linux/drivers/spi/spi-bcm-qspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   4 *
   5 * Copyright 2016 Broadcom
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/device.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/ioport.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/of.h>
  18#include <linux/of_irq.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/spi/spi.h>
  22#include <linux/spi/spi-mem.h>
  23#include <linux/sysfs.h>
  24#include <linux/types.h>
  25#include "spi-bcm-qspi.h"
  26
  27#define DRIVER_NAME "bcm_qspi"
  28
  29
  30/* BSPI register offsets */
  31#define BSPI_REVISION_ID                        0x000
  32#define BSPI_SCRATCH                            0x004
  33#define BSPI_MAST_N_BOOT_CTRL                   0x008
  34#define BSPI_BUSY_STATUS                        0x00c
  35#define BSPI_INTR_STATUS                        0x010
  36#define BSPI_B0_STATUS                          0x014
  37#define BSPI_B0_CTRL                            0x018
  38#define BSPI_B1_STATUS                          0x01c
  39#define BSPI_B1_CTRL                            0x020
  40#define BSPI_STRAP_OVERRIDE_CTRL                0x024
  41#define BSPI_FLEX_MODE_ENABLE                   0x028
  42#define BSPI_BITS_PER_CYCLE                     0x02c
  43#define BSPI_BITS_PER_PHASE                     0x030
  44#define BSPI_CMD_AND_MODE_BYTE                  0x034
  45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
  46#define BSPI_BSPI_XOR_VALUE                     0x03c
  47#define BSPI_BSPI_XOR_ENABLE                    0x040
  48#define BSPI_BSPI_PIO_MODE_ENABLE               0x044
  49#define BSPI_BSPI_PIO_IODIR                     0x048
  50#define BSPI_BSPI_PIO_DATA                      0x04c
  51
  52/* RAF register offsets */
  53#define BSPI_RAF_START_ADDR                     0x100
  54#define BSPI_RAF_NUM_WORDS                      0x104
  55#define BSPI_RAF_CTRL                           0x108
  56#define BSPI_RAF_FULLNESS                       0x10c
  57#define BSPI_RAF_WATERMARK                      0x110
  58#define BSPI_RAF_STATUS                 0x114
  59#define BSPI_RAF_READ_DATA                      0x118
  60#define BSPI_RAF_WORD_CNT                       0x11c
  61#define BSPI_RAF_CURR_ADDR                      0x120
  62
  63/* Override mode masks */
  64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
  65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
  66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
  67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
  68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
  69
  70#define BSPI_ADDRLEN_3BYTES                     3
  71#define BSPI_ADDRLEN_4BYTES                     4
  72
  73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
  74
  75#define BSPI_RAF_CTRL_START_MASK                BIT(0)
  76#define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
  77
  78#define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
  79#define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
  80
  81#define BSPI_READ_LENGTH                        256
  82
  83/* MSPI register offsets */
  84#define MSPI_SPCR0_LSB                          0x000
  85#define MSPI_SPCR0_MSB                          0x004
  86#define MSPI_SPCR1_LSB                          0x008
  87#define MSPI_SPCR1_MSB                          0x00c
  88#define MSPI_NEWQP                              0x010
  89#define MSPI_ENDQP                              0x014
  90#define MSPI_SPCR2                              0x018
  91#define MSPI_MSPI_STATUS                        0x020
  92#define MSPI_CPTQP                              0x024
  93#define MSPI_SPCR3                              0x028
  94#define MSPI_TXRAM                              0x040
  95#define MSPI_RXRAM                              0x0c0
  96#define MSPI_CDRAM                              0x140
  97#define MSPI_WRITE_LOCK                 0x180
  98
  99#define MSPI_MASTER_BIT                 BIT(7)
 100
 101#define MSPI_NUM_CDRAM                          16
 102#define MSPI_CDRAM_CONT_BIT                     BIT(7)
 103#define MSPI_CDRAM_BITSE_BIT                    BIT(6)
 104#define MSPI_CDRAM_PCS                          0xf
 105
 106#define MSPI_SPCR2_SPE                          BIT(6)
 107#define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
 108
 109#define MSPI_MSPI_STATUS_SPIF                   BIT(0)
 110
 111#define INTR_BASE_BIT_SHIFT                     0x02
 112#define INTR_COUNT                              0x07
 113
 114#define NUM_CHIPSELECT                          4
 115#define QSPI_SPBR_MIN                           8U
 116#define QSPI_SPBR_MAX                           255U
 117
 118#define OPCODE_DIOR                             0xBB
 119#define OPCODE_QIOR                             0xEB
 120#define OPCODE_DIOR_4B                          0xBC
 121#define OPCODE_QIOR_4B                          0xEC
 122
 123#define MAX_CMD_SIZE                            6
 124
 125#define ADDR_4MB_MASK                           GENMASK(22, 0)
 126
 127/* stop at end of transfer, no other reason */
 128#define TRANS_STATUS_BREAK_NONE         0
 129/* stop at end of spi_message */
 130#define TRANS_STATUS_BREAK_EOM                  1
 131/* stop at end of spi_transfer if delay */
 132#define TRANS_STATUS_BREAK_DELAY                2
 133/* stop at end of spi_transfer if cs_change */
 134#define TRANS_STATUS_BREAK_CS_CHANGE            4
 135/* stop if we run out of bytes */
 136#define TRANS_STATUS_BREAK_NO_BYTES             8
 137
 138/* events that make us stop filling TX slots */
 139#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
 140                               TRANS_STATUS_BREAK_DELAY |               \
 141                               TRANS_STATUS_BREAK_CS_CHANGE)
 142
 143/* events that make us deassert CS */
 144#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
 145                                     TRANS_STATUS_BREAK_CS_CHANGE)
 146
 147struct bcm_qspi_parms {
