support it.  Possible values for @cap include:
 461 *
 462 *  %PCI_CAP_ID_PM           Power Management
 463 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 464 *  %PCI_CAP_ID_VPD          Vital Product Data
 465 *  %PCI_CAP_ID_SLOTID       Slot Identification
 466 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 467 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 468 *  %PCI_CAP_ID_PCIX         PCI-X
 469 *  %PCI_CAP_ID_EXP          PCI Express
 470 */
 471int pci_find_capability(struct pci_dev *dev, int cap)
 472{
 473        int pos;
 474
 475        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 476        if (pos)
 477                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 478
 479        return pos;
 480}
 481EXPORT_SYMBOL(pci_find_capability);
 482
 483/**
 484 * pci_bus_find_capability - query for devices' capabilities
 485 * @bus: the PCI bus to query
 486 * @devfn: PCI device to query
 487 * @cap: capability code
 488 *
 489 * Like pci_find_capability() but works for PCI devices that do not have a
 490 * pci_dev structure set up yet.
 491 *
 492 * Returns the address of the requested capability structure within the
 493 * device's PCI configuration space or 0 in case the device does not
 494 * support it.
 495 */
 496int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 497{
 498        int pos;
 499        u8 hdr_type;
 500
 501        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 502
 503        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 504        if (pos)
 505                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 506
 507        return pos;
 508}
 509EXPORT_SYMBOL(pci_bus_find_capability);
 510
 511/**
 512 * pci_find_next_ext_capability - Find an extended capability
 513 * @dev: PCI device to query
 514 * @start: address at which to start looking (0 to start at beginning of list)
 515 * @cap: capability code
 516 *
 517 * Returns the address of the next matching extended capability structure
 518 * within the device's PCI configuration space or 0 if the device does
 519 * not support it.  Some capabilities can occur several times, e.g., the
 520 * vendor-specific capability, and this provides a way to find them all.
 521 */
 522int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
 523{
 524        u32 header;
 525        int ttl;
 526        int pos = PCI_CFG_SPACE_SIZE;
 527
 528        /* minimum 8 bytes per capability */
 529        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 530
 531        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 532                return 0;
 533
 534        if (start)
 535                pos = start;
 536
 537        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 538                return 0;
 539
 540        /*
 541         * If we have no capabilities, this is indicated by cap ID,
 542         * cap version and next pointer all being 0.
 543         */
 544        if (header == 0)
 545                return 0;
 546
 547        while (ttl-- > 0) {
 548                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 549                        return pos;
 550
 551                pos = PCI_EXT_CAP_NEXT(header);
 552                if (pos < PCI_CFG_SPACE_SIZE)
 553                        break;
 554
 555                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 556                        break;
 557        }
 558
 559        return 0;
 560}
 561EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 562
 563/**
 564 * pci_find_ext_capability - Find an extended capability
 565 * @dev: PCI device to query
 566 * @cap: capability code
 567 *
 568 * Returns the address of the requested extended capability structure
 569 * within the device's PCI configuration space or 0 if the device does
 570 * not support it.  Possible values for @cap include:
 571 *
 572 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 573 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 574 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 575 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 576 */
 577int pci_find_ext_capability(struct pci_dev *dev, int cap)
 578{
 579        return pci_find_next_ext_capability(dev, 0, cap);
 580}
 581EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 582
 583/**
 584 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 585 * @dev: PCI device to query
 586 *
 587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 588 * Number.
 589 *
 590 * Returns the DSN, or zero if the capability does not exist.
 591 */
 592u64 pci_get_dsn(struct pci_dev *dev)
 593{
 594        u32 dword;
 595        u64 dsn;
 596        int pos;
 597
 598        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 599        if (!pos)
 600                return 0;
 601
 602        /*
 603         * The Device Serial Number is two dwords offset 4 bytes from the
 604         * capability position. The specification says that the first dword is
 605         * the lower half, and the second dword is the upper half.
 606         */
 607        pos += 4;
 608        pci_read_config_dword(dev, pos, &dword);
 609        dsn = (u64)dword;
 610        pci_read_config_dword(dev, pos + 4, &dword);
 611        dsn |= ((u64)dword) << 32;
 612
 613        return dsn;
 614}
 615EXPORT_SYMBOL_GPL(pci_get_dsn);
 616
 617static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
 618{
 619        int rc, ttl = PCI_FIND_CAP_TTL;
 620        u8 cap, mask;
 621
 622        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 623                mask = HT_3BIT_CAP_MASK;
 624        else
 625                mask = HT_5BIT_CAP_MASK;
 626
 627        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 628                                      PCI_CAP_ID_HT, &ttl);
 629        while (pos) {
 630                rc = pci_read_config_byte(dev, pos + 3, &cap);
 631                if (rc != PCIBIOS_SUCCESSFUL)
 632                        return 0;
 633
 634                if ((cap & mask) == ht_cap)
 635                        return pos;
 636
 637                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 638                                              pos + PCI_CAP_LIST_NEXT,
 639                                              PCI_CAP_ID_HT, &ttl);
 640        }
 641
 642        return 0;
 643}
 644/**
 645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
 646 * @dev: PCI device to query
 647 * @pos: Position from which to continue searching
 648 * @ht_cap: Hypertransport capability code
 649 *
 650 * To be used in conjunction with pci_find_ht_capability() to search for
 651 * all capabilities matching @ht_cap. @pos should always be a value returned
 652 * from pci_find_ht_capability().
 653 *
 654 * NB. To be 100% safe against broken PCI devices, the caller should take
 655 * steps to avoid an infinite loop.
 656 */
 657int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
 658{
 659        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 660}
 661EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 662
 663/**
 664 * pci_find_ht_capability - query a device's Hypertransport capabilities
 665 * @dev: PCI device to query
 666 * @ht_cap: Hypertransport capability code
 667 *
 668 * Tell if a device supports a given Hypertransport capability.
 669 * Returns an address within the device's PCI configuration space
 670 * or 0 in case the device does not support the request capability.
 671 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 672 * which has a Hypertransport capability matching @ht_cap.
 673 */
 674int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 675{
 676        int pos;
 677
 678        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 679        if (pos)
 680                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 681
 682        return pos;
 683}
 684EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 685
 686/**
 687 * pci_find_parent_resource - return resource region of parent bus of given
 688 *                            region
 689 * @dev: PCI device structure contains resources to be searched
 690 * @res: child resource record for which parent is sought
 691 *
 692 * For given resource region of given device, return the resource region of
 693 * parent bus the given region is contained in.
 694 */
 695struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 696                                          struct resource *res)
 697{
 698        const struct pci_bus *bus = dev->bus;
 699        struct resource *r;
 700        int i;
 701
 702        pci_bus_for_each_resource(bus, r, i) {
 703                if (!r)
 704                        continue;
 705                if (resource_contains(r, res)) {
 706
 707                        /*
 708                         * If the window is prefetchable but the BAR is
 709                         * not, the allocator made a mistake.
 710                         */
 711                        if (r->flags & IORESOURCE_PREFETCH &&
 712                            !(res->flags & IORESOURCE_PREFETCH))
 713                                return NULL;
 714
 715                        /*
 716                         * If we're below a transparent bridge, there may
 717                         * be both a positively-decoded aperture and a
 718                         * subtractively-decoded region that contain the BAR.
 719                         * We want the positively-decoded one, so this depends
 720                         * on pci_bus_for_each_resource() giving us those
 721                         * first.
 722                         */
 723                        return r;
 724                }
 725        }
 726        return NULL;
 727}
 728EXPORT_SYMBOL(pci_find_parent_resource);
 729
 730/**
 731 * pci_find_resource - Return matching PCI device resource
 732 * @dev: PCI device to query
 733 * @res: Resource to look for
 734 *
 735 * Goes over standard PCI resources (BARs) and checks if the given resource
 736 * is partially or fully contained in any of them. In that case the
 737 * matching resource is returned, %NULL otherwise.
 738 */
 739struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 740{
 741        int i;
 742
 743        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 744                struct resource *r = &dev->resource[i];
 745
 746                if (r->start && resource_contains(r, res))
 747                        return r;
 748        }
 749
 750        return NULL;
 751}
 752EXPORT_SYMBOL(pci_find_resource);
 753
 754/**
 755 * pci_find_pcie_root_port - return PCIe Root Port
 756 * @dev: PCI device to query
 757 *
 758 * Traverse up the parent chain and return the PCIe Root Port PCI Device
 759 * for a given PCI Device.
 760 */
 761struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
 762{
 763        struct pci_dev *bridge, *highest_pcie_bridge = dev;
 764
 765        bridge = pci_upstream_bridge(dev);
 766        while (bridge && pci_is_pcie(bridge)) {
 767                highest_pcie_bridge = bridge;
 768                bridge = pci_upstream_bridge(bridge);
 769        }
 770
 771        if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
 772                return NULL;
 773
 774        return highest_pcie_bridge;
 775}
 776EXPORT_SYMBOL(pci_find_pcie_root_port);
 777
 778/**
 779 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 780 * @dev: the PCI device to operate on
 781 * @pos: config space offset of status word
 782 * @mask: mask of bit(s) to care about in status word
 783 *
 784 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 785 */
 786int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 787{
 788        int i;
 789
 790        /* Wait for Transaction Pending bit clean */
 791        for (i = 0; i < 4; i++) {
 792                u16 status;
 793                if (i)
 794                        msleep((1 << (i - 1)) * 100);
 795
 796                pci_read_config_word(dev, pos, &status);
 797                if (!(status & mask))
 798                        return 1;
 799        }
 800
 801        return 0;
 802}
 803
 804/**
 805 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 806 * @dev: PCI device to have its BARs restored
 807 *
 808 * Restore the BAR values for a given device, so as to make it
 809 * accessible by its driver.
 810 */
 811static void pci_restore_bars(struct pci_dev *dev)
 812{
 813        int i;
 814
 815        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 816                pci_update_resource(dev, i);
 817}
 818
 819static const struct pci_platform_pm_ops *pci_platform_pm;
 820
 821int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 822{
 823        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 824            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 825                return -EINVAL;
 826        pci_platform_pm = ops;
 827        return 0;
 828}
 829
 830static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 831{
 832        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 833}
 834
 835static inline int platform_pci_set_power_state(struct pci_dev *dev,
 836                                               pci_power_t t)
 837{
 838        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 839}
 840
 841static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 842{
 843        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 844}
 845
 846static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 847{
 848        if (pci_platform_pm && pci_platform_pm->refresh_state)
 849                pci_platform_pm->refresh_state(dev);
 850}
 851
 852static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 853{
 854        return pci_platform_pm ?
 855                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 856}
 857
 858static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 859{
 860        return pci_platform_pm ?
 861                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 862}
 863
 864static inline bool platform_pci_need_resume(struct pci_dev *dev)
 865{
 866        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 867}
 868
 869static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 870{
 871        return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
 872}
 873
 874/**
 875 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 876 *                           given PCI device
 877 * @dev: PCI device to handle.
 878 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 879 *
 880 * RETURN VALUE:
 881 * -EINVAL if the requested state is invalid.
 882 * -EIO if device does not support PCI PM or its PM capabilities register has a
 883 * wrong version, or device doesn't support the requested state.
 884 * 0 if device already is in the requested state.
 885 * 0 if device's power state has been successfully changed.
 886 */
 887static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
 888{
 889        u16 pmcsr;
 890        bool need_restore = false;
 891
 892        /* Check if we're already there */
 893        if (dev->current_state == state)
 894                return 0;
 895
 896        if (!dev->pm_cap)
 897                return -EIO;
 898
 899        if (state < PCI_D0 || state > PCI_D3hot)
 900                return -EINVAL;
 901
 902        /*
 903         * Validate transition: We can enter D0 from any state, but if
 904         * we're already in a low-power state, we can only go deeper.  E.g.,
 905         * we can go from D1 to D3, but we can't go directly from D3 to D1;
 906         * we'd have to go from D3 to D0, then to D1.
 907         */
 908        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
 909            && dev->current_state > state) {
 910                pci_err(dev, "invalid power transition (from %s to %s)\n",
 911                        pci_power_name(dev->current_state),
 912                        pci_power_name(state));
 913                return -EINVAL;
 914        }
 915
 916        /* Check if this device supports the desired state */
 917        if ((state == PCI_D1 && !dev->d1_support)
 918           || (state == PCI_D2 && !dev->d2_support))
 919                return -EIO;
 920
 921        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 922        if (pmcsr == (u16) ~0) {
 923                pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
 924                        pci_power_name(dev->current_state),
 925                        pci_power_name(state));
 926                return -EIO;
 927        }
 928
 929        /*
 930         * If we're (effectively) in D3, force entire word to 0.
 931         * This doesn't affect PME_Status, disables PME_En, and
 932         * sets PowerState to 0.
 933         */
 934        switch (dev->current_state) {
 935        case PCI_D0:
 936        case PCI_D1:
 937        case PCI_D2:
 938                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
 939                pmcsr |= state;
 940                break;
 941        case PCI_D3hot:
 942        case PCI_D3cold:
 943        case PCI_UNKNOWN: /* Boot-up */
 944                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
 945                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
 946                        need_restore = true;
 947                /* Fall-through - force to D0 */
 948        default:
 949                pmcsr = 0;
 950                break;
 951        }
 952
 953        /* Enter specified state */
 954        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
 955
 956        /*
 957         * Mandatory power management transition delays; see PCI PM 1.1
 958         * 5.6.1 table 18
 959         */
 960        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
 961                pci_dev_d3_sleep(dev);
 962        else if (state == PCI_D2 || dev->current_state == PCI_D2)
 963                msleep(PCI_PM_D2_DELAY);
 964
 965        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
 966        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
 967        if (dev->current_state != state)
 968                pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
 969                         pci_power_name(dev->current_state),
 970                         pci_power_name(state));
 971
 972        /*
 973         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
 974         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
 975         * from D3hot to D0 _may_ perform an internal reset, thereby
 976         * going to "D0 Uninitialized" rather than "D0 Initialized".
 977         * For example, at least some versions of the 3c905B and the
 978         * 3c556B exhibit this behaviour.
 979         *
 980         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
 981         * devices in a D3hot state at boot.  Consequently, we need to
 982         * restore at least the BARs so that the device will be
 983         * accessible to its driver.
 984         */
 985        if (need_restore)
 986                pci_restore_bars(dev);
 987
 988        if (dev->bus->self)
 989                pcie_aspm_pm_state_change(dev->bus->self);
 990
 991        return 0;
 992}
 993
 994/**
 995 * pci_update_current_state - Read power state of given device and cache it
 996 * @dev: PCI device to handle.
 997 * @state: State to cache in case the device doesn't have the PM capability
 998 *
 999 * The power state is read from the PMCSR register, which however is
1000 * inaccessible in D3cold.  The platform firmware is therefore queried first
1001 * to detect accessibility of the register.  In case the platform firmware
1002 * reports an incorrect state or the device isn't power manageable by the
1003 * platform at all, we try to detect D3cold by testing accessibility of the
1004 * vendor ID in config space.
1005 */
1006void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1007{
1008        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1009            !pci_device_is_present(dev)) {
1010                dev->current_state = PCI_D3cold;
1011        } else if (dev->pm_cap) {
1012                u16 pmcsr;
1013
1014                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1015                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1016        } else {
1017                dev->current_state = state;
1018        }
1019}
1020
1021/**
1022 * pci_refresh_power_state - Refresh the given device's power state data
1023 * @dev: Target PCI device.
1024 *
1025 * Ask the platform to refresh the devices power state information and invoke
1026 * pci_update_current_state() to update its current PCI power state.
1027 */
1028void pci_refresh_power_state(struct pci_dev *dev)
1029{
1030        if (platform_pci_power_manageable(dev))
1031                platform_pci_refresh_power_state(dev);
1032
1033        pci_update_current_state(dev, dev->current_state);
1034}
1035
1036/**
1037 * pci_platform_power_transition - Use platform to change device power state
1038 * @dev: PCI device to handle.
1039 * @state: State to put the device into.
1040 */
1041int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1042{
1043        int error;
1044
1045        if (platform_pci_power_manageable(dev)) {
1046                error = platform_pci_set_power_state(dev, state);
1047                if (!error)
1048                        pci_update_current_state(dev, state);
1049        } else
1050                error = -ENODEV;
1051
1052        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1053                dev->current_state = PCI_D0;
1054
1055        return error;
1056}
1057EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1058
1059/**
1060 * pci_wakeup - Wake up a PCI device
1061 * @pci_dev: Device to handle.
1062 * @ign: ignored parameter
1063 */
1064static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1065{
1066        pci_wakeup_event(pci_dev);
1067        pm_request_resume(&pci_dev->dev);
1068        return 0;
1069}
1070
1071/**
1072 * pci_wakeup_bus - Walk given bus and wake up devices on it
1073 * @bus: Top bus of the subtree to walk.
1074 */
1075void pci_wakeup_bus(struct pci_bus *bus)
1076{
1077        if (bus)
1078                pci_walk_bus(bus, pci_wakeup, NULL);
1079}
1080
1081static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1082{
1083        int delay = 1;
1084        u32 id;
1085
1086        /*
1087         * After reset, the device should not silently discard config
1088         * requests, but it may still indicate that it needs more time by
1089         * responding to them with CRS completions.  The Root Port will
1090         * generally synthesize ~0 data to complete the read (except when
1091         * CRS SV is enabled and the read was for the Vendor ID; in that
1092         * case it synthesizes 0x0001 data).
1093         *
1094         * Wait for the device to return a non-CRS completion.  Read the
1095         * Command register instead of Vendor ID so we don't have to
1096         * contend with the CRS SV value.
1097         */
1098        pci_read_config_dword(dev, PCI_COMMAND, &id);
1099        while (id == ~0) {
1100                if (delay > timeout) {
1101                        pci_warn(dev, "not ready %dms after %s; giving up\n",
1102                                 delay - 1, reset_type);
1103                        return -ENOTTY;
1104                }
1105
1106                if (delay > 1000)
1107                        pci_info(dev, "not ready %dms after %s; waiting\n",
1108                                 delay - 1, reset_type);
1109
1110                msleep(delay);
1111                delay *= 2;
1112                pci_read_config_dword(dev, PCI_COMMAND, &id);
1113        }
1114
1115        if (delay > 1000)
1116                pci_info(dev, "ready %dms after %s\n", delay - 1,
1117                         reset_type);
1118
1119        return 0;
1120}
1121
1122/**
1123 * pci_power_up - Put the given device into D0
1124 * @dev: PCI device to power up
1125 */
1126int pci_power_up(struct pci_dev *dev)
1127{
1128        pci_platform_power_transition(dev, PCI_D0);
1129
1130        /*
1131         * Mandatory power management transition delays are handled in
1132         * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1133         * corresponding bridge.
1134         */
1135        if (dev->runtime_d3cold) {
1136                /*
1137                 * When powering on a bridge from D3cold, the whole hierarchy
1138                 * may be powered on into D0uninitialized state, resume them to
1139                 * give them a chance to suspend again
1140                 */
1141                pci_wakeup_bus(dev->subordinate);
1142        }
1143
1144        return pci_raw_set_power_state(dev, PCI_D0);
1145}
1146
1147/**
1148 * __pci_dev_set_current_state - Set current state of a PCI device
1149 * @dev: Device to handle
1150 * @data: pointer to state to be set
1151 */
1152static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1153{
1154        pci_power_t state = *(pci_power_t *)data;
1155
1156        dev->current_state = state;
1157        return 0;
1158}
1159
1160/**
1161 * pci_bus_set_current_state - Walk given bus and set current state of devices
1162 * @bus: Top bus of the subtree to walk.
1163 * @state: state to be set
1164 */
1165void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1166{
1167        if (bus)
1168                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1169}
1170
1171/**
1172 * pci_set_power_state - Set the power state of a PCI device
1173 * @dev: PCI device to handle.
1174 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1175 *
1176 * Transition a device to a new power state, using the platform firmware and/or
1177 * the device's PCI PM registers.
1178 *
1179 * RETURN VALUE:
1180 * -EINVAL if the requested state is invalid.
1181 * -EIO if device does not support PCI PM or its PM capabilities register has a
1182 * wrong version, or device doesn't support the requested state.
1183 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1184 * 0 if device already is in the requested state.
1185 * 0 if the transition is to D3 but D3 is not supported.
1186 * 0 if device's power state has been successfully changed.
1187 */
1188int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1189{
1190        int error;
1191
1192        /* Bound the state we're entering */
1193        if (state > PCI_D3cold)
1194                state = PCI_D3cold;
1195        else if (state < PCI_D0)
1196                state = PCI_D0;
1197        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1198
1199                /*
1200                 * If the device or the parent bridge do not support PCI
1201                 * PM, ignore the request if we're doing anything other
1202                 * than putting it into D0 (which would only happen on
1203                 * boot).
1204                 */
1205                return 0;
1206
1207        /* Check if we're already there */
1208        if (dev->current_state == state)
1209                return 0;
1210
1211        if (state == PCI_D0)
1212                return pci_power_up(dev);
1213
1214        /*
1215         * This device is quirked not to be put into D3, so don't put it in
1216         * D3
1217         */
1218        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1219                return 0;
1220
1221        /*
1222         * To put device in D3cold, we put device into D3hot in native
1223         * way, then put device into D3cold with platform ops
1224         */
1225        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1226                                        PCI_D3hot : state);
1227
1228        if (pci_platform_power_transition(dev, state))
1229                return error;
1230
1231        /* Powering off a bridge may power off the whole hierarchy */
1232        if (state == PCI_D3cold)
1233                pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1234
1235        return 0;
1236}
1237EXPORT_SYMBOL(pci_set_power_state);
1238
1239/**
1240 * pci_choose_state - Choose the power state of a PCI device
1241 * @dev: PCI device to be suspended
1242 * @state: target sleep state for the whole system. This is the value
1243 *         that is passed to suspend() function.
1244 *
1245 * Returns PCI power state suitable for given device and given system
1246 * message.
