linux/drivers/regulator/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)                                       \
  37        pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)                                        \
  39        pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)                                       \
  41        pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)                                       \
  43        pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)                                        \
  45        pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
  55
  56static struct dentry *debugfs_root;
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64        struct list_head list;
  65        const char *dev_name;   /* The dev_name() for the consumer */
  66        const char *supply;
  67        struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
  76        struct list_head list;
  77        struct gpio_desc *gpiod;
  78        u32 enable_count;       /* a number of enabled shared GPIO */
  79        u32 request_count;      /* a number of requested shared GPIO */
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88        struct list_head list;
  89        struct device *src_dev;
  90        const char *src_supply;
  91        struct device *alias_dev;
  92        const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100                                  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102                                     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104                                     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106                                          struct device *dev,
 107                                          const char *supply_name);
 108static void _regulator_put(struct regulator *regulator);
 109
 110const char *rdev_get_name(struct regulator_dev *rdev)
 111{
 112        if (rdev->constraints && rdev->constraints->name)
 113                return rdev->constraints->name;
 114        else if (rdev->desc->name)
 115                return rdev->desc->name;
 116        else
 117                return "";
 118}
 119
 120static bool have_full_constraints(void)
 121{
 122        return has_full_constraints || of_have_populated_dt();
 123}
 124
 125static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 126{
 127        if (!rdev->constraints) {
 128                rdev_err(rdev, "no constraints\n");
 129                return false;
 130        }
 131
 132        if (rdev->constraints->valid_ops_mask & ops)
 133                return true;
 134
 135        return false;
 136}
 137
 138/**
 139 * regulator_lock_nested - lock a single regulator
 140 * @rdev:               regulator source
 141 * @ww_ctx:             w/w mutex acquire context
 142 *
 143 * This function can be called many times by one task on
 144 * a single regulator and its mutex will be locked only
 145 * once. If a task, which is calling this function is other
 146 * than the one, which initially locked the mutex, it will
 147 * wait on mutex.
 148 */
 149static inline int regulator_lock_nested(struct regulator_dev *rdev,
 150                                        struct ww_acquire_ctx *ww_ctx)
 151{
 152        bool lock = false;
 153        int ret = 0;
 154
 155        mutex_lock(&regulator_nesting_mutex);
 156
 157        if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 158                if (rdev->mutex_owner == current)
 159                        rdev->ref_cnt++;
 160                else
 161                        lock = true;
 162
 163                if (lock) {
 164                        mutex_unlock(&regulator_nesting_mutex);
 165                        ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 166                        mutex_lock(&regulator_nesting_mutex);
 167                }
 168        } else {
 169                lock = true;
 170        }
 171
 172        if (lock && ret != -EDEADLK) {
 173                rdev->ref_cnt++;
 174                rdev->mutex_owner = current;
 175        }
 176
 177        mutex_unlock(&regulator_nesting_mutex);
 178
 179        return ret;
 180}
 181
 182/**
 183 * regulator_lock - lock a single regulator
 184 * @rdev:               regulator source
 185 *
 186 * This function can be called many times by one task on
 187 * a single regulator and its mutex will be locked only
 188 * once. If a task, which is calling this function is other
 189 * than the one, which initially locked the mutex, it will
 190 * wait on mutex.
 191 */
 192void regulator_lock(struct regulator_dev *rdev)
 193{
 194        regulator_lock_nested(rdev, NULL);
 195}
 196EXPORT_SYMBOL_GPL(regulator_lock);
 197
 198/**
 199 * regulator_unlock - unlock a single regulator
 200 * @rdev:               regulator_source
 201 *
 202 * This function unlocks the mutex when the
 203 * reference counter reaches 0.
 204 */
 205void regulator_unlock(struct regulator_dev *rdev)
 206{
 207        mutex_lock(&regulator_nesting_mutex);
 208
 209        if (--rdev->ref_cnt == 0) {
 210                rdev->mutex_owner = NULL;
 211                ww_mutex_unlock(&rdev->mutex);
 212        }
 213
 214        WARN_ON_ONCE(rdev->ref_cnt < 0);
 215
 216        mutex_unlock(&regulator_nesting_mutex);
 217}
 218EXPORT_SYMBOL_GPL(regulator_unlock);
 219
 220static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 221{
 222        struct regulator_dev *c_rdev;
 223        int i;
 224
 225        for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 226                c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 227
 228                if (rdev->supply->rdev == c_rdev)
 229                        return true;
 230        }
 231
 232        return false;
 233}
 234
 235static void regulator_unlock_recursive(struct regulator_dev *rdev,
 236                                       unsigned int n_coupled)
 237{
 238        struct regulator_dev *c_rdev;
 239        int i;
 240
 241        for (i = n_coupled; i > 0; i--) {
 242                c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 243
 244                if (!c_rdev)
 245                        continue;
 246
 247                if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
 248                        regulator_unlock_recursive(
 249                                        c_rdev->supply->rdev,
 250                                        c_rdev->coupling_desc.n_coupled);
 251
 252                regulator_unlock(c_rdev);
 253        }
 254}
 255
 256static int regulator_lock_recursive(struct regulator_dev *rdev,
 257                                    struct regulator_dev **new_contended_rdev,
 258                                    struct regulator_dev **old_contended_rdev,
 259                                    struct ww_acquire_ctx *ww_ctx)
 260{
 261        struct regulator_dev *c_rdev;
 262        int i, err;
 263
 264        for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 265                c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 266
 267                if (!c_rdev)
 268                        continue;
 269
 270                if (c_rdev != *old_contended_rdev) {
 271                        err = regulator_lock_nested(c_rdev, ww_ctx);
 272                        if (err) {
 273                                if (err == -EDEADLK) {
 274                                        *new_contended_rdev = c_rdev;
 275                                        goto err_unlock;
 276                                }
 277
 278                                /* shouldn't happen */
 279                                WARN_ON_ONCE(err != -EALREADY);
 280                        }
 281                } else {
 282                        *old_contended_rdev = NULL;
 283                }
 284
 285                if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 286                        err = regulator_lock_recursive(c_rdev->supply->rdev,
 287                                                       new_contended_rdev,
 288                                                       old_contended_rdev,
 289                                                       ww_ctx);
 290                        if (err) {
 291                                regulator_unlock(c_rdev);
 292                                goto err_unlock;
 293                        }
 294                }
 295        }
 296
 297        return 0;
 298
 299err_unlock:
 300        regulator_unlock_recursive(rdev, i);
 301
 302        return err;
 303}
 304
 305/**
 306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 307 *                              regulators
 308 * @rdev:                       regulator source
 309 * @ww_ctx:                     w/w mutex acquire context
 310 *
 311 * Unlock all regulators related with rdev by coupling or supplying.
 312 */
 313static void regulator_unlock_dependent(struct regulator_dev *rdev,
 314                                       struct ww_acquire_ctx *ww_ctx)
 315{
 316        regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 317        ww_acquire_fini(ww_ctx);
 318}
 319
 320/**
 321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 322 * @rdev:                       regulator source
 323 * @ww_ctx:                     w/w mutex acquire context
 324 *
 325 * This function as a wrapper on regulator_lock_recursive(), which locks
 326 * all regulators related with rdev by coupling or supplying.
 327 */
 328static void regulator_lock_dependent(struct regulator_dev *rdev,
 329                                     struct ww_acquire_ctx *ww_ctx)
 330{
 331        struct regulator_dev *new_contended_rdev = NULL;
 332        struct regulator_dev *old_contended_rdev = NULL;
 333        int err;
 334
 335        mutex_lock(&regulator_list_mutex);
 336
 337        ww_acquire_init(ww_ctx, &regulator_ww_class);
 338
 339        do {
 340                if (new_contended_rdev) {
 341                        ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 342                        old_contended_rdev = new_contended_rdev;
 343                        old_contended_rdev->ref_cnt++;
 344                }
 345
 346                err = regulator_lock_recursive(rdev,
 347                                               &new_contended_rdev,
 348                                               &old_contended_rdev,
 349                                               ww_ctx);
 350
 351                if (old_contended_rdev)
 352                        regulator_unlock(old_contended_rdev);
 353
 354        } while (err == -EDEADLK);
 355
 356        ww_acquire_done(ww_ctx);
 357
 358        mutex_unlock(&regulator_list_mutex);
 359}
 360
 361/**
 362 * of_get_child_regulator - get a child regulator device node
 363 * based on supply name
 364 * @parent: Parent device node
 365 * @prop_name: Combination regulator supply name and "-supply"
 366 *
 367 * Traverse all child nodes.
 368 * Extract the child regulator device node corresponding to the supply name.
 369 * returns the device node corresponding to the regulator if found, else
 370 * returns NULL.
 371 */
 372static struct device_node *of_get_child_regulator(struct device_node *parent,
 373                                                  const char *prop_name)
 374{
 375        struct device_node *regnode = NULL;
 376        struct device_node *child = NULL;
 377
 378        for_each_child_of_node(parent, child) {
 379                regnode = of_parse_phandle(child, prop_name, 0);
 380
 381                if (!regnode) {
 382                        regnode = of_get_child_regulator(child, prop_name);
 383                        if (regnode)
 384                                goto err_node_put;
 385                } else {
 386                        goto err_node_put;
 387                }
 388        }
 389        return NULL;
 390
 391err_node_put:
 392        of_node_put(child);
 393        return regnode;
 394}
 395
 396/**
 397 * of_get_regulator - get a regulator device node based on supply name
 398 * @dev: Device pointer for the consumer (of regulator) device
 399 * @supply: regulator supply name
 400 *
 401 * Extract the regulator device node corresponding to the supply name.
 402 * returns the device node corresponding to the regulator if found, else
 403 * returns NULL.
 404 */
 405static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 406{
 407        struct device_node *regnode = NULL;
 408        char prop_name[32]; /* 32 is max size of property name */
 409
 410        dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 411
 412        snprintf(prop_name, 32, "%s-supply", supply);
 413        regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 414
 415        if (!regnode) {
 416                regnode = of_get_child_regulator(dev->of_node, prop_name);
 417                if (regnode)
 418                        return regnode;
 419
 420                dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 421                                prop_name, dev->of_node);
 422                return NULL;
 423        }
 424        return regnode;
 425}
 426
 427/* Platform voltage constraint check */
 428int regulator_check_voltage(struct regulator_dev *rdev,
 429                            int *min_uV, int *max_uV)
 430{
 431        BUG_ON(*min_uV > *max_uV);
 432
 433        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 434                rdev_err(rdev, "voltage operation not allowed\n");
 435                return -EPERM;
 436        }
 437
 438        if (*max_uV > rdev->constraints->max_uV)
 439                *max_uV = rdev->constraints->max_uV;
 440        if (*min_uV < rdev->constraints->min_uV)
 441                *min_uV = rdev->constraints->min_uV;
 442
 443        if (*min_uV > *max_uV) {
 444                rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 445                         *min_uV, *max_uV);
 446                return -EINVAL;
 447        }
 448
 449        return 0;
 450}
 451
 452/* return 0 if the state is valid */
 453static int regulator_check_states(suspend_state_t state)
 454{
 455        return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 456}
 457
 458/* Make sure we select a voltage that suits the needs of all
 459 * regulator consumers
 460 */
 461int regulator_check_consumers(struct regulator_dev *rdev,
 462                              int *min_uV, int *max_uV,
 463                              suspend_state_t state)
 464{
 465        struct regulator *regulator;
 466        struct regulator_voltage *voltage;
 467
 468        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 469                voltage = &regulator->voltage[state];
 470                /*
 471                 * Assume consumers that didn't say anything are OK
 472                 * with anything in the constraint range.
 473                 */
 474                if (!voltage->min_uV && !voltage->max_uV)
 475                        continue;
 476
 477                if (*max_uV > voltage->max_uV)
 478                        *max_uV = voltage->max_uV;
 479                if (*min_uV < voltage->min_uV)
 480                        *min_uV = voltage->min_uV;
 481        }
 482
 483        if (*min_uV > *max_uV) {
 484                rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 485                        *min_uV, *max_uV);
 486                return -EINVAL;
 487        }
 488
 489        return 0;
 490}
 491
 492/* current constraint check */
 493static int regulator_check_current_limit(struct regulator_dev *rdev,
 494                                        int *min_uA, int *max_uA)
 495{
 496        BUG_ON(*min_uA > *max_uA);
 497
 498        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 499                rdev_err(rdev, "current operation not allowed\n");
 500                return -EPERM;
 501        }
 502
 503        if (*max_uA > rdev->constraints->max_uA)
 504                *max_uA = rdev->constraints->max_uA;
 505        if (*min_uA < rdev->constraints->min_uA)
 506                *min_uA = rdev->constraints->min_uA;
 507
 508        if (*min_uA > *max_uA) {
 509                rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 510                         *min_uA, *max_uA);
 511                return -EINVAL;
 512        }
 513
 514        return 0;
 515}
 516
 517/* operating mode constraint check */
 518static int regulator_mode_constrain(struct regulator_dev *rdev,
 519                                    unsigned int *mode)
 520{
 521        switch (*mode) {
 522        case REGULATOR_MODE_FAST:
 523        case REGULATOR_MODE_NORMAL:
 524        case REGULATOR_MODE_IDLE:
 525        case REGULATOR_MODE_STANDBY:
 526                break;
 527        default:
 528                rdev_err(rdev, "invalid mode %x specified\n", *mode);
 529                return -EINVAL;
 530        }
 531
 532        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 533                rdev_err(rdev, "mode operation not allowed\n");
 534                return -EPERM;
 535        }
 536
 537        /* The modes are bitmasks, the most power hungry modes having
 538         * the lowest values. If the requested mode isn't supported
 539         * try higher modes. */
 540        while (*mode) {
 541                if (rdev->constraints->valid_modes_mask & *mode)
 542                        return 0;
 543                *mode /= 2;
 544        }
 545
 546        return -EINVAL;
 547}
 548
 549static inline struct regulator_state *
 550regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 551{
 552        if (rdev->constraints == NULL)
 553                return NULL;
 554
 555        switch (state) {
 556        case PM_SUSPEND_STANDBY:
 557                return &rdev->constraints->state_standby;
 558        case PM_SUSPEND_MEM:
 559                return &rdev->constraints->state_mem;
 560        case PM_SUSPEND_MAX:
 561                return &rdev->constraints->state_disk;
 562        default:
 563                return NULL;
 564        }
 565}
 566
 567static ssize_t regulator_uV_show(struct device *dev,
 568                                struct device_attribute *attr, char *buf)
 569{
 570        struct regulator_dev *rdev = dev_get_drvdata(dev);
 571        int uV;
 572
 573        regulator_lock(rdev);
 574        uV = regulator_get_voltage_rdev(rdev);
 575        regulator_unlock(rdev);
 576
 577        if (uV < 0)
 578                return uV;
 579        return sprintf(buf, "%d\n", uV);
 580}
 581static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 582
 583static ssize_t regulator_uA_show(struct device *dev,
 584                                struct device_attribute *attr, char *buf)
 585{
 586        struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588        return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 589}
 590static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 591
 592static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 593                         char *buf)
 594{
 595        struct regulator_dev *rdev = dev_get_drvdata(dev);
 596
 597        return sprintf(buf, "%s\n", rdev_get_name(rdev));
 598}
 599static DEVICE_ATTR_RO(name);
 600
 601static const char *regulator_opmode_to_str(int mode)
 602{
 603        switch (mode) {
 604        case REGULATOR_MODE_FAST:
 605                return "fast";
 606        case REGULATOR_MODE_NORMAL:
 607                return "normal";
 608        case REGULATOR_MODE_IDLE:
 609                return "idle";
 610        case REGULATOR_MODE_STANDBY:
 611                return "standby";
 612        }
 613        return "unknown";
 614}
 615
 616static ssize_t regulator_print_opmode(char *buf, int mode)
 617{
 618        return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 619}
 620
 621static ssize_t regulator_opmode_show(struct device *dev,
 622                                    struct device_attribute *attr, char *buf)
 623{
 624        struct regulator_dev *rdev = dev_get_drvdata(dev);
 625
 626        return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 627}
 628static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 629
 630static ssize_t regulator_print_state(char *buf, int state)
 631{
 632        if (state > 0)
 633                return sprintf(buf, "enabled\n");
 634        else if (state == 0)
 635                return sprintf(buf, "disabled\n");
 636        else
 637                return sprintf(buf, "unknown\n");
 638}
 639
 640static ssize_t regulator_state_show(struct device *dev,
 641                                   struct device_attribute *attr, char *buf)
 642{
 643        struct regulator_dev *rdev = dev_get_drvdata(dev);
 644        ssize_t ret;
 645
 646        regulator_lock(rdev);
 647        ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 648        regulator_unlock(rdev);
 649
 650        return ret;
 651}
 652static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 653
 654static ssize_t regulator_status_show(struct device *dev,
 655                                   struct device_attribute *attr, char *buf)
 656{
 657        struct regulator_dev *rdev = dev_get_drvdata(dev);
 658        int status;
 659        char *label;
 660
 661        status = rdev->desc->ops->get_status(rdev);
 662        if (status < 0)
 663                return status;
 664
 665        switch (status) {
 666        case REGULATOR_STATUS_OFF:
 667                label = "off";
 668                break;
 669        case REGULATOR_STATUS_ON:
 670                label = "on";
 671                break;
 672        case REGULATOR_STATUS_ERROR:
 673                label = "error";
 674                break;
 675        case REGULATOR_STATUS_FAST:
 676                label = "fast";
 677                break;
 678        case REGULATOR_STATUS_NORMAL:
 679                label = "normal";
 680                break;
 681        case REGULATOR_STATUS_IDLE:
 682                label = "idle";
 683                break;
 684        case REGULATOR_STATUS_STANDBY:
 685                label = "standby";
 686                break;
 687        case REGULATOR_STATUS_BYPASS:
 688                label = "bypass";
 689                break;
 690        case REGULATOR_STATUS_UNDEFINED:
 691                label = "undefined";
 692                break;
 693        default:
 694                return -ERANGE;
 695        }
 696
 697        return sprintf(buf, "%s\n", label);
 698}
 699static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 700
 701static ssize_t regulator_min_uA_show(struct device *dev,
 702                                    struct device_attribute *attr, char *buf)
 703{
 704        struct regulator_dev *rdev = dev_get_drvdata(dev);
 705
 706        if (!rdev->constraints)
 707                return sprintf(buf, "constraint not defined\n");
 708
 709        return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 710}
 711static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 712
 713static ssize_t regulator_max_uA_show(struct device *dev,
 714                                    struct device_attribute *attr, char *buf)
 715{
 716        struct regulator_dev *rdev = dev_get_drvdata(dev);
 717
 718        if (!rdev->constraints)
 719                return sprintf(buf, "constraint not defined\n");
 720
 721        return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 722}
 723static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 724
 725static ssize_t regulator_min_uV_show(struct device *dev,
 726                                    struct device_attribute *attr, char *buf)
 727{
 728        struct regulator_dev *rdev = dev_get_drvdata(dev);
 729
 730        if (!rdev->constraints)
 731                return sprintf(buf, "constraint not defined\n");
 732
 733        return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 734}
 735static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 736
 737static ssize_t regulator_max_uV_show(struct device *dev,
 738                                    struct device_attribute *attr, char *buf)
 739{
 740        struct regulator_dev *rdev = dev_get_drvdata(dev);
 741
 742        if (!rdev->constraints)
 743                return sprintf(buf, "constraint not defined\n");
 744
 745        return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 746}
 747static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 748
 749static ssize_t regulator_total_uA_show(struct device *dev,
 750                                      struct device_attribute *attr, char *buf)
 751{
 752        struct regulator_dev *rdev = dev_get_drvdata(dev);
 753        struct regulator *regulator;
 754        int uA = 0;
 755
 756        regulator_lock(rdev);
 757        list_for_each_entry(regulator, &rdev->consumer_list, list) {
 758                if (regulator->enable_count)
 759                        uA += regulator->uA_load;
 760        }
 761        regulator_unlock(rdev);
 762        return sprintf(buf, "%d\n", uA);
 763}
 764static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 765
 766static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 767                              char *buf)
 768{
 769        struct regulator_dev *rdev = dev_get_drvdata(dev);
 770        return sprintf(buf, "%d\n", rdev->use_count);
 771}
 772static DEVICE_ATTR_RO(num_users);
 773
 774static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 775                         char *buf)
 776{
 777        struct regulator_dev *rdev = dev_get_drvdata(dev);
 778
 779        switch (rdev->desc->type) {
 780        case REGULATOR_VOLTAGE:
 781                return sprintf(buf, "voltage\n");
 782        case REGULATOR_CURRENT:
 783                return sprintf(buf, "current\n");
 784        }
 785        return sprintf(buf, "unknown\n");
 786}
 787static DEVICE_ATTR_RO(type);
 788
 789static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 790                                struct device_attribute *attr, char *buf)
 791{
 792        struct regulator_dev *rdev = dev_get_drvdata(dev);
 793
 794        return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 795}
 796static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 797                regulator_suspend_mem_uV_show, NULL);
 798
 799static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 800                                struct device_attribute *attr, char *buf)
 801{
 802        struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804        return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 805}
 806static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 807                regulator_suspend_disk_uV_show, NULL);
 808
 809static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 810                                struct device_attribute *attr, char *buf)
 811{
 812        struct regulator_dev *rdev = dev_get_drvdata(dev);
 813
 814        return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 815}
 816static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 817                regulator_suspend_standby_uV_show, NULL);
 818
 819static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 820                                struct device_attribute *attr, char *buf)
 821{
 822        struct regulator_dev *rdev = dev_get_drvdata(dev);
 823
 824        return regulator_print_opmode(buf,
 825                rdev->constraints->state_mem.mode);
 826}
 827static DEVICE_ATTR(suspend_mem_mode, 0444,
 828                regulator_suspend_mem_mode_show, NULL);
 829
 830static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 831                                struct device_attribute *attr, char *buf)
 832{
 833        struct regulator_dev *rdev = dev_get_drvdata(dev);
 834
 835        return regulator_print_opmode(buf,
 836                rdev->constraints->state_disk.mode);
 837}
 838static DEVICE_ATTR(suspend_disk_mode, 0444,
 839                regulator_suspend_disk_mode_show, NULL);
 840
 841static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 842                                struct device_attribute *attr, char *buf)
 843{
 844        struct regulator_dev *rdev = dev_get_drvdata(dev);
 845
 846        return regulator_print_opmode(buf,
 847                rdev->constraints->state_standby.mode);
 848}
 849static DEVICE_ATTR(suspend_standby_mode, 0444,
 850                regulator_suspend_standby_mode_show, NULL);
 851
 852static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 853                                   struct device_attribute *attr, char *buf)
 854{
 855        struct regulator_dev *rdev = dev_get_drvdata(dev);
 856
 857        return regulator_print_state(buf,
 858                        rdev->constraints->state_mem.enabled);
 859}
 860static DEVICE_ATTR(suspend_mem_state, 0444,
 861                regulator_suspend_mem_state_show, NULL);
 862
 863static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 864                                   struct device_attribute *attr, char *buf)
 865{
 866        struct regulator_dev *rdev = dev_get_drvdata(dev);
 867
 868        return regulator_print_state(buf,
 869                        rdev->constraints->state_disk.enabled);
 870}
 871static DEVICE_ATTR(suspend_disk_state, 0444,
 872                regulator_suspend_disk_state_show, NULL);
 873
 874static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 875                                   struct device_attribute *attr, char *buf)
 876{
 877        struct regulator_dev *rdev = dev_get_drvdata(dev);
 878
 879        return regulator_print_state(buf,
 880                        rdev->constraints->state_standby.enabled);
 881}
 882static DEVICE_ATTR(suspend_standby_state, 0444,
 883                regulator_suspend_standby_state_show, NULL);
 884
 885static ssize_t regulator_bypass_show(struct device *dev,
 886                                     struct device_attribute *attr, char *buf)
 887{
 888        struct regulator_dev *rdev = dev_get_drvdata(dev);
 889        const char *report;
 890        bool bypass;
 891        int ret;
 892
 893        ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 894
 895        if (ret != 0)
 896                report = "unknown";
 897        else if (bypass)
 898                report = "enabled";
 899        else
 900                report = "disabled";
 901
 902        return sprintf(buf, "%s\n", report);
 903}
 904static DEVICE_ATTR(bypass, 0444,
 905                   regulator_bypass_show, NULL);
 906
 907/* Calculate the new optimum regulator operating mode based on the new total
 908 * consumer load. All locks held by caller */
 909static int drms_uA_update(struct regulator_dev *rdev)
 910{
 911        struct regulator *sibling;
 912        int current_uA = 0, output_uV, input_uV, err;
 913        unsigned int mode;
 914
 915        /*
 916         * first check to see if we can set modes at all, otherwise just
 917         * tell the consumer everything is OK.