 148        u32 speed_hz;
 149        u8 mode;
 150        u8 bits_per_word;
 151};
 152
 153struct bcm_xfer_mode {
 154        bool flex_mode;
 155        unsigned int width;
 156        unsigned int addrlen;
 157        unsigned int hp;
 158};
 159
 160enum base_type {
 161        MSPI,
 162        BSPI,
 163        CHIP_SELECT,
 164        BASEMAX,
 165};
 166
 167enum irq_source {
 168        SINGLE_L2,
 169        MUXED_L1,
 170};
 171
 172struct bcm_qspi_irq {
 173        const char *irq_name;
 174        const irq_handler_t irq_handler;
 175        int irq_source;
 176        u32 mask;
 177};
 178
 179struct bcm_qspi_dev_id {
 180        const struct bcm_qspi_irq *irqp;
 181        void *dev;
 182};
 183
 184
 185struct qspi_trans {
 186        struct spi_transfer *trans;
 187        int byte;
 188        bool mspi_last_trans;
 189};
 190
 191struct bcm_qspi {
 192        struct platform_device *pdev;
 193        struct spi_master *master;
 194        struct clk *clk;
 195        u32 base_clk;
 196        u32 max_speed_hz;
 197        void __iomem *base[BASEMAX];
 198
 199        /* Some SoCs provide custom interrupt status register(s) */
 200        struct bcm_qspi_soc_intc        *soc_intc;
 201
 202        struct bcm_qspi_parms last_parms;
 203        struct qspi_trans  trans_pos;
 204        int curr_cs;
 205        int bspi_maj_rev;
 206        int bspi_min_rev;
 207        int bspi_enabled;
 208        const struct spi_mem_op *bspi_rf_op;
 209        u32 bspi_rf_op_idx;
 210        u32 bspi_rf_op_len;
 211        u32 bspi_rf_op_status;
 212        struct bcm_xfer_mode xfer_mode;
 213        u32 s3_strap_override_ctrl;
 214        bool bspi_mode;
 215        bool big_endian;
 216        int num_irqs;
 217        struct bcm_qspi_dev_id *dev_ids;
 218        struct completion mspi_done;
 219        struct completion bspi_done;
 220};
 221
 222static inline bool has_bspi(struct bcm_qspi *qspi)
 223{
 224        return qspi->bspi_mode;
 225}
 226
 227/* Read qspi controller register*/
 228static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 229                                unsigned int offset)
 230{
 231        return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 232}
 233
 234/* Write qspi controller register*/
 235static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 236                                  unsigned int offset, unsigned int data)
 237{
 238        bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 239}
 240
 241/* BSPI helpers */
 242static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 243{
 244        int i;
 245
 246        /* this should normally finish within 10us */
 247        for (i = 0; i < 1000; i++) {
 248                if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 249                        return 0;
 250                udelay(1);
 251        }
 252        dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 253        return -EIO;
 254}
 255
 256static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 257{
 258        if (qspi->bspi_maj_rev < 4)
 259                return true;
 260        return false;
 261}
 262
 263static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 264{
 265        bcm_qspi_bspi_busy_poll(qspi);
 266        /* Force rising edge for the b0/b1 'flush' field */
 267        bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 268        bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 269        bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 270        bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 271}
 272
 273static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 274{
 275        return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 276                                BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 277}
 278
 279static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 280{
 281        u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 282
 283        /* BSPI v3 LR is LE only, convert data to host endianness */
 284        if (bcm_qspi_bspi_ver_three(qspi))
 285                data = le32_to_cpu(data);
 286
 287        return data;
 288}
 289
 290static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 291{
 292        bcm_qspi_bspi_busy_poll(qspi);
 293        bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 294                       BSPI_RAF_CTRL_START_MASK);
 295}
 296
 297static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 298{
 299        bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 300                       BSPI_RAF_CTRL_CLEAR_MASK);
 301        bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 302}
 303
 304static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 305{
 306        u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
 307        u32 data = 0;
 308
 309        dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
 310                qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
 311        while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 312                data = bcm_qspi_bspi_lr_read_fifo(qspi);
 313                if (likely(qspi->bspi_rf_op_len >= 4) &&
 314                    IS_ALIGNED((uintptr_t)buf, 4)) {
 315                        buf[qspi->bspi_rf_op_idx++] = data;
 316                        qspi->bspi_rf_op_len -= 4;
 317                } else {
 318                        /* Read out remaining bytes, make sure*/
 319                        u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
 320
 321                        data = cpu_to_le32(data);
 322                        while (qspi->bspi_rf_op_len) {
 323                                *cbuf++ = (u8)data;
 324                                data >>= 8;
 325                                qspi->bspi_rf_op_len--;
 326                        }
 327                }
 328        }
 329}
 330
 331static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 332                                          int bpp, int bpc, int flex_mode)
 333{