1247 */
1248pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1249{
1250        pci_power_t ret;
1251
1252        if (!dev->pm_cap)
1253                return PCI_D0;
1254
1255        ret = platform_pci_choose_state(dev);
1256        if (ret != PCI_POWER_ERROR)
1257                return ret;
1258
1259        switch (state.event) {
1260        case PM_EVENT_ON:
1261                return PCI_D0;
1262        case PM_EVENT_FREEZE:
1263        case PM_EVENT_PRETHAW:
1264                /* REVISIT both freeze and pre-thaw "should" use D0 */
1265        case PM_EVENT_SUSPEND:
1266        case PM_EVENT_HIBERNATE:
1267                return PCI_D3hot;
1268        default:
1269                pci_info(dev, "unrecognized suspend event %d\n",
1270                         state.event);
1271                BUG();
1272        }
1273        return PCI_D0;
1274}
1275EXPORT_SYMBOL(pci_choose_state);
1276
1277#define PCI_EXP_SAVE_REGS       7
1278
1279static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1280                                                       u16 cap, bool extended)
1281{
1282        struct pci_cap_saved_state *tmp;
1283
1284        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1285                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1286                        return tmp;
1287        }
1288        return NULL;
1289}
1290
1291struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1292{
1293        return _pci_find_saved_cap(dev, cap, false);
1294}
1295
1296struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1297{
1298        return _pci_find_saved_cap(dev, cap, true);
1299}
1300
1301static int pci_save_pcie_state(struct pci_dev *dev)
1302{
1303        int i = 0;
1304        struct pci_cap_saved_state *save_state;
1305        u16 *cap;
1306
1307        if (!pci_is_pcie(dev))
1308                return 0;
1309
1310        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1311        if (!save_state) {
1312                pci_err(dev, "buffer not found in %s\n", __func__);
1313                return -ENOMEM;
1314        }
1315
1316        cap = (u16 *)&save_state->cap.data[0];
1317        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1318        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1319        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1320        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1321        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1322        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1323        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1324
1325        return 0;
1326}
1327
1328static void pci_restore_pcie_state(struct pci_dev *dev)
1329{
1330        int i = 0;
1331        struct pci_cap_saved_state *save_state;
1332        u16 *cap;
1333
1334        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1335        if (!save_state)
1336                return;
1337
1338        cap = (u16 *)&save_state->cap.data[0];
1339        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1340        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1341        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1342        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1343        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1344        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1345        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1346}
1347
1348static int pci_save_pcix_state(struct pci_dev *dev)
1349{
1350        int pos;
1351        struct pci_cap_saved_state *save_state;
1352
1353        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1354        if (!pos)
1355                return 0;
1356
1357        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1358        if (!save_state) {
1359                pci_err(dev, "buffer not found in %s\n", __func__);
1360                return -ENOMEM;
1361        }
1362
1363        pci_read_config_word(dev, pos + PCI_X_CMD,
1364                             (u16 *)save_state->cap.data);
1365
1366        return 0;
1367}
1368
1369static void pci_restore_pcix_state(struct pci_dev *dev)
1370{
1371        int i = 0, pos;
1372        struct pci_cap_saved_state *save_state;
1373        u16 *cap;
1374
1375        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1376        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1377        if (!save_state || !pos)
1378                return;
1379        cap = (u16 *)&save_state->cap.data[0];
1380
1381        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1382}
1383
1384static void pci_save_ltr_state(struct pci_dev *dev)
1385{
1386        int ltr;
1387        struct pci_cap_saved_state *save_state;
1388        u16 *cap;
1389
1390        if (!pci_is_pcie(dev))
1391                return;
1392
1393        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1394        if (!ltr)
1395                return;
1396
1397        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1398        if (!save_state) {
1399                pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1400                return;
1401        }
1402
1403        cap = (u16 *)&save_state->cap.data[0];
1404        pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1405        pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1406}
1407
1408static void pci_restore_ltr_state(struct pci_dev *dev)
1409{
1410        struct pci_cap_saved_state *save_state;
1411        int ltr;
1412        u16 *cap;
1413
1414        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1415        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1416        if (!save_state || !ltr)
1417                return;
1418
1419        cap = (u16 *)&save_state->cap.data[0];
1420        pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1421        pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1422}
1423
1424/**
1425 * pci_save_state - save the PCI configuration space of a device before
1426 *                  suspending
1427 * @dev: PCI device that we're dealing with
1428 */
1429int pci_save_state(struct pci_dev *dev)
1430{
1431        int i;
1432        /* XXX: 100% dword access ok here? */
1433        for (i = 0; i < 16; i++) {
1434                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1435                pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1436                        i * 4, dev->saved_config_space[i]);
1437        }
1438        dev->state_saved = true;
1439
1440        i = pci_save_pcie_state(dev);
1441        if (i != 0)
1442                return i;
1443
1444        i = pci_save_pcix_state(dev);
1445        if (i != 0)
1446                return i;
1447
1448        pci_save_ltr_state(dev);
1449        pci_save_dpc_state(dev);
1450        pci_save_aer_state(dev);
1451        return pci_save_vc_state(dev);
1452}
1453EXPORT_SYMBOL(pci_save_state);
1454
1455static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1456                                     u32 saved_val, int retry, bool force)
1457{
1458        u32 val;
1459
1460        pci_read_config_dword(pdev, offset, &val);
1461        if (!force && val == saved_val)
1462                return;
1463
1464        for (;;) {
1465                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1466                        offset, val, saved_val);
1467                pci_write_config_dword(pdev, offset, saved_val);
1468                if (retry-- <= 0)
1469                        return;
1470
1471                pci_read_config_dword(pdev, offset, &val);
1472                if (val == saved_val)
1473                        return;
1474
1475                mdelay(1);
1476        }
1477}
1478
1479static void pci_restore_config_space_range(struct pci_dev *pdev,
1480                                           int start, int end, int retry,
1481                                           bool force)
1482{
1483        int index;
1484
1485        for (index = end; index >= start; index--)
1486                pci_restore_config_dword(pdev, 4 * index,
1487                                         pdev->saved_config_space[index],
1488                                         retry, force);
1489}
1490
1491static void pci_restore_config_space(struct pci_dev *pdev)
1492{
1493        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1494                pci_restore_config_space_range(pdev, 10, 15, 0, false);
1495                /* Restore BARs before the command register. */
1496                pci_restore_config_space_range(pdev, 4, 9, 10, false);
1497                pci_restore_config_space_range(pdev, 0, 3, 0, false);
1498        } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1499                pci_restore_config_space_range(pdev, 12, 15, 0, false);
1500
1501                /*
1502                 * Force rewriting of prefetch registers to avoid S3 resume
1503                 * issues on Intel PCI bridges that occur when these
1504                 * registers are not explicitly written.
1505                 */
1506                pci_restore_config_space_range(pdev, 9, 11, 0, true);
1507                pci_restore_config_space_range(pdev, 0, 8, 0, false);
1508        } else {
1509                pci_restore_config_space_range(pdev, 0, 15, 0, false);
1510        }
1511}
1512
1513static void pci_restore_rebar_state(struct pci_dev *pdev)
1514{
1515        unsigned int pos, nbars, i;
1516        u32 ctrl;
1517
1518        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1519        if (!pos)
1520                return;
1521
1522        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1523        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1524                    PCI_REBAR_CTRL_NBAR_SHIFT;
1525
1526        for (i = 0; i < nbars; i++, pos += 8) {
1527                struct resource *res;
1528                int bar_idx, size;
1529
1530                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1531                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1532                res = pdev->resource + bar_idx;
1533                size = ilog2(resource_size(res)) - 20;
1534                ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1535                ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1536                pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1537        }
1538}
1539
1540/**
1541 * pci_restore_state - Restore the saved state of a PCI device
1542 * @dev: PCI device that we're dealing with
1543 */
1544void pci_restore_state(struct pci_dev *dev)
1545{
1546        if (!dev->state_saved)
1547                return;
1548
1549        /*
1550         * Restore max latencies (in the LTR capability) before enabling
1551         * LTR itself (in the PCIe capability).
1552         */
1553        pci_restore_ltr_state(dev);
1554
1555        pci_restore_pcie_state(dev);
1556        pci_restore_pasid_state(dev);
1557        pci_restore_pri_state(dev);
1558        pci_restore_ats_state(dev);
1559        pci_restore_vc_state(dev);
1560        pci_restore_rebar_state(dev);
1561        pci_restore_dpc_state(dev);
1562
1563        pci_aer_clear_status(dev);
1564        pci_restore_aer_state(dev);
1565
1566        pci_restore_config_space(dev);
1567
1568        pci_restore_pcix_state(dev);
1569        pci_restore_msi_state(dev);
1570
1571        /* Restore ACS and IOV configuration state */
1572        pci_enable_acs(dev);
1573        pci_restore_iov_state(dev);
1574
1575        dev->state_saved = false;
1576}
1577EXPORT_SYMBOL(pci_restore_state);
1578
1579struct pci_saved_state {
1580        u32 config_space[16];
1581        struct pci_cap_saved_data cap[0];
1582};
1583
1584/**
1585 * pci_store_saved_state - Allocate and return an opaque struct containing
1586 *                         the device saved state.
1587 * @dev: PCI device that we're dealing with
1588 *
1589 * Return NULL if no state or error.
1590 */
1591struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1592{
1593        struct pci_saved_state *state;
1594        struct pci_cap_saved_state *tmp;
1595        struct pci_cap_saved_data *cap;
1596        size_t size;
1597
1598        if (!dev->state_saved)
1599                return NULL;
1600
1601        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1602
1603        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1604                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1605
1606        state = kzalloc(size, GFP_KERNEL);
1607        if (!state)
1608                return NULL;
1609
1610        memcpy(state->config_space, dev->saved_config_space,
1611               sizeof(state->config_space));
1612
1613        cap = state->cap;
1614        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1615                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1616                memcpy(cap, &tmp->cap, len);
1617                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1618        }
1619        /* Empty cap_save terminates list */
1620
1621        return state;
1622}
1623EXPORT_SYMBOL_GPL(pci_store_saved_state);
1624
1625/**
1626 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1627 * @dev: PCI device that we're dealing with
1628 * @state: Saved state returned from pci_store_saved_state()
1629 */
1630int pci_load_saved_state(struct pci_dev *dev,
1631                         struct pci_saved_state *state)
1632{
1633        struct pci_cap_saved_data *cap;
1634
1635        dev->state_saved = false;
1636
1637        if (!state)
1638                return 0;
1639
1640        memcpy(dev->saved_config_space, state->config_space,
1641               sizeof(state->config_space));
1642
1643        cap = state->cap;
1644        while (cap->size) {
1645                struct pci_cap_saved_state *tmp;
1646
1647                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1648                if (!tmp || tmp->cap.size != cap->size)
1649                        return -EINVAL;
1650
1651                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1652                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1653                       sizeof(struct pci_cap_saved_data) + cap->size);
1654        }
1655
1656        dev->state_saved = true;
1657        return 0;
1658}
1659EXPORT_SYMBOL_GPL(pci_load_saved_state);
1660
1661/**
1662 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1663 *                                 and free the memory allocated for it.
1664 * @dev: PCI device that we're dealing with
1665 * @state: Pointer to saved state returned from pci_store_saved_state()
1666 */
1667int pci_load_and_free_saved_state(struct pci_dev *dev,
1668                                  struct pci_saved_state **state)
1669{
1670        int ret = pci_load_saved_state(dev, *state);
1671        kfree(*state);
1672        *state = NULL;
1673        return ret;
1674}
1675EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1676
1677int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1678{
1679        return pci_enable_resources(dev, bars);
1680}
1681
1682static int do_pci_enable_device(struct pci_dev *dev, int bars)
1683{
1684        int err;
1685        struct pci_dev *bridge;
1686        u16 cmd;
1687        u8 pin;
1688
1689        err = pci_set_power_state(dev, PCI_D0);
1690        if (err < 0 && err != -EIO)
1691                return err;
1692
1693        bridge = pci_upstream_bridge(dev);
1694        if (bridge)
1695                pcie_aspm_powersave_config_link(bridge);
1696
1697        err = pcibios_enable_device(dev, bars);
1698        if (err < 0)
1699                return err;
1700        pci_fixup_device(pci_fixup_enable, dev);
1701
1702        if (dev->msi_enabled || dev->msix_enabled)
1703                return 0;
1704
1705        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1706        if (pin) {
1707                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1708                if (cmd & PCI_COMMAND_INTX_DISABLE)
1709                        pci_write_config_word(dev, PCI_COMMAND,
1710                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1711        }
1712
1713        return 0;
1714}
1715
1716/**
1717 * pci_reenable_device - Resume abandoned device
1718 * @dev: PCI device to be resumed
1719 *
1720 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1721 * to be called by normal code, write proper resume handler and use it instead.
1722 */
1723int pci_reenable_device(struct pci_dev *dev)
1724{
1725        if (pci_is_enabled(dev))
1726                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1727        return 0;
1728}
1729EXPORT_SYMBOL(pci_reenable_device);
1730
1731static void pci_enable_bridge(struct pci_dev *dev)
1732{
1733        struct pci_dev *bridge;
1734        int retval;
1735
1736        bridge = pci_upstream_bridge(dev);
1737        if (bridge)
1738                pci_enable_bridge(bridge);
1739
1740        if (pci_is_enabled(dev)) {
1741                if (!dev->is_busmaster)
1742                        pci_set_master(dev);
1743                return;
1744        }
1745
1746        retval = pci_enable_device(dev);
1747        if (retval)
1748                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1749                        retval);
1750        pci_set_master(dev);
1751}
1752
1753static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1754{
1755        struct pci_dev *bridge;
1756        int err;
1757        int i, bars = 0;
1758
1759        /*
1760         * Power state could be unknown at this point, either due to a fresh
1761         * boot or a device removal call.  So get the current power state
1762         * so that things like MSI message writing will behave as expected
1763         * (e.g. if the device really is in D0 at enable time).
1764         */
1765        if (dev->pm_cap) {
1766                u16 pmcsr;
1767                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1768                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1769        }
1770
1771        if (atomic_inc_return(&dev->enable_cnt) > 1)
1772                return 0;               /* already enabled */
1773
1774        bridge = pci_upstream_bridge(dev);
1775        if (bridge)
1776                pci_enable_bridge(bridge);
1777
1778        /* only skip sriov related */
1779        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1780                if (dev->resource[i].flags & flags)
1781                        bars |= (1 << i);
1782        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1783                if (dev->resource[i].flags & flags)
1784                        bars |= (1 << i);
1785
1786        err = do_pci_enable_device(dev, bars);
1787        if (err < 0)
1788                atomic_dec(&dev->enable_cnt);
1789        return err;
1790}
1791
1792/**
1793 * pci_enable_device_io - Initialize a device for use with IO space
1794 * @dev: PCI device to be initialized
1795 *
1796 * Initialize device before it's used by a driver. Ask low-level code
1797 * to enable I/O resources. Wake up the device if it was suspended.
1798 * Beware, this function can fail.
1799 */
1800int pci_enable_device_io(struct pci_dev *dev)
1801{
1802        return pci_enable_device_flags(dev, IORESOURCE_IO);
1803}
1804EXPORT_SYMBOL(pci_enable_device_io);
1805
1806/**
1807 * pci_enable_device_mem - Initialize a device for use with Memory space
1808 * @dev: PCI device to be initialized
1809 *
1810 * Initialize device before it's used by a driver. Ask low-level code
1811 * to enable Memory resources. Wake up the device if it was suspended.
1812 * Beware, this function can fail.
1813 */
1814int pci_enable_device_mem(struct pci_dev *dev)
1815{
1816        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1817}
1818EXPORT_SYMBOL(pci_enable_device_mem);
1819
1820/**
1821 * pci_enable_device - Initialize device before it's used by a driver.
1822 * @dev: PCI device to be initialized
1823 *
1824 * Initialize device before it's used by a driver. Ask low-level code
1825 * to enable I/O and memory. Wake up the device if it was suspended.
1826 * Beware, this function can fail.
1827 *
1828 * Note we don't actually enable the device many times if we call
1829 * this function repeatedly (we just increment the count).
1830 */
1831int pci_enable_device(struct pci_dev *dev)
1832{
1833        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1834}
1835EXPORT_SYMBOL(pci_enable_device);
1836
1837/*
1838 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1839 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1840 * there's no need to track it separately.  pci_devres is initialized
1841 * when a device is enabled using managed PCI device enable interface.
1842 */
1843struct pci_devres {
1844        unsigned int enabled:1;
1845        unsigned int pinned:1;
1846        unsigned int orig_intx:1;
1847        unsigned int restore_intx:1;
1848        unsigned int mwi:1;
1849        u32 region_mask;
1850};
1851
1852static void pcim_release(struct device *gendev, void *res)
1853{
1854        struct pci_dev *dev = to_pci_dev(gendev);
1855        struct pci_devres *this = res;
1856        int i;
1857
1858        if (dev->msi_enabled)
1859                pci_disable_msi(dev);
1860        if (dev->msix_enabled)
1861                pci_disable_msix(dev);
1862
1863        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1864                if (this->region_mask & (1 << i))
1865                        pci_release_region(dev, i);
1866
1867        if (this->mwi)
1868                pci_clear_mwi(dev);
1869
1870        if (this->restore_intx)
1871                pci_intx(dev, this->orig_intx);
1872
1873        if (this->enabled && !this->pinned)
1874                pci_disable_device(dev);
1875}
1876
1877static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1878{
1879        struct pci_devres *dr, *new_dr;
1880
1881        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1882        if (dr)
1883                return dr;
1884
1885        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1886        if (!new_dr)
1887                return NULL;
1888        return devres_get(&pdev->dev, new_dr, NULL, NULL);
1889}
1890
1891static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1892{
1893        if (pci_is_managed(pdev))
1894                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1895        return NULL;
1896}
1897
1898/**
1899 * pcim_enable_device - Managed pci_enable_device()
1900 * @pdev: PCI device to be initialized
1901 *
1902 * Managed pci_enable_device().
1903 */
1904int pcim_enable_device(struct pci_dev *pdev)
1905{
1906        struct pci_devres *dr;
1907        int rc;
1908
1909        dr = get_pci_dr(pdev);
1910        if (unlikely(!dr))
1911                return -ENOMEM;
1912        if (dr->enabled)
1913                return 0;
1914
1915        rc = pci_enable_device(pdev);
1916        if (!rc) {
1917                pdev->is_managed = 1;
1918                dr->enabled = 1;
1919        }
1920        return rc;
1921}
1922EXPORT_SYMBOL(pcim_enable_device);
1923
1924/**
1925 * pcim_pin_device - Pin managed PCI device
1926 * @pdev: PCI device to pin
1927 *
1928 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1929 * driver detach.  @pdev must have been enabled with
1930 * pcim_enable_device().
1931 */
1932void pcim_pin_device(struct pci_dev *pdev)
1933{
1934        struct pci_devres *dr;
1935
1936        dr = find_pci_dr(pdev);
1937        WARN_ON(!dr || !dr->enabled);
1938        if (dr)
1939                dr->pinned = 1;
1940}
1941EXPORT_SYMBOL(pcim_pin_device);
1942
1943/*
1944 * pcibios_add_device - provide arch specific hooks when adding device dev
1945 * @dev: the PCI device being added
1946 *
1947 * Permits the platform to provide architecture specific functionality when
1948 * devices are added. This is the default implementation. Architecture
1949 * implementations can override this.
1950 */
1951int __weak pcibios_add_device(struct pci_dev *dev)
1952{
1953        return 0;
1954}
1955
1956/**
1957 * pcibios_release_device - provide arch specific hooks when releasing
1958 *                          device dev
1959 * @dev: the PCI device being released
1960 *
1961 * Permits the platform to provide architecture specific functionality when
1962 * devices are released. This is the default implementation. Architecture
1963 * implementations can override this.
1964 */
1965void __weak pcibios_release_device(struct pci_dev *dev) {}
1966
1967/**
1968 * pcibios_disable_device - disable arch specific PCI resources for device dev
1969 * @dev: the PCI device to disable
1970 *
1971 * Disables architecture specific PCI resources for the device. This
1972 * is the default implementation. Architecture implementations can
1973 * override this.
1974 */
1975void __weak pcibios_disable_device(struct pci_dev *dev) {}
1976
1977/**
1978 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1979 * @irq: ISA IRQ to penalize
1980 * @active: IRQ active or not
1981 *
1982 * Permits the platform to provide architecture-specific functionality when
1983 * penalizing ISA IRQs. This is the default implementation. Architecture
1984 * implementations can override this.
1985 */
1986void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1987
1988static void do_pci_disable_device(struct pci_dev *dev)
1989{
1990        u16 pci_command;
1991
1992        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1993        if (pci_command & PCI_COMMAND_MASTER) {
1994                pci_command &= ~PCI_COMMAND_MASTER;
1995                pci_write_config_word(dev, PCI_COMMAND, pci_command);
1996        }
1997
1998        pcibios_disable_device(dev);
1999}
2000
2001/**
2002 * pci_disable_enabled_device - Disable device without updating enable_cnt
2003 * @dev: PCI device to disable
2004 *
2005 * NOTE: This function is a backend of PCI power management routines and is
2006 * not supposed to be called drivers.
2007 */
2008void pci_disable_enabled_device(struct pci_dev *dev)
2009{
2010        if (pci_is_enabled(dev))
2011                do_pci_disable_device(dev);
2012}
2013
2014/**
2015 * pci_disable_device - Disable PCI device after use
2016 * @dev: PCI device to be disabled
2017 *
2018 * Signal to the system that the PCI device is not in use by the system
2019 * anymore.  This only involves disabling PCI bus-mastering, if active.
2020 *
2021 * Note we don't actually disable the device until all callers of
2022 * pci_enable_device() have called pci_disable_device().