 918         */
 919        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 920                rdev_dbg(rdev, "DRMS operation not allowed\n");
 921                return 0;
 922        }
 923
 924        if (!rdev->desc->ops->get_optimum_mode &&
 925            !rdev->desc->ops->set_load)
 926                return 0;
 927
 928        if (!rdev->desc->ops->set_mode &&
 929            !rdev->desc->ops->set_load)
 930                return -EINVAL;
 931
 932        /* calc total requested load */
 933        list_for_each_entry(sibling, &rdev->consumer_list, list) {
 934                if (sibling->enable_count)
 935                        current_uA += sibling->uA_load;
 936        }
 937
 938        current_uA += rdev->constraints->system_load;
 939
 940        if (rdev->desc->ops->set_load) {
 941                /* set the optimum mode for our new total regulator load */
 942                err = rdev->desc->ops->set_load(rdev, current_uA);
 943                if (err < 0)
 944                        rdev_err(rdev, "failed to set load %d\n", current_uA);
 945        } else {
 946                /* get output voltage */
 947                output_uV = regulator_get_voltage_rdev(rdev);
 948                if (output_uV <= 0) {
 949                        rdev_err(rdev, "invalid output voltage found\n");
 950                        return -EINVAL;
 951                }
 952
 953                /* get input voltage */
 954                input_uV = 0;
 955                if (rdev->supply)
 956                        input_uV = regulator_get_voltage(rdev->supply);
 957                if (input_uV <= 0)
 958                        input_uV = rdev->constraints->input_uV;
 959                if (input_uV <= 0) {
 960                        rdev_err(rdev, "invalid input voltage found\n");
 961                        return -EINVAL;
 962                }
 963
 964                /* now get the optimum mode for our new total regulator load */
 965                mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 966                                                         output_uV, current_uA);
 967
 968                /* check the new mode is allowed */
 969                err = regulator_mode_constrain(rdev, &mode);
 970                if (err < 0) {
 971                        rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 972                                 current_uA, input_uV, output_uV);
 973                        return err;
 974                }
 975
 976                err = rdev->desc->ops->set_mode(rdev, mode);
 977                if (err < 0)
 978                        rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 979        }
 980
 981        return err;
 982}
 983
 984static int suspend_set_state(struct regulator_dev *rdev,
 985                                    suspend_state_t state)
 986{
 987        int ret = 0;
 988        struct regulator_state *rstate;
 989
 990        rstate = regulator_get_suspend_state(rdev, state);
 991        if (rstate == NULL)
 992                return 0;
 993
 994        /* If we have no suspend mode configuration don't set anything;
 995         * only warn if the driver implements set_suspend_voltage or
 996         * set_suspend_mode callback.
 997         */
 998        if (rstate->enabled != ENABLE_IN_SUSPEND &&
 999            rstate->enabled != DISABLE_IN_SUSPEND) {
1000                if (rdev->desc->ops->set_suspend_voltage ||
1001                    rdev->desc->ops->set_suspend_mode)
1002                        rdev_warn(rdev, "No configuration\n");
1003                return 0;
1004        }
1005
1006        if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007                rdev->desc->ops->set_suspend_enable)
1008                ret = rdev->desc->ops->set_suspend_enable(rdev);
1009        else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010                rdev->desc->ops->set_suspend_disable)
1011                ret = rdev->desc->ops->set_suspend_disable(rdev);
1012        else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013                ret = 0;
1014
1015        if (ret < 0) {
1016                rdev_err(rdev, "failed to enabled/disable\n");
1017                return ret;
1018        }
1019
1020        if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021                ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022                if (ret < 0) {
1023                        rdev_err(rdev, "failed to set voltage\n");
1024                        return ret;
1025                }
1026        }
1027
1028        if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029                ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030                if (ret < 0) {
1031                        rdev_err(rdev, "failed to set mode\n");
1032                        return ret;
1033                }
1034        }
1035
1036        return ret;
1037}
1038
1039static void print_constraints(struct regulator_dev *rdev)
1040{
1041        struct regulation_constraints *constraints = rdev->constraints;
1042        char buf[160] = "";
1043        size_t len = sizeof(buf) - 1;
1044        int count = 0;
1045        int ret;
1046
1047        if (constraints->min_uV && constraints->max_uV) {
1048                if (constraints->min_uV == constraints->max_uV)
1049                        count += scnprintf(buf + count, len - count, "%d mV ",
1050                                           constraints->min_uV / 1000);
1051                else
1052                        count += scnprintf(buf + count, len - count,
1053                                           "%d <--> %d mV ",
1054                                           constraints->min_uV / 1000,
1055                                           constraints->max_uV / 1000);
1056        }
1057
1058        if (!constraints->min_uV ||
1059            constraints->min_uV != constraints->max_uV) {
1060                ret = regulator_get_voltage_rdev(rdev);
1061                if (ret > 0)
1062                        count += scnprintf(buf + count, len - count,
1063                                           "at %d mV ", ret / 1000);
1064        }
1065
1066        if (constraints->uV_offset)
1067                count += scnprintf(buf + count, len - count, "%dmV offset ",
1068                                   constraints->uV_offset / 1000);
1069
1070        if (constraints->min_uA && constraints->max_uA) {
1071                if (constraints->min_uA == constraints->max_uA)
1072                        count += scnprintf(buf + count, len - count, "%d mA ",
1073                                           constraints->min_uA / 1000);
1074                else
1075                        count += scnprintf(buf + count, len - count,
1076                                           "%d <--> %d mA ",
1077                                           constraints->min_uA / 1000,
1078                                           constraints->max_uA / 1000);
1079        }
1080
1081        if (!constraints->min_uA ||
1082            constraints->min_uA != constraints->max_uA) {
1083                ret = _regulator_get_current_limit(rdev);
1084                if (ret > 0)
1085                        count += scnprintf(buf + count, len - count,
1086                                           "at %d mA ", ret / 1000);
1087        }
1088
1089        if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090                count += scnprintf(buf + count, len - count, "fast ");
1091        if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092                count += scnprintf(buf + count, len - count, "normal ");
1093        if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094                count += scnprintf(buf + count, len - count, "idle ");
1095        if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096                count += scnprintf(buf + count, len - count, "standby");
1097
1098        if (!count)
1099                scnprintf(buf, len, "no parameters");
1100
1101        rdev_dbg(rdev, "%s\n", buf);
1102
1103        if ((constraints->min_uV != constraints->max_uV) &&
1104            !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105                rdev_warn(rdev,
1106                          "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107}
1108
1109static int machine_constraints_voltage(struct regulator_dev *rdev,
1110        struct regulation_constraints *constraints)
1111{
1112        const struct regulator_ops *ops = rdev->desc->ops;
1113        int ret;
1114
1115        /* do we need to apply the constraint voltage */
1116        if (rdev->constraints->apply_uV &&
1117            rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118                int target_min, target_max;
1119                int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121                if (current_uV == -ENOTRECOVERABLE) {
1122                        /* This regulator can't be read and must be initialized */
1123                        rdev_info(rdev, "Setting %d-%duV\n",
1124                                  rdev->constraints->min_uV,
1125                                  rdev->constraints->max_uV);
1126                        _regulator_do_set_voltage(rdev,
1127                                                  rdev->constraints->min_uV,
1128                                                  rdev->constraints->max_uV);
1129                        current_uV = regulator_get_voltage_rdev(rdev);
1130                }
1131
1132                if (current_uV < 0) {
1133                        rdev_err(rdev,
1134                                 "failed to get the current voltage(%d)\n",
1135                                 current_uV);
1136                        return current_uV;
1137                }
1138
1139                /*
1140                 * If we're below the minimum voltage move up to the
1141                 * minimum voltage, if we're above the maximum voltage
1142                 * then move down to the maximum.
1143                 */
1144                target_min = current_uV;
1145                target_max = current_uV;
1146
1147                if (current_uV < rdev->constraints->min_uV) {
1148                        target_min = rdev->constraints->min_uV;
1149                        target_max = rdev->constraints->min_uV;
1150                }
1151
1152                if (current_uV > rdev->constraints->max_uV) {
1153                        target_min = rdev->constraints->max_uV;
1154                        target_max = rdev->constraints->max_uV;
1155                }
1156
1157                if (target_min != current_uV || target_max != current_uV) {
1158                        rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159                                  current_uV, target_min, target_max);
1160                        ret = _regulator_do_set_voltage(
1161                                rdev, target_min, target_max);
1162                        if (ret < 0) {
1163                                rdev_err(rdev,
1164                                        "failed to apply %d-%duV constraint(%d)\n",
1165                                        target_min, target_max, ret);
1166                                return ret;
1167                        }
1168                }
1169        }
1170
1171        /* constrain machine-level voltage specs to fit
1172         * the actual range supported by this regulator.
1173         */
1174        if (ops->list_voltage && rdev->desc->n_voltages) {
1175                int     count = rdev->desc->n_voltages;
1176                int     i;
1177                int     min_uV = INT_MAX;
1178                int     max_uV = INT_MIN;
1179                int     cmin = constraints->min_uV;
1180                int     cmax = constraints->max_uV;
1181
1182                /* it's safe to autoconfigure fixed-voltage supplies
1183                   and the constraints are used by list_voltage. */
1184                if (count == 1 && !cmin) {
1185                        cmin = 1;
1186                        cmax = INT_MAX;
1187                        constraints->min_uV = cmin;
1188                        constraints->max_uV = cmax;
1189                }
1190
1191                /* voltage constraints are optional */
1192                if ((cmin == 0) && (cmax == 0))
1193                        return 0;
1194
1195                /* else require explicit machine-level constraints */
1196                if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197                        rdev_err(rdev, "invalid voltage constraints\n");
1198                        return -EINVAL;
1199                }
1200
1201                /* no need to loop voltages if range is continuous */
1202                if (rdev->desc->continuous_voltage_range)
1203                        return 0;
1204
1205                /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1206                for (i = 0; i < count; i++) {
1207                        int     value;
1208
1209                        value = ops->list_voltage(rdev, i);
1210                        if (value <= 0)
1211                                continue;
1212
1213                        /* maybe adjust [min_uV..max_uV] */
1214                        if (value >= cmin && value < min_uV)
1215                                min_uV = value;
1216                        if (value <= cmax && value > max_uV)
1217                                max_uV = value;
1218                }
1219
1220                /* final: [min_uV..max_uV] valid iff constraints valid */
1221                if (max_uV < min_uV) {
1222                        rdev_err(rdev,
1223                                 "unsupportable voltage constraints %u-%uuV\n",
1224                                 min_uV, max_uV);
1225                        return -EINVAL;
1226                }
1227
1228                /* use regulator's subset of machine constraints */
1229                if (constraints->min_uV < min_uV) {
1230                        rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1231                                 constraints->min_uV, min_uV);
1232                        constraints->min_uV = min_uV;
1233                }
1234                if (constraints->max_uV > max_uV) {
1235                        rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1236                                 constraints->max_uV, max_uV);
1237                        constraints->max_uV = max_uV;
1238                }
1239        }
1240
1241        return 0;
1242}
1243
1244static int machine_constraints_current(struct regulator_dev *rdev,
1245        struct regulation_constraints *constraints)
1246{
1247        const struct regulator_ops *ops = rdev->desc->ops;
1248        int ret;
1249
1250        if (!constraints->min_uA && !constraints->max_uA)
1251                return 0;
1252
1253        if (constraints->min_uA > constraints->max_uA) {
1254                rdev_err(rdev, "Invalid current constraints\n");
1255                return -EINVAL;
1256        }
1257
1258        if (!ops->set_current_limit || !ops->get_current_limit) {
1259                rdev_warn(rdev, "Operation of current configuration missing\n");
1260                return 0;
1261        }
1262
1263        /* Set regulator current in constraints range */
1264        ret = ops->set_current_limit(rdev, constraints->min_uA,
1265                        constraints->max_uA);
1266        if (ret < 0) {
1267                rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1268                return ret;
1269        }
1270
1271        return 0;
1272}
1273
1274static int _regulator_do_enable(struct regulator_dev *rdev);
1275
1276/**
1277 * set_machine_constraints - sets regulator constraints
1278 * @rdev: regulator source
1279 * @constraints: constraints to apply
1280 *
1281 * Allows platform initialisation code to define and constrain
1282 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1283 * Constraints *must* be set by platform code in order for some
1284 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1285 * set_mode.
1286 */
1287static int set_machine_constraints(struct regulator_dev *rdev,
1288        const struct regulation_constraints *constraints)
1289{
1290        int ret = 0;
1291        const struct regulator_ops *ops = rdev->desc->ops;
1292
1293        if (constraints)
1294                rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1295                                            GFP_KERNEL);
1296        else
1297                rdev->constraints = kzalloc(sizeof(*constraints),
1298                                            GFP_KERNEL);
1299        if (!rdev->constraints)
1300                return -ENOMEM;
1301
1302        ret = machine_constraints_voltage(rdev, rdev->constraints);
1303        if (ret != 0)
1304                return ret;
1305
1306        ret = machine_constraints_current(rdev, rdev->constraints);
1307        if (ret != 0)
1308                return ret;
1309
1310        if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1311                ret = ops->set_input_current_limit(rdev,
1312                                                   rdev->constraints->ilim_uA);
1313                if (ret < 0) {
1314                        rdev_err(rdev, "failed to set input limit\n");
1315                        return ret;
1316                }
1317        }
1318
1319        /* do we need to setup our suspend state */
1320        if (rdev->constraints->initial_state) {
1321                ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1322                if (ret < 0) {
1323                        rdev_err(rdev, "failed to set suspend state\n");
1324                        return ret;
1325                }
1326        }
1327
1328        if (rdev->constraints->initial_mode) {
1329                if (!ops->set_mode) {
1330                        rdev_err(rdev, "no set_mode operation\n");
1331                        return -EINVAL;
1332                }
1333
1334                ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1335                if (ret < 0) {
1336                        rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1337                        return ret;
1338                }
1339        } else if (rdev->constraints->system_load) {
1340                /*
1341                 * We'll only apply the initial system load if an
1342                 * initial mode wasn't specified.
1343                 */
1344                drms_uA_update(rdev);
1345        }
1346
1347        if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1348                && ops->set_ramp_delay) {
1349                ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1350                if (ret < 0) {
1351                        rdev_err(rdev, "failed to set ramp_delay\n");
1352                        return ret;
1353                }
1354        }
1355
1356        if (rdev->constraints->pull_down && ops->set_pull_down) {
1357                ret = ops->set_pull_down(rdev);
1358                if (ret < 0) {
1359                        rdev_err(rdev, "failed to set pull down\n");
1360                        return ret;
1361                }
1362        }
1363
1364        if (rdev->constraints->soft_start && ops->set_soft_start) {
1365                ret = ops->set_soft_start(rdev);
1366                if (ret < 0) {
1367                        rdev_err(rdev, "failed to set soft start\n");
1368                        return ret;
1369                }
1370        }
1371
1372        if (rdev->constraints->over_current_protection
1373                && ops->set_over_current_protection) {
1374                ret = ops->set_over_current_protection(rdev);
1375                if (ret < 0) {
1376                        rdev_err(rdev, "failed to set over current protection\n");
1377                        return ret;
1378                }
1379        }
1380
1381        if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1382                bool ad_state = (rdev->constraints->active_discharge ==
1383                              REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1384
1385                ret = ops->set_active_discharge(rdev, ad_state);
1386                if (ret < 0) {
1387                        rdev_err(rdev, "failed to set active discharge\n");
1388                        return ret;
1389                }
1390        }
1391
1392        /* If the constraints say the regulator should be on at this point
1393         * and we have control then make sure it is enabled.
1394         */
1395        if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1396                if (rdev->supply) {
1397                        ret = regulator_enable(rdev->supply);
1398                        if (ret < 0) {
1399                                _regulator_put(rdev->supply);
1400                                rdev->supply = NULL;
1401                                return ret;
1402                        }
1403                }
1404
1405                ret = _regulator_do_enable(rdev);
1406                if (ret < 0 && ret != -EINVAL) {
1407                        rdev_err(rdev, "failed to enable\n");
1408                        return ret;
1409                }
1410
1411                if (rdev->constraints->always_on)
1412                        rdev->use_count++;
1413        }
1414
1415        print_constraints(rdev);
1416        return 0;
1417}
1418
1419/**
1420 * set_supply - set regulator supply regulator
1421 * @rdev: regulator name
1422 * @supply_rdev: supply regulator name
1423 *
1424 * Called by platform initialisation code to set the supply regulator for this
1425 * regulator. This ensures that a regulators supply will also be enabled by the
1426 * core if it's child is enabled.
1427 */
1428static int set_supply(struct regulator_dev *rdev,
1429                      struct regulator_dev *supply_rdev)
1430{
1431        int err;
1432
1433        rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1434
1435        if (!try_module_get(supply_rdev->owner))
1436                return -ENODEV;
1437
1438        rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1439        if (rdev->supply == NULL) {
1440                err = -ENOMEM;
1441                return err;
1442        }
1443        supply_rdev->open_count++;
1444
1445        return 0;
1446}
1447
1448/**
1449 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1450 * @rdev:         regulator source
1451 * @consumer_dev_name: dev_name() string for device supply applies to
1452 * @supply:       symbolic name for supply
1453 *
1454 * Allows platform initialisation code to map physical regulator
1455 * sources to symbolic names for supplies for use by devices.  Devices
1456 * should use these symbolic names to request regulators, avoiding the
1457 * need to provide board-specific regulator names as platform data.