 334        bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 335        bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 336        bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 337        bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 338        bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 339}
 340
 341static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
 342                                       const struct spi_mem_op *op, int hp)
 343{
 344        int bpc = 0, bpp = 0;
 345        u8 command = op->cmd.opcode;
 346        int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 347        int addrlen = op->addr.nbytes;
 348        int flex_mode = 1;
 349
 350        dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 351                width, addrlen, hp);
 352
 353        if (addrlen == BSPI_ADDRLEN_4BYTES)
 354                bpp = BSPI_BPP_ADDR_SELECT_MASK;
 355
 356        bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
 357
 358        switch (width) {
 359        case SPI_NBITS_SINGLE:
 360                if (addrlen == BSPI_ADDRLEN_3BYTES)
 361                        /* default mode, does not need flex_cmd */
 362                        flex_mode = 0;
 363                break;
 364        case SPI_NBITS_DUAL:
 365                bpc = 0x00000001;
 366                if (hp) {
 367                        bpc |= 0x00010100; /* address and mode are 2-bit */
 368                        bpp = BSPI_BPP_MODE_SELECT_MASK;
 369                }
 370                break;
 371        case SPI_NBITS_QUAD:
 372                bpc = 0x00000002;
 373                if (hp) {
 374                        bpc |= 0x00020200; /* address and mode are 4-bit */
 375                        bpp |= BSPI_BPP_MODE_SELECT_MASK;
 376                }
 377                break;
 378        default:
 379                return -EINVAL;
 380        }
 381
 382        bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
 383
 384        return 0;
 385}
 386
 387static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
 388                                      const struct spi_mem_op *op, int hp)
 389{
 390        int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 391        int addrlen = op->addr.nbytes;
 392        u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 393
 394        dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 395                width, addrlen, hp);
 396
 397        switch (width) {
 398        case SPI_NBITS_SINGLE:
 399                /* clear quad/dual mode */
 400                data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 401                          BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 402                break;
 403        case SPI_NBITS_QUAD:
 404                /* clear dual mode and set quad mode */
 405                data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 406                data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 407                break;
 408        case SPI_NBITS_DUAL:
 409                /* clear quad mode set dual mode */
 410                data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 411                data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 412                break;
 413        default:
 414                return -EINVAL;
 415        }
 416
 417        if (addrlen == BSPI_ADDRLEN_4BYTES)
 418                /* set 4byte mode*/
 419                data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 420        else
 421                /* clear 4 byte mode */
 422                data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 423
 424        /* set the override mode */
 425        data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 426        bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 427        bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
 428
 429        return 0;
 430}
 431
 432static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 433                                  const struct spi_mem_op *op, int hp)
 434{
 435        int error = 0;
 436        int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 437        int addrlen = op->addr.nbytes;
 438
 439        /* default mode */
 440        qspi->xfer_mode.flex_mode = true;
 441
 442        if (!bcm_qspi_bspi_ver_three(qspi)) {
 443                u32 val, mask;
 444
 445                val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 446                mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 447                if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 448                        qspi->xfer_mode.flex_mode = false;
 449                        bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 450                        error = bcm_qspi_bspi_set_override(qspi, op, hp);
 451                }
 452        }
 453
 454        if (qspi->xfer_mode.flex_mode)
 455                error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
 456
 457        if (error) {
 458                dev_warn(&qspi->pdev->dev,
 459                         "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 460                         width, addrlen, hp);
 461        } else if (qspi->xfer_mode.width != width ||
 462                   qspi->xfer_mode.addrlen != addrlen ||
 463                   qspi->xfer_mode.hp != hp) {
 464                qspi->xfer_mode.width = width;
 465                qspi->xfer_mode.addrlen = addrlen;
 466                qspi->xfer_mode.hp = hp;
 467                dev_dbg(&qspi->pdev->dev,
 468                        "cs:%d %d-lane output, %d-byte address%s\n",
 469                        qspi->curr_cs,
 470                        qspi->xfer_mode.width,
 471                        qspi->xfer_mode.addrlen,
 472                        qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 473        }
 474
 475        return error;
 476}
 477
 478static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 479{
 480        if (!has_bspi(qspi))