2023 */
2024void pci_disable_device(struct pci_dev *dev)
2025{
2026        struct pci_devres *dr;
2027
2028        dr = find_pci_dr(dev);
2029        if (dr)
2030                dr->enabled = 0;
2031
2032        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2033                      "disabling already-disabled device");
2034
2035        if (atomic_dec_return(&dev->enable_cnt) != 0)
2036                return;
2037
2038        do_pci_disable_device(dev);
2039
2040        dev->is_busmaster = 0;
2041}
2042EXPORT_SYMBOL(pci_disable_device);
2043
2044/**
2045 * pcibios_set_pcie_reset_state - set reset state for device dev
2046 * @dev: the PCIe device reset
2047 * @state: Reset state to enter into
2048 *
2049 * Set the PCIe reset state for the device. This is the default
2050 * implementation. Architecture implementations can override this.
2051 */
2052int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2053                                        enum pcie_reset_state state)
2054{
2055        return -EINVAL;
2056}
2057
2058/**
2059 * pci_set_pcie_reset_state - set reset state for device dev
2060 * @dev: the PCIe device reset
2061 * @state: Reset state to enter into
2062 *
2063 * Sets the PCI reset state for the device.
2064 */
2065int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2066{
2067        return pcibios_set_pcie_reset_state(dev, state);
2068}
2069EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2070
2071/**
2072 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2073 * @dev: PCIe root port or event collector.
2074 */
2075void pcie_clear_root_pme_status(struct pci_dev *dev)
2076{
2077        pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2078}
2079
2080/**
2081 * pci_check_pme_status - Check if given device has generated PME.
2082 * @dev: Device to check.
2083 *
2084 * Check the PME status of the device and if set, clear it and clear PME enable
2085 * (if set).  Return 'true' if PME status and PME enable were both set or
2086 * 'false' otherwise.
2087 */
2088bool pci_check_pme_status(struct pci_dev *dev)
2089{
2090        int pmcsr_pos;
2091        u16 pmcsr;
2092        bool ret = false;
2093
2094        if (!dev->pm_cap)
2095                return false;
2096
2097        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2098        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2099        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2100                return false;
2101
2102        /* Clear PME status. */
2103        pmcsr |= PCI_PM_CTRL_PME_STATUS;
2104        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2105                /* Disable PME to avoid interrupt flood. */
2106                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2107                ret = true;
2108        }
2109
2110        pci_write_config_word(dev, pmcsr_pos, pmcsr);
2111
2112        return ret;
2113}
2114
2115/**
2116 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2117 * @dev: Device to handle.
2118 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2119 *
2120 * Check if @dev has generated PME and queue a resume request for it in that
2121 * case.
2122 */
2123static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2124{
2125        if (pme_poll_reset && dev->pme_poll)
2126                dev->pme_poll = false;
2127
2128        if (pci_check_pme_status(dev)) {
2129                pci_wakeup_event(dev);
2130                pm_request_resume(&dev->dev);
2131        }
2132        return 0;
2133}
2134
2135/**
2136 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2137 * @bus: Top bus of the subtree to walk.
2138 */
2139void pci_pme_wakeup_bus(struct pci_bus *bus)
2140{
2141        if (bus)
2142                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2143}
2144
2145
2146/**
2147 * pci_pme_capable - check the capability of PCI device to generate PME#
2148 * @dev: PCI device to handle.
2149 * @state: PCI state from which device will issue PME#.
2150 */
2151bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2152{
2153        if (!dev->pm_cap)
2154                return false;
2155
2156        return !!(dev->pme_support & (1 << state));
2157}
2158EXPORT_SYMBOL(pci_pme_capable);
2159
2160static void pci_pme_list_scan(struct work_struct *work)
2161{
2162        struct pci_pme_device *pme_dev, *n;
2163
2164        mutex_lock(&pci_pme_list_mutex);
2165        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2166                if (pme_dev->dev->pme_poll) {
2167                        struct pci_dev *bridge;
2168
2169                        bridge = pme_dev->dev->bus->self;
2170                        /*
2171                         * If bridge is in low power state, the
2172                         * configuration space of subordinate devices
2173                         * may be not accessible
2174                         */
2175                        if (bridge && bridge->current_state != PCI_D0)
2176                                continue;
2177                        /*
2178                         * If the device is in D3cold it should not be
2179                         * polled either.
2180                         */
2181                        if (pme_dev->dev->current_state == PCI_D3cold)
2182                                continue;
2183
2184                        pci_pme_wakeup(pme_dev->dev, NULL);
2185                } else {
2186                        list_del(&pme_dev->list);
2187                        kfree(pme_dev);
2188                }
2189        }
2190        if (!list_empty(&pci_pme_list))
2191                queue_delayed_work(system_freezable_wq, &pci_pme_work,
2192                                   msecs_to_jiffies(PME_TIMEOUT));
2193        mutex_unlock(&pci_pme_list_mutex);
2194}
2195
2196static void __pci_pme_active(struct pci_dev *dev, bool enable)
2197{
2198        u16 pmcsr;
2199
2200        if (!dev->pme_support)
2201                return;
2202
2203        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2204        /* Clear PME_Status by writing 1 to it and enable PME# */
2205        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2206        if (!enable)
2207                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2208
2209        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2210}
2211
2212/**
2213 * pci_pme_restore - Restore PME configuration after config space restore.
2214 * @dev: PCI device to update.
2215 */
2216void pci_pme_restore(struct pci_dev *dev)
2217{
2218        u16 pmcsr;
2219
2220        if (!dev->pme_support)
2221                return;
2222
2223        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2224        if (dev->wakeup_prepared) {
2225                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2226                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2227        } else {
2228                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2229                pmcsr |= PCI_PM_CTRL_PME_STATUS;
2230        }
2231        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2232}
2233
2234/**
2235 * pci_pme_active - enable or disable PCI device's PME# function
2236 * @dev: PCI device to handle.
2237 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2238 *
2239 * The caller must verify that the device is capable of generating PME# before
2240 * calling this function with @enable equal to 'true'.
2241 */
2242void pci_pme_active(struct pci_dev *dev, bool enable)
2243{
2244        __pci_pme_active(dev, enable);
2245
2246        /*
2247         * PCI (as opposed to PCIe) PME requires that the device have
2248         * its PME# line hooked up correctly. Not all hardware vendors
2249         * do this, so the PME never gets delivered and the device
2250         * remains asleep. The easiest way around this is to
2251         * periodically walk the list of suspended devices and check
2252         * whether any have their PME flag set. The assumption is that
2253         * we'll wake up often enough anyway that this won't be a huge
2254         * hit, and the power savings from the devices will still be a
2255         * win.
2256         *
2257         * Although PCIe uses in-band PME message instead of PME# line
2258         * to report PME, PME does not work for some PCIe devices in
2259         * reality.  For example, there are devices that set their PME
2260         * status bits, but don't really bother to send a PME message;
2261         * there are PCI Express Root Ports that don't bother to
2262         * trigger interrupts when they receive PME messages from the
2263         * devices below.  So PME poll is used for PCIe devices too.
2264         */
2265
2266        if (dev->pme_poll) {
2267                struct pci_pme_device *pme_dev;
2268                if (enable) {
2269                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
2270                                          GFP_KERNEL);
2271                        if (!pme_dev) {
2272                                pci_warn(dev, "can't enable PME#\n");
2273                                return;
2274                        }
2275                        pme_dev->dev = dev;
2276                        mutex_lock(&pci_pme_list_mutex);
2277                        list_add(&pme_dev->list, &pci_pme_list);
2278                        if (list_is_singular(&pci_pme_list))
2279                                queue_delayed_work(system_freezable_wq,
2280                                                   &pci_pme_work,
2281                                                   msecs_to_jiffies(PME_TIMEOUT));
2282                        mutex_unlock(&pci_pme_list_mutex);
2283                } else {
2284                        mutex_lock(&pci_pme_list_mutex);
2285                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
2286                                if (pme_dev->dev == dev) {
2287                                        list_del(&pme_dev->list);
2288                                        kfree(pme_dev);
2289                                        break;
2290                                }
2291                        }
2292                        mutex_unlock(&pci_pme_list_mutex);
2293                }
2294        }
2295
2296        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2297}
2298EXPORT_SYMBOL(pci_pme_active);
2299
2300/**
2301 * __pci_enable_wake - enable PCI device as wakeup event source
2302 * @dev: PCI device affected
2303 * @state: PCI state from which device will issue wakeup events
2304 * @enable: True to enable event generation; false to disable
2305 *
2306 * This enables the device as a wakeup event source, or disables it.
2307 * When such events involves platform-specific hooks, those hooks are
2308 * called automatically by this routine.
2309 *
2310 * Devices with legacy power management (no standard PCI PM capabilities)
2311 * always require such platform hooks.
2312 *
2313 * RETURN VALUE:
2314 * 0 is returned on success
2315 * -EINVAL is returned if device is not supposed to wake up the system
2316 * Error code depending on the platform is returned if both the platform and
2317 * the native mechanism fail to enable the generation of wake-up events
2318 */
2319static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2320{
2321        int ret = 0;
2322
2323        /*
2324         * Bridges that are not power-manageable directly only signal
2325         * wakeup on behalf of subordinate devices which is set up
2326         * elsewhere, so skip them. However, bridges that are
2327         * power-manageable may signal wakeup for themselves (for example,
2328         * on a hotplug event) and they need to be covered here.
2329         */
2330        if (!pci_power_manageable(dev))
2331                return 0;
2332
2333        /* Don't do the same thing twice in a row for one device. */
2334        if (!!enable == !!dev->wakeup_prepared)
2335                return 0;
2336
2337        /*
2338         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2339         * Anderson we should be doing PME# wake enable followed by ACPI wake
2340         * enable.  To disable wake-up we call the platform first, for symmetry.
2341         */
2342
2343        if (enable) {
2344                int error;
2345
2346                if (pci_pme_capable(dev, state))
2347                        pci_pme_active(dev, true);
2348                else
2349                        ret = 1;
2350                error = platform_pci_set_wakeup(dev, true);
2351                if (ret)
2352                        ret = error;
2353                if (!ret)
2354                        dev->wakeup_prepared = true;
2355        } else {
2356                platform_pci_set_wakeup(dev, false);
2357                pci_pme_active(dev, false);
2358                dev->wakeup_prepared = false;
2359        }
2360
2361        return ret;
2362}
2363
2364/**
2365 * pci_enable_wake - change wakeup settings for a PCI device
2366 * @pci_dev: Target device
2367 * @state: PCI state from which device will issue wakeup events
2368 * @enable: Whether or not to enable event generation
2369 *
2370 * If @enable is set, check device_may_wakeup() for the device before calling
2371 * __pci_enable_wake() for it.
2372 */
2373int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2374{
2375        if (enable && !device_may_wakeup(&pci_dev->dev))
2376                return -EINVAL;
2377
2378        return __pci_enable_wake(pci_dev, state, enable);
2379}
2380EXPORT_SYMBOL(pci_enable_wake);
2381
2382/**
2383 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2384 * @dev: PCI device to prepare
2385 * @enable: True to enable wake-up event generation; false to disable
2386 *
2387 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2388 * and this function allows them to set that up cleanly - pci_enable_wake()
2389 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2390 * ordering constraints.
2391 *
2392 * This function only returns error code if the device is not allowed to wake
2393 * up the system from sleep or it is not capable of generating PME# from both
2394 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2395 */
2396int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2397{
2398        return pci_pme_capable(dev, PCI_D3cold) ?
2399                        pci_enable_wake(dev, PCI_D3cold, enable) :
2400                        pci_enable_wake(dev, PCI_D3hot, enable);
2401}
2402EXPORT_SYMBOL(pci_wake_from_d3);
2403
2404/**
2405 * pci_target_state - find an appropriate low power state for a given PCI dev
2406 * @dev: PCI device
2407 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2408 *
2409 * Use underlying platform code to find a supported low power state for @dev.
2410 * If the platform can't manage @dev, return the deepest state from which it
2411 * can generate wake events, based on any available PME info.
2412 */
2413static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2414{
2415        pci_power_t target_state = PCI_D3hot;
2416
2417        if (platform_pci_power_manageable(dev)) {
2418                /*
2419                 * Call the platform to find the target state for the device.
2420                 */
2421                pci_power_t state = platform_pci_choose_state(dev);
2422
2423                switch (state) {
2424                case PCI_POWER_ERROR:
2425                case PCI_UNKNOWN:
2426                        break;
2427                case PCI_D1:
2428                case PCI_D2:
2429                        if (pci_no_d1d2(dev))
2430                                break;
2431                        /* else, fall through */
2432                default:
2433                        target_state = state;
2434                }
2435
2436                return target_state;
2437        }
2438
2439        if (!dev->pm_cap)
2440                target_state = PCI_D0;
2441
2442        /*
2443         * If the device is in D3cold even though it's not power-manageable by
2444         * the platform, it may have been powered down by non-standard means.
2445         * Best to let it slumber.
2446         */
2447        if (dev->current_state == PCI_D3cold)
2448                target_state = PCI_D3cold;
2449
2450        if (wakeup) {
2451                /*
2452                 * Find the deepest state from which the device can generate
2453                 * PME#.
2454                 */
2455                if (dev->pme_support) {
2456                        while (target_state
2457                              && !(dev->pme_support & (1 << target_state)))
2458                                target_state--;
2459                }
2460        }
2461
2462        return target_state;
2463}
2464
2465/**
2466 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2467 *                        into a sleep state
2468 * @dev: Device to handle.
2469 *
2470 * Choose the power state appropriate for the device depending on whether
2471 * it can wake up the system and/or is power manageable by the platform
2472 * (PCI_D3hot is the default) and put the device into that state.
2473 */
2474int pci_prepare_to_sleep(struct pci_dev *dev)
2475{
2476        bool wakeup = device_may_wakeup(&dev->dev);
2477        pci_power_t target_state = pci_target_state(dev, wakeup);
2478        int error;
2479
2480        if (target_state == PCI_POWER_ERROR)
2481                return -EIO;
2482
2483        pci_enable_wake(dev, target_state, wakeup);
2484
2485        error = pci_set_power_state(dev, target_state);
2486
2487        if (error)
2488                pci_enable_wake(dev, target_state, false);
2489
2490        return error;
2491}
2492EXPORT_SYMBOL(pci_prepare_to_sleep);
2493
2494/**
2495 * pci_back_from_sleep - turn PCI device on during system-wide transition
2496 *                       into working state
2497 * @dev: Device to handle.
2498 *
2499 * Disable device's system wake-up capability and put it into D0.
2500 */
2501int pci_back_from_sleep(struct pci_dev *dev)
2502{
2503        pci_enable_wake(dev, PCI_D0, false);
2504        return pci_set_power_state(dev, PCI_D0);
2505}
2506EXPORT_SYMBOL(pci_back_from_sleep);
2507
2508/**
2509 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2510 * @dev: PCI device being suspended.
2511 *
2512 * Prepare @dev to generate wake-up events at run time and put it into a low
2513 * power state.
2514 */
2515int pci_finish_runtime_suspend(struct pci_dev *dev)
2516{
2517        pci_power_t target_state;
2518        int error;
2519
2520        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2521        if (target_state == PCI_POWER_ERROR)
2522                return -EIO;
2523
2524        dev->runtime_d3cold = target_state == PCI_D3cold;
2525
2526        __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2527
2528        error = pci_set_power_state(dev, target_state);
2529
2530        if (error) {
2531                pci_enable_wake(dev, target_state, false);
2532                dev->runtime_d3cold = false;
2533        }
2534
2535        return error;
2536}
2537
2538/**
2539 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2540 * @dev: Device to check.
2541 *
2542 * Return true if the device itself is capable of generating wake-up events
2543 * (through the platform or using the native PCIe PME) or if the device supports
2544 * PME and one of its upstream bridges can generate wake-up events.
2545 */
2546bool pci_dev_run_wake(struct pci_dev *dev)
2547{
2548        struct pci_bus *bus = dev->bus;
2549
2550        if (!dev->pme_support)
2551                return false;
2552
2553        /* PME-capable in principle, but not from the target power state */
2554        if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2555                return false;
2556
2557        if (device_can_wakeup(&dev->dev))
2558                return true;
2559
2560        while (bus->parent) {
2561                struct pci_dev *bridge = bus->self;
2562
2563                if (device_can_wakeup(&bridge->dev))
2564                        return true;
2565
2566                bus = bus->parent;
2567        }
2568
2569        /* We have reached the root bus. */
2570        if (bus->bridge)
2571                return device_can_wakeup(bus->bridge);
2572
2573        return false;
2574}
2575EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2576
2577/**
2578 * pci_dev_need_resume - Check if it is necessary to resume the device.
2579 * @pci_dev: Device to check.
2580 *
2581 * Return 'true' if the device is not runtime-suspended or it has to be
2582 * reconfigured due to wakeup settings difference between system and runtime
2583 * suspend, or the current power state of it is not suitable for the upcoming
2584 * (system-wide) transition.
2585 */
2586bool pci_dev_need_resume(struct pci_dev *pci_dev)
2587{
2588        struct device *dev = &pci_dev->dev;
2589        pci_power_t target_state;
2590
2591        if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2592                return true;
2593
2594        target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2595
2596        /*
2597         * If the earlier platform check has not triggered, D3cold is just power
2598         * removal on top of D3hot, so no need to resume the device in that
2599         * case.
2600         */
2601        return target_state != pci_dev->current_state &&
2602                target_state != PCI_D3cold &&
2603                pci_dev->current_state != PCI_D3hot;
2604}
2605
2606/**
2607 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2608 * @pci_dev: Device to check.
2609 *
2610 * If the device is suspended and it is not configured for system wakeup,
2611 * disable PME for it to prevent it from waking up the system unnecessarily.
2612 *
2613 * Note that if the device's power state is D3cold and the platform check in
2614 * pci_dev_need_resume() has not triggered, the device's configuration need not
2615 * be changed.
2616 */
2617void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2618{
2619        struct device *dev = &pci_dev->dev;
2620
2621        spin_lock_irq(&dev->power.lock);
2622
2623        if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2624            pci_dev->current_state < PCI_D3cold)
2625                __pci_pme_active(pci_dev, false);
2626
2627        spin_unlock_irq(&dev->power.lock);
2628}
2629
2630/**
2631 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2632 * @pci_dev: Device to handle.
2633 *
2634 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2635 * it might have been disabled during the prepare phase of system suspend if
2636 * the device was not configured for system wakeup.
2637 */
2638void pci_dev_complete_resume(struct pci_dev *pci_dev)
2639{
2640        struct device *dev = &pci_dev->dev;
2641
2642        if (!pci_dev_run_wake(pci_dev))
2643                return;
2644
2645        spin_lock_irq(&dev->power.lock);
2646
2647        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2648                __pci_pme_active(pci_dev, true);
2649
2650        spin_unlock_irq(&dev->power.lock);
2651}
2652
2653void pci_config_pm_runtime_get(struct pci_dev *pdev)
2654{
2655        struct device *dev = &pdev->dev;
2656        struct device *parent = dev->parent;
2657
2658        if (parent)
2659                pm_runtime_get_sync(parent);
2660        pm_runtime_get_noresume(dev);
2661        /*
2662         * pdev->current_state is set to PCI_D3cold during suspending,
2663         * so wait until suspending completes
2664         */
2665        pm_runtime_barrier(dev);
2666        /*
2667         * Only need to resume devices in D3cold, because config
2668         * registers are still accessible for devices suspended but
2669         * not in D3cold.
2670         */
2671        if (pdev->current_state == PCI_D3cold)
2672                pm_runtime_resume(dev);
2673}
2674
2675void pci_config_pm_runtime_put(struct pci_dev *pdev)
2676{
2677        struct device *dev = &pdev->dev;
2678        struct device *parent = dev->parent;
2679
2680        pm_runtime_put(dev);
2681        if (parent)
2682                pm_runtime_put_sync(parent);
2683}
2684
2685static const struct dmi_system_id bridge_d3_blacklist[] = {
2686#ifdef CONFIG_X86
2687        {
2688                /*
2689                 * Gigabyte X299 root port is not marked as hotplug capable
2690                 * which allows Linux to power manage it.  However, this
2691                 * confuses the BIOS SMI handler so don't power manage root
2692                 * ports on that system.
2693                 */
2694                .ident = "X299 DESIGNARE EX-CF",
2695                .matches = {
2696                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2697                        DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2698                },
2699        },
2700#endif
2701        { }
2702};
2703
2704/**
2705 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2706 * @bridge: Bridge to check
2707 *
2708 * This function checks if it is possible to move the bridge to D3.
2709 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2710 */
2711bool pci_bridge_d3_possible(struct pci_dev *bridge)
2712{
2713        if (!pci_is_pcie(bridge))
2714                return false;
2715
2716        switch (pci_pcie_type(bridge)) {
2717        case PCI_EXP_TYPE_ROOT_PORT:
2718        case PCI_EXP_TYPE_UPSTREAM:
2719        case PCI_EXP_TYPE_DOWNSTREAM:
2720                if (pci_bridge_d3_disable)
2721                        return false;
2722
2723                /*
2724                 * Hotplug ports handled by firmware in System Management Mode
2725                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2726                 */
2727                if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2728                        return false;
2729
2730                if (pci_bridge_d3_force)
2731                        return true;
2732
2733                /* Even the oldest 2010 Thunderbolt controller supports D3. */
2734                if (bridge->is_thunderbolt)
2735                        return true;
2736
2737                /* Platform might know better if the bridge supports D3 */
2738                if (platform_pci_bridge_d3(bridge))
2739                        return true;
2740
2741                /*
2742                 * Hotplug ports handled natively by the OS were not validated
2743                 * by vendors for runtime D3 at least until 2018 because there
2744                 * was no OS support.
2745                 */
2746                if (bridge->is_hotplug_bridge)
2747                        return false;
2748
2749                if (dmi_check_system(bridge_d3_blacklist))
2750                        return false;
2751
2752                /*
2753                 * It should be safe to put PCIe ports from 2015 or newer
2754                 * to D3.