1458 */
1459static int set_consumer_device_supply(struct regulator_dev *rdev,
1460                                      const char *consumer_dev_name,
1461                                      const char *supply)
1462{
1463        struct regulator_map *node;
1464        int has_dev;
1465
1466        if (supply == NULL)
1467                return -EINVAL;
1468
1469        if (consumer_dev_name != NULL)
1470                has_dev = 1;
1471        else
1472                has_dev = 0;
1473
1474        list_for_each_entry(node, &regulator_map_list, list) {
1475                if (node->dev_name && consumer_dev_name) {
1476                        if (strcmp(node->dev_name, consumer_dev_name) != 0)
1477                                continue;
1478                } else if (node->dev_name || consumer_dev_name) {
1479                        continue;
1480                }
1481
1482                if (strcmp(node->supply, supply) != 0)
1483                        continue;
1484
1485                pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1486                         consumer_dev_name,
1487                         dev_name(&node->regulator->dev),
1488                         node->regulator->desc->name,
1489                         supply,
1490                         dev_name(&rdev->dev), rdev_get_name(rdev));
1491                return -EBUSY;
1492        }
1493
1494        node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1495        if (node == NULL)
1496                return -ENOMEM;
1497
1498        node->regulator = rdev;
1499        node->supply = supply;
1500
1501        if (has_dev) {
1502                node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1503                if (node->dev_name == NULL) {
1504                        kfree(node);
1505                        return -ENOMEM;
1506                }
1507        }
1508
1509        list_add(&node->list, &regulator_map_list);
1510        return 0;
1511}
1512
1513static void unset_regulator_supplies(struct regulator_dev *rdev)
1514{
1515        struct regulator_map *node, *n;
1516
1517        list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1518                if (rdev == node->regulator) {
1519                        list_del(&node->list);
1520                        kfree(node->dev_name);
1521                        kfree(node);
1522                }
1523        }
1524}
1525
1526#ifdef CONFIG_DEBUG_FS
1527static ssize_t constraint_flags_read_file(struct file *file,
1528                                          char __user *user_buf,
1529                                          size_t count, loff_t *ppos)
1530{
1531        const struct regulator *regulator = file->private_data;
1532        const struct regulation_constraints *c = regulator->rdev->constraints;
1533        char *buf;
1534        ssize_t ret;
1535
1536        if (!c)
1537                return 0;
1538
1539        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1540        if (!buf)
1541                return -ENOMEM;
1542
1543        ret = snprintf(buf, PAGE_SIZE,
1544                        "always_on: %u\n"
1545                        "boot_on: %u\n"
1546                        "apply_uV: %u\n"
1547                        "ramp_disable: %u\n"
1548                        "soft_start: %u\n"
1549                        "pull_down: %u\n"
1550                        "over_current_protection: %u\n",
1551                        c->always_on,
1552                        c->boot_on,
1553                        c->apply_uV,
1554                        c->ramp_disable,
1555                        c->soft_start,
1556                        c->pull_down,
1557                        c->over_current_protection);
1558
1559        ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1560        kfree(buf);
1561
1562        return ret;
1563}
1564
1565#endif
1566
1567static const struct file_operations constraint_flags_fops = {
1568#ifdef CONFIG_DEBUG_FS
1569        .open = simple_open,
1570        .read = constraint_flags_read_file,
1571        .llseek = default_llseek,
1572#endif
1573};
1574
1575#define REG_STR_SIZE    64
1576
1577static struct regulator *create_regulator(struct regulator_dev *rdev,
1578                                          struct device *dev,
1579                                          const char *supply_name)
1580{
1581        struct regulator *regulator;
1582        char buf[REG_STR_SIZE];
1583        int err, size;
1584
1585        regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1586        if (regulator == NULL)
1587                return NULL;
1588
1589        regulator_lock(rdev);
1590        regulator->rdev = rdev;
1591        list_add(&regulator->list, &rdev->consumer_list);
1592
1593        if (dev) {
1594                regulator->dev = dev;
1595
1596                /* Add a link to the device sysfs entry */
1597                size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1598                                dev->kobj.name, supply_name);
1599                if (size >= REG_STR_SIZE)
1600                        goto overflow_err;
1601
1602                regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1603                if (regulator->supply_name == NULL)
1604                        goto overflow_err;
1605
1606                err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1607                                        buf);
1608                if (err) {
1609                        rdev_dbg(rdev, "could not add device link %s err %d\n",
1610                                  dev->kobj.name, err);
1611                        /* non-fatal */
1612                }
1613        } else {
1614                regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1615                if (regulator->supply_name == NULL)
1616                        goto overflow_err;
1617        }
1618
1619        regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1620                                                rdev->debugfs);
1621        if (!regulator->debugfs) {
1622                rdev_dbg(rdev, "Failed to create debugfs directory\n");
1623        } else {
1624                debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1625                                   &regulator->uA_load);
1626                debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1627                                   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1628                debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1629                                   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1630                debugfs_create_file("constraint_flags", 0444,
1631                                    regulator->debugfs, regulator,
1632                                    &constraint_flags_fops);
1633        }
1634
1635        /*
1636         * Check now if the regulator is an always on regulator - if
1637         * it is then we don't need to do nearly so much work for
1638         * enable/disable calls.
1639         */
1640        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1641            _regulator_is_enabled(rdev))
1642                regulator->always_on = true;
1643
1644        regulator_unlock(rdev);
1645        return regulator;
1646overflow_err:
1647        list_del(&regulator->list);
1648        kfree(regulator);
1649        regulator_unlock(rdev);
1650        return NULL;
1651}
1652
1653static int _regulator_get_enable_time(struct regulator_dev *rdev)
1654{
1655        if (rdev->constraints && rdev->constraints->enable_time)
1656                return rdev->constraints->enable_time;
1657        if (rdev->desc->ops->enable_time)
1658                return rdev->desc->ops->enable_time(rdev);
1659        return rdev->desc->enable_time;
1660}
1661
1662static struct regulator_supply_alias *regulator_find_supply_alias(
1663                struct device *dev, const char *supply)
1664{
1665        struct regulator_supply_alias *map;
1666
1667        list_for_each_entry(map, &regulator_supply_alias_list, list)
1668                if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1669                        return map;
1670
1671        return NULL;
1672}
1673
1674static void regulator_supply_alias(struct device **dev, const char **supply)
1675{
1676        struct regulator_supply_alias *map;
1677
1678        map = regulator_find_supply_alias(*dev, *supply);
1679        if (map) {
1680                dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1681                                *supply, map->alias_supply,
1682                                dev_name(map->alias_dev));
1683                *dev = map->alias_dev;
1684                *supply = map->alias_supply;
1685        }
1686}
1687
1688static int regulator_match(struct device *dev, const void *data)
1689{
1690        struct regulator_dev *r = dev_to_rdev(dev);
1691
1692        return strcmp(rdev_get_name(r), data) == 0;
1693}
1694
1695static struct regulator_dev *regulator_lookup_by_name(const char *name)
1696{
1697        struct device *dev;
1698
1699        dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1700
1701        return dev ? dev_to_rdev(dev) : NULL;
1702}
1703
1704/**
1705 * regulator_dev_lookup - lookup a regulator device.
1706 * @dev: device for regulator "consumer".
1707 * @supply: Supply name or regulator ID.
1708 *
1709 * If successful, returns a struct regulator_dev that corresponds to the name
1710 * @supply and with the embedded struct device refcount incremented by one.
1711 * The refcount must be dropped by calling put_device().
1712 * On failure one of the following ERR-PTR-encoded values is returned:
1713 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1714 * in the future.
1715 */
1716static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1717                                                  const char *supply)
1718{
1719        struct regulator_dev *r = NULL;
1720        struct device_node *node;
1721        struct regulator_map *map;
1722        const char *devname = NULL;
1723
1724        regulator_supply_alias(&dev, &supply);
1725
1726        /* first do a dt based lookup */
1727        if (dev && dev->of_node) {
1728                node = of_get_regulator(dev, supply);
1729                if (node) {
1730                        r = of_find_regulator_by_node(node);
1731                        if (r)
1732                                return r;
1733
1734                        /*
1735                         * We have a node, but there is no device.
1736                         * assume it has not registered yet.
1737                         */
1738                        return ERR_PTR(-EPROBE_DEFER);
1739                }
1740        }
1741
1742        /* if not found, try doing it non-dt way */
1743        if (dev)
1744                devname = dev_name(dev);
1745
1746        mutex_lock(&regulator_list_mutex);
1747        list_for_each_entry(map, &regulator_map_list, list) {
1748                /* If the mapping has a device set up it must match */
1749                if (map->dev_name &&
1750                    (!devname || strcmp(map->dev_name, devname)))
1751                        continue;
1752
1753                if (strcmp(map->supply, supply) == 0 &&
1754                    get_device(&map->regulator->dev)) {
1755                        r = map->regulator;
1756                        break;
1757                }
1758        }
1759        mutex_unlock(&regulator_list_mutex);
1760
1761        if (r)
1762                return r;
1763
1764        r = regulator_lookup_by_name(supply);
1765        if (r)
1766                return r;
1767
1768        return ERR_PTR(-ENODEV);
1769}
1770
1771static int regulator_resolve_supply(struct regulator_dev *rdev)
1772{
1773        struct regulator_dev *r;
1774        struct device *dev = rdev->dev.parent;
1775        int ret;
1776
1777        /* No supply to resolve? */
1778        if (!rdev->supply_name)
1779                return 0;
1780
1781        /* Supply already resolved? */
1782        if (rdev->supply)
1783                return 0;
1784
1785        r = regulator_dev_lookup(dev, rdev->supply_name);
1786        if (IS_ERR(r)) {
1787                ret = PTR_ERR(r);
1788
1789                /* Did the lookup explicitly defer for us? */
1790                if (ret == -EPROBE_DEFER)
1791                        return ret;
1792
1793                if (have_full_constraints()) {
1794                        r = dummy_regulator_rdev;
1795                        get_device(&r->dev);
1796                } else {
1797                        dev_err(dev, "Failed to resolve %s-supply for %s\n",
1798                                rdev->supply_name, rdev->desc->name);
1799                        return -EPROBE_DEFER;
1800                }
1801        }
1802
1803        /*
1804         * If the supply's parent device is not the same as the
1805         * regulator's parent device, then ensure the parent device
1806         * is bound before we resolve the supply, in case the parent
1807         * device get probe deferred and unregisters the supply.
1808         */
1809        if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1810                if (!device_is_bound(r->dev.parent)) {
1811                        put_device(&r->dev);
1812                        return -EPROBE_DEFER;
1813                }
1814        }
1815
1816        /* Recursively resolve the supply of the supply */
1817        ret = regulator_resolve_supply(r);
1818        if (ret < 0) {
1819                put_device(&r->dev);
1820                return ret;
1821        }
1822
1823        ret = set_supply(rdev, r);
1824        if (ret < 0) {
1825                put_device(&r->dev);
1826                return ret;
1827        }
1828
1829        /*
1830         * In set_machine_constraints() we may have turned this regulator on
1831         * but we couldn't propagate to the supply if it hadn't been resolved
1832         * yet.  Do it now.
1833         */
1834        if (rdev->use_count) {
1835                ret = regulator_enable(rdev->supply);
1836                if (ret < 0) {
1837                        _regulator_put(rdev->supply);
1838                        rdev->supply = NULL;
1839                        return ret;
1840                }
1841        }
1842
1843        return 0;
1844}
1845
1846/* Internal regulator request function */
1847struct regulator *_regulator_get(struct device *dev, const char *id,
1848                                 enum regulator_get_type get_type)
1849{
1850        struct regulator_dev *rdev;
1851        struct regulator *regulator;
1852        struct device_link *link;
1853        int ret;
1854
1855        if (get_type >= MAX_GET_TYPE) {
1856                dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1857                return ERR_PTR(-EINVAL);
1858        }
1859
1860        if (id == NULL) {
1861                pr_err("get() with no identifier\n");
1862                return ERR_PTR(-EINVAL);
1863        }
1864
1865        rdev = regulator_dev_lookup(dev, id);
1866        if (IS_ERR(rdev)) {
1867                ret = PTR_ERR(rdev);
1868
1869                /*
1870                 * If regulator_dev_lookup() fails with error other
1871                 * than -ENODEV our job here is done, we simply return it.
1872                 */
1873                if (ret != -ENODEV)
1874                        return ERR_PTR(ret);
1875
1876                if (!have_full_constraints()) {
1877                        dev_warn(dev,
1878                                 "incomplete constraints, dummy supplies not allowed\n");
1879                        return ERR_PTR(-ENODEV);
1880                }
1881
1882                switch (get_type) {
1883                case NORMAL_GET:
1884                        /*
1885                         * Assume that a regulator is physically present and
1886                         * enabled, even if it isn't hooked up, and just
1887                         * provide a dummy.
1888                         */
1889                        dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1890                        rdev = dummy_regulator_rdev;
1891                        get_device(&rdev->dev);
1892                        break;
1893
1894                case EXCLUSIVE_GET:
1895                        dev_warn(dev,
1896                                 "dummy supplies not allowed for exclusive requests\n");
1897                        /* fall through */
1898
1899                default:
1900                        return ERR_PTR(-ENODEV);
1901                }
1902        }
1903
1904        if (rdev->exclusive) {
1905                regulator = ERR_PTR(-EPERM);
1906                put_device(&rdev->dev);
1907                return regulator;
1908        }
1909
1910        if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1911                regulator = ERR_PTR(-EBUSY);
1912                put_device(&rdev->dev);
1913                return regulator;
1914        }
1915
1916        mutex_lock(&regulator_list_mutex);
1917        ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1918        mutex_unlock(&regulator_list_mutex);
1919
1920        if (ret != 0) {
1921                regulator = ERR_PTR(-EPROBE_DEFER);
1922                put_device(&rdev->dev);
1923                return regulator;
1924        }
1925
1926        ret = regulator_resolve_supply(rdev);
1927        if (ret < 0) {
1928                regulator = ERR_PTR(ret);
1929                put_device(&rdev->dev);
1930                return regulator;
1931        }
1932
1933        if (!try_module_get(rdev->owner)) {
1934                regulator = ERR_PTR(-EPROBE_DEFER);
1935                put_device(&rdev->dev);
1936                return regulator;
1937        }
1938
1939        regulator = create_regulator(rdev, dev, id);
1940        if (regulator == NULL) {
1941                regulator = ERR_PTR(-ENOMEM);
1942                module_put(rdev->owner);
1943                put_device(&rdev->dev);
1944                return regulator;
1945        }
1946
1947        rdev->open_count++;
1948        if (get_type == EXCLUSIVE_GET) {
1949                rdev->exclusive = 1;
1950
1951                ret = _regulator_is_enabled(rdev);
1952                if (ret > 0)
1953                        rdev->use_count = 1;
1954                else
1955                        rdev->use_count = 0;
1956        }
1957
1958        link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1959        if (!IS_ERR_OR_NULL(link))
1960                regulator->device_link = true;
1961
1962        return regulator;
1963}
1964
1965/**
1966 * regulator_get - lookup and obtain a reference to a regulator.
1967 * @dev: device for regulator "consumer"
1968 * @id: Supply name or regulator ID.
1969 *
1970 * Returns a struct regulator corresponding to the regulator producer,
1971 * or IS_ERR() condition containing errno.
1972 *
1973 * Use of supply names configured via regulator_set_device_supply() is
1974 * strongly encouraged.  It is recommended that the supply name used
1975 * should match the name used for the supply and/or the relevant
1976 * device pins in the datasheet.
1977 */
1978struct regulator *regulator_get(struct device *dev, const char *id)
1979{
1980        return _regulator_get(dev, id, NORMAL_GET);
1981}
1982EXPORT_SYMBOL_GPL(regulator_get);
1983
1984/**
1985 * regulator_get_exclusive - obtain exclusive access to a regulator.
1986 * @dev: device for regulator "consumer"
1987 * @id: Supply name or regulator ID.
1988 *
1989 * Returns a struct regulator corresponding to the regulator producer,
1990 * or IS_ERR() condition containing errno.  Other consumers will be
1991 * unable to obtain this regulator while this reference is held and the
1992 * use count for the regulator will be initialised to reflect the current
1993 * state of the regulator.
1994 *
1995 * This is intended for use by consumers which cannot tolerate shared
1996 * use of the regulator such as those which need to force the
1997 * regulator off for correct operation of the hardware they are
1998 * controlling.
1999 *
2000 * Use of supply names configured via regulator_set_device_supply() is
2001 * strongly encouraged.  It is recommended that the supply name used
2002 * should match the name used for the supply and/or the relevant
2003 * device pins in the datasheet.
2004 */
2005struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2006{
2007        return _regulator_get(dev, id, EXCLUSIVE_GET);
2008}
2009EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2010
2011/**
2012 * regulator_get_optional - obtain optional access to a regulator.
2013 * @dev: device for regulator "consumer"
2014 * @id: Supply name or regulator ID.
2015 *
2016 * Returns a struct regulator corresponding to the regulator producer,
2017 * or IS_ERR() condition containing errno.
2018 *
2019 * This is intended for use by consumers for devices which can have
2020 * some supplies unconnected in normal use, such as some MMC devices.
2021 * It can allow the regulator core to provide stub supplies for other
2022 * supplies requested using normal regulator_get() calls without
2023 * disrupting the operation of drivers that can handle absent
2024 * supplies.
2025 *
2026 * Use of supply names configured via regulator_set_device_supply() is
2027 * strongly encouraged.  It is recommended that the supply name used
2028 * should match the name used for the supply and/or the relevant
2029 * device pins in the datasheet.
2030 */
2031struct regulator *regulator_get_optional(struct device *dev, const char *id)
2032{
2033        return _regulator_get(dev, id, OPTIONAL_GET);
2034}
2035EXPORT_SYMBOL_GPL(regulator_get_optional);
2036
2037/* regulator_list_mutex lock held by regulator_put() */
2038static void _regulator_put(struct regulator *regulator)
2039{
2040        struct regulator_dev *rdev;
2041
2042        if (IS_ERR_OR_NULL(regulator))
2043                return;
2044
2045        lockdep_assert_held_once(&regulator_list_mutex);
2046
2047        /* Docs say you must disable before calling regulator_put() */
2048        WARN_ON(regulator->enable_count);
2049
2050        rdev = regulator->rdev;
2051
2052        debugfs_remove_recursive(regulator->debugfs);
2053
2054        if (regulator->dev) {
2055                if (regulator->device_link)
2056                        device_link_remove(regulator->dev, &rdev->dev);
2057
2058                /* remove any sysfs entries */
2059                sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2060        }
2061
2062        regulator_lock(rdev);
2063        list_del(&regulator->list);
2064
2065        rdev->open_count--;
2066        rdev->exclusive = 0;
2067        regulator_unlock(rdev);
2068
2069        kfree_const(regulator->supply_name);
2070        kfree(regulator);
2071
2072        module_put(rdev->owner);
2073        put_device(&rdev->dev);
2074}
2075
2076/**
2077 * regulator_put - "free" the regulator source
2078 * @regulator: regulator source
2079 *
2080 * Note: drivers must ensure that all regulator_enable calls made on this
2081 * regulator source are balanced by regulator_disable calls prior to calling
2082 * this function.
2083 */
2084void regulator_put(struct regulator *regulator)
2085{
2086        mutex_lock(&regulator_list_mutex);
2087        _regulator_put(regulator);
2088        mutex_unlock(&regulator_list_mutex);
2089}
2090EXPORT_SYMBOL_GPL(regulator_put);
2091
2092/**
2093 * regulator_register_supply_alias - Provide device alias for supply lookup
2094 *
2095 * @dev: device that will be given as the regulator "consumer"
2096 * @id: Supply name or regulator ID
2097 * @alias_dev: device that should be used to lookup the supply
2098 * @alias_id: Supply name or regulator ID that should be used to lookup the
2099 * supply
2100 *
2101 * All lookups for id on dev will instead be conducted for alias_id on
2102 * alias_dev.
2103 */
2104int regulator_register_supply_alias(struct device *dev, const char *id,
2105                                    struct device *alias_dev,
2106                                    const char *alias_id)
2107{
2108        struct regulator_supply_alias *map;
2109
2110        map = regulator_find_supply_alias(dev, id);
2111        if (map)
2112                return -EEXIST;
2113
2114        map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2115        if (!map)
2116                return -ENOMEM;
2117
2118        map->src_dev = dev;
2119        map->src_supply = id;
2120        map->alias_dev = alias_dev;
2121        map->alias_supply = alias_id;
2122
2123        list_add(&map->list, &regulator_supply_alias_list);
2124
2125        pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2126                id, dev_name(dev), alias_id, dev_name(alias_dev));
2127
2128        return 0;
2129}
2130EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2131
2132/**
2133 * regulator_unregister_supply_alias - Remove device alias
2134 *
2135 * @dev: device that will be given as the regulator "consumer"
2136 * @id: Supply name or regulator ID
2137 *
2138 * Remove a lookup alias if one exists for id on dev.
2139 */
2140void regulator_unregister_supply_alias(struct device *dev, const char *id)
2141{
2142        struct regulator_supply_alias *map;
2143
2144        map = regulator_find_supply_alias(dev, id);
2145        if (map) {
2146                list_del(&map->list);
2147                kfree(map);
2148        }
2149}
2150EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2151
2152/**
2153 * regulator_bulk_register_supply_alias - register multiple aliases
2154 *
2155 * @dev: device that will be given as the regulator "consumer"
2156 * @id: List of supply names or regulator IDs
2157 * @alias_dev: device that should be used to lookup the supply
2158 * @alias_id: List of supply names or regulator IDs that should be used to
2159 * lookup the supply
2160 * @num_id: Number of aliases to register
2161 *
2162 * @return 0 on success, an errno on failure.
2163 *
2164 * This helper function allows drivers to register several supply
2165 * aliases in one operation.  If any of the aliases cannot be
2166 * registered any aliases that were registered will be removed
2167 * before returning to the caller.
2168 */
2169int regulator_bulk_register_supply_alias(struct device *dev,
2170                                         const char *const *id,
2171                                         struct device *alias_dev,
2172                                         const char *const *alias_id,
2173                                         int num_id)
2174{
2175        int i;
2176        int ret;
2177
2178        for (i = 0; i < num_id; ++i) {
2179                ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2180                                                      alias_id[i]);
2181                if (ret < 0)
2182                        goto err;
2183        }
2184
2185        return 0;
2186
2187err:
2188        dev_err(dev,
2189                "Failed to create supply alias %s,%s -> %s,%s\n",
2190                id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2191
2192        while (--i >= 0)
2193                regulator_unregister_supply_alias(dev, id[i]);
2194
2195        return ret;
2196}
2197EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2198
2199/**
2200 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2201 *
2202 * @dev: device that will be given as the regulator "consumer"
2203 * @id: List of supply names or regulator IDs
2204 * @num_id: Number of aliases to unregister
2205 *
2206 * This helper function allows drivers to unregister several supply
2207 * aliases in one operation.
2208 */
2209void regulator_bulk_unregister_supply_alias(struct device *dev,
2210                                            const char *const *id,
2211                                            int num_id)
2212{
2213        int i;
2214
2215        for (i = 0; i < num_id; ++i)
2216                regulator_unregister_supply_alias(dev, id[i]);
2217}
2218EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2219
2220
2221/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2222static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2223                                const struct regulator_config *config)
2224{
2225        struct regulator_enable_gpio *pin;
2226        struct gpio_desc *gpiod;
2227
2228        gpiod = config->ena_gpiod;
2229
2230        list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2231                if (pin->gpiod == gpiod) {
2232                        rdev_dbg(rdev, "GPIO is already used\n");
2233                        goto update_ena_gpio_to_rdev;
2234                }
2235        }
2236
2237        pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2238        if (pin == NULL)
2239                return -ENOMEM;
2240
2241        pin->gpiod = gpiod;
2242        list_add(&pin->list, &regulator_ena_gpio_list);
2243
2244update_ena_gpio_to_rdev:
2245        pin->request_count++;
2246        rdev->ena_pin = pin;
2247        return 0;
2248}
2249
2250static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2251{
2252        struct regulator_enable_gpio *pin, *n;
2253
2254        if (!rdev->ena_pin)
2255                return;
2256
2257        /* Free the GPIO only in case of no use */
2258        list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2259                if (pin->gpiod == rdev->ena_pin->gpiod) {
2260                        if (pin->request_count <= 1) {
2261                                pin->request_count = 0;
2262                                gpiod_put(pin->gpiod);
2263                                list_del(&pin->list);
2264                                kfree(pin);
2265                                rdev->ena_pin = NULL;
2266                                return;
2267                        } else {
2268                                pin->request_count--;
2269                        }
2270                }
2271        }
2272}
2273
2274/**
2275 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2276 * @rdev: regulator_dev structure
2277 * @enable: enable GPIO at initial use?