 481                return;
 482
 483        qspi->bspi_enabled = 1;
 484        if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 485                return;
 486
 487        bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 488        udelay(1);
 489        bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 490        udelay(1);
 491}
 492
 493static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 494{
 495        if (!has_bspi(qspi))
 496                return;
 497
 498        qspi->bspi_enabled = 0;
 499        if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 500                return;
 501
 502        bcm_qspi_bspi_busy_poll(qspi);
 503        bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 504        udelay(1);
 505}
 506
 507static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 508{
 509        u32 rd = 0;
 510        u32 wr = 0;
 511
 512        if (qspi->base[CHIP_SELECT]) {
 513                rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 514                wr = (rd & ~0xff) | (1 << cs);
 515                if (rd == wr)
 516                        return;
 517                bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
 518                usleep_range(10, 20);
 519        }
 520
 521        dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
 522        qspi->curr_cs = cs;
 523}
 524
 525/* MSPI helpers */
 526static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 527                                  const struct bcm_qspi_parms *xp)
 528{
 529        u32 spcr, spbr = 0;
 530
 531        if (xp->speed_hz)
 532                spbr = qspi->base_clk / (2 * xp->speed_hz);
 533
 534        spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
 535        bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
 536
 537        spcr = MSPI_MASTER_BIT;
 538        /* for 16 bit the data should be zero */
 539        if (xp->bits_per_word != 16)
 540                spcr |= xp->bits_per_word << 2;
 541        spcr |= xp->mode & 3;
 542        bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 543
 544        qspi->last_parms = *xp;
 545}
 546
 547static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 548                                  struct spi_device *spi,
 549                                  struct spi_transfer *trans)
 550{
 551        struct bcm_qspi_parms xp;
 552
 553        xp.speed_hz = trans->speed_hz;
 554        xp.bits_per_word = trans->bits_per_word;
 555        xp.mode = spi->mode;
 556
 557        bcm_qspi_hw_set_parms(qspi, &xp);
 558}
 559
 560static int bcm_qspi_setup(struct spi_device *spi)
 561{
 562        struct bcm_qspi_parms *xp;
 563
 564        if (spi->bits_per_word > 16)
 565                return -EINVAL;
 566
 567        xp = spi_get_ctldata(spi);
 568        if (!xp) {
 569                xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 570                if (!xp)
 571                        return -ENOMEM;
 572                spi_set_ctldata(spi, xp);
 573        }
 574        xp->speed_hz = spi->max_speed_hz;
 575        xp->mode = spi->mode;
 576
 577        if (spi->bits_per_word)
 578                xp->bits_per_word = spi->bits_per_word;
 579        else
 580                xp->bits_per_word = 8;
 581
 582        return 0;
 583}
 584
 585static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
 586                                           struct qspi_trans *qt)
 587{
 588        if (qt->mspi_last_trans &&
 589            spi_transfer_is_last(qspi->master, qt->trans))
 590                return true;
 591        else
 592                return false;
 593}
 594
 595static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 596                                        struct qspi_trans *qt, int flags)
 597{
 598        int ret = TRANS_STATUS_BREAK_NONE;
 599
 600        /* count the last transferred bytes */
 601        if (qt->trans->bits_per_word <= 8)
 602                qt->byte++;
 603        else
 604                qt->byte += 2;
 605
 606        if (qt->byte >= qt->trans->len) {
 607                /* we're at the end of the spi_transfer */
 608                /* in TX mode, need to pause for a delay or CS change */
 609                if (qt->trans->delay_usecs &&
 610                    (flags & TRANS_STATUS_BREAK_DELAY))
 611                        ret |= TRANS_STATUS_BREAK_DELAY;
 612                if (qt->trans->cs_change &&
 613                    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 614                        ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 615                if (ret)
 616                        goto done;
 617
 618                dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
 619                if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
 620                        ret = TRANS_STATUS_BREAK_EOM;
 621                else
 622                        ret = TRANS_STATUS_BREAK_NO_BYTES;
 623
 624                qt->trans = NULL;
 625        }
 626
 627done:
 628        dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 629                qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 630        return ret;
 631}
 632
 633static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 634{
 635        u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 636
 637        /* mask out reserved bits */
 638        return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 639}
 640
 641static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 642{
 643        u32 reg_offset = MSPI_RXRAM;
 644        u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 645        u32 msb_offset = reg_offset + (slot << 3);
 646
 647        return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 648                ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 649}
 650
 651static void read_from_hw(struct bcm_qspi *qspi, int slots)
 652{
 653        struct qspi_trans tp;
 654        int slot;
 655
 656        bcm_qspi_disable_bspi(qspi);
 657
 658        if (slots > MSPI_NUM_CDRAM) {