2755                 */
2756                if (dmi_get_bios_year() >= 2015)
2757                        return true;
2758                break;
2759        }
2760
2761        return false;
2762}
2763
2764static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2765{
2766        bool *d3cold_ok = data;
2767
2768        if (/* The device needs to be allowed to go D3cold ... */
2769            dev->no_d3cold || !dev->d3cold_allowed ||
2770
2771            /* ... and if it is wakeup capable to do so from D3cold. */
2772            (device_may_wakeup(&dev->dev) &&
2773             !pci_pme_capable(dev, PCI_D3cold)) ||
2774
2775            /* If it is a bridge it must be allowed to go to D3. */
2776            !pci_power_manageable(dev))
2777
2778                *d3cold_ok = false;
2779
2780        return !*d3cold_ok;
2781}
2782
2783/*
2784 * pci_bridge_d3_update - Update bridge D3 capabilities
2785 * @dev: PCI device which is changed
2786 *
2787 * Update upstream bridge PM capabilities accordingly depending on if the
2788 * device PM configuration was changed or the device is being removed.  The
2789 * change is also propagated upstream.
2790 */
2791void pci_bridge_d3_update(struct pci_dev *dev)
2792{
2793        bool remove = !device_is_registered(&dev->dev);
2794        struct pci_dev *bridge;
2795        bool d3cold_ok = true;
2796
2797        bridge = pci_upstream_bridge(dev);
2798        if (!bridge || !pci_bridge_d3_possible(bridge))
2799                return;
2800
2801        /*
2802         * If D3 is currently allowed for the bridge, removing one of its
2803         * children won't change that.
2804         */
2805        if (remove && bridge->bridge_d3)
2806                return;
2807
2808        /*
2809         * If D3 is currently allowed for the bridge and a child is added or
2810         * changed, disallowance of D3 can only be caused by that child, so
2811         * we only need to check that single device, not any of its siblings.
2812         *
2813         * If D3 is currently not allowed for the bridge, checking the device
2814         * first may allow us to skip checking its siblings.
2815         */
2816        if (!remove)
2817                pci_dev_check_d3cold(dev, &d3cold_ok);
2818
2819        /*
2820         * If D3 is currently not allowed for the bridge, this may be caused
2821         * either by the device being changed/removed or any of its siblings,
2822         * so we need to go through all children to find out if one of them
2823         * continues to block D3.
2824         */
2825        if (d3cold_ok && !bridge->bridge_d3)
2826                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2827                             &d3cold_ok);
2828
2829        if (bridge->bridge_d3 != d3cold_ok) {
2830                bridge->bridge_d3 = d3cold_ok;
2831                /* Propagate change to upstream bridges */
2832                pci_bridge_d3_update(bridge);
2833        }
2834}
2835
2836/**
2837 * pci_d3cold_enable - Enable D3cold for device
2838 * @dev: PCI device to handle
2839 *
2840 * This function can be used in drivers to enable D3cold from the device
2841 * they handle.  It also updates upstream PCI bridge PM capabilities
2842 * accordingly.
2843 */
2844void pci_d3cold_enable(struct pci_dev *dev)
2845{
2846        if (dev->no_d3cold) {
2847                dev->no_d3cold = false;
2848                pci_bridge_d3_update(dev);
2849        }
2850}
2851EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2852
2853/**
2854 * pci_d3cold_disable - Disable D3cold for device
2855 * @dev: PCI device to handle
2856 *
2857 * This function can be used in drivers to disable D3cold from the device
2858 * they handle.  It also updates upstream PCI bridge PM capabilities
2859 * accordingly.
2860 */
2861void pci_d3cold_disable(struct pci_dev *dev)
2862{
2863        if (!dev->no_d3cold) {
2864                dev->no_d3cold = true;
2865                pci_bridge_d3_update(dev);
2866        }
2867}
2868EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2869
2870/**
2871 * pci_pm_init - Initialize PM functions of given PCI device
2872 * @dev: PCI device to handle.
2873 */
2874void pci_pm_init(struct pci_dev *dev)
2875{
2876        int pm;
2877        u16 status;
2878        u16 pmc;
2879
2880        pm_runtime_forbid(&dev->dev);
2881        pm_runtime_set_active(&dev->dev);
2882        pm_runtime_enable(&dev->dev);
2883        device_enable_async_suspend(&dev->dev);
2884        dev->wakeup_prepared = false;
2885
2886        dev->pm_cap = 0;
2887        dev->pme_support = 0;
2888
2889        /* find PCI PM capability in list */
2890        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2891        if (!pm)
2892                return;
2893        /* Check device's ability to generate PME# */
2894        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2895
2896        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2897                pci_err(dev, "unsupported PM cap regs version (%u)\n",
2898                        pmc & PCI_PM_CAP_VER_MASK);
2899                return;
2900        }
2901
2902        dev->pm_cap = pm;
2903        dev->d3_delay = PCI_PM_D3_WAIT;
2904        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2905        dev->bridge_d3 = pci_bridge_d3_possible(dev);
2906        dev->d3cold_allowed = true;
2907
2908        dev->d1_support = false;
2909        dev->d2_support = false;
2910        if (!pci_no_d1d2(dev)) {
2911                if (pmc & PCI_PM_CAP_D1)
2912                        dev->d1_support = true;
2913                if (pmc & PCI_PM_CAP_D2)
2914                        dev->d2_support = true;
2915
2916                if (dev->d1_support || dev->d2_support)
2917                        pci_info(dev, "supports%s%s\n",
2918                                   dev->d1_support ? " D1" : "",
2919                                   dev->d2_support ? " D2" : "");
2920        }
2921
2922        pmc &= PCI_PM_CAP_PME_MASK;
2923        if (pmc) {
2924                pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2925                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2926                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2927                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2928                         (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2929                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2930                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2931                dev->pme_poll = true;
2932                /*
2933                 * Make device's PM flags reflect the wake-up capability, but
2934                 * let the user space enable it to wake up the system as needed.
2935                 */
2936                device_set_wakeup_capable(&dev->dev, true);
2937                /* Disable the PME# generation functionality */
2938                pci_pme_active(dev, false);
2939        }
2940
2941        pci_read_config_word(dev, PCI_STATUS, &status);
2942        if (status & PCI_STATUS_IMM_READY)
2943                dev->imm_ready = 1;
2944}
2945
2946static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2947{
2948        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2949
2950        switch (prop) {
2951        case PCI_EA_P_MEM:
2952        case PCI_EA_P_VF_MEM:
2953                flags |= IORESOURCE_MEM;
2954                break;
2955        case PCI_EA_P_MEM_PREFETCH:
2956        case PCI_EA_P_VF_MEM_PREFETCH:
2957                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2958                break;
2959        case PCI_EA_P_IO:
2960                flags |= IORESOURCE_IO;
2961                break;
2962        default:
2963                return 0;
2964        }
2965
2966        return flags;
2967}
2968
2969static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2970                                            u8 prop)
2971{
2972        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2973                return &dev->resource[bei];
2974#ifdef CONFIG_PCI_IOV
2975        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2976                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2977                return &dev->resource[PCI_IOV_RESOURCES +
2978                                      bei - PCI_EA_BEI_VF_BAR0];
2979#endif
2980        else if (bei == PCI_EA_BEI_ROM)
2981                return &dev->resource[PCI_ROM_RESOURCE];
2982        else
2983                return NULL;
2984}
2985
2986/* Read an Enhanced Allocation (EA) entry */
2987static int pci_ea_read(struct pci_dev *dev, int offset)
2988{
2989        struct resource *res;
2990        int ent_size, ent_offset = offset;
2991        resource_size_t start, end;
2992        unsigned long flags;
2993        u32 dw0, bei, base, max_offset;
2994        u8 prop;
2995        bool support_64 = (sizeof(resource_size_t) >= 8);
2996
2997        pci_read_config_dword(dev, ent_offset, &dw0);
2998        ent_offset += 4;
2999
3000        /* Entry size field indicates DWORDs after 1st */
3001        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3002
3003        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3004                goto out;
3005
3006        bei = (dw0 & PCI_EA_BEI) >> 4;
3007        prop = (dw0 & PCI_EA_PP) >> 8;
3008
3009        /*
3010         * If the Property is in the reserved range, try the Secondary
3011         * Property instead.
3012         */
3013        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3014                prop = (dw0 & PCI_EA_SP) >> 16;
3015        if (prop > PCI_EA_P_BRIDGE_IO)
3016                goto out;
3017
3018        res = pci_ea_get_resource(dev, bei, prop);
3019        if (!res) {
3020                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3021                goto out;
3022        }
3023
3024        flags = pci_ea_flags(dev, prop);
3025        if (!flags) {
3026                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3027                goto out;
3028        }
3029
3030        /* Read Base */
3031        pci_read_config_dword(dev, ent_offset, &base);
3032        start = (base & PCI_EA_FIELD_MASK);
3033        ent_offset += 4;
3034
3035        /* Read MaxOffset */
3036        pci_read_config_dword(dev, ent_offset, &max_offset);
3037        ent_offset += 4;
3038
3039        /* Read Base MSBs (if 64-bit entry) */
3040        if (base & PCI_EA_IS_64) {
3041                u32 base_upper;
3042
3043                pci_read_config_dword(dev, ent_offset, &base_upper);
3044                ent_offset += 4;
3045
3046                flags |= IORESOURCE_MEM_64;
3047
3048                /* entry starts above 32-bit boundary, can't use */
3049                if (!support_64 && base_upper)
3050                        goto out;
3051
3052                if (support_64)
3053                        start |= ((u64)base_upper << 32);
3054        }
3055
3056        end = start + (max_offset | 0x03);
3057
3058        /* Read MaxOffset MSBs (if 64-bit entry) */
3059        if (max_offset & PCI_EA_IS_64) {
3060                u32 max_offset_upper;
3061
3062                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3063                ent_offset += 4;
3064
3065                flags |= IORESOURCE_MEM_64;
3066
3067                /* entry too big, can't use */
3068                if (!support_64 && max_offset_upper)
3069                        goto out;
3070
3071                if (support_64)
3072                        end += ((u64)max_offset_upper << 32);
3073        }
3074
3075        if (end < start) {
3076                pci_err(dev, "EA Entry crosses address boundary\n");
3077                goto out;
3078        }
3079
3080        if (ent_size != ent_offset - offset) {
3081                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3082                        ent_size, ent_offset - offset);
3083                goto out;
3084        }
3085
3086        res->name = pci_name(dev);
3087        res->start = start;
3088        res->end = end;
3089        res->flags = flags;
3090
3091        if (bei <= PCI_EA_BEI_BAR5)
3092                pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3093                           bei, res, prop);
3094        else if (bei == PCI_EA_BEI_ROM)
3095                pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3096                           res, prop);
3097        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3098                pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3099                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
3100        else
3101                pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3102                           bei, res, prop);
3103
3104out:
3105        return offset + ent_size;
3106}
3107
3108/* Enhanced Allocation Initialization */
3109void pci_ea_init(struct pci_dev *dev)
3110{
3111        int ea;
3112        u8 num_ent;
3113        int offset;
3114        int i;
3115
3116        /* find PCI EA capability in list */
3117        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3118        if (!ea)
3119                return;
3120
3121        /* determine the number of entries */
3122        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3123                                        &num_ent);
3124        num_ent &= PCI_EA_NUM_ENT_MASK;
3125
3126        offset = ea + PCI_EA_FIRST_ENT;
3127
3128        /* Skip DWORD 2 for type 1 functions */
3129        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3130                offset += 4;
3131
3132        /* parse each EA entry */
3133        for (i = 0; i < num_ent; ++i)
3134                offset = pci_ea_read(dev, offset);
3135}
3136
3137static void pci_add_saved_cap(struct pci_dev *pci_dev,
3138        struct pci_cap_saved_state *new_cap)
3139{
3140        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3141}
3142
3143/**
3144 * _pci_add_cap_save_buffer - allocate buffer for saving given
3145 *                            capability registers
3146 * @dev: the PCI device
3147 * @cap: the capability to allocate the buffer for
3148 * @extended: Standard or Extended capability ID
3149 * @size: requested size of the buffer
3150 */
3151static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3152                                    bool extended, unsigned int size)
3153{
3154        int pos;
3155        struct pci_cap_saved_state *save_state;
3156
3157        if (extended)
3158                pos = pci_find_ext_capability(dev, cap);
3159        else
3160                pos = pci_find_capability(dev, cap);
3161
3162        if (!pos)
3163                return 0;
3164
3165        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3166        if (!save_state)
3167                return -ENOMEM;
3168
3169        save_state->cap.cap_nr = cap;
3170        save_state->cap.cap_extended = extended;
3171        save_state->cap.size = size;
3172        pci_add_saved_cap(dev, save_state);
3173
3174        return 0;
3175}
3176
3177int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3178{
3179        return _pci_add_cap_save_buffer(dev, cap, false, size);
3180}
3181
3182int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3183{
3184        return _pci_add_cap_save_buffer(dev, cap, true, size);
3185}
3186
3187/**
3188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3189 * @dev: the PCI device
3190 */
3191void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3192{
3193        int error;
3194
3195        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3196                                        PCI_EXP_SAVE_REGS * sizeof(u16));
3197        if (error)
3198                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3199
3200        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3201        if (error)
3202                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3203
3204        error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3205                                            2 * sizeof(u16));
3206        if (error)
3207                pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3208
3209        pci_allocate_vc_save_buffers(dev);
3210}
3211
3212void pci_free_cap_save_buffers(struct pci_dev *dev)
3213{
3214        struct pci_cap_saved_state *tmp;
3215        struct hlist_node *n;
3216
3217        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3218                kfree(tmp);
3219}
3220
3221/**
3222 * pci_configure_ari - enable or disable ARI forwarding
3223 * @dev: the PCI device
3224 *
3225 * If @dev and its upstream bridge both support ARI, enable ARI in the
3226 * bridge.  Otherwise, disable ARI in the bridge.
3227 */
3228void pci_configure_ari(struct pci_dev *dev)
3229{
3230        u32 cap;
3231        struct pci_dev *bridge;
3232
3233        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3234                return;
3235
3236        bridge = dev->bus->self;
3237        if (!bridge)
3238                return;
3239
3240        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3241        if (!(cap & PCI_EXP_DEVCAP2_ARI))
3242                return;
3243
3244        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3245                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3246                                         PCI_EXP_DEVCTL2_ARI);
3247                bridge->ari_enabled = 1;
3248        } else {
3249                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3250                                           PCI_EXP_DEVCTL2_ARI);
3251                bridge->ari_enabled = 0;
3252        }
3253}
3254
3255static int pci_acs_enable;
3256
3257/**
3258 * pci_request_acs - ask for ACS to be enabled if supported
3259 */
3260void pci_request_acs(void)
3261{
3262        pci_acs_enable = 1;
3263}
3264
3265static const char *disable_acs_redir_param;
3266
3267/**
3268 * pci_disable_acs_redir - disable ACS redirect capabilities
3269 * @dev: the PCI device
3270 *
3271 * For only devices specified in the disable_acs_redir parameter.
3272 */
3273static void pci_disable_acs_redir(struct pci_dev *dev)
3274{
3275        int ret = 0;
3276        const char *p;
3277        int pos;
3278        u16 ctrl;
3279
3280        if (!disable_acs_redir_param)
3281                return;
3282
3283        p = disable_acs_redir_param;
3284        while (*p) {
3285                ret = pci_dev_str_match(dev, p, &p);
3286                if (ret < 0) {
3287                        pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3288                                     disable_acs_redir_param);
3289
3290                        break;
3291                } else if (ret == 1) {
3292                        /* Found a match */
3293                        break;
3294                }
3295
3296                if (*p != ';' && *p != ',') {
3297                        /* End of param or invalid format */
3298                        break;
3299                }
3300                p++;
3301        }
3302
3303        if (ret != 1)
3304                return;
3305
3306        if (!pci_dev_specific_disable_acs_redir(dev))
3307                return;
3308
3309        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3310        if (!pos) {
3311                pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3312                return;
3313        }
3314
3315        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3316
3317        /* P2P Request & Completion Redirect */
3318        ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3319
3320        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3321
3322        pci_info(dev, "disabled ACS redirect\n");
3323}
3324
3325/**
3326 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3327 * @dev: the PCI device
3328 */
3329static void pci_std_enable_acs(struct pci_dev *dev)
3330{
3331        int pos;
3332        u16 cap;
3333        u16 ctrl;
3334
3335        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3336        if (!pos)
3337                return;
3338
3339        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3340        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3341
3342        /* Source Validation */
3343        ctrl |= (cap & PCI_ACS_SV);
3344
3345        /* P2P Request Redirect */
3346        ctrl |= (cap & PCI_ACS_RR);
3347
3348        /* P2P Completion Redirect */
3349        ctrl |= (cap & PCI_ACS_CR);
3350
3351        /* Upstream Forwarding */
3352        ctrl |= (cap & PCI_ACS_UF);
3353
3354        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3355}
3356
3357/**
3358 * pci_enable_acs - enable ACS if hardware support it
3359 * @dev: the PCI device
3360 */
3361void pci_enable_acs(struct pci_dev *dev)
3362{
3363        if (!pci_acs_enable)
3364                goto disable_acs_redir;
3365
3366        if (!pci_dev_specific_enable_acs(dev))
3367                goto disable_acs_redir;
3368
3369        pci_std_enable_acs(dev);
3370
3371disable_acs_redir:
3372        /*
3373         * Note: pci_disable_acs_redir() must be called even if ACS was not
3374         * enabled by the kernel because it may have been enabled by
3375         * platform firmware.  So if we are told to disable it, we should
3376         * always disable it after setting the kernel's default
3377         * preferences.
3378         */
3379        pci_disable_acs_redir(dev);
3380}
3381
3382static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3383{
3384        int pos;
3385        u16 cap, ctrl;
3386
3387        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3388        if (!pos)
3389                return false;
3390
3391        /*
3392         * Except for egress control, capabilities are either required
3393         * or only required if controllable.  Features missing from the
3394         * capability field can therefore be assumed as hard-wired enabled.
3395         */
3396        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3397        acs_flags &= (cap | PCI_ACS_EC);
3398
3399        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3400        return (ctrl & acs_flags) == acs_flags;
3401}
3402
3403/**
3404 * pci_acs_enabled - test ACS against required flags for a given device
3405 * @pdev: device to test
3406 * @acs_flags: required PCI ACS flags
3407 *
3408 * Return true if the device supports the provided flags.  Automatically
3409 * filters out flags that are not implemented on multifunction devices.
3410 *
3411 * Note that this interface checks the effective ACS capabilities of the
3412 * device rather than the actual capabilities.  For instance, most single
3413 * function endpoints are not required to support ACS because they have no
3414 * opportunity for peer-to-peer access.  We therefore return 'true'
3415 * regardless of whether the device exposes an ACS capability.  This makes
3416 * it much easier for callers of this function to ignore the actual type
3417 * or topology of the device when testing ACS support.
3418 */
3419bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3420{
3421        int ret;
3422
3423        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3424        if (ret >= 0)
3425                return ret > 0;
3426
3427        /*
3428         * Conventional PCI and PCI-X devices never support ACS, either
3429         * effectively or actually.  The shared bus topology implies that
3430         * any device on the bus can receive or snoop DMA.
3431         */
3432        if (!pci_is_pcie(pdev))
3433                return false;
3434
3435        switch (pci_pcie_type(pdev)) {
3436        /*
3437         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3438         * but since their primary interface is PCI/X, we conservatively
3439         * handle them as we would a non-PCIe device.
3440         */
3441        case PCI_EXP_TYPE_PCIE_BRIDGE:
3442        /*
3443         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3444         * applicable... must never implement an ACS Extended Capability...".
3445         * This seems arbitrary, but we take a conservative interpretation
3446         * of this statement.
3447         */
3448        case PCI_EXP_TYPE_PCI_BRIDGE:
3449        case PCI_EXP_TYPE_RC_EC:
3450                return false;
3451        /*
3452         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3453         * implement ACS in order to indicate their peer-to-peer capabilities,
3454         * regardless of whether they are single- or multi-function devices.
3455         */
3456        case PCI_EXP_TYPE_DOWNSTREAM:
3457        case PCI_EXP_TYPE_ROOT_PORT:
3458                return pci_acs_flags_enabled(pdev, acs_flags);
3459        /*
3460         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3461         * implemented by the remaining PCIe types to indicate peer-to-peer
3462         * capabilities, but only when they are part of a multifunction
3463         * device.  The footnote for section 6.12 indicates the specific
3464         * PCIe types included here.
3465         */
3466        case PCI_EXP_TYPE_ENDPOINT:
3467        case PCI_EXP_TYPE_UPSTREAM:
3468        case PCI_EXP_TYPE_LEG_END:
3469        case PCI_EXP_TYPE_RC_END:
3470                if (!pdev->multifunction)
3471                        break;
3472
3473                return pci_acs_flags_enabled(pdev, acs_flags);
3474        }
3475
3476        /*
3477         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3478         * to single function devices with the exception of downstream ports.
3479         */
3480        return true;
3481}
3482
3483/**
3484 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3485 * @start: starting downstream device
3486 * @end: ending upstream device or NULL to search to the root bus
3487 * @acs_flags: required flags
3488 *
3489 * Walk up a device tree from start to end testing PCI ACS support.  If
3490 * any step along the way does not support the required flags, return false.
3491 */
3492bool pci_acs_path_enabled(struct pci_dev *start,
3493                          struct pci_dev *end, u16 acs_flags)
3494{
3495        struct pci_dev *pdev, *parent = start;
3496
3497        do {
3498                pdev = parent;
3499
3500                if (!pci_acs_enabled(pdev, acs_flags))
3501                        return false;
3502
3503                if (pci_is_root_bus(pdev->bus))
3504                        return (end == NULL);
3505
3506                parent = pdev->bus->self;
3507        } while (pdev != end);
3508
3509        return true;
3510}
3511
3512/**
3513 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3514 * @pdev: PCI device
3515 * @bar: BAR to find
3516 *
3517 * Helper to find the position of the ctrl register for a BAR.
3518 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3519 * Returns -ENOENT if no ctrl register for the BAR could be found.