2278 *
2279 * GPIO is enabled in case of initial use. (enable_count is 0)
2280 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2281 */
2282static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2283{
2284        struct regulator_enable_gpio *pin = rdev->ena_pin;
2285
2286        if (!pin)
2287                return -EINVAL;
2288
2289        if (enable) {
2290                /* Enable GPIO at initial use */
2291                if (pin->enable_count == 0)
2292                        gpiod_set_value_cansleep(pin->gpiod, 1);
2293
2294                pin->enable_count++;
2295        } else {
2296                if (pin->enable_count > 1) {
2297                        pin->enable_count--;
2298                        return 0;
2299                }
2300
2301                /* Disable GPIO if not used */
2302                if (pin->enable_count <= 1) {
2303                        gpiod_set_value_cansleep(pin->gpiod, 0);
2304                        pin->enable_count = 0;
2305                }
2306        }
2307
2308        return 0;
2309}
2310
2311/**
2312 * _regulator_enable_delay - a delay helper function
2313 * @delay: time to delay in microseconds
2314 *
2315 * Delay for the requested amount of time as per the guidelines in:
2316 *
2317 *     Documentation/timers/timers-howto.rst
2318 *
2319 * The assumption here is that regulators will never be enabled in
2320 * atomic context and therefore sleeping functions can be used.
2321 */
2322static void _regulator_enable_delay(unsigned int delay)
2323{
2324        unsigned int ms = delay / 1000;
2325        unsigned int us = delay % 1000;
2326
2327        if (ms > 0) {
2328                /*
2329                 * For small enough values, handle super-millisecond
2330                 * delays in the usleep_range() call below.
2331                 */
2332                if (ms < 20)
2333                        us += ms * 1000;
2334                else
2335                        msleep(ms);
2336        }
2337
2338        /*
2339         * Give the scheduler some room to coalesce with any other
2340         * wakeup sources. For delays shorter than 10 us, don't even
2341         * bother setting up high-resolution timers and just busy-
2342         * loop.
2343         */
2344        if (us >= 10)
2345                usleep_range(us, us + 100);
2346        else
2347                udelay(us);
2348}
2349
2350static int _regulator_do_enable(struct regulator_dev *rdev)
2351{
2352        int ret, delay;
2353
2354        /* Query before enabling in case configuration dependent.  */
2355        ret = _regulator_get_enable_time(rdev);
2356        if (ret >= 0) {
2357                delay = ret;
2358        } else {
2359                rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2360                delay = 0;
2361        }
2362
2363        trace_regulator_enable(rdev_get_name(rdev));
2364
2365        if (rdev->desc->off_on_delay) {
2366                /* if needed, keep a distance of off_on_delay from last time
2367                 * this regulator was disabled.
2368                 */
2369                unsigned long start_jiffy = jiffies;
2370                unsigned long intended, max_delay, remaining;
2371
2372                max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2373                intended = rdev->last_off_jiffy + max_delay;
2374
2375                if (time_before(start_jiffy, intended)) {
2376                        /* calc remaining jiffies to deal with one-time
2377                         * timer wrapping.
2378                         * in case of multiple timer wrapping, either it can be
2379                         * detected by out-of-range remaining, or it cannot be
2380                         * detected and we get a penalty of
2381                         * _regulator_enable_delay().
2382                         */
2383                        remaining = intended - start_jiffy;
2384                        if (remaining <= max_delay)
2385                                _regulator_enable_delay(
2386                                                jiffies_to_usecs(remaining));
2387                }
2388        }
2389
2390        if (rdev->ena_pin) {
2391                if (!rdev->ena_gpio_state) {
2392                        ret = regulator_ena_gpio_ctrl(rdev, true);
2393                        if (ret < 0)
2394                                return ret;
2395                        rdev->ena_gpio_state = 1;
2396                }
2397        } else if (rdev->desc->ops->enable) {
2398                ret = rdev->desc->ops->enable(rdev);
2399                if (ret < 0)
2400                        return ret;
2401        } else {
2402                return -EINVAL;
2403        }
2404
2405        /* Allow the regulator to ramp; it would be useful to extend
2406         * this for bulk operations so that the regulators can ramp
2407         * together.  */
2408        trace_regulator_enable_delay(rdev_get_name(rdev));
2409
2410        _regulator_enable_delay(delay);
2411
2412        trace_regulator_enable_complete(rdev_get_name(rdev));
2413
2414        return 0;
2415}
2416
2417/**
2418 * _regulator_handle_consumer_enable - handle that a consumer enabled
2419 * @regulator: regulator source
2420 *
2421 * Some things on a regulator consumer (like the contribution towards total
2422 * load on the regulator) only have an effect when the consumer wants the
2423 * regulator enabled.  Explained in example with two consumers of the same
2424 * regulator:
2425 *   consumer A: set_load(100);       => total load = 0
2426 *   consumer A: regulator_enable();  => total load = 100
2427 *   consumer B: set_load(1000);      => total load = 100
2428 *   consumer B: regulator_enable();  => total load = 1100
2429 *   consumer A: regulator_disable(); => total_load = 1000
2430 *
2431 * This function (together with _regulator_handle_consumer_disable) is
2432 * responsible for keeping track of the refcount for a given regulator consumer
2433 * and applying / unapplying these things.
2434 *
2435 * Returns 0 upon no error; -error upon error.
2436 */
2437static int _regulator_handle_consumer_enable(struct regulator *regulator)
2438{
2439        struct regulator_dev *rdev = regulator->rdev;
2440
2441        lockdep_assert_held_once(&rdev->mutex.base);
2442
2443        regulator->enable_count++;
2444        if (regulator->uA_load && regulator->enable_count == 1)
2445                return drms_uA_update(rdev);
2446
2447        return 0;
2448}
2449
2450/**
2451 * _regulator_handle_consumer_disable - handle that a consumer disabled
2452 * @regulator: regulator source
2453 *
2454 * The opposite of _regulator_handle_consumer_enable().
2455 *
2456 * Returns 0 upon no error; -error upon error.
2457 */
2458static int _regulator_handle_consumer_disable(struct regulator *regulator)
2459{
2460        struct regulator_dev *rdev = regulator->rdev;
2461
2462        lockdep_assert_held_once(&rdev->mutex.base);
2463
2464        if (!regulator->enable_count) {
2465                rdev_err(rdev, "Underflow of regulator enable count\n");
2466                return -EINVAL;
2467        }
2468
2469        regulator->enable_count--;
2470        if (regulator->uA_load && regulator->enable_count == 0)
2471                return drms_uA_update(rdev);
2472
2473        return 0;
2474}
2475
2476/* locks held by regulator_enable() */
2477static int _regulator_enable(struct regulator *regulator)
2478{
2479        struct regulator_dev *rdev = regulator->rdev;
2480        int ret;
2481
2482        lockdep_assert_held_once(&rdev->mutex.base);
2483
2484        if (rdev->use_count == 0 && rdev->supply) {
2485                ret = _regulator_enable(rdev->supply);
2486                if (ret < 0)
2487                        return ret;
2488        }
2489
2490        /* balance only if there are regulators coupled */
2491        if (rdev->coupling_desc.n_coupled > 1) {
2492                ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2493                if (ret < 0)
2494                        goto err_disable_supply;
2495        }
2496
2497        ret = _regulator_handle_consumer_enable(regulator);
2498        if (ret < 0)
2499                goto err_disable_supply;
2500
2501        if (rdev->use_count == 0) {
2502                /* The regulator may on if it's not switchable or left on */
2503                ret = _regulator_is_enabled(rdev);
2504                if (ret == -EINVAL || ret == 0) {
2505                        if (!regulator_ops_is_valid(rdev,
2506                                        REGULATOR_CHANGE_STATUS)) {
2507                                ret = -EPERM;
2508                                goto err_consumer_disable;
2509                        }
2510
2511                        ret = _regulator_do_enable(rdev);
2512                        if (ret < 0)
2513                                goto err_consumer_disable;
2514
2515                        _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2516                                             NULL);
2517                } else if (ret < 0) {
2518                        rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2519                        goto err_consumer_disable;
2520                }
2521                /* Fallthrough on positive return values - already enabled */
2522        }
2523
2524        rdev->use_count++;
2525
2526        return 0;
2527
2528err_consumer_disable:
2529        _regulator_handle_consumer_disable(regulator);
2530
2531err_disable_supply:
2532        if (rdev->use_count == 0 && rdev->supply)
2533                _regulator_disable(rdev->supply);
2534
2535        return ret;
2536}
2537
2538/**
2539 * regulator_enable - enable regulator output
2540 * @regulator: regulator source
2541 *
2542 * Request that the regulator be enabled with the regulator output at
2543 * the predefined voltage or current value.  Calls to regulator_enable()
2544 * must be balanced with calls to regulator_disable().
2545 *
2546 * NOTE: the output value can be set by other drivers, boot loader or may be
2547 * hardwired in the regulator.
2548 */
2549int regulator_enable(struct regulator *regulator)
2550{
2551        struct regulator_dev *rdev = regulator->rdev;
2552        struct ww_acquire_ctx ww_ctx;
2553        int ret;
2554
2555        regulator_lock_dependent(rdev, &ww_ctx);
2556        ret = _regulator_enable(regulator);
2557        regulator_unlock_dependent(rdev, &ww_ctx);
2558
2559        return ret;
2560}
2561EXPORT_SYMBOL_GPL(regulator_enable);
2562
2563static int _regulator_do_disable(struct regulator_dev *rdev)
2564{
2565        int ret;
2566
2567        trace_regulator_disable(rdev_get_name(rdev));
2568
2569        if (rdev->ena_pin) {
2570                if (rdev->ena_gpio_state) {
2571                        ret = regulator_ena_gpio_ctrl(rdev, false);
2572                        if (ret < 0)
2573                                return ret;
2574                        rdev->ena_gpio_state = 0;
2575                }
2576
2577        } else if (rdev->desc->ops->disable) {
2578                ret = rdev->desc->ops->disable(rdev);
2579                if (ret != 0)
2580                        return ret;
2581        }
2582
2583        /* cares about last_off_jiffy only if off_on_delay is required by
2584         * device.
2585         */
2586        if (rdev->desc->off_on_delay)
2587                rdev->last_off_jiffy = jiffies;
2588
2589        trace_regulator_disable_complete(rdev_get_name(rdev));
2590
2591        return 0;
2592}
2593
2594/* locks held by regulator_disable() */
2595static int _regulator_disable(struct regulator *regulator)
2596{
2597        struct regulator_dev *rdev = regulator->rdev;
2598        int ret = 0;
2599
2600        lockdep_assert_held_once(&rdev->mutex.base);
2601
2602        if (WARN(rdev->use_count <= 0,
2603                 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2604                return -EIO;
2605
2606        /* are we the last user and permitted to disable ? */
2607        if (rdev->use_count == 1 &&
2608            (rdev->constraints && !rdev->constraints->always_on)) {
2609
2610                /* we are last user */
2611                if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2612                        ret = _notifier_call_chain(rdev,
2613                                                   REGULATOR_EVENT_PRE_DISABLE,
2614                                                   NULL);
2615                        if (ret & NOTIFY_STOP_MASK)
2616                                return -EINVAL;
2617
2618                        ret = _regulator_do_disable(rdev);
2619                        if (ret < 0) {
2620                                rdev_err(rdev, "failed to disable\n");
2621                                _notifier_call_chain(rdev,
2622                                                REGULATOR_EVENT_ABORT_DISABLE,
2623                                                NULL);
2624                                return ret;
2625                        }
2626                        _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2627                                        NULL);
2628                }
2629
2630                rdev->use_count = 0;
2631        } else if (rdev->use_count > 1) {
2632                rdev->use_count--;
2633        }
2634
2635        if (ret == 0)
2636                ret = _regulator_handle_consumer_disable(regulator);
2637
2638        if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2639                ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2640
2641        if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2642                ret = _regulator_disable(rdev->supply);
2643
2644        return ret;
2645}
2646
2647/**
2648 * regulator_disable - disable regulator output
2649 * @regulator: regulator source
2650 *
2651 * Disable the regulator output voltage or current.  Calls to
2652 * regulator_enable() must be balanced with calls to
2653 * regulator_disable().
2654 *
2655 * NOTE: this will only disable the regulator output if no other consumer
2656 * devices have it enabled, the regulator device supports disabling and
2657 * machine constraints permit this operation.
2658 */
2659int regulator_disable(struct regulator *regulator)
2660{
2661        struct regulator_dev *rdev = regulator->rdev;
2662        struct ww_acquire_ctx ww_ctx;
2663        int ret;
2664
2665        regulator_lock_dependent(rdev, &ww_ctx);
2666        ret = _regulator_disable(regulator);
2667        regulator_unlock_dependent(rdev, &ww_ctx);
2668
2669        return ret;
2670}
2671EXPORT_SYMBOL_GPL(regulator_disable);
2672
2673/* locks held by regulator_force_disable() */
2674static int _regulator_force_disable(struct regulator_dev *rdev)
2675{
2676        int ret = 0;
2677
2678        lockdep_assert_held_once(&rdev->mutex.base);
2679
2680        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2681                        REGULATOR_EVENT_PRE_DISABLE, NULL);
2682        if (ret & NOTIFY_STOP_MASK)
2683                return -EINVAL;
2684
2685        ret = _regulator_do_disable(rdev);
2686        if (ret < 0) {
2687                rdev_err(rdev, "failed to force disable\n");
2688                _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2689                                REGULATOR_EVENT_ABORT_DISABLE, NULL);
2690                return ret;
2691        }
2692
2693        _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2694                        REGULATOR_EVENT_DISABLE, NULL);
2695
2696        return 0;
2697}
2698
2699/**
2700 * regulator_force_disable - force disable regulator output
2701 * @regulator: regulator source
2702 *
2703 * Forcibly disable the regulator output voltage or current.
2704 * NOTE: this *will* disable the regulator output even if other consumer
2705 * devices have it enabled. This should be used for situations when device
2706 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2707 */
2708int regulator_force_disable(struct regulator *regulator)
2709{
2710        struct regulator_dev *rdev = regulator->rdev;
2711        struct ww_acquire_ctx ww_ctx;
2712        int ret;
2713
2714        regulator_lock_dependent(rdev, &ww_ctx);
2715
2716        ret = _regulator_force_disable(regulator->rdev);
2717
2718        if (rdev->coupling_desc.n_coupled > 1)
2719                regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2720
2721        if (regulator->uA_load) {
2722                regulator->uA_load = 0;
2723                ret = drms_uA_update(rdev);
2724        }
2725
2726        if (rdev->use_count != 0 && rdev->supply)
2727                _regulator_disable(rdev->supply);
2728
2729        regulator_unlock_dependent(rdev, &ww_ctx);
2730
2731        return ret;
2732}
2733EXPORT_SYMBOL_GPL(regulator_force_disable);
2734
2735static void regulator_disable_work(struct work_struct *work)
2736{
2737        struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2738                                                  disable_work.work);
2739        struct ww_acquire_ctx ww_ctx;
2740        int count, i, ret;
2741        struct regulator *regulator;
2742        int total_count = 0;
2743
2744        regulator_lock_dependent(rdev, &ww_ctx);
2745
2746        /*
2747         * Workqueue functions queue the new work instance while the previous
2748         * work instance is being processed. Cancel the queued work instance
2749         * as the work instance under processing does the job of the queued
2750         * work instance.
2751         */
2752        cancel_delayed_work(&rdev->disable_work);
2753
2754        list_for_each_entry(regulator, &rdev->consumer_list, list) {
2755                count = regulator->deferred_disables;
2756
2757                if (!count)
2758                        continue;
2759
2760                total_count += count;
2761                regulator->deferred_disables = 0;
2762
2763                for (i = 0; i < count; i++) {
2764                        ret = _regulator_disable(regulator);
2765                        if (ret != 0)
2766                                rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2767                }
2768        }
2769        WARN_ON(!total_count);
2770
2771        if (rdev->coupling_desc.n_coupled > 1)
2772                regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2773
2774        regulator_unlock_dependent(rdev, &ww_ctx);
2775}
2776
2777/**
2778 * regulator_disable_deferred - disable regulator output with delay
2779 * @regulator: regulator source
2780 * @ms: milliseconds until the regulator is disabled
2781 *
2782 * Execute regulator_disable() on the regulator after a delay.  This
2783 * is intended for use with devices that require some time to quiesce.
2784 *
2785 * NOTE: this will only disable the regulator output if no other consumer
2786 * devices have it enabled, the regulator device supports disabling and
2787 * machine constraints permit this operation.
2788 */
2789int regulator_disable_deferred(struct regulator *regulator, int ms)
2790{
2791        struct regulator_dev *rdev = regulator->rdev;
2792
2793        if (!ms)
2794                return regulator_disable(regulator);
2795
2796        regulator_lock(rdev);
2797        regulator->deferred_disables++;
2798        mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2799                         msecs_to_jiffies(ms));
2800        regulator_unlock(rdev);
2801
2802        return 0;
2803}
2804EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2805
2806static int _regulator_is_enabled(struct regulator_dev *rdev)
2807{
2808        /* A GPIO control always takes precedence */
2809        if (rdev->ena_pin)
2810                return rdev->ena_gpio_state;
2811
2812        /* If we don't know then assume that the regulator is always on */
2813        if (!rdev->desc->ops->is_enabled)
2814                return 1;
2815
2816        return rdev->desc->ops->is_enabled(rdev);
2817}
2818
2819static int _regulator_list_voltage(struct regulator_dev *rdev,
2820                                   unsigned selector, int lock)
2821{
2822        const struct regulator_ops *ops = rdev->desc->ops;
2823        int ret;
2824
2825        if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2826                return rdev->desc->fixed_uV;
2827
2828        if (ops->list_voltage) {
2829                if (selector >= rdev->desc->n_voltages)
2830                        return -EINVAL;
2831                if (lock)
2832                        regulator_lock(rdev);
2833                ret = ops->list_voltage(rdev, selector);
2834                if (lock)
2835                        regulator_unlock(rdev);
2836        } else if (rdev->is_switch && rdev->supply) {
2837                ret = _regulator_list_voltage(rdev->supply->rdev,
2838                                              selector, lock);
2839        } else {
2840                return -EINVAL;
2841        }
2842
2843        if (ret > 0) {
2844                if (ret < rdev->constraints->min_uV)
2845                        ret = 0;
2846                else if (ret > rdev->constraints->max_uV)
2847                        ret = 0;
2848        }
2849
2850        return ret;
2851}
2852
2853/**
2854 * regulator_is_enabled - is the regulator output enabled
2855 * @regulator: regulator source
2856 *
2857 * Returns positive if the regulator driver backing the source/client
2858 * has requested that the device be enabled, zero if it hasn't, else a
2859 * negative errno code.
2860 *
2861 * Note that the device backing this regulator handle can have multiple
2862 * users, so it might be enabled even if regulator_enable() was never
2863 * called for this particular source.
2864 */
2865int regulator_is_enabled(struct regulator *regulator)
2866{
2867        int ret;
2868
2869        if (regulator->always_on)
2870                return 1;
2871
2872        regulator_lock(regulator->rdev);
2873        ret = _regulator_is_enabled(regulator->rdev);
2874        regulator_unlock(regulator->rdev);
2875
2876        return ret;
2877}
2878EXPORT_SYMBOL_GPL(regulator_is_enabled);
2879
2880/**
2881 * regulator_count_voltages - count regulator_list_voltage() selectors
2882 * @regulator: regulator source
2883 *
2884 * Returns number of selectors, or negative errno.  Selectors are
2885 * numbered starting at zero, and typically correspond to bitfields
2886 * in hardware registers.
2887 */
2888int regulator_count_voltages(struct regulator *regulator)
2889{
2890        struct regulator_dev    *rdev = regulator->rdev;
2891
2892        if (rdev->desc->n_voltages)
2893                return rdev->desc->n_voltages;
2894
2895        if (!rdev->is_switch || !rdev->supply)
2896                return -EINVAL;
2897
2898        return regulator_count_voltages(rdev->supply);
2899}
2900EXPORT_SYMBOL_GPL(regulator_count_voltages);
2901
2902/**
2903 * regulator_list_voltage - enumerate supported voltages
2904 * @regulator: regulator source
2905 * @selector: identify voltage to list
2906 * Context: can sleep
2907 *
2908 * Returns a voltage that can be passed to @regulator_set_voltage(),
2909 * zero if this selector code can't be used on this system, or a
2910 * negative errno.
2911 */
2912int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2913{
2914        return _regulator_list_voltage(regulator->rdev, selector, 1);
2915}
2916EXPORT_SYMBOL_GPL(regulator_list_voltage);
2917
2918/**
2919 * regulator_get_regmap - get the regulator's register map
2920 * @regulator: regulator source
2921 *
2922 * Returns the register map for the given regulator, or an ERR_PTR value
2923 * if the regulator doesn't use regmap.
2924 */
2925struct regmap *regulator_get_regmap(struct regulator *regulator)
2926{
2927        struct regmap *map = regulator->rdev->regmap;
2928
2929        return map ? map : ERR_PTR(-EOPNOTSUPP);
2930}
2931
2932/**
2933 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2934 * @regulator: regulator source
2935 * @vsel_reg: voltage selector register, output parameter
2936 * @vsel_mask: mask for voltage selector bitfield, output parameter
2937 *
2938 * Returns the hardware register offset and bitmask used for setting the
2939 * regulator voltage. This might be useful when configuring voltage-scaling
2940 * hardware or firmware that can make I2C requests behind the kernel's back,
2941 * for example.
2942 *
2943 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2944 * and 0 is returned, otherwise a negative errno is returned.