 659                /* should never happen */
 660                dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 661                return;
 662        }
 663
 664        tp = qspi->trans_pos;
 665
 666        for (slot = 0; slot < slots; slot++) {
 667                if (tp.trans->bits_per_word <= 8) {
 668                        u8 *buf = tp.trans->rx_buf;
 669
 670                        if (buf)
 671                                buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 672                        dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 673                                buf ? buf[tp.byte] : 0xff);
 674                } else {
 675                        u16 *buf = tp.trans->rx_buf;
 676
 677                        if (buf)
 678                                buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 679                                                                      slot);
 680                        dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 681                                buf ? buf[tp.byte] : 0xffff);
 682                }
 683
 684                update_qspi_trans_byte_count(qspi, &tp,
 685                                             TRANS_STATUS_BREAK_NONE);
 686        }
 687
 688        qspi->trans_pos = tp;
 689}
 690
 691static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 692                                       u8 val)
 693{
 694        u32 reg_offset = MSPI_TXRAM + (slot << 3);
 695
 696        /* mask out reserved bits */
 697        bcm_qspi_write(qspi, MSPI, reg_offset, val);
 698}
 699
 700static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 701                                        u16 val)
 702{
 703        u32 reg_offset = MSPI_TXRAM;
 704        u32 msb_offset = reg_offset + (slot << 3);
 705        u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 706
 707        bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 708        bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 709}
 710
 711static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 712{
 713        return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 714}
 715
 716static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 717{
 718        bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 719}
 720
 721/* Return number of slots written */
 722static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 723{
 724        struct qspi_trans tp;
 725        int slot = 0, tstatus = 0;
 726        u32 mspi_cdram = 0;
 727
 728        bcm_qspi_disable_bspi(qspi);
 729        tp = qspi->trans_pos;
 730        bcm_qspi_update_parms(qspi, spi, tp.trans);
 731
 732        /* Run until end of transfer or reached the max data */
 733        while (!tstatus && slot < MSPI_NUM_CDRAM) {
 734                if (tp.trans->bits_per_word <= 8) {
 735                        const u8 *buf = tp.trans->tx_buf;
 736                        u8 val = buf ? buf[tp.byte] : 0xff;
 737
 738                        write_txram_slot_u8(qspi, slot, val);
 739                        dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 740                } else {
 741                        const u16 *buf = tp.trans->tx_buf;
 742                        u16 val = buf ? buf[tp.byte / 2] : 0xffff;
 743
 744                        write_txram_slot_u16(qspi, slot, val);
 745                        dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 746                }
 747                mspi_cdram = MSPI_CDRAM_CONT_BIT;
 748
 749                if (has_bspi(qspi))
 750                        mspi_cdram &= ~1;
 751                else
 752                        mspi_cdram |= (~(1 << spi->chip_select) &
 753                                       MSPI_CDRAM_PCS);
 754
 755                mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 756                                MSPI_CDRAM_BITSE_BIT);
 757
 758                write_cdram_slot(qspi, slot, mspi_cdram);
 759
 760                tstatus = update_qspi_trans_byte_count(qspi, &tp,
 761                                                       TRANS_STATUS_BREAK_TX);
 762                slot++;
 763        }
 764
 765        if (!slot) {
 766                dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
 767                goto done;
 768        }
 769
 770        dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
 771        bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
 772        bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
 773
 774        if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
 775                mspi_cdram = read_cdram_slot(qspi, slot - 1) &
 776                        ~MSPI_CDRAM_CONT_BIT;
 777                write_cdram_slot(qspi, slot - 1, mspi_cdram);
 778        }
 779
 780        if (has_bspi(qspi))
 781                bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
 782
 783        /* Must flush previous writes before starting MSPI operation */
 784        mb();
 785        /* Set cont | spe | spifie */
 786        bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
 787
 788done:
 789        return slot;
 790}
 791
 792static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
 793                                     const struct spi_mem_op *op)
 794{
 795        struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 796        u32 addr = 0, len, rdlen, len_words, from = 0;
 797        int ret = 0;
 798        unsigned long timeo = msecs_to_jiffies(100);
 799        struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 800
 801        if (bcm_qspi_bspi_ver_three(qspi))
 802                if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
 803                        return -EIO;
 804
 805        from = op->addr.val;
 806        if (!spi->cs_gpiod)
 807                bcm_qspi_chip_select(qspi, spi->chip_select);
 808        bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
 809
 810        /*
 811         * when using flex mode we need to send