3520 */
3521static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3522{
3523        unsigned int pos, nbars, i;
3524        u32 ctrl;
3525
3526        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3527        if (!pos)
3528                return -ENOTSUPP;
3529
3530        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3531        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3532                    PCI_REBAR_CTRL_NBAR_SHIFT;
3533
3534        for (i = 0; i < nbars; i++, pos += 8) {
3535                int bar_idx;
3536
3537                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3538                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3539                if (bar_idx == bar)
3540                        return pos;
3541        }
3542
3543        return -ENOENT;
3544}
3545
3546/**
3547 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3548 * @pdev: PCI device
3549 * @bar: BAR to query
3550 *
3551 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3552 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3553 */
3554u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3555{
3556        int pos;
3557        u32 cap;
3558
3559        pos = pci_rebar_find_pos(pdev, bar);
3560        if (pos < 0)
3561                return 0;
3562
3563        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3564        return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3565}
3566
3567/**
3568 * pci_rebar_get_current_size - get the current size of a BAR
3569 * @pdev: PCI device
3570 * @bar: BAR to set size to
3571 *
3572 * Read the size of a BAR from the resizable BAR config.
3573 * Returns size if found or negative error code.
3574 */
3575int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3576{
3577        int pos;
3578        u32 ctrl;
3579
3580        pos = pci_rebar_find_pos(pdev, bar);
3581        if (pos < 0)
3582                return pos;
3583
3584        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3585        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3586}
3587
3588/**
3589 * pci_rebar_set_size - set a new size for a BAR
3590 * @pdev: PCI device
3591 * @bar: BAR to set size to
3592 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3593 *
3594 * Set the new size of a BAR as defined in the spec.
3595 * Returns zero if resizing was successful, error code otherwise.
3596 */
3597int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3598{
3599        int pos;
3600        u32 ctrl;
3601
3602        pos = pci_rebar_find_pos(pdev, bar);
3603        if (pos < 0)
3604                return pos;
3605
3606        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3607        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3608        ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3609        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3610        return 0;
3611}
3612
3613/**
3614 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3615 * @dev: the PCI device
3616 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3617 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3618 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3619 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3620 *
3621 * Return 0 if all upstream bridges support AtomicOp routing, egress
3622 * blocking is disabled on all upstream ports, and the root port supports
3623 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3624 * AtomicOp completion), or negative otherwise.
3625 */
3626int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3627{
3628        struct pci_bus *bus = dev->bus;
3629        struct pci_dev *bridge;
3630        u32 cap, ctl2;
3631
3632        if (!pci_is_pcie(dev))
3633                return -EINVAL;
3634
3635        /*
3636         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3637         * AtomicOp requesters.  For now, we only support endpoints as
3638         * requesters and root ports as completers.  No endpoints as
3639         * completers, and no peer-to-peer.
3640         */
3641
3642        switch (pci_pcie_type(dev)) {
3643        case PCI_EXP_TYPE_ENDPOINT:
3644        case PCI_EXP_TYPE_LEG_END:
3645        case PCI_EXP_TYPE_RC_END:
3646                break;
3647        default:
3648                return -EINVAL;
3649        }
3650
3651        while (bus->parent) {
3652                bridge = bus->self;
3653
3654                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3655
3656                switch (pci_pcie_type(bridge)) {
3657                /* Ensure switch ports support AtomicOp routing */
3658                case PCI_EXP_TYPE_UPSTREAM:
3659                case PCI_EXP_TYPE_DOWNSTREAM:
3660                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3661                                return -EINVAL;
3662                        break;
3663
3664                /* Ensure root port supports all the sizes we care about */
3665                case PCI_EXP_TYPE_ROOT_PORT:
3666                        if ((cap & cap_mask) != cap_mask)
3667                                return -EINVAL;
3668                        break;
3669                }
3670
3671                /* Ensure upstream ports don't block AtomicOps on egress */
3672                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3673                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3674                                                   &ctl2);
3675                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3676                                return -EINVAL;
3677                }
3678
3679                bus = bus->parent;
3680        }
3681
3682        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3683                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3684        return 0;
3685}
3686EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3687
3688/**
3689 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3690 * @dev: the PCI device
3691 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3692 *
3693 * Perform INTx swizzling for a device behind one level of bridge.  This is
3694 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3695 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3696 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3697 * the PCI Express Base Specification, Revision 2.1)
3698 */
3699u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3700{
3701        int slot;
3702
3703        if (pci_ari_enabled(dev->bus))
3704                slot = 0;
3705        else
3706                slot = PCI_SLOT(dev->devfn);
3707
3708        return (((pin - 1) + slot) % 4) + 1;
3709}
3710
3711int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3712{
3713        u8 pin;
3714
3715        pin = dev->pin;
3716        if (!pin)
3717                return -1;
3718
3719        while (!pci_is_root_bus(dev->bus)) {
3720                pin = pci_swizzle_interrupt_pin(dev, pin);
3721                dev = dev->bus->self;
3722        }
3723        *bridge = dev;
3724        return pin;
3725}
3726
3727/**
3728 * pci_common_swizzle - swizzle INTx all the way to root bridge
3729 * @dev: the PCI device
3730 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3731 *
3732 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3733 * bridges all the way up to a PCI root bus.
3734 */
3735u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3736{
3737        u8 pin = *pinp;
3738
3739        while (!pci_is_root_bus(dev->bus)) {
3740                pin = pci_swizzle_interrupt_pin(dev, pin);
3741                dev = dev->bus->self;
3742        }
3743        *pinp = pin;
3744        return PCI_SLOT(dev->devfn);
3745}
3746EXPORT_SYMBOL_GPL(pci_common_swizzle);
3747
3748/**
3749 * pci_release_region - Release a PCI bar
3750 * @pdev: PCI device whose resources were previously reserved by
3751 *        pci_request_region()
3752 * @bar: BAR to release
3753 *
3754 * Releases the PCI I/O and memory resources previously reserved by a
3755 * successful call to pci_request_region().  Call this function only
3756 * after all use of the PCI regions has ceased.
3757 */
3758void pci_release_region(struct pci_dev *pdev, int bar)
3759{
3760        struct pci_devres *dr;
3761
3762        if (pci_resource_len(pdev, bar) == 0)
3763                return;
3764        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3765                release_region(pci_resource_start(pdev, bar),
3766                                pci_resource_len(pdev, bar));
3767        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3768                release_mem_region(pci_resource_start(pdev, bar),
3769                                pci_resource_len(pdev, bar));
3770
3771        dr = find_pci_dr(pdev);
3772        if (dr)
3773                dr->region_mask &= ~(1 << bar);
3774}
3775EXPORT_SYMBOL(pci_release_region);
3776
3777/**
3778 * __pci_request_region - Reserved PCI I/O and memory resource
3779 * @pdev: PCI device whose resources are to be reserved
3780 * @bar: BAR to be reserved
3781 * @res_name: Name to be associated with resource.
3782 * @exclusive: whether the region access is exclusive or not
3783 *
3784 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3785 * being reserved by owner @res_name.  Do not access any
3786 * address inside the PCI regions unless this call returns
3787 * successfully.
3788 *
3789 * If @exclusive is set, then the region is marked so that userspace
3790 * is explicitly not allowed to map the resource via /dev/mem or
3791 * sysfs MMIO access.
3792 *
3793 * Returns 0 on success, or %EBUSY on error.  A warning
3794 * message is also printed on failure.
3795 */
3796static int __pci_request_region(struct pci_dev *pdev, int bar,
3797                                const char *res_name, int exclusive)
3798{
3799        struct pci_devres *dr;
3800
3801        if (pci_resource_len(pdev, bar) == 0)
3802                return 0;
3803
3804        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3805                if (!request_region(pci_resource_start(pdev, bar),
3806                            pci_resource_len(pdev, bar), res_name))
3807                        goto err_out;
3808        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3809                if (!__request_mem_region(pci_resource_start(pdev, bar),
3810                                        pci_resource_len(pdev, bar), res_name,
3811                                        exclusive))
3812                        goto err_out;
3813        }
3814
3815        dr = find_pci_dr(pdev);
3816        if (dr)
3817                dr->region_mask |= 1 << bar;
3818
3819        return 0;
3820
3821err_out:
3822        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3823                 &pdev->resource[bar]);
3824        return -EBUSY;
3825}
3826
3827/**
3828 * pci_request_region - Reserve PCI I/O and memory resource
3829 * @pdev: PCI device whose resources are to be reserved
3830 * @bar: BAR to be reserved
3831 * @res_name: Name to be associated with resource
3832 *
3833 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3834 * being reserved by owner @res_name.  Do not access any
3835 * address inside the PCI regions unless this call returns
3836 * successfully.
3837 *
3838 * Returns 0 on success, or %EBUSY on error.  A warning
3839 * message is also printed on failure.
3840 */
3841int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3842{
3843        return __pci_request_region(pdev, bar, res_name, 0);
3844}
3845EXPORT_SYMBOL(pci_request_region);
3846
3847/**
3848 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3849 * @pdev: PCI device whose resources were previously reserved
3850 * @bars: Bitmask of BARs to be released
3851 *
3852 * Release selected PCI I/O and memory resources previously reserved.
3853 * Call this function only after all use of the PCI regions has ceased.
3854 */
3855void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3856{
3857        int i;
3858
3859        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3860                if (bars & (1 << i))
3861                        pci_release_region(pdev, i);
3862}
3863EXPORT_SYMBOL(pci_release_selected_regions);
3864
3865static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3866                                          const char *res_name, int excl)
3867{
3868        int i;
3869
3870        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3871                if (bars & (1 << i))
3872                        if (__pci_request_region(pdev, i, res_name, excl))
3873                                goto err_out;
3874        return 0;
3875
3876err_out:
3877        while (--i >= 0)
3878                if (bars & (1 << i))
3879                        pci_release_region(pdev, i);
3880
3881        return -EBUSY;
3882}
3883
3884
3885/**
3886 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3887 * @pdev: PCI device whose resources are to be reserved
3888 * @bars: Bitmask of BARs to be requested
3889 * @res_name: Name to be associated with resource
3890 */
3891int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3892                                 const char *res_name)
3893{
3894        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3895}
3896EXPORT_SYMBOL(pci_request_selected_regions);
3897
3898int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3899                                           const char *res_name)
3900{
3901        return __pci_request_selected_regions(pdev, bars, res_name,
3902                        IORESOURCE_EXCLUSIVE);
3903}
3904EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3905
3906/**
3907 * pci_release_regions - Release reserved PCI I/O and memory resources
3908 * @pdev: PCI device whose resources were previously reserved by
3909 *        pci_request_regions()
3910 *
3911 * Releases all PCI I/O and memory resources previously reserved by a
3912 * successful call to pci_request_regions().  Call this function only
3913 * after all use of the PCI regions has ceased.
3914 */
3915
3916void pci_release_regions(struct pci_dev *pdev)
3917{
3918        pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3919}
3920EXPORT_SYMBOL(pci_release_regions);
3921
3922/**
3923 * pci_request_regions - Reserve PCI I/O and memory resources
3924 * @pdev: PCI device whose resources are to be reserved
3925 * @res_name: Name to be associated with resource.
3926 *
3927 * Mark all PCI regions associated with PCI device @pdev as
3928 * being reserved by owner @res_name.  Do not access any
3929 * address inside the PCI regions unless this call returns
3930 * successfully.
3931 *
3932 * Returns 0 on success, or %EBUSY on error.  A warning
3933 * message is also printed on failure.
3934 */
3935int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3936{
3937        return pci_request_selected_regions(pdev,
3938                        ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3939}
3940EXPORT_SYMBOL(pci_request_regions);
3941
3942/**
3943 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3944 * @pdev: PCI device whose resources are to be reserved
3945 * @res_name: Name to be associated with resource.
3946 *
3947 * Mark all PCI regions associated with PCI device @pdev as being reserved
3948 * by owner @res_name.  Do not access any address inside the PCI regions
3949 * unless this call returns successfully.
3950 *
3951 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3952 * and the sysfs MMIO access will not be allowed.
3953 *
3954 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3955 * printed on failure.
3956 */
3957int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3958{
3959        return pci_request_selected_regions_exclusive(pdev,
3960                                ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3961}
3962EXPORT_SYMBOL(pci_request_regions_exclusive);
3963
3964/*
3965 * Record the PCI IO range (expressed as CPU physical address + size).
3966 * Return a negative value if an error has occurred, zero otherwise
3967 */
3968int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3969                        resource_size_t size)
3970{
3971        int ret = 0;
3972#ifdef PCI_IOBASE
3973        struct logic_pio_hwaddr *range;
3974
3975        if (!size || addr + size < addr)
3976                return -EINVAL;
3977
3978        range = kzalloc(sizeof(*range), GFP_ATOMIC);
3979        if (!range)
3980                return -ENOMEM;
3981
3982        range->fwnode = fwnode;
3983        range->size = size;
3984        range->hw_start = addr;
3985        range->flags = LOGIC_PIO_CPU_MMIO;
3986
3987        ret = logic_pio_register_range(range);
3988        if (ret)
3989                kfree(range);
3990#endif
3991
3992        return ret;
3993}
3994
3995phys_addr_t pci_pio_to_address(unsigned long pio)
3996{
3997        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3998
3999#ifdef PCI_IOBASE
4000        if (pio >= MMIO_UPPER_LIMIT)
4001                return address;
4002
4003        address = logic_pio_to_hwaddr(pio);
4004#endif
4005
4006        return address;
4007}
4008
4009unsigned long __weak pci_address_to_pio(phys_addr_t address)
4010{
4011#ifdef PCI_IOBASE
4012        return logic_pio_trans_cpuaddr(address);
4013#else
4014        if (address > IO_SPACE_LIMIT)
4015                return (unsigned long)-1;
4016
4017        return (unsigned long) address;
4018#endif
4019}
4020
4021/**
4022 * pci_remap_iospace - Remap the memory mapped I/O space
4023 * @res: Resource describing the I/O space
4024 * @phys_addr: physical address of range to be mapped
4025 *
4026 * Remap the memory mapped I/O space described by the @res and the CPU
4027 * physical address @phys_addr into virtual address space.  Only
4028 * architectures that have memory mapped IO functions defined (and the
4029 * PCI_IOBASE value defined) should call this function.
4030 */
4031int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4032{
4033#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4034        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4035
4036        if (!(res->flags & IORESOURCE_IO))
4037                return -EINVAL;
4038
4039        if (res->end > IO_SPACE_LIMIT)
4040                return -EINVAL;
4041
4042        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4043                                  pgprot_device(PAGE_KERNEL));
4044#else
4045        /*
4046         * This architecture does not have memory mapped I/O space,
4047         * so this function should never be called
4048         */
4049        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4050        return -ENODEV;
4051#endif
4052}
4053EXPORT_SYMBOL(pci_remap_iospace);
4054
4055/**
4056 * pci_unmap_iospace - Unmap the memory mapped I/O space
4057 * @res: resource to be unmapped
4058 *
4059 * Unmap the CPU virtual address @res from virtual address space.  Only
4060 * architectures that have memory mapped IO functions defined (and the
4061 * PCI_IOBASE value defined) should call this function.
4062 */
4063void pci_unmap_iospace(struct resource *res)
4064{
4065#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4066        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4067
4068        unmap_kernel_range(vaddr, resource_size(res));
4069#endif
4070}
4071EXPORT_SYMBOL(pci_unmap_iospace);
4072
4073static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4074{
4075        struct resource **res = ptr;
4076
4077        pci_unmap_iospace(*res);
4078}
4079
4080/**
4081 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4082 * @dev: Generic device to remap IO address for
4083 * @res: Resource describing the I/O space
4084 * @phys_addr: physical address of range to be mapped
4085 *
4086 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4087 * detach.
4088 */
4089int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4090                           phys_addr_t phys_addr)
4091{
4092        const struct resource **ptr;
4093        int error;
4094
4095        ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4096        if (!ptr)
4097                return -ENOMEM;
4098
4099        error = pci_remap_iospace(res, phys_addr);
4100        if (error) {
4101                devres_free(ptr);
4102        } else  {
4103                *ptr = res;
4104                devres_add(dev, ptr);
4105        }
4106
4107        return error;
4108}
4109EXPORT_SYMBOL(devm_pci_remap_iospace);
4110
4111/**
4112 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4113 * @dev: Generic device to remap IO address for
4114 * @offset: Resource address to map
4115 * @size: Size of map
4116 *
4117 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4118 * detach.
4119 */
4120void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4121                                      resource_size_t offset,
4122                                      resource_size_t size)
4123{
4124        void __iomem **ptr, *addr;
4125
4126        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4127        if (!ptr)
4128                return NULL;
4129
4130        addr = pci_remap_cfgspace(offset, size);
4131        if (addr) {
4132                *ptr = addr;
4133                devres_add(dev, ptr);
4134        } else
4135                devres_free(ptr);
4136
4137        return addr;
4138}
4139EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4140
4141/**
4142 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4143 * @dev: generic device to handle the resource for
4144 * @res: configuration space resource to be handled
4145 *
4146 * Checks that a resource is a valid memory region, requests the memory
4147 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4148 * proper PCI configuration space memory attributes are guaranteed.
4149 *
4150 * All operations are managed and will be undone on driver detach.
4151 *
4152 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4153 * on failure. Usage example::
4154 *
4155 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4156 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4157 *      if (IS_ERR(base))
4158 *              return PTR_ERR(base);
4159 */
4160void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4161                                          struct resource *res)
4162{
4163        resource_size_t size;
4164        const char *name;
4165        void __iomem *dest_ptr;
4166
4167        BUG_ON(!dev);
4168
4169        if (!res || resource_type(res) != IORESOURCE_MEM) {
4170                dev_err(dev, "invalid resource\n");
4171                return IOMEM_ERR_PTR(-EINVAL);
4172        }
4173
4174        size = resource_size(res);
4175        name = res->name ?: dev_name(dev);
4176
4177        if (!devm_request_mem_region(dev, res->start, size, name)) {
4178                dev_err(dev, "can't request region for resource %pR\n", res);
4179                return IOMEM_ERR_PTR(-EBUSY);
4180        }
4181
4182        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4183        if (!dest_ptr) {
4184                dev_err(dev, "ioremap failed for resource %pR\n", res);
4185                devm_release_mem_region(dev, res->start, size);
4186                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4187        }
4188
4189        return dest_ptr;
4190}
4191EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4192
4193static void __pci_set_master(struct pci_dev *dev, bool enable)
4194{
4195        u16 old_cmd, cmd;
4196
4197        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4198        if (enable)
4199                cmd = old_cmd | PCI_COMMAND_MASTER;
4200        else
4201                cmd = old_cmd & ~PCI_COMMAND_MASTER;
4202        if (cmd != old_cmd) {
4203                pci_dbg(dev, "%s bus mastering\n",
4204                        enable ? "enabling" : "disabling");
4205                pci_write_config_word(dev, PCI_COMMAND, cmd);
4206        }
4207        dev->is_busmaster = enable;
4208}
4209
4210/**
4211 * pcibios_setup - process "pci=" kernel boot arguments
4212 * @str: string used to pass in "pci=" kernel boot arguments
4213 *
4214 * Process kernel boot arguments.  This is the default implementation.
4215 * Architecture specific implementations can override this as necessary.
4216 */
4217char * __weak __init pcibios_setup(char *str)
4218{
4219        return str;
4220}
4221
4222/**
4223 * pcibios_set_master - enable PCI bus-mastering for device dev
4224 * @dev: the PCI device to enable
4225 *
4226 * Enables PCI bus-mastering for the device.  This is the default
4227 * implementation.  Architecture specific implementations can override
4228 * this if necessary.
4229 */
4230void __weak pcibios_set_master(struct pci_dev *dev)
4231{
4232        u8 lat;
4233
4234        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4235        if (pci_is_pcie(dev))
4236                return;
4237
4238        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4239        if (lat < 16)
4240                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4241        else if (lat > pcibios_max_latency)
4242                lat = pcibios_max_latency;
4243        else
4244                return;
4245
4246        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4247}
4248
4249/**
4250 * pci_set_master - enables bus-mastering for device dev
4251 * @dev: the PCI device to enable
4252 *
4253 * Enables bus-mastering on the device and calls pcibios_set_master()
4254 * to do the needed arch specific settings.
4255 */
4256void pci_set_master(struct pci_dev *dev)
4257{
4258        __pci_set_master(dev, true);
4259        pcibios_set_master(dev);
4260}
4261EXPORT_SYMBOL(pci_set_master);
4262
4263/**
4264 * pci_clear_master - disables bus-mastering for device dev
4265 * @dev: the PCI device to disable
4266 */
4267void pci_clear_master(struct pci_dev *dev)
4268{
4269        __pci_set_master(dev, false);
4270}
4271EXPORT_SYMBOL(pci_clear_master);
4272
4273/**
4274 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4275 * @dev: the PCI device for which MWI is to be enabled
4276 *
4277 * Helper function for pci_set_mwi.
4278 * Originally copied from drivers/net/acenic.c.
4279 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4280 *
4281 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4282 */
4283int pci_set_cacheline_size(struct pci_dev *dev)
4284{
4285        u8 cacheline_size;
4286
4287        if (!pci_cache_line_size)
4288                return -EINVAL;
4289
4290        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4291           equal to or multiple of the right value. */
4292        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4293        if (cacheline_size >= pci_cache_line_size &&
4294            (cacheline_size % pci_cache_line_size) == 0)
4295                return 0;
4296
4297        /* Write the correct value. */
4298        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4299        /* Read it back. */
4300        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4301        if (cacheline_size == pci_cache_line_size)
4302                return 0;
4303
4304        pci_info(dev, "cache line size of %d is not supported\n",
4305                   pci_cache_line_size << 2);
4306
4307        return -EINVAL;
4308}
4309EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4310
4311/**
4312 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4313 * @dev: the PCI device for which MWI is enabled
4314 *
4315 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4316 *
4317 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4318 */
4319int pci_set_mwi(struct pci_dev *dev)
4320{
4321#ifdef PCI_DISABLE_MWI
4322        return 0;
4323#else
4324        int rc;
4325        u16 cmd;
4326
4327        rc = pci_set_cacheline_size(dev);
4328        if (rc)
4329                return rc;
4330
4331        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4332        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4333                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4334                cmd |= PCI_COMMAND_INVALIDATE;
4335                pci_write_config_word(dev, PCI_COMMAND, cmd);
4336        }
4337        return 0;
4338#endif
4339}
4340EXPORT_SYMBOL(pci_set_mwi);
4341
4342/**
4343 * pcim_set_mwi - a device-managed pci_set_mwi()
4344 * @dev: the PCI device for which MWI is enabled
4345 *
4346 * Managed pci_set_mwi().