2945 */
2946int regulator_get_hardware_vsel_register(struct regulator *regulator,
2947                                         unsigned *vsel_reg,
2948                                         unsigned *vsel_mask)
2949{
2950        struct regulator_dev *rdev = regulator->rdev;
2951        const struct regulator_ops *ops = rdev->desc->ops;
2952
2953        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2954                return -EOPNOTSUPP;
2955
2956        *vsel_reg = rdev->desc->vsel_reg;
2957        *vsel_mask = rdev->desc->vsel_mask;
2958
2959         return 0;
2960}
2961EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2962
2963/**
2964 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2965 * @regulator: regulator source
2966 * @selector: identify voltage to list
2967 *
2968 * Converts the selector to a hardware-specific voltage selector that can be
2969 * directly written to the regulator registers. The address of the voltage
2970 * register can be determined by calling @regulator_get_hardware_vsel_register.
2971 *
2972 * On error a negative errno is returned.
2973 */
2974int regulator_list_hardware_vsel(struct regulator *regulator,
2975                                 unsigned selector)
2976{
2977        struct regulator_dev *rdev = regulator->rdev;
2978        const struct regulator_ops *ops = rdev->desc->ops;
2979
2980        if (selector >= rdev->desc->n_voltages)
2981                return -EINVAL;
2982        if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2983                return -EOPNOTSUPP;
2984
2985        return selector;
2986}
2987EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2988
2989/**
2990 * regulator_get_linear_step - return the voltage step size between VSEL values
2991 * @regulator: regulator source
2992 *
2993 * Returns the voltage step size between VSEL values for linear
2994 * regulators, or return 0 if the regulator isn't a linear regulator.
2995 */
2996unsigned int regulator_get_linear_step(struct regulator *regulator)
2997{
2998        struct regulator_dev *rdev = regulator->rdev;
2999
3000        return rdev->desc->uV_step;
3001}
3002EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3003
3004/**
3005 * regulator_is_supported_voltage - check if a voltage range can be supported
3006 *
3007 * @regulator: Regulator to check.
3008 * @min_uV: Minimum required voltage in uV.
3009 * @max_uV: Maximum required voltage in uV.
3010 *
3011 * Returns a boolean.
3012 */
3013int regulator_is_supported_voltage(struct regulator *regulator,
3014                                   int min_uV, int max_uV)
3015{
3016        struct regulator_dev *rdev = regulator->rdev;
3017        int i, voltages, ret;
3018
3019        /* If we can't change voltage check the current voltage */
3020        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3021                ret = regulator_get_voltage(regulator);
3022                if (ret >= 0)
3023                        return min_uV <= ret && ret <= max_uV;
3024                else
3025                        return ret;
3026        }
3027
3028        /* Any voltage within constrains range is fine? */
3029        if (rdev->desc->continuous_voltage_range)
3030                return min_uV >= rdev->constraints->min_uV &&
3031                                max_uV <= rdev->constraints->max_uV;
3032
3033        ret = regulator_count_voltages(regulator);
3034        if (ret < 0)
3035                return 0;
3036        voltages = ret;
3037
3038        for (i = 0; i < voltages; i++) {
3039                ret = regulator_list_voltage(regulator, i);
3040
3041                if (ret >= min_uV && ret <= max_uV)
3042                        return 1;
3043        }
3044
3045        return 0;
3046}
3047EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3048
3049static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3050                                 int max_uV)
3051{
3052        const struct regulator_desc *desc = rdev->desc;
3053
3054        if (desc->ops->map_voltage)
3055                return desc->ops->map_voltage(rdev, min_uV, max_uV);
3056
3057        if (desc->ops->list_voltage == regulator_list_voltage_linear)
3058                return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3059
3060        if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3061                return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3062
3063        if (desc->ops->list_voltage ==
3064                regulator_list_voltage_pickable_linear_range)
3065                return regulator_map_voltage_pickable_linear_range(rdev,
3066                                                        min_uV, max_uV);
3067
3068        return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3069}
3070
3071static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3072                                       int min_uV, int max_uV,
3073                                       unsigned *selector)
3074{
3075        struct pre_voltage_change_data data;
3076        int ret;
3077
3078        data.old_uV = regulator_get_voltage_rdev(rdev);
3079        data.min_uV = min_uV;
3080        data.max_uV = max_uV;
3081        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3082                                   &data);
3083        if (ret & NOTIFY_STOP_MASK)
3084                return -EINVAL;
3085
3086        ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3087        if (ret >= 0)
3088                return ret;
3089
3090        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3091                             (void *)data.old_uV);
3092
3093        return ret;
3094}
3095
3096static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3097                                           int uV, unsigned selector)
3098{
3099        struct pre_voltage_change_data data;
3100        int ret;
3101
3102        data.old_uV = regulator_get_voltage_rdev(rdev);
3103        data.min_uV = uV;
3104        data.max_uV = uV;
3105        ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3106                                   &data);
3107        if (ret & NOTIFY_STOP_MASK)
3108                return -EINVAL;
3109
3110        ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3111        if (ret >= 0)
3112                return ret;
3113
3114        _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3115                             (void *)data.old_uV);
3116
3117        return ret;
3118}
3119
3120static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3121                                           int uV, int new_selector)
3122{
3123        const struct regulator_ops *ops = rdev->desc->ops;
3124        int diff, old_sel, curr_sel, ret;
3125
3126        /* Stepping is only needed if the regulator is enabled. */
3127        if (!_regulator_is_enabled(rdev))
3128                goto final_set;
3129
3130        if (!ops->get_voltage_sel)
3131                return -EINVAL;
3132
3133        old_sel = ops->get_voltage_sel(rdev);
3134        if (old_sel < 0)
3135                return old_sel;
3136
3137        diff = new_selector - old_sel;
3138        if (diff == 0)
3139                return 0; /* No change needed. */
3140
3141        if (diff > 0) {
3142                /* Stepping up. */
3143                for (curr_sel = old_sel + rdev->desc->vsel_step;
3144                     curr_sel < new_selector;
3145                     curr_sel += rdev->desc->vsel_step) {
3146                        /*
3147                         * Call the callback directly instead of using
3148                         * _regulator_call_set_voltage_sel() as we don't
3149                         * want to notify anyone yet. Same in the branch
3150                         * below.
3151                         */
3152                        ret = ops->set_voltage_sel(rdev, curr_sel);
3153                        if (ret)
3154                                goto try_revert;
3155                }
3156        } else {
3157                /* Stepping down. */
3158                for (curr_sel = old_sel - rdev->desc->vsel_step;
3159                     curr_sel > new_selector;
3160                     curr_sel -= rdev->desc->vsel_step) {
3161                        ret = ops->set_voltage_sel(rdev, curr_sel);
3162                        if (ret)
3163                                goto try_revert;
3164                }
3165        }
3166
3167final_set:
3168        /* The final selector will trigger the notifiers. */
3169        return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3170
3171try_revert:
3172        /*
3173         * At least try to return to the previous voltage if setting a new
3174         * one failed.
3175         */
3176        (void)ops->set_voltage_sel(rdev, old_sel);
3177        return ret;
3178}
3179
3180static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3181                                       int old_uV, int new_uV)
3182{
3183        unsigned int ramp_delay = 0;
3184
3185        if (rdev->constraints->ramp_delay)
3186                ramp_delay = rdev->constraints->ramp_delay;
3187        else if (rdev->desc->ramp_delay)
3188                ramp_delay = rdev->desc->ramp_delay;
3189        else if (rdev->constraints->settling_time)
3190                return rdev->constraints->settling_time;
3191        else if (rdev->constraints->settling_time_up &&
3192                 (new_uV > old_uV))
3193                return rdev->constraints->settling_time_up;
3194        else if (rdev->constraints->settling_time_down &&
3195                 (new_uV < old_uV))
3196                return rdev->constraints->settling_time_down;
3197
3198        if (ramp_delay == 0) {
3199                rdev_dbg(rdev, "ramp_delay not set\n");
3200                return 0;
3201        }
3202
3203        return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3204}
3205
3206static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3207                                     int min_uV, int max_uV)
3208{
3209        int ret;
3210        int delay = 0;
3211        int best_val = 0;
3212        unsigned int selector;
3213        int old_selector = -1;
3214        const struct regulator_ops *ops = rdev->desc->ops;
3215        int old_uV = regulator_get_voltage_rdev(rdev);
3216
3217        trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3218
3219        min_uV += rdev->constraints->uV_offset;
3220        max_uV += rdev->constraints->uV_offset;
3221
3222        /*
3223         * If we can't obtain the old selector there is not enough
3224         * info to call set_voltage_time_sel().
3225         */
3226        if (_regulator_is_enabled(rdev) &&
3227            ops->set_voltage_time_sel && ops->get_voltage_sel) {
3228                old_selector = ops->get_voltage_sel(rdev);
3229                if (old_selector < 0)
3230                        return old_selector;
3231        }
3232
3233        if (ops->set_voltage) {
3234                ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3235                                                  &selector);
3236
3237                if (ret >= 0) {
3238                        if (ops->list_voltage)
3239                                best_val = ops->list_voltage(rdev,
3240                                                             selector);
3241                        else
3242                                best_val = regulator_get_voltage_rdev(rdev);
3243                }
3244
3245        } else if (ops->set_voltage_sel) {
3246                ret = regulator_map_voltage(rdev, min_uV, max_uV);
3247                if (ret >= 0) {
3248                        best_val = ops->list_voltage(rdev, ret);
3249                        if (min_uV <= best_val && max_uV >= best_val) {
3250                                selector = ret;
3251                                if (old_selector == selector)
3252                                        ret = 0;
3253                                else if (rdev->desc->vsel_step)
3254                                        ret = _regulator_set_voltage_sel_step(
3255                                                rdev, best_val, selector);
3256                                else
3257                                        ret = _regulator_call_set_voltage_sel(
3258                                                rdev, best_val, selector);
3259                        } else {
3260                                ret = -EINVAL;
3261                        }
3262                }
3263        } else {
3264                ret = -EINVAL;
3265        }
3266
3267        if (ret)
3268                goto out;
3269
3270        if (ops->set_voltage_time_sel) {
3271                /*
3272                 * Call set_voltage_time_sel if successfully obtained
3273                 * old_selector
3274                 */
3275                if (old_selector >= 0 && old_selector != selector)
3276                        delay = ops->set_voltage_time_sel(rdev, old_selector,
3277                                                          selector);
3278        } else {
3279                if (old_uV != best_val) {
3280                        if (ops->set_voltage_time)
3281                                delay = ops->set_voltage_time(rdev, old_uV,
3282                                                              best_val);
3283                        else
3284                                delay = _regulator_set_voltage_time(rdev,
3285                                                                    old_uV,
3286                                                                    best_val);
3287                }
3288        }
3289
3290        if (delay < 0) {
3291                rdev_warn(rdev, "failed to get delay: %d\n", delay);
3292                delay = 0;
3293        }
3294
3295        /* Insert any necessary delays */
3296        if (delay >= 1000) {
3297                mdelay(delay / 1000);
3298                udelay(delay % 1000);
3299        } else if (delay) {
3300                udelay(delay);
3301        }
3302
3303        if (best_val >= 0) {
3304                unsigned long data = best_val;
3305
3306                _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3307                                     (void *)data);
3308        }
3309
3310out:
3311        trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3312
3313        return ret;
3314}
3315
3316static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3317                                  int min_uV, int max_uV, suspend_state_t state)
3318{
3319        struct regulator_state *rstate;
3320        int uV, sel;
3321
3322        rstate = regulator_get_suspend_state(rdev, state);
3323        if (rstate == NULL)
3324                return -EINVAL;
3325
3326        if (min_uV < rstate->min_uV)
3327                min_uV = rstate->min_uV;
3328        if (max_uV > rstate->max_uV)
3329                max_uV = rstate->max_uV;
3330
3331        sel = regulator_map_voltage(rdev, min_uV, max_uV);
3332        if (sel < 0)
3333                return sel;
3334
3335        uV = rdev->desc->ops->list_voltage(rdev, sel);
3336        if (uV >= min_uV && uV <= max_uV)
3337                rstate->uV = uV;
3338
3339        return 0;
3340}
3341
3342static int regulator_set_voltage_unlocked(struct regulator *regulator,
3343                                          int min_uV, int max_uV,
3344                                          suspend_state_t state)
3345{
3346        struct regulator_dev *rdev = regulator->rdev;
3347        struct regulator_voltage *voltage = &regulator->voltage[state];
3348        int ret = 0;
3349        int old_min_uV, old_max_uV;
3350        int current_uV;
3351
3352        /* If we're setting the same range as last time the change
3353         * should be a noop (some cpufreq implementations use the same
3354         * voltage for multiple frequencies, for example).
3355         */
3356        if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3357                goto out;
3358
3359        /* If we're trying to set a range that overlaps the current voltage,
3360         * return successfully even though the regulator does not support
3361         * changing the voltage.
3362         */
3363        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3364                current_uV = regulator_get_voltage_rdev(rdev);
3365                if (min_uV <= current_uV && current_uV <= max_uV) {
3366                        voltage->min_uV = min_uV;
3367                        voltage->max_uV = max_uV;
3368                        goto out;
3369                }
3370        }
3371
3372        /* sanity check */
3373        if (!rdev->desc->ops->set_voltage &&
3374            !rdev->desc->ops->set_voltage_sel) {
3375                ret = -EINVAL;
3376                goto out;
3377        }
3378
3379        /* constraints check */
3380        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3381        if (ret < 0)
3382                goto out;
3383
3384        /* restore original values in case of error */
3385        old_min_uV = voltage->min_uV;
3386        old_max_uV = voltage->max_uV;
3387        voltage->min_uV = min_uV;
3388        voltage->max_uV = max_uV;
3389
3390        /* for not coupled regulators this will just set the voltage */
3391        ret = regulator_balance_voltage(rdev, state);
3392        if (ret < 0) {
3393                voltage->min_uV = old_min_uV;
3394                voltage->max_uV = old_max_uV;
3395        }
3396
3397out:
3398        return ret;
3399}
3400
3401int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3402                               int max_uV, suspend_state_t state)
3403{
3404        int best_supply_uV = 0;
3405        int supply_change_uV = 0;
3406        int ret;
3407
3408        if (rdev->supply &&
3409            regulator_ops_is_valid(rdev->supply->rdev,
3410                                   REGULATOR_CHANGE_VOLTAGE) &&
3411            (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3412                                           rdev->desc->ops->get_voltage_sel))) {
3413                int current_supply_uV;
3414                int selector;
3415
3416                selector = regulator_map_voltage(rdev, min_uV, max_uV);
3417                if (selector < 0) {
3418                        ret = selector;
3419                        goto out;
3420                }
3421
3422                best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3423                if (best_supply_uV < 0) {
3424                        ret = best_supply_uV;
3425                        goto out;
3426                }
3427
3428                best_supply_uV += rdev->desc->min_dropout_uV;
3429
3430                current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3431                if (current_supply_uV < 0) {
3432                        ret = current_supply_uV;
3433                        goto out;
3434                }
3435
3436                supply_change_uV = best_supply_uV - current_supply_uV;
3437        }
3438
3439        if (supply_change_uV > 0) {
3440                ret = regulator_set_voltage_unlocked(rdev->supply,
3441                                best_supply_uV, INT_MAX, state);
3442                if (ret) {
3443                        dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3444                                        ret);
3445                        goto out;
3446                }
3447        }
3448
3449        if (state == PM_SUSPEND_ON)
3450                ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3451        else
3452                ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3453                                                        max_uV, state);
3454        if (ret < 0)
3455                goto out;
3456
3457        if (supply_change_uV < 0) {
3458                ret = regulator_set_voltage_unlocked(rdev->supply,
3459                                best_supply_uV, INT_MAX, state);
3460                if (ret)
3461                        dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3462                                        ret);
3463                /* No need to fail here */
3464                ret = 0;
3465        }
3466
3467out:
3468        return ret;
3469}
3470EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3471
3472static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3473                                        int *current_uV, int *min_uV)
3474{
3475        struct regulation_constraints *constraints = rdev->constraints;
3476
3477        /* Limit voltage change only if necessary */
3478        if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3479                return 1;
3480
3481        if (*current_uV < 0) {
3482                *current_uV = regulator_get_voltage_rdev(rdev);
3483
3484                if (*current_uV < 0)
3485                        return *current_uV;
3486        }
3487
3488        if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3489                return 1;
3490
3491        /* Clamp target voltage within the given step */
3492        if (*current_uV < *min_uV)
3493                *min_uV = min(*current_uV + constraints->max_uV_step,
3494                              *min_uV);
3495        else
3496                *min_uV = max(*current_uV - constraints->max_uV_step,
3497                              *min_uV);
3498
3499        return 0;
3500}
3501
3502static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3503                                         int *current_uV,
3504                                         int *min_uV, int *max_uV,
3505                                         suspend_state_t state,
3506                                         int n_coupled)
3507{
3508        struct coupling_desc *c_desc = &rdev->coupling_desc;
3509        struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3510        struct regulation_constraints *constraints = rdev->constraints;
3511        int desired_min_uV = 0, desired_max_uV = INT_MAX;
3512        int max_current_uV = 0, min_current_uV = INT_MAX;
3513        int highest_min_uV = 0, target_uV, possible_uV;
3514        int i, ret, max_spread;
3515        bool done;
3516
3517        *current_uV = -1;
3518
3519        /*
3520         * If there are no coupled regulators, simply set the voltage
3521         * demanded by consumers.
3522         */
3523        if (n_coupled == 1) {
3524                /*
3525                 * If consumers don't provide any demands, set voltage
3526                 * to min_uV
3527                 */
3528                desired_min_uV = constraints->min_uV;
3529                desired_max_uV = constraints->max_uV;
3530
3531                ret = regulator_check_consumers(rdev,
3532                                                &desired_min_uV,
3533                                                &desired_max_uV, state);
3534                if (ret < 0)
3535                        return ret;
3536
3537                possible_uV = desired_min_uV;
3538                done = true;
3539
3540                goto finish;
3541        }
3542
3543        /* Find highest min desired voltage */
3544        for (i = 0; i < n_coupled; i++) {
3545                int tmp_min = 0;
3546                int tmp_max = INT_MAX;
3547
3548                lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3549
3550                ret = regulator_check_consumers(c_rdevs[i],
3551                                                &tmp_min,
3552                                                &tmp_max, state);
3553                if (ret < 0)
3554                        return ret;
3555
3556                ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3557                if (ret < 0)
3558                        return ret;
3559
3560                highest_min_uV = max(highest_min_uV, tmp_min);
3561
3562                if (i == 0) {
3563                        desired_min_uV = tmp_min;
3564                        desired_max_uV = tmp_max;
3565                }
3566        }
3567
3568        max_spread = constraints->max_spread[0];
3569
3570        /*
3571         * Let target_uV be equal to the desired one if possible.
3572         * If not, set it to minimum voltage, allowed by other coupled
3573         * regulators.
3574         */
3575        target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3576
3577        /*
3578         * Find min and max voltages, which currently aren't violating
3579         * max_spread.
3580         */
3581        for (i = 1; i < n_coupled; i++) {
3582                int tmp_act;
3583
3584                if (!_regulator_is_enabled(c_rdevs[i]))
3585                        continue;
3586
3587                tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3588                if (tmp_act < 0)
3589                        return tmp_act;
3590
3591                min_current_uV = min(tmp_act, min_current_uV);
3592                max_current_uV = max(tmp_act, max_current_uV);
3593        }
3594
3595        /* There aren't any other regulators enabled */
3596        if (max_current_uV == 0) {
3597                possible_uV = target_uV;
3598        } else {
3599                /*
3600                 * Correct target voltage, so as it currently isn't
3601                 * violating max_spread
3602                 */
3603                possible_uV = max(target_uV, max_current_uV - max_spread);
3604                possible_uV = min(possible_uV, min_current_uV + max_spread);
3605        }
3606
3607        if (possible_uV > desired_max_uV)
3608                return -EINVAL;
3609
3610        done = (possible_uV == target_uV);
3611        desired_min_uV = possible_uV;
3612
3613finish:
3614        /* Apply max_uV_step constraint if necessary */
3615        if (state == PM_SUSPEND_ON) {
3616                ret = regulator_limit_voltage_step(rdev, current_uV,
3617                                                   &desired_min_uV);
3618                if (ret < 0)
3619                        return ret;
3620
3621                if (ret == 0)
3622                        done = false;
3623        }
3624
3625        /* Set current_uV if wasn't done earlier in the code and if necessary */
3626        if (n_coupled > 1 && *current_uV == -1) {
3627
3628                if (_regulator_is_enabled(rdev)) {
3629                        ret = regulator_get_voltage_rdev(rdev);
3630                        if (ret < 0)
3631                                return ret;
3632
3633                        *current_uV = ret;
3634                } else {
3635                        *current_uV = desired_min_uV;
3636                }
3637        }
3638
3639        *min_uV = desired_min_uV;
3640        *max_uV = desired_max_uV;
3641
3642        return done;
3643}
3644
3645static int regulator_balance_voltage(struct regulator_dev *rdev,
3646                                     suspend_state_t state)
3647{
3648        struct regulator_dev **c_rdevs;
3649        struct regulator_dev *best_rdev;
3650        struct coupling_desc *c_desc = &rdev->coupling_desc;
3651        struct regulator_coupler *coupler = c_desc->coupler;
3652        int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3653        unsigned int delta, best_delta;
3654        unsigned long c_rdev_done = 0;
3655        bool best_c_rdev_done;
3656
3657        c_rdevs = c_desc->coupled_rdevs;
3658        n_coupled = c_desc->n_coupled;
3659
3660        /*
3661         * If system is in a state other than PM_SUSPEND_ON, don't check
3662         * other coupled regulators.
3663         */
3664        if (state != PM_SUSPEND_ON)
3665                n_coupled = 1;
3666
3667        if (c_desc->n_resolved < n_coupled) {
3668                rdev_err(rdev, "Not all coupled regulators registered\n");
3669                return -EPERM;
3670        }
3671
3672        /* Invoke custom balancer for customized couplers */
3673        if (coupler && coupler->balance_voltage)
3674                return coupler->balance_voltage(coupler, rdev, state);
3675
3676        /*
3677         * Find the best possible voltage change on each loop. Leave the loop
3678         * if there isn't any possible change.
3679         */
3680        do {
3681                best_c_rdev_done = false;
3682                best_delta = 0;
3683                best_min_uV = 0;
3684                best_max_uV = 0;
3685                best_c_rdev = 0;
3686                best_rdev = NULL;
3687
3688                /*
3689                 * Find highest difference between optimal voltage
3690                 * and current voltage.