 812         * the upper address byte to bspi
 813         */
 814        if (bcm_qspi_bspi_ver_three(qspi) == false) {
 815                addr = from & 0xff000000;
 816                bcm_qspi_write(qspi, BSPI,
 817                               BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
 818        }
 819
 820        if (!qspi->xfer_mode.flex_mode)
 821                addr = from;
 822        else
 823                addr = from & 0x00ffffff;
 824
 825        if (bcm_qspi_bspi_ver_three(qspi) == true)
 826                addr = (addr + 0xc00000) & 0xffffff;
 827
 828        /*
 829         * read into the entire buffer by breaking the reads
 830         * into RAF buffer read lengths
 831         */
 832        len = op->data.nbytes;
 833        qspi->bspi_rf_op_idx = 0;
 834
 835        do {
 836                if (len > BSPI_READ_LENGTH)
 837                        rdlen = BSPI_READ_LENGTH;
 838                else
 839                        rdlen = len;
 840
 841                reinit_completion(&qspi->bspi_done);
 842                bcm_qspi_enable_bspi(qspi);
 843                len_words = (rdlen + 3) >> 2;
 844                qspi->bspi_rf_op = op;
 845                qspi->bspi_rf_op_status = 0;
 846                qspi->bspi_rf_op_len = rdlen;
 847                dev_dbg(&qspi->pdev->dev,
 848                        "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
 849                bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
 850                bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
 851                bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
 852                if (qspi->soc_intc) {
 853                        /*
 854                         * clear soc MSPI and BSPI interrupts and enable
 855                         * BSPI interrupts.
 856                         */
 857                        soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
 858                        soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
 859                }
 860
 861                /* Must flush previous writes before starting BSPI operation */
 862                mb();
 863                bcm_qspi_bspi_lr_start(qspi);
 864                if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
 865                        dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
 866                        ret = -ETIMEDOUT;
 867                        break;
 868                }
 869
 870                /* set msg return length */
 871                addr += rdlen;
 872                len -= rdlen;
 873        } while (len);
 874
 875        return ret;
 876}
 877
 878static int bcm_qspi_transfer_one(struct spi_master *master,
 879                                 struct spi_device *spi,
 880                                 struct spi_transfer *trans)
 881{
 882        struct bcm_qspi *qspi = spi_master_get_devdata(master);
 883        int slots;
 884        unsigned long timeo = msecs_to_jiffies(100);
 885
 886        if (!spi->cs_gpiod)
 887                bcm_qspi_chip_select(qspi, spi->chip_select);
 888        qspi->trans_pos.trans = trans;
 889        qspi->trans_pos.byte = 0;
 890
 891        while (qspi->trans_pos.byte < trans->len) {
 892                reinit_completion(&qspi->mspi_done);
 893
 894                slots = write_to_hw(qspi, spi);
 895                if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
 896                        dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
 897                        return -ETIMEDOUT;
 898                }
 899
 900                read_from_hw(qspi, slots);
 901        }
 902        bcm_qspi_enable_bspi(qspi);
 903
 904        return 0;
 905}
 906
 907static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
 908                                     const struct spi_mem_op *op)
 909{
 910        struct spi_master *master = spi->master;
 911        struct bcm_qspi *qspi = spi_master_get_devdata(master);
 912        struct spi_transfer t[2];
 913        u8 cmd[6] = { };
 914        int ret, i;
 915
 916        memset(cmd, 0, sizeof(cmd));
 917        memset(t, 0, sizeof(t));
 918
 919        /* tx */
 920        /* opcode is in cmd[0] */
 921        cmd[0] = op->cmd.opcode;
 922        for (i = 0; i < op->addr.nbytes; i++)
 923                cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
 924
 925        t[0].tx_buf = cmd;
 926        t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
 927        t[0].bits_per_word = spi->bits_per_word;
 928        t[0].tx_nbits = op->cmd.buswidth;
 929        /* lets mspi know that this is not last transfer */
 930        qspi->trans_pos.mspi_last_trans = false;
 931        ret = bcm_qspi_transfer_one(master, spi, &t[0]);
 932
 933        /* rx */
 934        qspi->trans_pos.mspi_last_trans = true;
 935        if (!ret) {
 936                /* rx */
 937                t[1].rx_buf = op->data.buf.in;
 938                t[1].len = op->data.nbytes;
 939                t[1].rx_nbits =  op->data.buswidth;
 940                t[1].bits_per_word = spi->bits_per_word;
 941                ret = bcm_qspi_transfer_one(master, spi, &t[1]);
 942        }
 943
 944        return ret;
 945}
 946
 947static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
 948                                const struct spi_mem_op *op)
 949{
 950        struct spi_device *spi = mem->spi;
 951        struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 952        int ret = 0;
 953        bool mspi_read = false;
 954        u32 addr = 0, len;
 955        u_char *buf;
 956
 957        if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
 958            op->data.dir != SPI_MEM_DATA_IN)
 959                return -ENOTSUPP;
 960
 961        buf = op->data.buf.in;
 962        addr = op->addr.val;
 963        len = op->data.nbytes;
 964
 965        if (bcm_qspi_bspi_ver_three(qspi) == true) {
 966                /*
 967                 * The address coming into this function is a raw flash offset.