4347 *
4348 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4349 */
4350int pcim_set_mwi(struct pci_dev *dev)
4351{
4352        struct pci_devres *dr;
4353
4354        dr = find_pci_dr(dev);
4355        if (!dr)
4356                return -ENOMEM;
4357
4358        dr->mwi = 1;
4359        return pci_set_mwi(dev);
4360}
4361EXPORT_SYMBOL(pcim_set_mwi);
4362
4363/**
4364 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4365 * @dev: the PCI device for which MWI is enabled
4366 *
4367 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4368 * Callers are not required to check the return value.
4369 *
4370 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4371 */
4372int pci_try_set_mwi(struct pci_dev *dev)
4373{
4374#ifdef PCI_DISABLE_MWI
4375        return 0;
4376#else
4377        return pci_set_mwi(dev);
4378#endif
4379}
4380EXPORT_SYMBOL(pci_try_set_mwi);
4381
4382/**
4383 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4384 * @dev: the PCI device to disable
4385 *
4386 * Disables PCI Memory-Write-Invalidate transaction on the device
4387 */
4388void pci_clear_mwi(struct pci_dev *dev)
4389{
4390#ifndef PCI_DISABLE_MWI
4391        u16 cmd;
4392
4393        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4394        if (cmd & PCI_COMMAND_INVALIDATE) {
4395                cmd &= ~PCI_COMMAND_INVALIDATE;
4396                pci_write_config_word(dev, PCI_COMMAND, cmd);
4397        }
4398#endif
4399}
4400EXPORT_SYMBOL(pci_clear_mwi);
4401
4402/**
4403 * pci_intx - enables/disables PCI INTx for device dev
4404 * @pdev: the PCI device to operate on
4405 * @enable: boolean: whether to enable or disable PCI INTx
4406 *
4407 * Enables/disables PCI INTx for device @pdev
4408 */
4409void pci_intx(struct pci_dev *pdev, int enable)
4410{
4411        u16 pci_command, new;
4412
4413        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4414
4415        if (enable)
4416                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4417        else
4418                new = pci_command | PCI_COMMAND_INTX_DISABLE;
4419
4420        if (new != pci_command) {
4421                struct pci_devres *dr;
4422
4423                pci_write_config_word(pdev, PCI_COMMAND, new);
4424
4425                dr = find_pci_dr(pdev);
4426                if (dr && !dr->restore_intx) {
4427                        dr->restore_intx = 1;
4428                        dr->orig_intx = !enable;
4429                }
4430        }
4431}
4432EXPORT_SYMBOL_GPL(pci_intx);
4433
4434static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4435{
4436        struct pci_bus *bus = dev->bus;
4437        bool mask_updated = true;
4438        u32 cmd_status_dword;
4439        u16 origcmd, newcmd;
4440        unsigned long flags;
4441        bool irq_pending;
4442
4443        /*
4444         * We do a single dword read to retrieve both command and status.
4445         * Document assumptions that make this possible.
4446         */
4447        BUILD_BUG_ON(PCI_COMMAND % 4);
4448        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4449
4450        raw_spin_lock_irqsave(&pci_lock, flags);
4451
4452        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4453
4454        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4455
4456        /*
4457         * Check interrupt status register to see whether our device
4458         * triggered the interrupt (when masking) or the next IRQ is
4459         * already pending (when unmasking).
4460         */
4461        if (mask != irq_pending) {
4462                mask_updated = false;
4463                goto done;
4464        }
4465
4466        origcmd = cmd_status_dword;
4467        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4468        if (mask)
4469                newcmd |= PCI_COMMAND_INTX_DISABLE;
4470        if (newcmd != origcmd)
4471                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4472
4473done:
4474        raw_spin_unlock_irqrestore(&pci_lock, flags);
4475
4476        return mask_updated;
4477}
4478
4479/**
4480 * pci_check_and_mask_intx - mask INTx on pending interrupt
4481 * @dev: the PCI device to operate on
4482 *
4483 * Check if the device dev has its INTx line asserted, mask it and return
4484 * true in that case. False is returned if no interrupt was pending.
4485 */
4486bool pci_check_and_mask_intx(struct pci_dev *dev)
4487{
4488        return pci_check_and_set_intx_mask(dev, true);
4489}
4490EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4491
4492/**
4493 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4494 * @dev: the PCI device to operate on
4495 *
4496 * Check if the device dev has its INTx line asserted, unmask it if not and
4497 * return true. False is returned and the mask remains active if there was
4498 * still an interrupt pending.
4499 */
4500bool pci_check_and_unmask_intx(struct pci_dev *dev)
4501{
4502        return pci_check_and_set_intx_mask(dev, false);
4503}
4504EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4505
4506/**
4507 * pci_wait_for_pending_transaction - wait for pending transaction
4508 * @dev: the PCI device to operate on
4509 *
4510 * Return 0 if transaction is pending 1 otherwise.
4511 */
4512int pci_wait_for_pending_transaction(struct pci_dev *dev)
4513{
4514        if (!pci_is_pcie(dev))
4515                return 1;
4516
4517        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4518                                    PCI_EXP_DEVSTA_TRPND);
4519}
4520EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4521
4522/**
4523 * pcie_has_flr - check if a device supports function level resets
4524 * @dev: device to check
4525 *
4526 * Returns true if the device advertises support for PCIe function level
4527 * resets.
4528 */
4529bool pcie_has_flr(struct pci_dev *dev)
4530{
4531        u32 cap;
4532
4533        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4534                return false;
4535
4536        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4537        return cap & PCI_EXP_DEVCAP_FLR;
4538}
4539EXPORT_SYMBOL_GPL(pcie_has_flr);
4540
4541/**
4542 * pcie_flr - initiate a PCIe function level reset
4543 * @dev: device to reset
4544 *
4545 * Initiate a function level reset on @dev.  The caller should ensure the
4546 * device supports FLR before calling this function, e.g. by using the
4547 * pcie_has_flr() helper.
4548 */
4549int pcie_flr(struct pci_dev *dev)
4550{
4551        if (!pci_wait_for_pending_transaction(dev))
4552                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4553
4554        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4555
4556        if (dev->imm_ready)
4557                return 0;
4558
4559        /*
4560         * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4561         * 100ms, but may silently discard requests while the FLR is in
4562         * progress.  Wait 100ms before trying to access the device.
4563         */
4564        msleep(100);
4565
4566        return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4567}
4568EXPORT_SYMBOL_GPL(pcie_flr);
4569
4570static int pci_af_flr(struct pci_dev *dev, int probe)
4571{
4572        int pos;
4573        u8 cap;
4574
4575        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4576        if (!pos)
4577                return -ENOTTY;
4578
4579        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4580                return -ENOTTY;
4581
4582        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4583        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4584                return -ENOTTY;
4585
4586        if (probe)
4587                return 0;
4588
4589        /*
4590         * Wait for Transaction Pending bit to clear.  A word-aligned test
4591         * is used, so we use the control offset rather than status and shift
4592         * the test bit to match.
4593         */
4594        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4595                                 PCI_AF_STATUS_TP << 8))
4596                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4597
4598        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4599
4600        if (dev->imm_ready)
4601                return 0;
4602
4603        /*
4604         * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4605         * updated 27 July 2006; a device must complete an FLR within
4606         * 100ms, but may silently discard requests while the FLR is in
4607         * progress.  Wait 100ms before trying to access the device.
4608         */
4609        msleep(100);
4610
4611        return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4612}
4613
4614/**
4615 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4616 * @dev: Device to reset.
4617 * @probe: If set, only check if the device can be reset this way.
4618 *
4619 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4620 * unset, it will be reinitialized internally when going from PCI_D3hot to
4621 * PCI_D0.  If that's the case and the device is not in a low-power state
4622 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4623 *
4624 * NOTE: This causes the caller to sleep for twice the device power transition
4625 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4626 * by default (i.e. unless the @dev's d3_delay field has a different value).
4627 * Moreover, only devices in D0 can be reset by this function.
4628 */
4629static int pci_pm_reset(struct pci_dev *dev, int probe)
4630{
4631        u16 csr;
4632
4633        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4634                return -ENOTTY;
4635
4636        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4637        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4638                return -ENOTTY;
4639
4640        if (probe)
4641                return 0;
4642
4643        if (dev->current_state != PCI_D0)
4644                return -EINVAL;
4645
4646        csr &= ~PCI_PM_CTRL_STATE_MASK;
4647        csr |= PCI_D3hot;
4648        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4649        pci_dev_d3_sleep(dev);
4650
4651        csr &= ~PCI_PM_CTRL_STATE_MASK;
4652        csr |= PCI_D0;
4653        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4654        pci_dev_d3_sleep(dev);
4655
4656        return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4657}
4658
4659/**
4660 * pcie_wait_for_link_delay - Wait until link is active or inactive
4661 * @pdev: Bridge device
4662 * @active: waiting for active or inactive?
4663 * @delay: Delay to wait after link has become active (in ms)
4664 *
4665 * Use this to wait till link becomes active or inactive.
4666 */
4667static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4668                                     int delay)
4669{
4670        int timeout = 1000;
4671        bool ret;
4672        u16 lnk_status;
4673
4674        /*
4675         * Some controllers might not implement link active reporting. In this
4676         * case, we wait for 1000 + 100 ms.
4677         */
4678        if (!pdev->link_active_reporting) {
4679                msleep(1100);
4680                return true;
4681        }
4682
4683        /*
4684         * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4685         * after which we should expect an link active if the reset was
4686         * successful. If so, software must wait a minimum 100ms before sending
4687         * configuration requests to devices downstream this port.
4688         *
4689         * If the link fails to activate, either the device was physically
4690         * removed or the link is permanently failed.
4691         */
4692        if (active)
4693                msleep(20);
4694        for (;;) {
4695                pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4696                ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4697                if (ret == active)
4698                        break;
4699                if (timeout <= 0)
4700                        break;
4701                msleep(10);
4702                timeout -= 10;
4703        }
4704        if (active && ret)
4705                msleep(delay);
4706        else if (ret != active)
4707                pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4708                        active ? "set" : "cleared");
4709        return ret == active;
4710}
4711
4712/**
4713 * pcie_wait_for_link - Wait until link is active or inactive
4714 * @pdev: Bridge device
4715 * @active: waiting for active or inactive?
4716 *
4717 * Use this to wait till link becomes active or inactive.
4718 */
4719bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4720{
4721        return pcie_wait_for_link_delay(pdev, active, 100);
4722}
4723
4724/*
4725 * Find maximum D3cold delay required by all the devices on the bus.  The
4726 * spec says 100 ms, but firmware can lower it and we allow drivers to
4727 * increase it as well.
4728 *
4729 * Called with @pci_bus_sem locked for reading.
4730 */
4731static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4732{
4733        const struct pci_dev *pdev;
4734        int min_delay = 100;
4735        int max_delay = 0;
4736
4737        list_for_each_entry(pdev, &bus->devices, bus_list) {
4738                if (pdev->d3cold_delay < min_delay)
4739                        min_delay = pdev->d3cold_delay;
4740                if (pdev->d3cold_delay > max_delay)
4741                        max_delay = pdev->d3cold_delay;
4742        }
4743
4744        return max(min_delay, max_delay);
4745}
4746
4747/**
4748 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4749 * @dev: PCI bridge
4750 *
4751 * Handle necessary delays before access to the devices on the secondary
4752 * side of the bridge are permitted after D3cold to D0 transition.
4753 *
4754 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4755 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4756 * 4.3.2.
4757 */
4758void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4759{
4760        struct pci_dev *child;
4761        int delay;
4762
4763        if (pci_dev_is_disconnected(dev))
4764                return;
4765
4766        if (!pci_is_bridge(dev) || !dev->bridge_d3)
4767                return;
4768
4769        down_read(&pci_bus_sem);
4770
4771        /*
4772         * We only deal with devices that are present currently on the bus.
4773         * For any hot-added devices the access delay is handled in pciehp
4774         * board_added(). In case of ACPI hotplug the firmware is expected
4775         * to configure the devices before OS is notified.
4776         */
4777        if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4778                up_read(&pci_bus_sem);
4779                return;
4780        }
4781
4782        /* Take d3cold_delay requirements into account */
4783        delay = pci_bus_max_d3cold_delay(dev->subordinate);
4784        if (!delay) {
4785                up_read(&pci_bus_sem);
4786                return;
4787        }
4788
4789        child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4790                                 bus_list);
4791        up_read(&pci_bus_sem);
4792
4793        /*
4794         * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4795         * accessing the device after reset (that is 1000 ms + 100 ms). In
4796         * practice this should not be needed because we don't do power
4797         * management for them (see pci_bridge_d3_possible()).
4798         */
4799        if (!pci_is_pcie(dev)) {
4800                pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4801                msleep(1000 + delay);
4802                return;
4803        }
4804
4805        /*
4806         * For PCIe downstream and root ports that do not support speeds
4807         * greater than 5 GT/s need to wait minimum 100 ms. For higher
4808         * speeds (gen3) we need to wait first for the data link layer to
4809         * become active.
4810         *
4811         * However, 100 ms is the minimum and the PCIe spec says the
4812         * software must allow at least 1s before it can determine that the
4813         * device that did not respond is a broken device. There is
4814         * evidence that 100 ms is not always enough, for example certain
4815         * Titan Ridge xHCI controller does not always respond to
4816         * configuration requests if we only wait for 100 ms (see
4817         * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4818         *
4819         * Therefore we wait for 100 ms and check for the device presence.
4820         * If it is still not present give it an additional 100 ms.
4821         */
4822        if (!pcie_downstream_port(dev))
4823                return;
4824
4825        if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4826                pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4827                msleep(delay);
4828        } else {
4829                pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4830                        delay);
4831                if (!pcie_wait_for_link_delay(dev, true, delay)) {
4832                        /* Did not train, no need to wait any further */
4833                        return;
4834                }
4835        }
4836
4837        if (!pci_device_is_present(child)) {
4838                pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4839                msleep(delay);
4840        }
4841}
4842
4843void pci_reset_secondary_bus(struct pci_dev *dev)
4844{
4845        u16 ctrl;
4846
4847        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4848        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4849        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4850
4851        /*
4852         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4853         * this to 2ms to ensure that we meet the minimum requirement.
4854         */
4855        msleep(2);
4856
4857        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4858        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4859
4860        /*
4861         * Trhfa for conventional PCI is 2^25 clock cycles.
4862         * Assuming a minimum 33MHz clock this results in a 1s
4863         * delay before we can consider subordinate devices to
4864         * be re-initialized.  PCIe has some ways to shorten this,
4865         * but we don't make use of them yet.
4866         */
4867        ssleep(1);
4868}
4869
4870void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4871{
4872        pci_reset_secondary_bus(dev);
4873}
4874
4875/**
4876 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4877 * @dev: Bridge device
4878 *
4879 * Use the bridge control register to assert reset on the secondary bus.
4880 * Devices on the secondary bus are left in power-on state.
4881 */
4882int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4883{
4884        pcibios_reset_secondary_bus(dev);
4885
4886        return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4887}
4888EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4889
4890static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4891{
4892        struct pci_dev *pdev;
4893
4894        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4895            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4896                return -ENOTTY;
4897
4898        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4899                if (pdev != dev)
4900                        return -ENOTTY;
4901
4902        if (probe)
4903                return 0;
4904
4905        return pci_bridge_secondary_bus_reset(dev->bus->self);
4906}
4907
4908static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4909{
4910        int rc = -ENOTTY;
4911
4912        if (!hotplug || !try_module_get(hotplug->owner))
4913                return rc;
4914
4915        if (hotplug->ops->reset_slot)
4916                rc = hotplug->ops->reset_slot(hotplug, probe);
4917
4918        module_put(hotplug->owner);
4919
4920        return rc;
4921}
4922
4923static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4924{
4925        struct pci_dev *pdev;
4926
4927        if (dev->subordinate || !dev->slot ||
4928            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4929                return -ENOTTY;
4930
4931        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4932                if (pdev != dev && pdev->slot == dev->slot)
4933                        return -ENOTTY;
4934
4935        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4936}
4937
4938static void pci_dev_lock(struct pci_dev *dev)
4939{
4940        pci_cfg_access_lock(dev);
4941        /* block PM suspend, driver probe, etc. */
4942        device_lock(&dev->dev);
4943}
4944
4945/* Return 1 on successful lock, 0 on contention */
4946static int pci_dev_trylock(struct pci_dev *dev)
4947{
4948        if (pci_cfg_access_trylock(dev)) {
4949                if (device_trylock(&dev->dev))
4950                        return 1;
4951                pci_cfg_access_unlock(dev);
4952        }
4953
4954        return 0;
4955}
4956
4957static void pci_dev_unlock(struct pci_dev *dev)
4958{
4959        device_unlock(&dev->dev);
4960        pci_cfg_access_unlock(dev);
4961}
4962
4963static void pci_dev_save_and_disable(struct pci_dev *dev)
4964{
4965        const struct pci_error_handlers *err_handler =
4966                        dev->driver ? dev->driver->err_handler : NULL;
4967
4968        /*
4969         * dev->driver->err_handler->reset_prepare() is protected against
4970         * races with ->remove() by the device lock, which must be held by
4971         * the caller.
4972         */
4973        if (err_handler && err_handler->reset_prepare)
4974                err_handler->reset_prepare(dev);
4975
4976        /*
4977         * Wake-up device prior to save.  PM registers default to D0 after
4978         * reset and a simple register restore doesn't reliably return
4979         * to a non-D0 state anyway.
4980         */
4981        pci_set_power_state(dev, PCI_D0);
4982
4983        pci_save_state(dev);
4984        /*
4985         * Disable the device by clearing the Command register, except for
4986         * INTx-disable which is set.  This not only disables MMIO and I/O port
4987         * BARs, but also prevents the device from being Bus Master, preventing
4988         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4989         * compliant devices, INTx-disable prevents legacy interrupts.
4990         */
4991        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4992}
4993
4994static void pci_dev_restore(struct pci_dev *dev)
4995{
4996        const struct pci_error_handlers *err_handler =
4997                        dev->driver ? dev->driver->err_handler : NULL;
4998
4999        pci_restore_state(dev);
5000
5001        /*
5002         * dev->driver->err_handler->reset_done() is protected against
5003         * races with ->remove() by the device lock, which must be held by
5004         * the caller.
5005         */
5006        if (err_handler && err_handler->reset_done)
5007                err_handler->reset_done(dev);
5008}
5009
5010/**
5011 * __pci_reset_function_locked - reset a PCI device function while holding
5012 * the @dev mutex lock.
5013 * @dev: PCI device to reset
5014 *
5015 * Some devices allow an individual function to be reset without affecting
5016 * other functions in the same device.  The PCI device must be responsive
5017 * to PCI config space in order to use this function.
5018 *
5019 * The device function is presumed to be unused and the caller is holding
5020 * the device mutex lock when this function is called.
5021 *
5022 * Resetting the device will make the contents of PCI configuration space
5023 * random, so any caller of this must be prepared to reinitialise the
5024 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5025 * etc.
5026 *
5027 * Returns 0 if the device function was successfully reset or negative if the
5028 * device doesn't support resetting a single function.
5029 */
5030int __pci_reset_function_locked(struct pci_dev *dev)
5031{
5032        int rc;
5033
5034        might_sleep();
5035
5036        /*
5037         * A reset method returns -ENOTTY if it doesn't support this device
5038         * and we should try the next method.
5039         *
5040         * If it returns 0 (success), we're finished.  If it returns any
5041         * other error, we're also finished: this indicates that further
5042         * reset mechanisms might be broken on the device.
5043         */
5044        rc = pci_dev_specific_reset(dev, 0);
5045        if (rc != -ENOTTY)
5046                return rc;
5047        if (pcie_has_flr(dev)) {
5048                rc = pcie_flr(dev);
5049                if (rc != -ENOTTY)
5050                        return rc;
5051        }
5052        rc = pci_af_flr(dev, 0);
5053        if (rc != -ENOTTY)
5054                return rc;
5055        rc = pci_pm_reset(dev, 0);
5056        if (rc != -ENOTTY)
5057                return rc;
5058        rc = pci_dev_reset_slot_function(dev, 0);
5059        if (rc != -ENOTTY)
5060                return rc;
5061        return pci_parent_bus_reset(dev, 0);
5062}
5063EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5064
5065/**
5066 * pci_probe_reset_function - check whether the device can be safely reset
5067 * @dev: PCI device to reset
5068 *
5069 * Some devices allow an individual function to be reset without affecting
5070 * other functions in the same device.  The PCI device must be responsive
5071 * to PCI config space in order to use this function.
5072 *
5073 * Returns 0 if the device function can be reset or negative if the
5074 * device doesn't support resetting a single function.
5075 */
5076int pci_probe_reset_function(struct pci_dev *dev)
5077{
5078        int rc;
5079
5080        might_sleep();
5081
5082        rc = pci_dev_specific_reset(dev, 1);
5083        if (rc != -ENOTTY)
5084                return rc;
5085        if (pcie_has_flr(dev))
5086                return 0;
5087        rc = pci_af_flr(dev, 1);
5088        if (rc != -ENOTTY)
5089                return rc;
5090        rc = pci_pm_reset(dev, 1);
5091        if (rc != -ENOTTY)
5092                return rc;
5093        rc = pci_dev_reset_slot_function(dev, 1);
5094        if (rc != -ENOTTY)
5095                return rc;
5096
5097        return pci_parent_bus_reset(dev, 1);
5098}
5099
5100/**
5101 * pci_reset_function - quiesce and reset a PCI device function
5102 * @dev: PCI device to reset
5103 *
5104 * Some devices allow an individual function to be reset without affecting
5105 * other functions in the same device.  The PCI device must be responsive
5106 * to PCI config space in order to use this function.