3691                 */
3692                for (i = 0; i < n_coupled; i++) {
3693                        /*
3694                         * optimal_uV is the best voltage that can be set for
3695                         * i-th regulator at the moment without violating
3696                         * max_spread constraint in order to balance
3697                         * the coupled voltages.
3698                         */
3699                        int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3700
3701                        if (test_bit(i, &c_rdev_done))
3702                                continue;
3703
3704                        ret = regulator_get_optimal_voltage(c_rdevs[i],
3705                                                            &current_uV,
3706                                                            &optimal_uV,
3707                                                            &optimal_max_uV,
3708                                                            state, n_coupled);
3709                        if (ret < 0)
3710                                goto out;
3711
3712                        delta = abs(optimal_uV - current_uV);
3713
3714                        if (delta && best_delta <= delta) {
3715                                best_c_rdev_done = ret;
3716                                best_delta = delta;
3717                                best_rdev = c_rdevs[i];
3718                                best_min_uV = optimal_uV;
3719                                best_max_uV = optimal_max_uV;
3720                                best_c_rdev = i;
3721                        }
3722                }
3723
3724                /* Nothing to change, return successfully */
3725                if (!best_rdev) {
3726                        ret = 0;
3727                        goto out;
3728                }
3729
3730                ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3731                                                 best_max_uV, state);
3732
3733                if (ret < 0)
3734                        goto out;
3735
3736                if (best_c_rdev_done)
3737                        set_bit(best_c_rdev, &c_rdev_done);
3738
3739        } while (n_coupled > 1);
3740
3741out:
3742        return ret;
3743}
3744
3745/**
3746 * regulator_set_voltage - set regulator output voltage
3747 * @regulator: regulator source
3748 * @min_uV: Minimum required voltage in uV
3749 * @max_uV: Maximum acceptable voltage in uV
3750 *
3751 * Sets a voltage regulator to the desired output voltage. This can be set
3752 * during any regulator state. IOW, regulator can be disabled or enabled.
3753 *
3754 * If the regulator is enabled then the voltage will change to the new value
3755 * immediately otherwise if the regulator is disabled the regulator will
3756 * output at the new voltage when enabled.
3757 *
3758 * NOTE: If the regulator is shared between several devices then the lowest
3759 * request voltage that meets the system constraints will be used.
3760 * Regulator system constraints must be set for this regulator before
3761 * calling this function otherwise this call will fail.
3762 */
3763int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3764{
3765        struct ww_acquire_ctx ww_ctx;
3766        int ret;
3767
3768        regulator_lock_dependent(regulator->rdev, &ww_ctx);
3769
3770        ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3771                                             PM_SUSPEND_ON);
3772
3773        regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3774
3775        return ret;
3776}
3777EXPORT_SYMBOL_GPL(regulator_set_voltage);
3778
3779static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3780                                           suspend_state_t state, bool en)
3781{
3782        struct regulator_state *rstate;
3783
3784        rstate = regulator_get_suspend_state(rdev, state);
3785        if (rstate == NULL)
3786                return -EINVAL;
3787
3788        if (!rstate->changeable)
3789                return -EPERM;
3790
3791        rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3792
3793        return 0;
3794}
3795
3796int regulator_suspend_enable(struct regulator_dev *rdev,
3797                                    suspend_state_t state)
3798{
3799        return regulator_suspend_toggle(rdev, state, true);
3800}
3801EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3802
3803int regulator_suspend_disable(struct regulator_dev *rdev,
3804                                     suspend_state_t state)
3805{
3806        struct regulator *regulator;
3807        struct regulator_voltage *voltage;
3808
3809        /*
3810         * if any consumer wants this regulator device keeping on in
3811         * suspend states, don't set it as disabled.
3812         */
3813        list_for_each_entry(regulator, &rdev->consumer_list, list) {
3814                voltage = &regulator->voltage[state];
3815                if (voltage->min_uV || voltage->max_uV)
3816                        return 0;
3817        }
3818
3819        return regulator_suspend_toggle(rdev, state, false);
3820}
3821EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3822
3823static int _regulator_set_suspend_voltage(struct regulator *regulator,
3824                                          int min_uV, int max_uV,
3825                                          suspend_state_t state)
3826{
3827        struct regulator_dev *rdev = regulator->rdev;
3828        struct regulator_state *rstate;
3829
3830        rstate = regulator_get_suspend_state(rdev, state);
3831        if (rstate == NULL)
3832                return -EINVAL;
3833
3834        if (rstate->min_uV == rstate->max_uV) {
3835                rdev_err(rdev, "The suspend voltage can't be changed!\n");
3836                return -EPERM;
3837        }
3838
3839        return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3840}
3841
3842int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3843                                  int max_uV, suspend_state_t state)
3844{
3845        struct ww_acquire_ctx ww_ctx;
3846        int ret;
3847
3848        /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3849        if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3850                return -EINVAL;
3851
3852        regulator_lock_dependent(regulator->rdev, &ww_ctx);
3853
3854        ret = _regulator_set_suspend_voltage(regulator, min_uV,
3855                                             max_uV, state);
3856
3857        regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3858
3859        return ret;
3860}
3861EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3862
3863/**
3864 * regulator_set_voltage_time - get raise/fall time
3865 * @regulator: regulator source
3866 * @old_uV: starting voltage in microvolts
3867 * @new_uV: target voltage in microvolts
3868 *
3869 * Provided with the starting and ending voltage, this function attempts to
3870 * calculate the time in microseconds required to rise or fall to this new
3871 * voltage.
3872 */
3873int regulator_set_voltage_time(struct regulator *regulator,
3874                               int old_uV, int new_uV)
3875{
3876        struct regulator_dev *rdev = regulator->rdev;
3877        const struct regulator_ops *ops = rdev->desc->ops;
3878        int old_sel = -1;
3879        int new_sel = -1;
3880        int voltage;
3881        int i;
3882
3883        if (ops->set_voltage_time)
3884                return ops->set_voltage_time(rdev, old_uV, new_uV);
3885        else if (!ops->set_voltage_time_sel)
3886                return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3887
3888        /* Currently requires operations to do this */
3889        if (!ops->list_voltage || !rdev->desc->n_voltages)
3890                return -EINVAL;
3891
3892        for (i = 0; i < rdev->desc->n_voltages; i++) {
3893                /* We only look for exact voltage matches here */
3894                voltage = regulator_list_voltage(regulator, i);
3895                if (voltage < 0)
3896                        return -EINVAL;
3897                if (voltage == 0)
3898                        continue;
3899                if (voltage == old_uV)
3900                        old_sel = i;
3901                if (voltage == new_uV)
3902                        new_sel = i;
3903        }
3904
3905        if (old_sel < 0 || new_sel < 0)
3906                return -EINVAL;
3907
3908        return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3909}
3910EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3911
3912/**
3913 * regulator_set_voltage_time_sel - get raise/fall time
3914 * @rdev: regulator source device
3915 * @old_selector: selector for starting voltage
3916 * @new_selector: selector for target voltage
3917 *
3918 * Provided with the starting and target voltage selectors, this function
3919 * returns time in microseconds required to rise or fall to this new voltage
3920 *
3921 * Drivers providing ramp_delay in regulation_constraints can use this as their
3922 * set_voltage_time_sel() operation.
3923 */
3924int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3925                                   unsigned int old_selector,
3926                                   unsigned int new_selector)
3927{
3928        int old_volt, new_volt;
3929
3930        /* sanity check */
3931        if (!rdev->desc->ops->list_voltage)
3932                return -EINVAL;
3933
3934        old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3935        new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3936
3937        if (rdev->desc->ops->set_voltage_time)
3938                return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3939                                                         new_volt);
3940        else
3941                return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3942}
3943EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3944
3945/**
3946 * regulator_sync_voltage - re-apply last regulator output voltage
3947 * @regulator: regulator source
3948 *
3949 * Re-apply the last configured voltage.  This is intended to be used
3950 * where some external control source the consumer is cooperating with
3951 * has caused the configured voltage to change.
3952 */
3953int regulator_sync_voltage(struct regulator *regulator)
3954{
3955        struct regulator_dev *rdev = regulator->rdev;
3956        struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3957        int ret, min_uV, max_uV;
3958
3959        regulator_lock(rdev);
3960
3961        if (!rdev->desc->ops->set_voltage &&
3962            !rdev->desc->ops->set_voltage_sel) {
3963                ret = -EINVAL;
3964                goto out;
3965        }
3966
3967        /* This is only going to work if we've had a voltage configured. */
3968        if (!voltage->min_uV && !voltage->max_uV) {
3969                ret = -EINVAL;
3970                goto out;
3971        }
3972
3973        min_uV = voltage->min_uV;
3974        max_uV = voltage->max_uV;
3975
3976        /* This should be a paranoia check... */
3977        ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3978        if (ret < 0)
3979                goto out;
3980
3981        ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3982        if (ret < 0)
3983                goto out;
3984
3985        ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3986
3987out:
3988        regulator_unlock(rdev);
3989        return ret;
3990}
3991EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3992
3993int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3994{
3995        int sel, ret;
3996        bool bypassed;
3997
3998        if (rdev->desc->ops->get_bypass) {
3999                ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4000                if (ret < 0)
4001                        return ret;
4002                if (bypassed) {
4003                        /* if bypassed the regulator must have a supply */
4004                        if (!rdev->supply) {
4005                                rdev_err(rdev,
4006                                         "bypassed regulator has no supply!\n");
4007                                return -EPROBE_DEFER;
4008                        }
4009
4010                        return regulator_get_voltage_rdev(rdev->supply->rdev);
4011                }
4012        }
4013
4014        if (rdev->desc->ops->get_voltage_sel) {
4015                sel = rdev->desc->ops->get_voltage_sel(rdev);
4016                if (sel < 0)
4017                        return sel;
4018                ret = rdev->desc->ops->list_voltage(rdev, sel);
4019        } else if (rdev->desc->ops->get_voltage) {
4020                ret = rdev->desc->ops->get_voltage(rdev);
4021        } else if (rdev->desc->ops->list_voltage) {
4022                ret = rdev->desc->ops->list_voltage(rdev, 0);
4023        } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4024                ret = rdev->desc->fixed_uV;
4025        } else if (rdev->supply) {
4026                ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4027        } else {
4028                return -EINVAL;
4029        }
4030
4031        if (ret < 0)
4032                return ret;
4033        return ret - rdev->constraints->uV_offset;
4034}
4035EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4036
4037/**
4038 * regulator_get_voltage - get regulator output voltage
4039 * @regulator: regulator source
4040 *
4041 * This returns the current regulator voltage in uV.
4042 *
4043 * NOTE: If the regulator is disabled it will return the voltage value. This
4044 * function should not be used to determine regulator state.
4045 */
4046int regulator_get_voltage(struct regulator *regulator)
4047{
4048        struct ww_acquire_ctx ww_ctx;
4049        int ret;
4050
4051        regulator_lock_dependent(regulator->rdev, &ww_ctx);
4052        ret = regulator_get_voltage_rdev(regulator->rdev);
4053        regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4054
4055        return ret;
4056}
4057EXPORT_SYMBOL_GPL(regulator_get_voltage);
4058
4059/**
4060 * regulator_set_current_limit - set regulator output current limit
4061 * @regulator: regulator source
4062 * @min_uA: Minimum supported current in uA
4063 * @max_uA: Maximum supported current in uA
4064 *
4065 * Sets current sink to the desired output current. This can be set during
4066 * any regulator state. IOW, regulator can be disabled or enabled.
4067 *
4068 * If the regulator is enabled then the current will change to the new value
4069 * immediately otherwise if the regulator is disabled the regulator will
4070 * output at the new current when enabled.
4071 *
4072 * NOTE: Regulator system constraints must be set for this regulator before
4073 * calling this function otherwise this call will fail.
4074 */
4075int regulator_set_current_limit(struct regulator *regulator,
4076                               int min_uA, int max_uA)
4077{
4078        struct regulator_dev *rdev = regulator->rdev;
4079        int ret;
4080
4081        regulator_lock(rdev);
4082
4083        /* sanity check */
4084        if (!rdev->desc->ops->set_current_limit) {
4085                ret = -EINVAL;
4086                goto out;
4087        }
4088
4089        /* constraints check */
4090        ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4091        if (ret < 0)
4092                goto out;
4093
4094        ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4095out:
4096        regulator_unlock(rdev);
4097        return ret;
4098}
4099EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4100
4101static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4102{
4103        /* sanity check */
4104        if (!rdev->desc->ops->get_current_limit)
4105                return -EINVAL;
4106
4107        return rdev->desc->ops->get_current_limit(rdev);
4108}
4109
4110static int _regulator_get_current_limit(struct regulator_dev *rdev)
4111{
4112        int ret;
4113
4114        regulator_lock(rdev);
4115        ret = _regulator_get_current_limit_unlocked(rdev);
4116        regulator_unlock(rdev);
4117
4118        return ret;
4119}
4120
4121/**
4122 * regulator_get_current_limit - get regulator output current
4123 * @regulator: regulator source
4124 *
4125 * This returns the current supplied by the specified current sink in uA.
4126 *
4127 * NOTE: If the regulator is disabled it will return the current value. This
4128 * function should not be used to determine regulator state.
4129 */
4130int regulator_get_current_limit(struct regulator *regulator)
4131{
4132        return _regulator_get_current_limit(regulator->rdev);
4133}
4134EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4135
4136/**
4137 * regulator_set_mode - set regulator operating mode
4138 * @regulator: regulator source
4139 * @mode: operating mode - one of the REGULATOR_MODE constants
4140 *
4141 * Set regulator operating mode to increase regulator efficiency or improve
4142 * regulation performance.
4143 *
4144 * NOTE: Regulator system constraints must be set for this regulator before
4145 * calling this function otherwise this call will fail.
4146 */
4147int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4148{
4149        struct regulator_dev *rdev = regulator->rdev;
4150        int ret;
4151        int regulator_curr_mode;
4152
4153        regulator_lock(rdev);
4154
4155        /* sanity check */
4156        if (!rdev->desc->ops->set_mode) {
4157                ret = -EINVAL;
4158                goto out;
4159        }
4160
4161        /* return if the same mode is requested */
4162        if (rdev->desc->ops->get_mode) {
4163                regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4164                if (regulator_curr_mode == mode) {
4165                        ret = 0;
4166                        goto out;
4167                }
4168        }
4169
4170        /* constraints check */
4171        ret = regulator_mode_constrain(rdev, &mode);
4172        if (ret < 0)
4173                goto out;
4174
4175        ret = rdev->desc->ops->set_mode(rdev, mode);
4176out:
4177        regulator_unlock(rdev);
4178        return ret;
4179}
4180EXPORT_SYMBOL_GPL(regulator_set_mode);
4181
4182static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4183{
4184        /* sanity check */
4185        if (!rdev->desc->ops->get_mode)
4186                return -EINVAL;
4187
4188        return rdev->desc->ops->get_mode(rdev);
4189}
4190
4191static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4192{
4193        int ret;
4194
4195        regulator_lock(rdev);
4196        ret = _regulator_get_mode_unlocked(rdev);
4197        regulator_unlock(rdev);
4198
4199        return ret;
4200}
4201
4202/**
4203 * regulator_get_mode - get regulator operating mode
4204 * @regulator: regulator source
4205 *
4206 * Get the current regulator operating mode.
4207 */
4208unsigned int regulator_get_mode(struct regulator *regulator)
4209{
4210        return _regulator_get_mode(regulator->rdev);
4211}
4212EXPORT_SYMBOL_GPL(regulator_get_mode);
4213
4214static int _regulator_get_error_flags(struct regulator_dev *rdev,
4215                                        unsigned int *flags)
4216{
4217        int ret;
4218
4219        regulator_lock(rdev);
4220
4221        /* sanity check */
4222        if (!rdev->desc->ops->get_error_flags) {
4223                ret = -EINVAL;
4224                goto out;
4225        }
4226
4227        ret = rdev->desc->ops->get_error_flags(rdev, flags);
4228out:
4229        regulator_unlock(rdev);
4230        return ret;
4231}
4232
4233/**
4234 * regulator_get_error_flags - get regulator error information
4235 * @regulator: regulator source
4236 * @flags: pointer to store error flags
4237 *
4238 * Get the current regulator error information.
4239 */
4240int regulator_get_error_flags(struct regulator *regulator,
4241                                unsigned int *flags)
4242{
4243        return _regulator_get_error_flags(regulator->rdev, flags);
4244}
4245EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4246
4247/**
4248 * regulator_set_load - set regulator load
4249 * @regulator: regulator source
4250 * @uA_load: load current
4251 *
4252 * Notifies the regulator core of a new device load. This is then used by
4253 * DRMS (if enabled by constraints) to set the most efficient regulator
4254 * operating mode for the new regulator loading.
4255 *
4256 * Consumer devices notify their supply regulator of the maximum power
4257 * they will require (can be taken from device datasheet in the power
4258 * consumption tables) when they change operational status and hence power
4259 * state. Examples of operational state changes that can affect power
4260 * consumption are :-
4261 *
4262 *    o Device is opened / closed.
4263 *    o Device I/O is about to begin or has just finished.
4264 *    o Device is idling in between work.
4265 *
4266 * This information is also exported via sysfs to userspace.
4267 *
4268 * DRMS will sum the total requested load on the regulator and change
4269 * to the most efficient operating mode if platform constraints allow.
4270 *
4271 * NOTE: when a regulator consumer requests to have a regulator
4272 * disabled then any load that consumer requested no longer counts
4273 * toward the total requested load.  If the regulator is re-enabled
4274 * then the previously requested load will start counting again.
4275 *
4276 * If a regulator is an always-on regulator then an individual consumer's
4277 * load will still be removed if that consumer is fully disabled.
4278 *
4279 * On error a negative errno is returned.
4280 */
4281int regulator_set_load(struct regulator *regulator, int uA_load)
4282{
4283        struct regulator_dev *rdev = regulator->rdev;
4284        int old_uA_load;
4285        int ret = 0;
4286
4287        regulator_lock(rdev);
4288        old_uA_load = regulator->uA_load;
4289        regulator->uA_load = uA_load;
4290        if (regulator->enable_count && old_uA_load != uA_load) {
4291                ret = drms_uA_update(rdev);
4292                if (ret < 0)
4293                        regulator->uA_load = old_uA_load;
4294        }
4295        regulator_unlock(rdev);
4296
4297        return ret;
4298}
4299EXPORT_SYMBOL_GPL(regulator_set_load);
4300
4301/**
4302 * regulator_allow_bypass - allow the regulator to go into bypass mode
4303 *
4304 * @regulator: Regulator to configure
4305 * @enable: enable or disable bypass mode
4306 *
4307 * Allow the regulator to go into bypass mode if all other consumers
4308 * for the regulator also enable bypass mode and the machine
4309 * constraints allow this.  Bypass mode means that the regulator is
4310 * simply passing the input directly to the output with no regulation.
4311 */
4312int regulator_allow_bypass(struct regulator *regulator, bool enable)
4313{
4314        struct regulator_dev *rdev = regulator->rdev;
4315        int ret = 0;
4316
4317        if (!rdev->desc->ops->set_bypass)
4318                return 0;
4319
4320        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4321                return 0;
4322
4323        regulator_lock(rdev);
4324
4325        if (enable && !regulator->bypass) {
4326                rdev->bypass_count++;
4327
4328                if (rdev->bypass_count == rdev->open_count) {
4329                        ret = rdev->desc->ops->set_bypass(rdev, enable);
4330                        if (ret != 0)
4331                                rdev->bypass_count--;
4332                }
4333
4334        } else if (!enable && regulator->bypass) {
4335                rdev->bypass_count--;
4336
4337                if (rdev->bypass_count != rdev->open_count) {
4338                        ret = rdev->desc->ops->set_bypass(rdev, enable);
4339                        if (ret != 0)
4340                                rdev->bypass_count++;
4341                }
4342        }
4343
4344        if (ret == 0)
4345                regulator->bypass = enable;
4346
4347        regulator_unlock(rdev);
4348
4349        return ret;
4350}
4351EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4352
4353/**
4354 * regulator_register_notifier - register regulator event notifier
4355 * @regulator: regulator source
4356 * @nb: notifier block
4357 *
4358 * Register notifier block to receive regulator events.
4359 */
4360int regulator_register_notifier(struct regulator *regulator,
4361                              struct notifier_block *nb)
4362{
4363        return blocking_notifier_chain_register(&regulator->rdev->notifier,
4364                                                nb);
4365}
4366EXPORT_SYMBOL_GPL(regulator_register_notifier);
4367
4368/**
4369 * regulator_unregister_notifier - unregister regulator event notifier
4370 * @regulator: regulator source
4371 * @nb: notifier block
4372 *
4373 * Unregister regulator event notifier block.
4374 */
4375int regulator_unregister_notifier(struct regulator *regulator,
4376                                struct notifier_block *nb)
4377{
4378        return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4379                                                  nb);
4380}
4381EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4382
4383/* notify regulator consumers and downstream regulator consumers.
4384 * Note mutex must be held by caller.
4385 */
4386static int _notifier_call_chain(struct regulator_dev *rdev,
4387                                  unsigned long event, void *data)
4388{
4389        /* call rdev chain first */
4390        return blocking_notifier_call_chain(&rdev->notifier, event, data);
4391}
4392
4393/**
4394 * regulator_bulk_get - get multiple regulator consumers
4395 *
4396 * @dev:           Device to supply
4397 * @num_consumers: Number of consumers to register
4398 * @consumers:     Configuration of consumers; clients are stored here.
4399 *
4400 * @return 0 on success, an errno on failure.
4401 *
4402 * This helper function allows drivers to get several regulator
4403 * consumers in one operation.  If any of the regulators cannot be
4404 * acquired then any regulators that were allocated will be freed
4405 * before returning to the caller.