 968                 * But for BSPI <= V3, we need to convert it to a remapped BSPI
 969                 * address. If it crosses a 4MB boundary, just revert back to
 970                 * using MSPI.
 971                 */
 972                addr = (addr + 0xc00000) & 0xffffff;
 973
 974                if ((~ADDR_4MB_MASK & addr) ^
 975                    (~ADDR_4MB_MASK & (addr + len - 1)))
 976                        mspi_read = true;
 977        }
 978
 979        /* non-aligned and very short transfers are handled by MSPI */
 980        if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
 981            len < 4)
 982                mspi_read = true;
 983
 984        if (mspi_read)
 985                return bcm_qspi_mspi_exec_mem_op(spi, op);
 986
 987        ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
 988
 989        if (!ret)
 990                ret = bcm_qspi_bspi_exec_mem_op(spi, op);
 991
 992        return ret;
 993}
 994
 995static void bcm_qspi_cleanup(struct spi_device *spi)
 996{
 997        struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
 998
 999        kfree(xp);
1000}
1001
1002static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1003{
1004        struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1005        struct bcm_qspi *qspi = qspi_dev_id->dev;
1006        u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1007
1008        if (status & MSPI_MSPI_STATUS_SPIF) {
1009                struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1010                /* clear interrupt */
1011                status &= ~MSPI_MSPI_STATUS_SPIF;
1012                bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1013                if (qspi->soc_intc)
1014                        soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1015                complete(&qspi->mspi_done);
1016                return IRQ_HANDLED;
1017        }
1018
1019        return IRQ_NONE;
1020}
1021
1022static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1023{
1024        struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1025        struct bcm_qspi *qspi = qspi_dev_id->dev;
1026        struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1027        u32 status = qspi_dev_id->irqp->mask;
1028
1029        if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1030                bcm_qspi_bspi_lr_data_read(qspi);
1031                if (qspi->bspi_rf_op_len == 0) {
1032                        qspi->bspi_rf_op = NULL;
1033                        if (qspi->soc_intc) {
1034                                /* disable soc BSPI interrupt */
1035                                soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1036                                                           false);
1037                                /* indicate done */
1038                                status = INTR_BSPI_LR_SESSION_DONE_MASK;
1039                        }
1040
1041                        if (qspi->bspi_rf_op_status)
1042                                bcm_qspi_bspi_lr_clear(qspi);
1043                        else
1044                                bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1045                }
1046
1047                if (qspi->soc_intc)
1048                        /* clear soc BSPI interrupt */
1049                        soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1050        }
1051
1052        status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1053        if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1054                complete(&qspi->bspi_done);
1055
1056        return IRQ_HANDLED;
1057}
1058
1059static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1060{
1061        struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1062        struct bcm_qspi *qspi = qspi_dev_id->dev;
1063        struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1064
1065        dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1066        qspi->bspi_rf_op_status = -EIO;
1067        if (qspi->soc_intc)
1068                /* clear soc interrupt */
1069                soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1070
1071        complete(&qspi->bspi_done);
1072        return IRQ_HANDLED;
1073}
1074
1075static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1076{
1077        struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1078        struct bcm_qspi *qspi = qspi_dev_id->dev;
1079        struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1080        irqreturn_t ret = IRQ_NONE;
1081
1082        if (soc_intc) {
1083                u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1084
1085                if (status & MSPI_DONE)
1086                        ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1087                else if (status & BSPI_DONE)
1088                        ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1089                else if (status & BSPI_ERR)
1090                        ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1091        }
1092
1093        return ret;
1094}
1095
1096static const struct bcm_qspi_irq qspi_irq_tab[] = {
1097        {
1098                .irq_name = "spi_lr_fullness_reached",
1099                .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1100                .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1101        },
1102        {
1103                .irq_name = "spi_lr_session_aborted",
1104                .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1105                .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1106        },
1107        {