5107 *
5108 * This function does not just reset the PCI portion of a device, but
5109 * clears all the state associated with the device.  This function differs
5110 * from __pci_reset_function_locked() in that it saves and restores device state
5111 * over the reset and takes the PCI device lock.
5112 *
5113 * Returns 0 if the device function was successfully reset or negative if the
5114 * device doesn't support resetting a single function.
5115 */
5116int pci_reset_function(struct pci_dev *dev)
5117{
5118        int rc;
5119
5120        if (!dev->reset_fn)
5121                return -ENOTTY;
5122
5123        pci_dev_lock(dev);
5124        pci_dev_save_and_disable(dev);
5125
5126        rc = __pci_reset_function_locked(dev);
5127
5128        pci_dev_restore(dev);
5129        pci_dev_unlock(dev);
5130
5131        return rc;
5132}
5133EXPORT_SYMBOL_GPL(pci_reset_function);
5134
5135/**
5136 * pci_reset_function_locked - quiesce and reset a PCI device function
5137 * @dev: PCI device to reset
5138 *
5139 * Some devices allow an individual function to be reset without affecting
5140 * other functions in the same device.  The PCI device must be responsive
5141 * to PCI config space in order to use this function.
5142 *
5143 * This function does not just reset the PCI portion of a device, but
5144 * clears all the state associated with the device.  This function differs
5145 * from __pci_reset_function_locked() in that it saves and restores device state
5146 * over the reset.  It also differs from pci_reset_function() in that it
5147 * requires the PCI device lock to be held.
5148 *
5149 * Returns 0 if the device function was successfully reset or negative if the
5150 * device doesn't support resetting a single function.
5151 */
5152int pci_reset_function_locked(struct pci_dev *dev)
5153{
5154        int rc;
5155
5156        if (!dev->reset_fn)
5157                return -ENOTTY;
5158
5159        pci_dev_save_and_disable(dev);
5160
5161        rc = __pci_reset_function_locked(dev);
5162
5163        pci_dev_restore(dev);
5164
5165        return rc;
5166}
5167EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5168
5169/**
5170 * pci_try_reset_function - quiesce and reset a PCI device function
5171 * @dev: PCI device to reset
5172 *
5173 * Same as above, except return -EAGAIN if unable to lock device.
5174 */
5175int pci_try_reset_function(struct pci_dev *dev)
5176{
5177        int rc;
5178
5179        if (!dev->reset_fn)
5180                return -ENOTTY;
5181
5182        if (!pci_dev_trylock(dev))
5183                return -EAGAIN;
5184
5185        pci_dev_save_and_disable(dev);
5186        rc = __pci_reset_function_locked(dev);
5187        pci_dev_restore(dev);
5188        pci_dev_unlock(dev);
5189
5190        return rc;
5191}
5192EXPORT_SYMBOL_GPL(pci_try_reset_function);
5193
5194/* Do any devices on or below this bus prevent a bus reset? */
5195static bool pci_bus_resetable(struct pci_bus *bus)
5196{
5197        struct pci_dev *dev;
5198
5199
5200        if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5201                return false;
5202
5203        list_for_each_entry(dev, &bus->devices, bus_list) {
5204                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5205                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5206                        return false;
5207        }
5208
5209        return true;
5210}
5211
5212/* Lock devices from the top of the tree down */
5213static void pci_bus_lock(struct pci_bus *bus)
5214{
5215        struct pci_dev *dev;
5216
5217        list_for_each_entry(dev, &bus->devices, bus_list) {
5218                pci_dev_lock(dev);
5219                if (dev->subordinate)
5220                        pci_bus_lock(dev->subordinate);
5221        }
5222}
5223
5224/* Unlock devices from the bottom of the tree up */
5225static void pci_bus_unlock(struct pci_bus *bus)
5226{
5227        struct pci_dev *dev;
5228
5229        list_for_each_entry(dev, &bus->devices, bus_list) {
5230                if (dev->subordinate)
5231                        pci_bus_unlock(dev->subordinate);
5232                pci_dev_unlock(dev);
5233        }
5234}
5235
5236/* Return 1 on successful lock, 0 on contention */
5237static int pci_bus_trylock(struct pci_bus *bus)
5238{
5239        struct pci_dev *dev;
5240
5241        list_for_each_entry(dev, &bus->devices, bus_list) {
5242                if (!pci_dev_trylock(dev))
5243                        goto unlock;
5244                if (dev->subordinate) {
5245                        if (!pci_bus_trylock(dev->subordinate)) {
5246                                pci_dev_unlock(dev);
5247                                goto unlock;
5248                        }
5249                }
5250        }
5251        return 1;
5252
5253unlock:
5254        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5255                if (dev->subordinate)
5256                        pci_bus_unlock(dev->subordinate);
5257                pci_dev_unlock(dev);
5258        }
5259        return 0;
5260}
5261
5262/* Do any devices on or below this slot prevent a bus reset? */
5263static bool pci_slot_resetable(struct pci_slot *slot)
5264{
5265        struct pci_dev *dev;
5266
5267        if (slot->bus->self &&
5268            (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5269                return false;
5270
5271        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5272                if (!dev->slot || dev->slot != slot)
5273                        continue;
5274                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5275                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5276                        return false;
5277        }
5278
5279        return true;
5280}
5281
5282/* Lock devices from the top of the tree down */
5283static void pci_slot_lock(struct pci_slot *slot)
5284{
5285        struct pci_dev *dev;
5286
5287        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5288                if (!dev->slot || dev->slot != slot)
5289                        continue;
5290                pci_dev_lock(dev);
5291                if (dev->subordinate)
5292                        pci_bus_lock(dev->subordinate);
5293        }
5294}
5295
5296/* Unlock devices from the bottom of the tree up */
5297static void pci_slot_unlock(struct pci_slot *slot)
5298{
5299        struct pci_dev *dev;
5300
5301        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5302                if (!dev->slot || dev->slot != slot)
5303                        continue;
5304                if (dev->subordinate)
5305                        pci_bus_unlock(dev->subordinate);
5306                pci_dev_unlock(dev);
5307        }
5308}
5309
5310/* Return 1 on successful lock, 0 on contention */
5311static int pci_slot_trylock(struct pci_slot *slot)
5312{
5313        struct pci_dev *dev;
5314
5315        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5316                if (!dev->slot || dev->slot != slot)
5317                        continue;
5318                if (!pci_dev_trylock(dev))
5319                        goto unlock;
5320                if (dev->subordinate) {
5321                        if (!pci_bus_trylock(dev->subordinate)) {
5322                                pci_dev_unlock(dev);
5323                                goto unlock;
5324                        }
5325                }
5326        }
5327        return 1;
5328
5329unlock:
5330        list_for_each_entry_continue_reverse(dev,
5331                                             &slot->bus->devices, bus_list) {
5332                if (!dev->slot || dev->slot != slot)
5333                        continue;
5334                if (dev->subordinate)
5335                        pci_bus_unlock(dev->subordinate);
5336                pci_dev_unlock(dev);
5337        }
5338        return 0;
5339}
5340
5341/*
5342 * Save and disable devices from the top of the tree down while holding
5343 * the @dev mutex lock for the entire tree.
5344 */
5345static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5346{
5347        struct pci_dev *dev;
5348
5349        list_for_each_entry(dev, &bus->devices, bus_list) {
5350                pci_dev_save_and_disable(dev);
5351                if (dev->subordinate)
5352                        pci_bus_save_and_disable_locked(dev->subordinate);
5353        }
5354}
5355
5356/*
5357 * Restore devices from top of the tree down while holding @dev mutex lock
5358 * for the entire tree.  Parent bridges need to be restored before we can
5359 * get to subordinate devices.
5360 */
5361static void pci_bus_restore_locked(struct pci_bus *bus)
5362{
5363        struct pci_dev *dev;
5364
5365        list_for_each_entry(dev, &bus->devices, bus_list) {
5366                pci_dev_restore(dev);
5367                if (dev->subordinate)
5368                        pci_bus_restore_locked(dev->subordinate);
5369        }
5370}
5371
5372/*
5373 * Save and disable devices from the top of the tree down while holding
5374 * the @dev mutex lock for the entire tree.
5375 */
5376static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5377{
5378        struct pci_dev *dev;
5379
5380        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5381                if (!dev->slot || dev->slot != slot)
5382                        continue;
5383                pci_dev_save_and_disable(dev);
5384                if (dev->subordinate)
5385                        pci_bus_save_and_disable_locked(dev->subordinate);
5386        }
5387}
5388
5389/*
5390 * Restore devices from top of the tree down while holding @dev mutex lock
5391 * for the entire tree.  Parent bridges need to be restored before we can
5392 * get to subordinate devices.
5393 */
5394static void pci_slot_restore_locked(struct pci_slot *slot)
5395{
5396        struct pci_dev *dev;
5397
5398        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5399                if (!dev->slot || dev->slot != slot)
5400                        continue;
5401                pci_dev_restore(dev);
5402                if (dev->subordinate)
5403                        pci_bus_restore_locked(dev->subordinate);
5404        }
5405}
5406
5407static int pci_slot_reset(struct pci_slot *slot, int probe)
5408{
5409        int rc;
5410
5411        if (!slot || !pci_slot_resetable(slot))
5412                return -ENOTTY;
5413
5414        if (!probe)
5415                pci_slot_lock(slot);
5416
5417        might_sleep();
5418
5419        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5420
5421        if (!probe)
5422                pci_slot_unlock(slot);
5423
5424        return rc;
5425}
5426
5427/**
5428 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5429 * @slot: PCI slot to probe
5430 *
5431 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5432 */
5433int pci_probe_reset_slot(struct pci_slot *slot)
5434{
5435        return pci_slot_reset(slot, 1);
5436}
5437EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5438
5439/**
5440 * __pci_reset_slot - Try to reset a PCI slot
5441 * @slot: PCI slot to reset
5442 *
5443 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5444 * independent of other slots.  For instance, some slots may support slot power
5445 * control.  In the case of a 1:1 bus to slot architecture, this function may
5446 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5447 * Generally a slot reset should be attempted before a bus reset.  All of the
5448 * function of the slot and any subordinate buses behind the slot are reset
5449 * through this function.  PCI config space of all devices in the slot and
5450 * behind the slot is saved before and restored after reset.
5451 *
5452 * Same as above except return -EAGAIN if the slot cannot be locked
5453 */
5454static int __pci_reset_slot(struct pci_slot *slot)
5455{
5456        int rc;
5457
5458        rc = pci_slot_reset(slot, 1);
5459        if (rc)
5460                return rc;
5461
5462        if (pci_slot_trylock(slot)) {
5463                pci_slot_save_and_disable_locked(slot);
5464                might_sleep();
5465                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5466                pci_slot_restore_locked(slot);
5467                pci_slot_unlock(slot);
5468        } else
5469                rc = -EAGAIN;
5470
5471        return rc;
5472}
5473
5474static int pci_bus_reset(struct pci_bus *bus, int probe)
5475{
5476        int ret;
5477
5478        if (!bus->self || !pci_bus_resetable(bus))
5479                return -ENOTTY;
5480
5481        if (probe)
5482                return 0;
5483
5484        pci_bus_lock(bus);
5485
5486        might_sleep();
5487
5488        ret = pci_bridge_secondary_bus_reset(bus->self);
5489
5490        pci_bus_unlock(bus);
5491
5492        return ret;
5493}
5494
5495/**
5496 * pci_bus_error_reset - reset the bridge's subordinate bus
5497 * @bridge: The parent device that connects to the bus to reset
5498 *
5499 * This function will first try to reset the slots on this bus if the method is
5500 * available. If slot reset fails or is not available, this will fall back to a
5501 * secondary bus reset.
5502 */
5503int pci_bus_error_reset(struct pci_dev *bridge)
5504{
5505        struct pci_bus *bus = bridge->subordinate;
5506        struct pci_slot *slot;
5507
5508        if (!bus)
5509                return -ENOTTY;
5510
5511        mutex_lock(&pci_slot_mutex);
5512        if (list_empty(&bus->slots))
5513                goto bus_reset;
5514
5515        list_for_each_entry(slot, &bus->slots, list)
5516                if (pci_probe_reset_slot(slot))
5517                        goto bus_reset;
5518
5519        list_for_each_entry(slot, &bus->slots, list)
5520                if (pci_slot_reset(slot, 0))
5521                        goto bus_reset;
5522
5523        mutex_unlock(&pci_slot_mutex);
5524        return 0;
5525bus_reset:
5526        mutex_unlock(&pci_slot_mutex);
5527        return pci_bus_reset(bridge->subordinate, 0);
5528}
5529
5530/**
5531 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5532 * @bus: PCI bus to probe
5533 *
5534 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5535 */
5536int pci_probe_reset_bus(struct pci_bus *bus)
5537{
5538        return pci_bus_reset(bus, 1);
5539}
5540EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5541
5542/**
5543 * __pci_reset_bus - Try to reset a PCI bus
5544 * @bus: top level PCI bus to reset
5545 *
5546 * Same as above except return -EAGAIN if the bus cannot be locked
5547 */
5548static int __pci_reset_bus(struct pci_bus *bus)
5549{
5550        int rc;
5551
5552        rc = pci_bus_reset(bus, 1);
5553        if (rc)
5554                return rc;
5555
5556        if (pci_bus_trylock(bus)) {
5557                pci_bus_save_and_disable_locked(bus);
5558                might_sleep();
5559                rc = pci_bridge_secondary_bus_reset(bus->self);
5560                pci_bus_restore_locked(bus);
5561                pci_bus_unlock(bus);
5562        } else
5563                rc = -EAGAIN;
5564
5565        return rc;
5566}
5567
5568/**
5569 * pci_reset_bus - Try to reset a PCI bus
5570 * @pdev: top level PCI device to reset via slot/bus
5571 *
5572 * Same as above except return -EAGAIN if the bus cannot be locked
5573 */
5574int pci_reset_bus(struct pci_dev *pdev)
5575{
5576        return (!pci_probe_reset_slot(pdev->slot)) ?
5577            __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5578}
5579EXPORT_SYMBOL_GPL(pci_reset_bus);
5580
5581/**
5582 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5583 * @dev: PCI device to query
5584 *
5585 * Returns mmrbc: maximum designed memory read count in bytes or
5586 * appropriate error value.
5587 */
5588int pcix_get_max_mmrbc(struct pci_dev *dev)
5589{
5590        int cap;
5591        u32 stat;
5592
5593        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5594        if (!cap)
5595                return -EINVAL;
5596
5597        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5598                return -EINVAL;
5599
5600        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5601}
5602EXPORT_SYMBOL(pcix_get_max_mmrbc);
5603
5604/**
5605 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5606 * @dev: PCI device to query
5607 *
5608 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5609 * value.
5610 */
5611int pcix_get_mmrbc(struct pci_dev *dev)
5612{
5613        int cap;
5614        u16 cmd;
5615
5616        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5617        if (!cap)
5618                return -EINVAL;
5619
5620        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5621                return -EINVAL;
5622
5623        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5624}
5625EXPORT_SYMBOL(pcix_get_mmrbc);
5626
5627/**
5628 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5629 * @dev: PCI device to query
5630 * @mmrbc: maximum memory read count in bytes
5631 *    valid values are 512, 1024, 2048, 4096
5632 *
5633 * If possible sets maximum memory read byte count, some bridges have errata
5634 * that prevent this.
5635 */
5636int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5637{
5638        int cap;
5639        u32 stat, v, o;
5640        u16 cmd;
5641
5642        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5643                return -EINVAL;
5644
5645        v = ffs(mmrbc) - 10;
5646
5647        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5648        if (!cap)
5649                return -EINVAL;
5650
5651        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5652                return -EINVAL;
5653
5654        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5655                return -E2BIG;
5656
5657        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5658                return -EINVAL;
5659
5660        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5661        if (o != v) {
5662                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5663                        return -EIO;
5664
5665                cmd &= ~PCI_X_CMD_MAX_READ;
5666                cmd |= v << 2;
5667                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5668                        return -EIO;
5669        }
5670        return 0;
5671}
5672EXPORT_SYMBOL(pcix_set_mmrbc);
5673
5674/**
5675 * pcie_get_readrq - get PCI Express read request size
5676 * @dev: PCI device to query
5677 *
5678 * Returns maximum memory read request in bytes or appropriate error value.
5679 */
5680int pcie_get_readrq(struct pci_dev *dev)
5681{
5682        u16 ctl;
5683
5684        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5685
5686        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5687}
5688EXPORT_SYMBOL(pcie_get_readrq);
5689
5690/**
5691 * pcie_set_readrq - set PCI Express maximum memory read request
5692 * @dev: PCI device to query
5693 * @rq: maximum memory read count in bytes
5694 *    valid values are 128, 256, 512, 1024, 2048, 4096
5695 *
5696 * If possible sets maximum memory read request in bytes
5697 */
5698int pcie_set_readrq(struct pci_dev *dev, int rq)
5699{
5700        u16 v;
5701
5702        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5703                return -EINVAL;
5704
5705        /*
5706         * If using the "performance" PCIe config, we clamp the read rq
5707         * size to the max packet size to keep the host bridge from
5708         * generating requests larger than we can cope with.
5709         */
5710        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5711                int mps = pcie_get_mps(dev);
5712
5713                if (mps < rq)
5714                        rq = mps;
5715        }
5716
5717        v = (ffs(rq) - 8) << 12;
5718
5719        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5720                                                  PCI_EXP_DEVCTL_READRQ, v);
5721}
5722EXPORT_SYMBOL(pcie_set_readrq);
5723
5724/**
5725 * pcie_get_mps - get PCI Express maximum payload size
5726 * @dev: PCI device to query
5727 *
5728 * Returns maximum payload size in bytes
5729 */
5730int pcie_get_mps(struct pci_dev *dev)
5731{
5732        u16 ctl;
5733
5734        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5735
5736        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5737}
5738EXPORT_SYMBOL(pcie_get_mps);
5739
5740/**
5741 * pcie_set_mps - set PCI Express maximum payload size
5742 * @dev: PCI device to query
5743 * @mps: maximum payload size in bytes
5744 *    valid values are 128, 256, 512, 1024, 2048, 4096
5745 *
5746 * If possible sets maximum payload size
5747 */
5748int pcie_set_mps(struct pci_dev *dev, int mps)
5749{
5750        u16 v;
5751
5752        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5753                return -EINVAL;
5754
5755        v = ffs(mps) - 8;
5756        if (v > dev->pcie_mpss)
5757                return -EINVAL;
5758        v <<= 5;
5759
5760        return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5761                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
5762}
5763EXPORT_SYMBOL(pcie_set_mps);
5764
5765/**
5766 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5767 *                            device and its bandwidth limitation
5768 * @dev: PCI device to query
5769 * @limiting_dev: storage for device causing the bandwidth limitation
5770 * @speed: storage for speed of limiting device
5771 * @width: storage for width of limiting device
5772 *
5773 * Walk up the PCI device chain and find the point where the minimum
5774 * bandwidth is available.  Return the bandwidth available there and (if
5775 * limiting_dev, speed, and width pointers are supplied) information about
5776 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5777 * raw bandwidth.
5778 */
5779u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5780                             enum pci_bus_speed *speed,
5781                             enum pcie_link_width *width)
5782{
5783        u16 lnksta;
5784        enum pci_bus_speed next_speed;
5785        enum pcie_link_width next_width;
5786        u32 bw, next_bw;
5787
5788        if (speed)
5789                *speed = PCI_SPEED_UNKNOWN;
5790        if (width)
5791                *width = PCIE_LNK_WIDTH_UNKNOWN;
5792
5793        bw = 0;
5794
5795        while (dev) {
5796                pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5797
5798                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5799                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5800                        PCI_EXP_LNKSTA_NLW_SHIFT;
5801
5802                next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5803
5804                /* Check if current device limits the total bandwidth */
5805                if (!bw || next_bw <= bw) {
5806                        bw = next_bw;
5807
5808                        if (limiting_dev)
5809                                *limiting_dev = dev;
5810                        if (speed)
5811                                *speed = next_speed;
5812                        if (width)
5813                                *width = next_width;
5814                }
5815
5816                dev = pci_upstream_bridge(dev);
5817        }
5818
5819        return bw;
5820}
5821EXPORT_SYMBOL(pcie_bandwidth_available);
5822
5823/**
5824 * pcie_get_speed_cap - query for the PCI device's link speed capability
5825 * @dev: PCI device to query
5826 *
5827 * Query the PCI device speed capability.  Return the maximum link speed
5828 * supported by the device.
5829 */
5830enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5831{
5832        u32 lnkcap2, lnkcap;
5833
5834        /*
5835         * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5836         * implementation note there recommends using the Supported Link
5837         * Speeds Vector in Link Capabilities 2 when supported.
5838         *
5839         * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5840         * should use the Supported Link Speeds field in Link Capabilities,
5841         * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5842         */
5843        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5844
5845        /* PCIe r3.0-compliant */
5846        if (lnkcap2)
5847                return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5848
5849        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5850        if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5851                return PCIE_SPEED_5_0GT;
5852        else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5853                return PCIE_SPEED_2_5GT;
5854
5855        return PCI_SPEED_UNKNOWN;
5856}
5857EXPORT_SYMBOL(pcie_get_speed_cap);
5858
5859/**
5860 * pcie_get_width_cap - query for the PCI device's link width capability
5861 * @dev: PCI device to query
5862 *
5863 * Query the PCI device width capability.  Return the maximum link width
5864 * supported by the device.