4406 */
4407int regulator_bulk_get(struct device *dev, int num_consumers,
4408                       struct regulator_bulk_data *consumers)
4409{
4410        int i;
4411        int ret;
4412
4413        for (i = 0; i < num_consumers; i++)
4414                consumers[i].consumer = NULL;
4415
4416        for (i = 0; i < num_consumers; i++) {
4417                consumers[i].consumer = regulator_get(dev,
4418                                                      consumers[i].supply);
4419                if (IS_ERR(consumers[i].consumer)) {
4420                        ret = PTR_ERR(consumers[i].consumer);
4421                        consumers[i].consumer = NULL;
4422                        goto err;
4423                }
4424        }
4425
4426        return 0;
4427
4428err:
4429        if (ret != -EPROBE_DEFER)
4430                dev_err(dev, "Failed to get supply '%s': %d\n",
4431                        consumers[i].supply, ret);
4432        else
4433                dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4434                        consumers[i].supply);
4435
4436        while (--i >= 0)
4437                regulator_put(consumers[i].consumer);
4438
4439        return ret;
4440}
4441EXPORT_SYMBOL_GPL(regulator_bulk_get);
4442
4443static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4444{
4445        struct regulator_bulk_data *bulk = data;
4446
4447        bulk->ret = regulator_enable(bulk->consumer);
4448}
4449
4450/**
4451 * regulator_bulk_enable - enable multiple regulator consumers
4452 *
4453 * @num_consumers: Number of consumers
4454 * @consumers:     Consumer data; clients are stored here.
4455 * @return         0 on success, an errno on failure
4456 *
4457 * This convenience API allows consumers to enable multiple regulator
4458 * clients in a single API call.  If any consumers cannot be enabled
4459 * then any others that were enabled will be disabled again prior to
4460 * return.
4461 */
4462int regulator_bulk_enable(int num_consumers,
4463                          struct regulator_bulk_data *consumers)
4464{
4465        ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4466        int i;
4467        int ret = 0;
4468
4469        for (i = 0; i < num_consumers; i++) {
4470                async_schedule_domain(regulator_bulk_enable_async,
4471                                      &consumers[i], &async_domain);
4472        }
4473
4474        async_synchronize_full_domain(&async_domain);
4475
4476        /* If any consumer failed we need to unwind any that succeeded */
4477        for (i = 0; i < num_consumers; i++) {
4478                if (consumers[i].ret != 0) {
4479                        ret = consumers[i].ret;
4480                        goto err;
4481                }
4482        }
4483
4484        return 0;
4485
4486err:
4487        for (i = 0; i < num_consumers; i++) {
4488                if (consumers[i].ret < 0)
4489                        pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4490                               consumers[i].ret);
4491                else
4492                        regulator_disable(consumers[i].consumer);
4493        }
4494
4495        return ret;
4496}
4497EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4498
4499/**
4500 * regulator_bulk_disable - disable multiple regulator consumers
4501 *
4502 * @num_consumers: Number of consumers
4503 * @consumers:     Consumer data; clients are stored here.
4504 * @return         0 on success, an errno on failure
4505 *
4506 * This convenience API allows consumers to disable multiple regulator
4507 * clients in a single API call.  If any consumers cannot be disabled
4508 * then any others that were disabled will be enabled again prior to
4509 * return.
4510 */
4511int regulator_bulk_disable(int num_consumers,
4512                           struct regulator_bulk_data *consumers)
4513{
4514        int i;
4515        int ret, r;
4516
4517        for (i = num_consumers - 1; i >= 0; --i) {
4518                ret = regulator_disable(consumers[i].consumer);
4519                if (ret != 0)
4520                        goto err;
4521        }
4522
4523        return 0;
4524
4525err:
4526        pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4527        for (++i; i < num_consumers; ++i) {
4528                r = regulator_enable(consumers[i].consumer);
4529                if (r != 0)
4530                        pr_err("Failed to re-enable %s: %d\n",
4531                               consumers[i].supply, r);
4532        }
4533
4534        return ret;
4535}
4536EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4537
4538/**
4539 * regulator_bulk_force_disable - force disable multiple regulator consumers
4540 *
4541 * @num_consumers: Number of consumers
4542 * @consumers:     Consumer data; clients are stored here.
4543 * @return         0 on success, an errno on failure
4544 *
4545 * This convenience API allows consumers to forcibly disable multiple regulator
4546 * clients in a single API call.
4547 * NOTE: This should be used for situations when device damage will
4548 * likely occur if the regulators are not disabled (e.g. over temp).
4549 * Although regulator_force_disable function call for some consumers can
4550 * return error numbers, the function is called for all consumers.
4551 */
4552int regulator_bulk_force_disable(int num_consumers,
4553                           struct regulator_bulk_data *consumers)
4554{
4555        int i;
4556        int ret = 0;
4557
4558        for (i = 0; i < num_consumers; i++) {
4559                consumers[i].ret =
4560                            regulator_force_disable(consumers[i].consumer);
4561
4562                /* Store first error for reporting */
4563                if (consumers[i].ret && !ret)
4564                        ret = consumers[i].ret;
4565        }
4566
4567        return ret;
4568}
4569EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4570
4571/**
4572 * regulator_bulk_free - free multiple regulator consumers
4573 *
4574 * @num_consumers: Number of consumers
4575 * @consumers:     Consumer data; clients are stored here.
4576 *
4577 * This convenience API allows consumers to free multiple regulator
4578 * clients in a single API call.
4579 */
4580void regulator_bulk_free(int num_consumers,
4581                         struct regulator_bulk_data *consumers)
4582{
4583        int i;
4584
4585        for (i = 0; i < num_consumers; i++) {
4586                regulator_put(consumers[i].consumer);
4587                consumers[i].consumer = NULL;
4588        }
4589}
4590EXPORT_SYMBOL_GPL(regulator_bulk_free);
4591
4592/**
4593 * regulator_notifier_call_chain - call regulator event notifier
4594 * @rdev: regulator source
4595 * @event: notifier block
4596 * @data: callback-specific data.
4597 *
4598 * Called by regulator drivers to notify clients a regulator event has
4599 * occurred. We also notify regulator clients downstream.
4600 * Note lock must be held by caller.
4601 */
4602int regulator_notifier_call_chain(struct regulator_dev *rdev,
4603                                  unsigned long event, void *data)
4604{
4605        lockdep_assert_held_once(&rdev->mutex.base);
4606
4607        _notifier_call_chain(rdev, event, data);
4608        return NOTIFY_DONE;
4609
4610}
4611EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4612
4613/**
4614 * regulator_mode_to_status - convert a regulator mode into a status
4615 *
4616 * @mode: Mode to convert
4617 *
4618 * Convert a regulator mode into a status.
4619 */
4620int regulator_mode_to_status(unsigned int mode)
4621{
4622        switch (mode) {
4623        case REGULATOR_MODE_FAST:
4624                return REGULATOR_STATUS_FAST;
4625        case REGULATOR_MODE_NORMAL:
4626                return REGULATOR_STATUS_NORMAL;
4627        case REGULATOR_MODE_IDLE:
4628                return REGULATOR_STATUS_IDLE;
4629        case REGULATOR_MODE_STANDBY:
4630                return REGULATOR_STATUS_STANDBY;
4631        default:
4632                return REGULATOR_STATUS_UNDEFINED;
4633        }
4634}
4635EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4636
4637static struct attribute *regulator_dev_attrs[] = {
4638        &dev_attr_name.attr,
4639        &dev_attr_num_users.attr,
4640        &dev_attr_type.attr,
4641        &dev_attr_microvolts.attr,
4642        &dev_attr_microamps.attr,
4643        &dev_attr_opmode.attr,
4644        &dev_attr_state.attr,
4645        &dev_attr_status.attr,
4646        &dev_attr_bypass.attr,
4647        &dev_attr_requested_microamps.attr,
4648        &dev_attr_min_microvolts.attr,
4649        &dev_attr_max_microvolts.attr,
4650        &dev_attr_min_microamps.attr,
4651        &dev_attr_max_microamps.attr,
4652        &dev_attr_suspend_standby_state.attr,
4653        &dev_attr_suspend_mem_state.attr,
4654        &dev_attr_suspend_disk_state.attr,
4655        &dev_attr_suspend_standby_microvolts.attr,
4656        &dev_attr_suspend_mem_microvolts.attr,
4657        &dev_attr_suspend_disk_microvolts.attr,
4658        &dev_attr_suspend_standby_mode.attr,
4659        &dev_attr_suspend_mem_mode.attr,
4660        &dev_attr_suspend_disk_mode.attr,
4661        NULL
4662};
4663
4664/*
4665 * To avoid cluttering sysfs (and memory) with useless state, only
4666 * create attributes that can be meaningfully displayed.
4667 */
4668static umode_t regulator_attr_is_visible(struct kobject *kobj,
4669                                         struct attribute *attr, int idx)
4670{
4671        struct device *dev = kobj_to_dev(kobj);
4672        struct regulator_dev *rdev = dev_to_rdev(dev);
4673        const struct regulator_ops *ops = rdev->desc->ops;
4674        umode_t mode = attr->mode;
4675
4676        /* these three are always present */
4677        if (attr == &dev_attr_name.attr ||
4678            attr == &dev_attr_num_users.attr ||
4679            attr == &dev_attr_type.attr)
4680                return mode;
4681
4682        /* some attributes need specific methods to be displayed */
4683        if (attr == &dev_attr_microvolts.attr) {
4684                if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4685                    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4686                    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4687                    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4688                        return mode;
4689                return 0;
4690        }
4691
4692        if (attr == &dev_attr_microamps.attr)
4693                return ops->get_current_limit ? mode : 0;
4694
4695        if (attr == &dev_attr_opmode.attr)
4696                return ops->get_mode ? mode : 0;
4697
4698        if (attr == &dev_attr_state.attr)
4699                return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4700
4701        if (attr == &dev_attr_status.attr)
4702                return ops->get_status ? mode : 0;
4703
4704        if (attr == &dev_attr_bypass.attr)
4705                return ops->get_bypass ? mode : 0;
4706
4707        /* constraints need specific supporting methods */
4708        if (attr == &dev_attr_min_microvolts.attr ||
4709            attr == &dev_attr_max_microvolts.attr)
4710                return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4711
4712        if (attr == &dev_attr_min_microamps.attr ||
4713            attr == &dev_attr_max_microamps.attr)
4714                return ops->set_current_limit ? mode : 0;
4715
4716        if (attr == &dev_attr_suspend_standby_state.attr ||
4717            attr == &dev_attr_suspend_mem_state.attr ||
4718            attr == &dev_attr_suspend_disk_state.attr)
4719                return mode;
4720
4721        if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4722            attr == &dev_attr_suspend_mem_microvolts.attr ||
4723            attr == &dev_attr_suspend_disk_microvolts.attr)
4724                return ops->set_suspend_voltage ? mode : 0;
4725
4726        if (attr == &dev_attr_suspend_standby_mode.attr ||
4727            attr == &dev_attr_suspend_mem_mode.attr ||
4728            attr == &dev_attr_suspend_disk_mode.attr)
4729                return ops->set_suspend_mode ? mode : 0;
4730
4731        return mode;
4732}
4733
4734static const struct attribute_group regulator_dev_group = {
4735        .attrs = regulator_dev_attrs,
4736        .is_visible = regulator_attr_is_visible,
4737};
4738
4739static const struct attribute_group *regulator_dev_groups[] = {
4740        &regulator_dev_group,
4741        NULL
4742};
4743
4744static void regulator_dev_release(struct device *dev)
4745{
4746        struct regulator_dev *rdev = dev_get_drvdata(dev);
4747
4748        kfree(rdev->constraints);
4749        of_node_put(rdev->dev.of_node);
4750        kfree(rdev);
4751}
4752
4753static void rdev_init_debugfs(struct regulator_dev *rdev)
4754{
4755        struct device *parent = rdev->dev.parent;
4756        const char *rname = rdev_get_name(rdev);
4757        char name[NAME_MAX];
4758
4759        /* Avoid duplicate debugfs directory names */
4760        if (parent && rname == rdev->desc->name) {
4761                snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4762                         rname);
4763                rname = name;
4764        }
4765
4766        rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4767        if (!rdev->debugfs) {
4768                rdev_warn(rdev, "Failed to create debugfs directory\n");
4769                return;
4770        }
4771
4772        debugfs_create_u32("use_count", 0444, rdev->debugfs,
4773                           &rdev->use_count);
4774        debugfs_create_u32("open_count", 0444, rdev->debugfs,
4775                           &rdev->open_count);
4776        debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4777                           &rdev->bypass_count);
4778}
4779
4780static int regulator_register_resolve_supply(struct device *dev, void *data)
4781{
4782        struct regulator_dev *rdev = dev_to_rdev(dev);
4783
4784        if (regulator_resolve_supply(rdev))
4785                rdev_dbg(rdev, "unable to resolve supply\n");
4786
4787        return 0;
4788}
4789
4790int regulator_coupler_register(struct regulator_coupler *coupler)
4791{
4792        mutex_lock(&regulator_list_mutex);
4793        list_add_tail(&coupler->list, &regulator_coupler_list);
4794        mutex_unlock(&regulator_list_mutex);
4795
4796        return 0;
4797}
4798
4799static struct regulator_coupler *
4800regulator_find_coupler(struct regulator_dev *rdev)
4801{
4802        struct regulator_coupler *coupler;
4803        int err;
4804
4805        /*
4806         * Note that regulators are appended to the list and the generic
4807         * coupler is registered first, hence it will be attached at last
4808         * if nobody cared.
4809         */
4810        list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4811                err = coupler->attach_regulator(coupler, rdev);
4812                if (!err) {
4813                        if (!coupler->balance_voltage &&
4814                            rdev->coupling_desc.n_coupled > 2)
4815                                goto err_unsupported;
4816
4817                        return coupler;
4818                }
4819
4820                if (err < 0)
4821                        return ERR_PTR(err);
4822
4823                if (err == 1)
4824                        continue;
4825
4826                break;
4827        }
4828
4829        return ERR_PTR(-EINVAL);
4830
4831err_unsupported:
4832        if (coupler->detach_regulator)
4833                coupler->detach_regulator(coupler, rdev);
4834
4835        rdev_err(rdev,
4836                "Voltage balancing for multiple regulator couples is unimplemented\n");
4837
4838        return ERR_PTR(-EPERM);
4839}
4840
4841static void regulator_resolve_coupling(struct regulator_dev *rdev)
4842{
4843        struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4844        struct coupling_desc *c_desc = &rdev->coupling_desc;
4845        int n_coupled = c_desc->n_coupled;
4846        struct regulator_dev *c_rdev;
4847        int i;
4848
4849        for (i = 1; i < n_coupled; i++) {
4850                /* already resolved */
4851                if (c_desc->coupled_rdevs[i])
4852                        continue;
4853
4854                c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4855
4856                if (!c_rdev)
4857                        continue;
4858
4859                if (c_rdev->coupling_desc.coupler != coupler) {
4860                        rdev_err(rdev, "coupler mismatch with %s\n",
4861                                 rdev_get_name(c_rdev));
4862                        return;
4863                }
4864
4865                regulator_lock(c_rdev);
4866
4867                c_desc->coupled_rdevs[i] = c_rdev;
4868                c_desc->n_resolved++;
4869
4870                regulator_unlock(c_rdev);
4871
4872                regulator_resolve_coupling(c_rdev);
4873        }
4874}
4875
4876static void regulator_remove_coupling(struct regulator_dev *rdev)
4877{
4878        struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4879        struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4880        struct regulator_dev *__c_rdev, *c_rdev;
4881        unsigned int __n_coupled, n_coupled;
4882        int i, k;
4883        int err;
4884
4885        n_coupled = c_desc->n_coupled;
4886
4887        for (i = 1; i < n_coupled; i++) {
4888                c_rdev = c_desc->coupled_rdevs[i];
4889
4890                if (!c_rdev)
4891                        continue;
4892
4893                regulator_lock(c_rdev);
4894
4895                __c_desc = &c_rdev->coupling_desc;
4896                __n_coupled = __c_desc->n_coupled;
4897
4898                for (k = 1; k < __n_coupled; k++) {
4899                        __c_rdev = __c_desc->coupled_rdevs[k];
4900
4901                        if (__c_rdev == rdev) {
4902                                __c_desc->coupled_rdevs[k] = NULL;
4903                                __c_desc->n_resolved--;
4904                                break;
4905                        }
4906                }
4907
4908                regulator_unlock(c_rdev);
4909
4910                c_desc->coupled_rdevs[i] = NULL;
4911                c_desc->n_resolved--;
4912        }
4913
4914        if (coupler && coupler->detach_regulator) {
4915                err = coupler->detach_regulator(coupler, rdev);
4916                if (err)
4917                        rdev_err(rdev, "failed to detach from coupler: %d\n",
4918                                 err);
4919        }
4920
4921        kfree(rdev->coupling_desc.coupled_rdevs);
4922        rdev->coupling_desc.coupled_rdevs = NULL;
4923}
4924
4925static int regulator_init_coupling(struct regulator_dev *rdev)
4926{
4927        int err, n_phandles;
4928        size_t alloc_size;
4929
4930        if (!IS_ENABLED(CONFIG_OF))
4931                n_phandles = 0;
4932        else
4933                n_phandles = of_get_n_coupled(rdev);
4934
4935        alloc_size = sizeof(*rdev) * (n_phandles + 1);
4936
4937        rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4938        if (!rdev->coupling_desc.coupled_rdevs)
4939                return -ENOMEM;
4940
4941        /*
4942         * Every regulator should always have coupling descriptor filled with
4943         * at least pointer to itself.
4944         */
4945        rdev->coupling_desc.coupled_rdevs[0] = rdev;
4946        rdev->coupling_desc.n_coupled = n_phandles + 1;
4947        rdev->coupling_desc.n_resolved++;
4948
4949        /* regulator isn't coupled */
4950        if (n_phandles == 0)
4951                return 0;
4952
4953        if (!of_check_coupling_data(rdev))
4954                return -EPERM;
4955
4956        rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4957        if (IS_ERR(rdev->coupling_desc.coupler)) {
4958                err = PTR_ERR(rdev->coupling_desc.coupler);
4959                rdev_err(rdev, "failed to get coupler: %d\n", err);
4960                return err;
4961        }
4962
4963        return 0;
4964}
4965
4966static int generic_coupler_attach(struct regulator_coupler *coupler,
4967                                  struct regulator_dev *rdev)
4968{
4969        if (rdev->coupling_desc.n_coupled > 2) {
4970                rdev_err(rdev,
4971                         "Voltage balancing for multiple regulator couples is unimplemented\n");
4972                return -EPERM;
4973        }
4974
4975        if (!rdev->constraints->always_on) {
4976                rdev_err(rdev,
4977                         "Coupling of a non always-on regulator is unimplemented\n");
4978                return -ENOTSUPP;
4979        }
4980
4981        return 0;
4982}
4983
4984static struct regulator_coupler generic_regulator_coupler = {
4985        .attach_regulator = generic_coupler_attach,
4986};
4987
4988/**
4989 * regulator_register - register regulator
4990 * @regulator_desc: regulator to register
4991 * @cfg: runtime configuration for regulator
4992 *
4993 * Called by regulator drivers to register a regulator.
4994 * Returns a valid pointer to struct regulator_dev on success
4995 * or an ERR_PTR() on error.
4996 */
4997struct regulator_dev *
4998regulator_register(const struct regulator_desc *regulator_desc,
4999                   const struct regulator_config *cfg)
5000{
5001        const struct regulation_constraints *constraints = NULL;
5002        const struct regulator_init_data *init_data;
5003        struct regulator_config *config = NULL;
5004        static atomic_t regulator_no = ATOMIC_INIT(-1);
5005        struct regulator_dev *rdev;
5006        bool dangling_cfg_gpiod = false;
5007        bool dangling_of_gpiod = false;
5008        bool reg_device_fail = false;
5009        struct device *dev;
5010        int ret, i;
5011
5012        if (cfg == NULL)
5013                return ERR_PTR(-EINVAL);
5014        if (cfg->ena_gpiod)
5015                dangling_cfg_gpiod = true;
5016        if (regulator_desc == NULL) {
5017                ret = -EINVAL;
5018                goto rinse;
5019        }
5020
5021        dev = cfg->dev;
5022        WARN_ON(!dev);
5023
5024        if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5025                ret = -EINVAL;
5026                goto rinse;
5027        }
5028
5029        if (regulator_desc->type != REGULATOR_VOLTAGE &&
5030            regulator_desc->type != REGULATOR_CURRENT) {
5031                ret = -EINVAL;
5032                goto rinse;
5033        }
5034
5035        /* Only one of each should be implemented */
5036        WARN_ON(regulator_desc->ops->get_voltage &&
5037                regulator_desc->ops->get_voltage_sel);
5038        WARN_ON(regulator_desc->ops->set_voltage &&
5039                regulator_desc->ops->set_voltage_sel);
5040
5041        /* If we're using selectors we must implement list_voltage. */
5042        if (regulator_desc->ops->get_voltage_sel &&
5043            !regulator_desc->ops->list_voltage) {
5044                ret = -EINVAL;
5045                goto rinse;
5046        }
5047        if (regulator_desc->ops->set_voltage_sel &&
5048            !regulator_desc->ops->list_voltage) {
5049                ret = -EINVAL;
5050                goto rinse;
5051        }
5052
5053        rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5054        if (rdev == NULL) {
5055                ret = -ENOMEM;
5056                goto rinse;
5057        }
5058
5059        /*
5060         * Duplicate the config so the driver could override it after
5061         * parsing init data.
5062         */
5063        config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5064        if (config == NULL) {
5065                kfree(rdev);
5066                ret = -ENOMEM;
5067                goto rinse;
5068        }
5069
5070        init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5071                                               &rdev->dev.of_node);
5072
5073        /*
5074         * Sometimes not all resources are probed already so we need to take
5075         * that into account. This happens most the time if the ena_gpiod comes
5076         * from a gpio extender or something else.
5077         */
5078        if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5079                kfree(config);
5080                kfree(rdev);
5081                ret = -EPROBE_DEFER;
5082                goto rinse;
5083        }
5084
5085        /*
5086         * We need to keep track of any GPIO descriptor coming from the
5087         * device tree until we have handled it over to the core. If the
5088         * config that was passed in to this function DOES NOT contain
5089         * a descriptor, and the config after this call DOES contain
5090         * a descriptor, we definitely got one from parsing the device
5091         * tree.
5092         */
5093        if (!cfg->ena_gpiod && config->ena_gpiod)
5094                dangling_of_gpiod = true;
5095        if (!init_data) {
5096                init_data = config->init_data;
5097                rdev->dev.of_node = of_node_get(config->of_node);
5098        }
5099
5100        ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5101        rdev->reg_data = config->driver_data;
5102        rdev->owner = regulator_desc->owner;
5103        rdev->desc = regulator_desc;
5104        if (config->regmap)
5105                rdev->regmap = config->regmap;
5106        else if (dev_get_regmap(dev, NULL))
5107                rdev->regmap = dev_get_regmap(dev, NULL);
5108        else if (dev->parent)
5109                rdev->regmap = dev_get_regmap(dev->parent, NULL);
5110        INIT_LIST_HEAD(&rdev->consumer_list);
5111        INIT_LIST_HEAD(&rdev->list);
5112        BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5113        INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5114
5115        /* preform any regulator specific init */
5116        if (init_data && init_data->regulator_init) {
5117                ret = init_data->regulator_init(rdev->reg_data);
5118                if (ret < 0)
5119                        goto clean;
5120        }
5121
5122        if (config->ena_gpiod) {
5123                mutex_lock(&regulator_list_mutex);
5124                ret = regulator_ena_gpio_request(rdev, config);
5125                mutex_unlock(&regulator_list_mutex);
5126                if (ret != 0) {
5127                        rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5128                                 ret);
5129                        goto clean;
5130                }
5131                /* The regulator core took over the GPIO descriptor */
5132                dangling_cfg_gpiod = false;
5133                dangling_of_gpiod = false;
5134        }
5135
5136        /* register with sysfs */
5137        rdev->dev.class = &regulator_class;
5138        rdev->dev.parent = dev;
5139        dev_set_name(&rdev->dev, "regulator.%lu",
5140                    (unsigned long) atomic_inc_return(&regulator_no));
5141
5142        /* set regulator constraints */
5143        if (init_data)
5144                constraints = &init_data->constraints;
5145
5146        if (init_data && init_data->supply_regulator)
5147                rdev->supply_name = init_data->supply_regulator;
5148        else if (regulator_desc->supply_name)
5149                rdev->supply_name = regulator_desc->supply_name;
5150
5151        /*
5152         * Attempt to resolve the regulator supply, if specified,
5153         * but don't return an error if we fail because we will try
5154         * to resolve it again later as more regulators are added.
5155         */
5156        if (regulator_resolve_supply(rdev))
5157                rdev_dbg(rdev, "unable to resolve supply\n");
5158
5159        ret = set_machine_constraints(rdev, constraints);
5160        if (ret < 0)
5161                goto wash;
5162
5163        mutex_lock(&regulator_list_mutex);
5164        ret = regulator_init_coupling(rdev);
5165        mutex_unlock(&regulator_list_mutex);
5166        if (ret < 0)
5167                goto wash;
5168
5169        /* add consumers devices */
5170        if (init_data) {
5171                mutex_lock(&regulator_list_mutex);
5172                for (i = 0; i < init_data->num_consumer_supplies; i++) {
5173                        ret = set_consumer_device_supply(rdev,
5174                                init_data->consumer_supplies[i].dev_name,
5175                                init_data->consumer_supplies[i].supply);
5176                        if (ret < 0) {
5177                                mutex_unlock(&regulator_list_mutex);
5178                                dev_err(dev, "Failed to set supply %s\n",
5179                                        init_data->consumer_supplies[i].supply);
5180                                goto unset_supplies;
5181                        }
5182                }
5183                mutex_unlock(&regulator_list_mutex);
5184        }
5185
5186        if (!rdev->desc->ops->get_voltage &&
5187            !rdev->desc->ops->list_voltage &&
5188            !rdev->desc->fixed_uV)
5189                rdev->is_switch = true;
5190
5191        dev_set_drvdata(&rdev->dev, rdev);
5192        ret = device_register(&rdev->dev);
5193        if (ret != 0) {
5194                reg_device_fail = true;
5195                goto unset_supplies;
5196        }
5197
5198        rdev_init_debugfs(rdev);
5199
5200        /* try to resolve regulators coupling since a new one was registered */
5201        mutex_lock(&regulator_list_mutex);
5202        regulator_resolve_coupling(rdev);
5203        mutex_unlock(&regulator_list_mutex);
5204
5205        /* try to resolve regulators supply since a new one was registered */
5206        class_for_each_device(&regulator_class, NULL, NULL,
5207                              regulator_register_resolve_supply);
5208        kfree(config);
5209        return rdev;
5210
5211unset_supplies:
5212        mutex_lock(&regulator_list_mutex);
5213        unset_regulator_supplies(rdev);
5214        regulator_remove_coupling(rdev);
5215        mutex_unlock(&regulator_list_mutex);
5216wash:
5217        kfree(rdev->coupling_desc.coupled_rdevs);
5218        kfree(rdev->constraints);
5219        mutex_lock(&regulator_list_mutex);
5220        regulator_ena_gpio_free(rdev);
5221        mutex_unlock(&regulator_list_mutex);
5222clean:
5223        if (dangling_of_gpiod)
5224                gpiod_put(config->ena_gpiod);
5225        if (reg_device_fail)
5226                put_device(&rdev->dev);
5227        else
5228                kfree(rdev);
5229        kfree(config);
5230rinse:
5231        if (dangling_cfg_gpiod)
5232                gpiod_put(cfg->ena_gpiod);
5233        return ERR_PTR(ret);
5234}
5235EXPORT_SYMBOL_GPL(regulator_register);
5236
5237/**
5238 * regulator_unregister - unregister regulator
5239 * @rdev: regulator to unregister
5240 *
5241 * Called by regulator drivers to unregister a regulator.
5242 */
5243void regulator_unregister(struct regulator_dev *rdev)
5244{
5245        if (rdev == NULL)
5246                return;
5247
5248        if (rdev->supply) {
5249                while (rdev->use_count--)
5250                        regulator_disable(rdev->supply);
5251                regulator_put(rdev->supply);
5252        }
5253
5254        flush_work(&rdev->disable_work.work);
5255
5256        mutex_lock(&regulator_list_mutex);
5257
5258        debugfs_remove_recursive(rdev->debugfs);
5259        WARN_ON(rdev->open_count);
5260        regulator_remove_coupling(rdev);
5261        unset_regulator_supplies(rdev);
5262        list_del(&rdev->list);
5263        regulator_ena_gpio_free(rdev);
5264        device_unregister(&rdev->dev);
5265
5266        mutex_unlock(&regulator_list_mutex);
5267}
5268EXPORT_SYMBOL_GPL(regulator_unregister);
5269
5270#ifdef CONFIG_SUSPEND
5271/**
5272 * regulator_suspend - prepare regulators for system wide suspend
5273 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5274 *
5275 * Configure each regulator with it's suspend operating parameters for state.
5276 */
5277static int regulator_suspend(struct device *dev)
5278{
5279        struct regulator_dev *rdev = dev_to_rdev(dev);
5280        suspend_state_t state = pm_suspend_target_state;
5281        int ret;
5282
5283        regulator_lock(rdev);
5284        ret = suspend_set_state(rdev, state);
5285        regulator_unlock(rdev);
5286
5287        return ret;
5288}
5289
5290static int regulator_resume(struct device *dev)
5291{
5292        suspend_state_t state = pm_suspend_target_state;
5293        struct regulator_dev *rdev = dev_to_rdev(dev);
5294        struct regulator_state *rstate;
5295        int ret = 0;
5296
5297        rstate = regulator_get_suspend_state(rdev, state);
5298        if (rstate == NULL)
5299                return 0;
5300
5301        regulator_lock(rdev);
5302
5303        if (rdev->desc->ops->resume &&
5304            (rstate->enabled == ENABLE_IN_SUSPEND ||
5305             rstate->enabled == DISABLE_IN_SUSPEND))
5306                ret = rdev->desc->ops->resume(rdev);
5307
5308        regulator_unlock(rdev);
5309
5310        return ret;
5311}
5312#else /* !CONFIG_SUSPEND */
5313
5314#define regulator_suspend       NULL
5315#define regulator_resume        NULL
5316
5317#endif /* !CONFIG_SUSPEND */
5318
5319#ifdef CONFIG_PM
5320static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5321        .suspend        = regulator_suspend,
5322        .resume         = regulator_resume,
5323};
5324#endif
5325
5326struct class regulator_class = {
5327        .name = "regulator",
5328        .dev_release = regulator_dev_release,
5329        .dev_groups = regulator_dev_groups,
5330#ifdef CONFIG_PM
5331        .pm = &regulator_pm_ops,
5332#endif
5333};
5334/**
5335 * regulator_has_full_constraints - the system has fully specified constraints
5336 *
5337 * Calling this function will cause the regulator API to disable all
5338 * regulators which have a zero use count and don't have an always_on
5339 * constraint in a late_initcall.
5340 *
5341 * The intention is that this will become the default behaviour in a
5342 * future kernel release so users are encouraged to use this facility
5343 * now.
5344 */
5345void regulator_has_full_constraints(void)
5346{
5347        has_full_constraints = 1;
5348}
5349EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5350
5351/**
5352 * rdev_get_drvdata - get rdev regulator driver data
5353 * @rdev: regulator
5354 *
5355 * Get rdev regulator driver private data. This call can be used in the
5356 * regulator driver context.
5357 */
5358void *rdev_get_drvdata(struct regulator_dev *rdev)
5359{
5360        return rdev->reg_data;
5361}
5362EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5363
5364/**
5365 * regulator_get_drvdata - get regulator driver data
5366 * @regulator: regulator
5367 *
5368 * Get regulator driver private data. This call can be used in the consumer
5369 * driver context when non API regulator specific functions need to be called.
5370 */
5371void *regulator_get_drvdata(struct regulator *regulator)
5372{
5373        return regulator->rdev->reg_data;
5374}
5375EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5376
5377/**
5378 * regulator_set_drvdata - set regulator driver data
5379 * @regulator: regulator
5380 * @data: data
5381 */
5382void regulator_set_drvdata(struct regulator *regulator, void *data)
5383{
5384        regulator->rdev->reg_data = data;
5385}
5386EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5387
5388/**
5389 * regulator_get_id - get regulator ID
5390 * @rdev: regulator
5391 */
5392int rdev_get_id(struct regulator_dev *rdev)
5393{
5394        return rdev->desc->id;
5395}
5396EXPORT_SYMBOL_GPL(rdev_get_id);
5397
5398struct device *rdev_get_dev(struct regulator_dev *rdev)
5399{
5400        return &rdev->dev;
5401}
5402EXPORT_SYMBOL_GPL(rdev_get_dev);
5403
5404struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5405{
5406        return rdev->regmap;
5407}
5408EXPORT_SYMBOL_GPL(rdev_get_regmap);
5409
5410void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5411{
5412        return reg_init_data->driver_data;
5413}
5414EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5415
5416#ifdef CONFIG_DEBUG_FS
5417static int supply_map_show(struct seq_file *sf, void *data)
5418{
5419        struct regulator_map *map;
5420
5421        list_for_each_entry(map, &regulator_map_list, list) {
5422                seq_printf(sf, "%s -> %s.%s\n",
5423                                rdev_get_name(map->regulator), map->dev_name,
5424                                map->supply);
5425        }
5426
5427        return 0;
5428}
5429DEFINE_SHOW_ATTRIBUTE(supply_map);
5430
5431struct summary_data {
5432        struct seq_file *s;
5433        struct regulator_dev *parent;
5434        int level;
5435};
5436
5437static void regulator_summary_show_subtree(struct seq_file *s,
5438                                           struct regulator_dev *rdev,
5439                                           int level);
5440
5441static int regulator_summary_show_children(struct device *dev, void *data)
5442{
5443        struct regulator_dev *rdev = dev_to_rdev(dev);
5444        struct summary_data *summary_data = data;
5445
5446        if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5447                regulator_summary_show_subtree(summary_data->s, rdev,
5448                                               summary_data->level + 1);
5449
5450        return 0;
5451}
5452
5453static void regulator_summary_show_subtree(struct seq_file *s,
5454                                           struct regulator_dev *rdev,
5455                                           int level)
5456{
5457        struct regulation_constraints *c;
5458        struct regulator *consumer;
5459        struct summary_data summary_data;
5460        unsigned int opmode;
5461
5462        if (!rdev)
5463                return;
5464
5465        opmode = _regulator_get_mode_unlocked(rdev);
5466        seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5467                   level * 3 + 1, "",
5468                   30 - level * 3, rdev_get_name(rdev),
5469                   rdev->use_count, rdev->open_count, rdev->bypass_count,
5470                   regulator_opmode_to_str(opmode));
5471
5472        seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5473        seq_printf(s, "%5dmA ",
5474                   _regulator_get_current_limit_unlocked(rdev) / 1000);
5475
5476        c = rdev->constraints;
5477        if (c) {
5478                switch (rdev->desc->type) {
5479                case REGULATOR_VOLTAGE:
5480                        seq_printf(s, "%5dmV %5dmV ",
5481                                   c->min_uV / 1000, c->max_uV / 1000);
5482                        break;
5483                case REGULATOR_CURRENT:
5484                        seq_printf(s, "%5dmA %5dmA ",
5485                                   c->min_uA / 1000, c->max_uA / 1000);
5486                        break;
5487                }
5488        }
5489
5490        seq_puts(s, "\n");
5491
5492        list_for_each_entry(consumer, &rdev->consumer_list, list) {
5493                if (consumer->dev && consumer->dev->class == &regulator_class)
5494                        continue;
5495
5496                seq_printf(s, "%*s%-*s ",
5497                           (level + 1) * 3 + 1, "",
5498                           30 - (level + 1) * 3,
5499                           consumer->dev ? dev_name(consumer->dev) : "deviceless");
5500
5501                switch (rdev->desc->type) {
5502                case REGULATOR_VOLTAGE:
5503                        seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5504                                   consumer->enable_count,
5505                                   consumer->uA_load / 1000,
5506                                   consumer->uA_load && !consumer->enable_count ?
5507                                   '*' : ' ',
5508                                   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5509                                   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5510                        break;
5511                case REGULATOR_CURRENT:
5512                        break;
5513                }
5514
5515                seq_puts(s, "\n");
5516        }
5517
5518        summary_data.s = s;
5519        summary_data.level = level;
5520        summary_data.parent = rdev;
5521
5522        class_for_each_device(&regulator_class, NULL, &summary_data,
5523                              regulator_summary_show_children);
5524}
5525
5526struct summary_lock_data {
5527        struct ww_acquire_ctx *ww_ctx;
5528        struct regulator_dev **new_contended_rdev;
5529        struct regulator_dev **old_contended_rdev;
5530};
5531
5532static int regulator_summary_lock_one(struct device *dev, void *data)
5533{
5534        struct regulator_dev *rdev = dev_to_rdev(dev);
5535        struct summary_lock_data *lock_data = data;
5536        int ret = 0;
5537
5538        if (rdev != *lock_data->old_contended_rdev) {
5539                ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5540
5541                if (ret == -EDEADLK)
5542                        *lock_data->new_contended_rdev = rdev;
5543                else
5544                        WARN_ON_ONCE(ret);
5545        } else {
5546                *lock_data->old_contended_rdev = NULL;
5547        }
5548
5549        return ret;
5550}
5551
5552static int regulator_summary_unlock_one(struct device *dev, void *data)
5553{
5554        struct regulator_dev *rdev = dev_to_rdev(dev);
5555        struct summary_lock_data *lock_data = data;
5556
5557        if (lock_data) {
5558                if (rdev == *lock_data->new_contended_rdev)
5559                        return -EDEADLK;
5560        }
5561
5562        regulator_unlock(rdev);
5563
5564        return 0;
5565}
5566
5567static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5568                                      struct regulator_dev **new_contended_rdev,
5569                                      struct regulator_dev **old_contended_rdev)
5570{
5571        struct summary_lock_data lock_data;
5572        int ret;
5573
5574        lock_data.ww_ctx = ww_ctx;
5575        lock_data.new_contended_rdev = new_contended_rdev;
5576        lock_data.old_contended_rdev = old_contended_rdev;
5577
5578        ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5579                                    regulator_summary_lock_one);
5580        if (ret)
5581                class_for_each_device(&regulator_class, NULL, &lock_data,
5582                                      regulator_summary_unlock_one);
5583
5584        return ret;
5585}
5586
5587static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5588{
5589        struct regulator_dev *new_contended_rdev = NULL;
5590        struct regulator_dev *old_contended_rdev = NULL;
5591        int err;
5592
5593        mutex_lock(&regulator_list_mutex);
5594
5595        ww_acquire_init(ww_ctx, &regulator_ww_class);
5596
5597        do {
5598                if (new_contended_rdev) {
5599                        ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5600                        old_contended_rdev = new_contended_rdev;
5601                        old_contended_rdev->ref_cnt++;
5602                }
5603
5604                err = regulator_summary_lock_all(ww_ctx,
5605                                                 &new_contended_rdev,
5606                                                 &old_contended_rdev);
5607
5608                if (old_contended_rdev)
5609                        regulator_unlock(old_contended_rdev);
5610
5611        } while (err == -EDEADLK);
5612
5613        ww_acquire_done(ww_ctx);
5614}
5615
5616static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5617{
5618        class_for_each_device(&regulator_class, NULL, NULL,
5619                              regulator_summary_unlock_one);
5620        ww_acquire_fini(ww_ctx);
5621
5622        mutex_unlock(&regulator_list_mutex);
5623}
5624
5625static int regulator_summary_show_roots(struct device *dev, void *data)
5626{
5627        struct regulator_dev *rdev = dev_to_rdev(dev);
5628        struct seq_file *s = data;
5629
5630        if (!rdev->supply)
5631                regulator_summary_show_subtree(s, rdev, 0);
5632
5633        return 0;
5634}
5635
5636static int regulator_summary_show(struct seq_file *s, void *data)
5637{
5638        struct ww_acquire_ctx ww_ctx;
5639
5640        seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5641        seq_puts(s, "---------------------------------------------------------------------------------------\n");
5642
5643        regulator_summary_lock(&ww_ctx);
5644
5645        class_for_each_device(&regulator_class, NULL, s,
5646                              regulator_summary_show_roots);
5647
5648        regulator_summary_unlock(&ww_ctx);
5649
5650        return 0;
5651}
5652DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5653#endif /* CONFIG_DEBUG_FS */
5654
5655static int __init regulator_init(void)
5656{
5657        int ret;
5658
5659        ret = class_register(&regulator_class);
5660
5661        debugfs_root = debugfs_create_dir("regulator", NULL);
5662        if (!debugfs_root)
5663                pr_warn("regulator: Failed to create debugfs directory\n");
5664
5665#ifdef CONFIG_DEBUG_FS
5666        debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5667                            &supply_map_fops);
5668
5669        debugfs_create_file("regulator_summary", 0444, debugfs_root,
5670                            NULL, &regulator_summary_fops);
5671#endif
5672        regulator_dummy_init();
5673
5674        regulator_coupler_register(&generic_regulator_coupler);
5675
5676        return ret;
5677}
5678
5679/* init early to allow our consumers to complete system booting */
5680core_initcall(regulator_init);
5681
5682static int regulator_late_cleanup(struct device *dev, void *data)
5683{
5684        struct regulator_dev *rdev = dev_to_rdev(dev);
5685        const struct regulator_ops *ops = rdev->desc->ops;
5686        struct regulation_constraints *c = rdev->constraints;
5687        int enabled, ret;
5688
5689        if (c && c->always_on)
5690                return 0;
5691
5692        if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5693                return 0;
5694
5695        regulator_lock(rdev);
5696
5697        if (rdev->use_count)
5698                goto unlock;
5699
5700        /* If we can't read the status assume it's on. */
5701        if (ops->is_enabled)
5702                enabled = ops->is_enabled(rdev);
5703        else
5704                enabled = 1;
5705
5706        if (!enabled)
5707                goto unlock;
5708
5709        if (have_full_constraints()) {
5710                /* We log since this may kill the system if it goes
5711                 * wrong. */
5712                rdev_info(rdev, "disabling\n");
5713                ret = _regulator_do_disable(rdev);
5714                if (ret != 0)
5715                        rdev_err(rdev, "couldn't disable: %d\n", ret);
5716        } else {
5717                /* The intention is that in future we will
5718                 * assume that full constraints are provided
5719                 * so warn even if we aren't going to do
5720                 * anything here.
5721                 */
5722                rdev_warn(rdev, "incomplete constraints, leaving on\n");
5723        }
5724
5725unlock:
5726        regulator_unlock(rdev);
5727
5728        return 0;
5729}
5730
5731static void regulator_init_complete_work_function(struct work_struct *work)
5732{
5733        /*
5734         * Regulators may had failed to resolve their input supplies
5735         * when were registered, either because the input supply was
5736         * not registered yet or because its parent device was not
5737         * bound yet. So attempt to resolve the input supplies for
5738         * pending regulators before trying to disable unused ones.
5739         */
5740        class_for_each_device(&regulator_class, NULL, NULL,
5741                              regulator_register_resolve_supply);
5742
5743        /* If we have a full configuration then disable any regulators
5744         * we have permission to change the status for and which are
5745         * not in use or always_on.  This is effectively the default
5746         * for DT and ACPI as they have full constraints.
5747         */
5748        class_for_each_device(&regulator_class, NULL, NULL,
5749                              regulator_late_cleanup);
5750}
5751
5752static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5753                            regulator_init_complete_work_function);
5754
5755static int __init regulator_init_complete(void)
5756{
5757        /*
5758         * Since DT doesn't provide an idiomatic mechanism for
5759         * enabling full constraints and since it's much more natural
5760         * with DT to provide them just assume that a DT enabled
5761         * system has full constraints.
5762         */
5763        if (of_have_populated_dt())
5764                has_full_constraints = true;
5765
5766        /*
5767         * We punt completion for an arbitrary amount of time since
5768         * systems like distros will load many drivers from userspace
5769         * so consumers might not always be ready yet, this is
5770         * particularly an issue with laptops where this might bounce
5771         * the display off then on.  Ideally we'd get a notification
5772         * from userspace when this happens but we don't so just wait
5773         * a bit and hope we waited long enough.  It'd be better if
5774         * we'd only do this on systems that need it, and a kernel
5775         * command line option might be useful.
5776         */
5777        schedule_delayed_work(&regulator_init_complete_work,
5778                              msecs_to_jiffies(30000));
5779
5780        return 0;
5781}
5782late_initcall_sync(regulator_init_complete);
5783