5865 */
5866enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5867{
5868        u32 lnkcap;
5869
5870        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5871        if (lnkcap)
5872                return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5873
5874        return PCIE_LNK_WIDTH_UNKNOWN;
5875}
5876EXPORT_SYMBOL(pcie_get_width_cap);
5877
5878/**
5879 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5880 * @dev: PCI device
5881 * @speed: storage for link speed
5882 * @width: storage for link width
5883 *
5884 * Calculate a PCI device's link bandwidth by querying for its link speed
5885 * and width, multiplying them, and applying encoding overhead.  The result
5886 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5887 */
5888u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5889                           enum pcie_link_width *width)
5890{
5891        *speed = pcie_get_speed_cap(dev);
5892        *width = pcie_get_width_cap(dev);
5893
5894        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5895                return 0;
5896
5897        return *width * PCIE_SPEED2MBS_ENC(*speed);
5898}
5899
5900/**
5901 * __pcie_print_link_status - Report the PCI device's link speed and width
5902 * @dev: PCI device to query
5903 * @verbose: Print info even when enough bandwidth is available
5904 *
5905 * If the available bandwidth at the device is less than the device is
5906 * capable of, report the device's maximum possible bandwidth and the
5907 * upstream link that limits its performance.  If @verbose, always print
5908 * the available bandwidth, even if the device isn't constrained.
5909 */
5910void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5911{
5912        enum pcie_link_width width, width_cap;
5913        enum pci_bus_speed speed, speed_cap;
5914        struct pci_dev *limiting_dev = NULL;
5915        u32 bw_avail, bw_cap;
5916
5917        bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5918        bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5919
5920        if (bw_avail >= bw_cap && verbose)
5921                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5922                         bw_cap / 1000, bw_cap % 1000,
5923                         pci_speed_string(speed_cap), width_cap);
5924        else if (bw_avail < bw_cap)
5925                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5926                         bw_avail / 1000, bw_avail % 1000,
5927                         pci_speed_string(speed), width,
5928                         limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5929                         bw_cap / 1000, bw_cap % 1000,
5930                         pci_speed_string(speed_cap), width_cap);
5931}
5932
5933/**
5934 * pcie_print_link_status - Report the PCI device's link speed and width
5935 * @dev: PCI device to query
5936 *
5937 * Report the available bandwidth at the device.
5938 */
5939void pcie_print_link_status(struct pci_dev *dev)
5940{
5941        __pcie_print_link_status(dev, true);
5942}
5943EXPORT_SYMBOL(pcie_print_link_status);
5944
5945/**
5946 * pci_select_bars - Make BAR mask from the type of resource
5947 * @dev: the PCI device for which BAR mask is made
5948 * @flags: resource type mask to be selected
5949 *
5950 * This helper routine makes bar mask from the type of resource.
5951 */
5952int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5953{
5954        int i, bars = 0;
5955        for (i = 0; i < PCI_NUM_RESOURCES; i++)
5956                if (pci_resource_flags(dev, i) & flags)
5957                        bars |= (1 << i);
5958        return bars;
5959}
5960EXPORT_SYMBOL(pci_select_bars);
5961
5962/* Some architectures require additional programming to enable VGA */
5963static arch_set_vga_state_t arch_set_vga_state;
5964
5965void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5966{
5967        arch_set_vga_state = func;      /* NULL disables */
5968}
5969
5970static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5971                                  unsigned int command_bits, u32 flags)
5972{
5973        if (arch_set_vga_state)
5974                return arch_set_vga_state(dev, decode, command_bits,
5975                                                flags);
5976        return 0;
5977}
5978
5979/**
5980 * pci_set_vga_state - set VGA decode state on device and parents if requested
5981 * @dev: the PCI device
5982 * @decode: true = enable decoding, false = disable decoding
5983 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5984 * @flags: traverse ancestors and change bridges
5985 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5986 */
5987int pci_set_vga_state(struct pci_dev *dev, bool decode,
5988                      unsigned int command_bits, u32 flags)
5989{
5990        struct pci_bus *bus;
5991        struct pci_dev *bridge;
5992        u16 cmd;
5993        int rc;
5994
5995        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5996
5997        /* ARCH specific VGA enables */
5998        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5999        if (rc)
6000                return rc;
6001
6002        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6003                pci_read_config_word(dev, PCI_COMMAND, &cmd);
6004                if (decode == true)
6005                        cmd |= command_bits;
6006                else
6007                        cmd &= ~command_bits;
6008                pci_write_config_word(dev, PCI_COMMAND, cmd);
6009        }
6010
6011        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6012                return 0;
6013
6014        bus = dev->bus;
6015        while (bus) {
6016                bridge = bus->self;
6017                if (bridge) {
6018                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6019                                             &cmd);
6020                        if (decode == true)
6021                                cmd |= PCI_BRIDGE_CTL_VGA;
6022                        else
6023                                cmd &= ~PCI_BRIDGE_CTL_VGA;
6024                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6025                                              cmd);
6026                }
6027                bus = bus->parent;
6028        }
6029        return 0;
6030}
6031
6032#ifdef CONFIG_ACPI
6033bool pci_pr3_present(struct pci_dev *pdev)
6034{
6035        struct acpi_device *adev;
6036
6037        if (acpi_disabled)
6038                return false;
6039
6040        adev = ACPI_COMPANION(&pdev->dev);
6041        if (!adev)
6042                return false;
6043
6044        return adev->power.flags.power_resources &&
6045                acpi_has_method(adev->handle, "_PR3");
6046}
6047EXPORT_SYMBOL_GPL(pci_pr3_present);
6048#endif
6049
6050/**
6051 * pci_add_dma_alias - Add a DMA devfn alias for a device
6052 * @dev: the PCI device for which alias is added
6053 * @devfn_from: alias slot and function
6054 * @nr_devfns: number of subsequent devfns to alias
6055 *
6056 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6057 * which is used to program permissible bus-devfn source addresses for DMA
6058 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6059 * and are useful for devices generating DMA requests beyond or different
6060 * from their logical bus-devfn.  Examples include device quirks where the
6061 * device simply uses the wrong devfn, as well as non-transparent bridges
6062 * where the alias may be a proxy for devices in another domain.
6063 *
6064 * IOMMU group creation is performed during device discovery or addition,
6065 * prior to any potential DMA mapping and therefore prior to driver probing
6066 * (especially for userspace assigned devices where IOMMU group definition
6067 * cannot be left as a userspace activity).  DMA aliases should therefore
6068 * be configured via quirks, such as the PCI fixup header quirk.
6069 */
6070void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6071{
6072        int devfn_to;
6073
6074        nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6075        devfn_to = devfn_from + nr_devfns - 1;
6076
6077        if (!dev->dma_alias_mask)
6078                dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6079        if (!dev->dma_alias_mask) {
6080                pci_warn(dev, "Unable to allocate DMA alias mask\n");
6081                return;
6082        }
6083
6084        bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6085
6086        if (nr_devfns == 1)
6087                pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6088                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6089        else if (nr_devfns > 1)
6090                pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6091                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6092                                PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6093}
6094
6095bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6096{
6097        return (dev1->dma_alias_mask &&
6098                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6099               (dev2->dma_alias_mask &&
6100                test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6101               pci_real_dma_dev(dev1) == dev2 ||
6102               pci_real_dma_dev(dev2) == dev1;
6103}
6104
6105bool pci_device_is_present(struct pci_dev *pdev)
6106{
6107        u32 v;
6108
6109        if (pci_dev_is_disconnected(pdev))
6110                return false;
6111        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6112}
6113EXPORT_SYMBOL_GPL(pci_device_is_present);
6114
6115void pci_ignore_hotplug(struct pci_dev *dev)
6116{
6117        struct pci_dev *bridge = dev->bus->self;
6118
6119        dev->ignore_hotplug = 1;
6120        /* Propagate the "ignore hotplug" setting to the parent bridge. */
6121        if (bridge)
6122                bridge->ignore_hotplug = 1;
6123}
6124EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6125
6126/**
6127 * pci_real_dma_dev - Get PCI DMA device for PCI device
6128 * @dev: the PCI device that may have a PCI DMA alias
6129 *
6130 * Permits the platform to provide architecture-specific functionality to
6131 * devices needing to alias DMA to another PCI device on another PCI bus. If
6132 * the PCI device is on the same bus, it is recommended to use
6133 * pci_add_dma_alias(). This is the default implementation. Architecture
6134 * implementations can override this.
6135 */
6136struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6137{
6138        return dev;
6139}
6140
6141resource_size_t __weak pcibios_default_alignment(void)
6142{
6143        return 0;
6144}
6145
6146/*
6147 * Arches that don't want to expose struct resource to userland as-is in
6148 * sysfs and /proc can implement their own pci_resource_to_user().
6149 */
6150void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6151                                 const struct resource *rsrc,
6152                                 resource_size_t *start, resource_size_t *end)
6153{
6154        *start = rsrc->start;
6155        *end = rsrc->end;
6156}
6157
6158static char *resource_alignment_param;
6159static DEFINE_SPINLOCK(resource_alignment_lock);
6160
6161/**
6162 * pci_specified_resource_alignment - get resource alignment specified by user.
6163 * @dev: the PCI device to get
6164 * @resize: whether or not to change resources' size when reassigning alignment
6165 *
6166 * RETURNS: Resource alignment if it is specified.
6167 *          Zero if it is not specified.
6168 */
6169static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6170                                                        bool *resize)
6171{
6172        int align_order, count;
6173        resource_size_t align = pcibios_default_alignment();
6174        const char *p;
6175        int ret;
6176
6177        spin_lock(&resource_alignment_lock);
6178        p = resource_alignment_param;
6179        if (!p || !*p)
6180                goto out;
6181        if (pci_has_flag(PCI_PROBE_ONLY)) {
6182                align = 0;
6183                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6184                goto out;
6185        }
6186
6187        while (*p) {
6188                count = 0;
6189                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6190                                                        p[count] == '@') {
6191                        p += count + 1;
6192                } else {
6193                        align_order = -1;
6194                }
6195
6196                ret = pci_dev_str_match(dev, p, &p);
6197                if (ret == 1) {
6198                        *resize = true;
6199                        if (align_order == -1)
6200                                align = PAGE_SIZE;
6201                        else
6202                                align = 1 << align_order;
6203                        break;
6204                } else if (ret < 0) {
6205                        pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6206                               p);
6207                        break;
6208                }
6209
6210                if (*p != ';' && *p != ',') {
6211                        /* End of param or invalid format */
6212                        break;
6213                }
6214                p++;
6215        }
6216out:
6217        spin_unlock(&resource_alignment_lock);
6218        return align;
6219}
6220
6221static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6222                                           resource_size_t align, bool resize)
6223{
6224        struct resource *r = &dev->resource[bar];
6225        resource_size_t size;
6226
6227        if (!(r->flags & IORESOURCE_MEM))
6228                return;
6229
6230        if (r->flags & IORESOURCE_PCI_FIXED) {
6231                pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6232                         bar, r, (unsigned long long)align);
6233                return;
6234        }
6235
6236        size = resource_size(r);
6237        if (size >= align)
6238                return;
6239
6240        /*
6241         * Increase the alignment of the resource.  There are two ways we
6242         * can do this:
6243         *
6244         * 1) Increase the size of the resource.  BARs are aligned on their
6245         *    size, so when we reallocate space for this resource, we'll
6246         *    allocate it with the larger alignment.  This also prevents
6247         *    assignment of any other BARs inside the alignment region, so
6248         *    if we're requesting page alignment, this means no other BARs
6249         *    will share the page.
6250         *
6251         *    The disadvantage is that this makes the resource larger than
6252         *    the hardware BAR, which may break drivers that compute things
6253         *    based on the resource size, e.g., to find registers at a
6254         *    fixed offset before the end of the BAR.
6255         *
6256         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6257         *    set r->start to the desired alignment.  By itself this
6258         *    doesn't prevent other BARs being put inside the alignment
6259         *    region, but if we realign *every* resource of every device in
6260         *    the system, none of them will share an alignment region.
6261         *
6262         * When the user has requested alignment for only some devices via
6263         * the "pci=resource_alignment" argument, "resize" is true and we
6264         * use the first method.  Otherwise we assume we're aligning all
6265         * devices and we use the second.
6266         */
6267
6268        pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6269                 bar, r, (unsigned long long)align);
6270
6271        if (resize) {
6272                r->start = 0;
6273                r->end = align - 1;
6274        } else {
6275                r->flags &= ~IORESOURCE_SIZEALIGN;
6276                r->flags |= IORESOURCE_STARTALIGN;
6277                r->start = align;
6278                r->end = r->start + size - 1;
6279        }
6280        r->flags |= IORESOURCE_UNSET;
6281}
6282
6283/*
6284 * This function disables memory decoding and releases memory resources
6285 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6286 * It also rounds up size to specified alignment.
6287 * Later on, the kernel will assign page-aligned memory resource back
6288 * to the device.
6289 */
6290void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6291{
6292        int i;
6293        struct resource *r;
6294        resource_size_t align;
6295        u16 command;
6296        bool resize = false;
6297
6298        /*
6299         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6300         * 3.4.1.11.  Their resources are allocated from the space
6301         * described by the VF BARx register in the PF's SR-IOV capability.
6302         * We can't influence their alignment here.
6303         */
6304        if (dev->is_virtfn)
6305                return;
6306
6307        /* check if specified PCI is target device to reassign */
6308        align = pci_specified_resource_alignment(dev, &resize);
6309        if (!align)
6310                return;
6311
6312        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6313            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6314                pci_warn(dev, "Can't reassign resources to host bridge\n");
6315                return;
6316        }
6317
6318        pci_read_config_word(dev, PCI_COMMAND, &command);
6319        command &= ~PCI_COMMAND_MEMORY;
6320        pci_write_config_word(dev, PCI_COMMAND, command);
6321
6322        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6323                pci_request_resource_alignment(dev, i, align, resize);
6324
6325        /*
6326         * Need to disable bridge's resource window,
6327         * to enable the kernel to reassign new resource
6328         * window later on.
6329         */
6330        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6331                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6332                        r = &dev->resource[i];
6333                        if (!(r->flags & IORESOURCE_MEM))
6334                                continue;
6335                        r->flags |= IORESOURCE_UNSET;
6336                        r->end = resource_size(r) - 1;
6337                        r->start = 0;
6338                }
6339                pci_disable_bridge_window(dev);
6340        }
6341}
6342
6343static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6344{
6345        size_t count = 0;
6346
6347        spin_lock(&resource_alignment_lock);
6348        if (resource_alignment_param)
6349                count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6350        spin_unlock(&resource_alignment_lock);
6351
6352        /*
6353         * When set by the command line, resource_alignment_param will not
6354         * have a trailing line feed, which is ugly. So conditionally add
6355         * it here.
6356         */
6357        if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6358                buf[count - 1] = '\n';
6359                buf[count++] = 0;
6360        }
6361
6362        return count;
6363}
6364
6365static ssize_t resource_alignment_store(struct bus_type *bus,
6366                                        const char *buf, size_t count)
6367{
6368        char *param = kstrndup(buf, count, GFP_KERNEL);
6369
6370        if (!param)
6371                return -ENOMEM;
6372
6373        spin_lock(&resource_alignment_lock);
6374        kfree(resource_alignment_param);
6375        resource_alignment_param = param;
6376        spin_unlock(&resource_alignment_lock);
6377        return count;
6378}
6379
6380static BUS_ATTR_RW(resource_alignment);
6381
6382static int __init pci_resource_alignment_sysfs_init(void)
6383{
6384        return bus_create_file(&pci_bus_type,
6385                                        &bus_attr_resource_alignment);
6386}
6387late_initcall(pci_resource_alignment_sysfs_init);
6388
6389static void pci_no_domains(void)
6390{
6391#ifdef CONFIG_PCI_DOMAINS
6392        pci_domains_supported = 0;
6393#endif
6394}
6395
6396#ifdef CONFIG_PCI_DOMAINS_GENERIC
6397static atomic_t __domain_nr = ATOMIC_INIT(-1);
6398
6399static int pci_get_new_domain_nr(void)
6400{
6401        return atomic_inc_return(&__domain_nr);
6402}
6403
6404static int of_pci_bus_find_domain_nr(struct device *parent)
6405{
6406        static int use_dt_domains = -1;
6407        int domain = -1;
6408
6409        if (parent)
6410                domain = of_get_pci_domain_nr(parent->of_node);
6411
6412        /*
6413         * Check DT domain and use_dt_domains values.
6414         *
6415         * If DT domain property is valid (domain >= 0) and
6416         * use_dt_domains != 0, the DT assignment is valid since this means
6417         * we have not previously allocated a domain number by using
6418         * pci_get_new_domain_nr(); we should also update use_dt_domains to
6419         * 1, to indicate that we have just assigned a domain number from
6420         * DT.
6421         *
6422         * If DT domain property value is not valid (ie domain < 0), and we
6423         * have not previously assigned a domain number from DT
6424         * (use_dt_domains != 1) we should assign a domain number by
6425         * using the:
6426         *
6427         * pci_get_new_domain_nr()
6428         *
6429         * API and update the use_dt_domains value to keep track of method we
6430         * are using to assign domain numbers (use_dt_domains = 0).
6431         *
6432         * All other combinations imply we have a platform that is trying
6433         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6434         * which is a recipe for domain mishandling and it is prevented by
6435         * invalidating the domain value (domain = -1) and printing a
6436         * corresponding error.
6437         */
6438        if (domain >= 0 && use_dt_domains) {
6439                use_dt_domains = 1;
6440        } else if (domain < 0 && use_dt_domains != 1) {
6441                use_dt_domains = 0;
6442                domain = pci_get_new_domain_nr();
6443        } else {
6444                if (parent)
6445                        pr_err("Node %pOF has ", parent->of_node);
6446                pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6447                domain = -1;
6448        }
6449
6450        return domain;
6451}
6452
6453int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6454{
6455        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6456                               acpi_pci_bus_find_domain_nr(bus);
6457}
6458#endif
6459
6460/**
6461 * pci_ext_cfg_avail - can we access extended PCI config space?
6462 *
6463 * Returns 1 if we can access PCI extended config space (offsets
6464 * greater than 0xff). This is the default implementation. Architecture
6465 * implementations can override this.
6466 */
6467int __weak pci_ext_cfg_avail(void)
6468{
6469        return 1;
6470}
6471
6472void __weak pci_fixup_cardbus(struct pci_bus *bus)
6473{
6474}
6475EXPORT_SYMBOL(pci_fixup_cardbus);
6476
6477static int __init pci_setup(char *str)
6478{
6479        while (str) {
6480                char *k = strchr(str, ',');
6481                if (k)
6482                        *k++ = 0;
6483                if (*str && (str = pcibios_setup(str)) && *str) {
6484                        if (!strcmp(str, "nomsi")) {
6485                                pci_no_msi();
6486                        } else if (!strncmp(str, "noats", 5)) {
6487                                pr_info("PCIe: ATS is disabled\n");
6488                                pcie_ats_disabled = true;
6489                        } else if (!strcmp(str, "noaer")) {
6490                                pci_no_aer();
6491                        } else if (!strcmp(str, "earlydump")) {
6492                                pci_early_dump = true;
6493                        } else if (!strncmp(str, "realloc=", 8)) {
6494                                pci_realloc_get_opt(str + 8);
6495                        } else if (!strncmp(str, "realloc", 7)) {
6496                                pci_realloc_get_opt("on");
6497                        } else if (!strcmp(str, "nodomains")) {
6498                                pci_no_domains();
6499                        } else if (!strncmp(str, "noari", 5)) {
6500                                pcie_ari_disabled = true;
6501                        } else if (!strncmp(str, "cbiosize=", 9)) {
6502                                pci_cardbus_io_size = memparse(str + 9, &str);
6503                        } else if (!strncmp(str, "cbmemsize=", 10)) {
6504                                pci_cardbus_mem_size = memparse(str + 10, &str);
6505                        } else if (!strncmp(str, "resource_alignment=", 19)) {
6506                                resource_alignment_param = str + 19;
6507                        } else if (!strncmp(str, "ecrc=", 5)) {
6508                                pcie_ecrc_get_policy(str + 5);
6509                        } else if (!strncmp(str, "hpiosize=", 9)) {
6510                                pci_hotplug_io_size = memparse(str + 9, &str);
6511                        } else if (!strncmp(str, "hpmmiosize=", 11)) {
6512                                pci_hotplug_mmio_size = memparse(str + 11, &str);
6513                        } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6514                                pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6515                        } else if (!strncmp(str, "hpmemsize=", 10)) {
6516                                pci_hotplug_mmio_size = memparse(str + 10, &str);
6517                                pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6518                        } else if (!strncmp(str, "hpbussize=", 10)) {
6519                                pci_hotplug_bus_size =
6520                                        simple_strtoul(str + 10, &str, 0);
6521                                if (pci_hotplug_bus_size > 0xff)
6522                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6523                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6524                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
6525                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6526                                pcie_bus_config = PCIE_BUS_SAFE;
6527                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6528                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
6529                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6530                                pcie_bus_config = PCIE_BUS_PEER2PEER;
6531                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
6532                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6533                        } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6534                                disable_acs_redir_param = str + 18;
6535                        } else {
6536                                pr_err("PCI: Unknown option `%s'\n", str);
6537                        }
6538                }
6539                str = k;
6540        }
6541        return 0;
6542}
6543early_param("pci", pci_setup);
6544
6545/*
6546 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6547 * in pci_setup(), above, to point to data in the __initdata section which
6548 * will be freed after the init sequence is complete. We can't allocate memory
6549 * in pci_setup() because some architectures do not have any memory allocation
6550 * service available during an early_param() call. So we allocate memory and
6551 * copy the variable here before the init section is freed.
6552 *
6553 */
6554static int __init pci_realloc_setup_params(void)
6555{
6556        resource_alignment_param = kstrdup(resource_alignment_param,
6557                                           GFP_KERNEL);
6558        disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6559
6560        return 0;
6561}
6562pure_initcall(pci_realloc_setup_params);
6563