1108                .irq_name = "spi_lr_impatient",
1109                .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1110                .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1111        },
1112        {
1113                .irq_name = "spi_lr_session_done",
1114                .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1115                .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1116        },
1117#ifdef QSPI_INT_DEBUG
1118        /* this interrupt is for debug purposes only, dont request irq */
1119        {
1120                .irq_name = "spi_lr_overread",
1121                .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1122                .mask = INTR_BSPI_LR_OVERREAD_MASK,
1123        },
1124#endif
1125        {
1126                .irq_name = "mspi_done",
1127                .irq_handler = bcm_qspi_mspi_l2_isr,
1128                .mask = INTR_MSPI_DONE_MASK,
1129        },
1130        {
1131                .irq_name = "mspi_halted",
1132                .irq_handler = bcm_qspi_mspi_l2_isr,
1133                .mask = INTR_MSPI_HALTED_MASK,
1134        },
1135        {
1136                /* single muxed L1 interrupt source */
1137                .irq_name = "spi_l1_intr",
1138                .irq_handler = bcm_qspi_l1_isr,
1139                .irq_source = MUXED_L1,
1140                .mask = QSPI_INTERRUPTS_ALL,
1141        },
1142};
1143
1144static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1145{
1146        u32 val = 0;
1147
1148        val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1149        qspi->bspi_maj_rev = (val >> 8) & 0xff;
1150        qspi->bspi_min_rev = val & 0xff;
1151        if (!(bcm_qspi_bspi_ver_three(qspi))) {
1152                /* Force mapping of BSPI address -> flash offset */
1153                bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1154                bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1155        }
1156        qspi->bspi_enabled = 1;
1157        bcm_qspi_disable_bspi(qspi);
1158        bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1159        bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1160}
1161
1162static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1163{
1164        struct bcm_qspi_parms parms;
1165
1166        bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1167        bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1168        bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1169        bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1170        bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1171
1172        parms.mode = SPI_MODE_3;
1173        parms.bits_per_word = 8;
1174        parms.speed_hz = qspi->max_speed_hz;
1175        bcm_qspi_hw_set_parms(qspi, &parms);
1176
1177        if (has_bspi(qspi))
1178                bcm_qspi_bspi_init(qspi);
1179}
1180
1181static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1182{
1183        bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1184        if (has_bspi(qspi))
1185                bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1186
1187}
1188
1189static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1190        .exec_op = bcm_qspi_exec_mem_op,
1191};
1192
1193static const struct of_device_id bcm_qspi_of_match[] = {
1194        { .compatible = "brcm,spi-bcm-qspi" },
1195        {},
1196};
1197MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1198
1199int bcm_qspi_probe(struct platform_device *pdev,
1200                   struct bcm_qspi_soc_intc *soc_intc)
1201{
1202        struct device *dev = &pdev->dev;
1203        struct bcm_qspi *qspi;
1204        struct spi_master *master;
1205        struct resource *res;
1206        int irq, ret = 0, num_ints = 0;
1207        u32 val;
1208        const char *name = NULL;
1209        int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1210
1211        /* We only support device-tree instantiation */
1212        if (!dev->of_node)
1213                return -ENODEV;
1214
1215        if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1216                return -ENODEV;
1217
1218        master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1219        if (!master) {
1220                dev_err(dev, "error allocating spi_master\n");
1221                return -ENOMEM;
1222        }
1223
1224        qspi = spi_master_get_devdata(master);
1225        qspi->pdev = pdev;
1226        qspi->trans_pos.trans = NULL;
1227        qspi->trans_pos.byte = 0;
1228        qspi->trans_pos.mspi_last_trans = true;
1229        qspi->master = master;
1230
1231        master->bus_num = -1;
1232        master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1233        master->setup = bcm_qspi_setup;
1234        master->transfer_one = bcm_qspi_transfer_one;
1235        master->mem_ops = &bcm_qspi_mem_ops;
1236        master->cleanup = bcm_qspi_cleanup;
1237        master->dev.of_node = dev->of_node;
1238        master->num_chipselect = NUM_CHIPSELECT;
1239        master->use_gpio_descriptors = true;
1240
1241        qspi->big_endian = of_device_is_big_endian(dev->of_node);
1242
1243        if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1244                master->num_chipselect = val;
1245
1246        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1247        if (!res)
1248                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1249                                                   "mspi");
1250
1251        if (res) {
1252                qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1253                if (IS_ERR(qspi->base[MSPI])) {
1254                        ret = PTR_ERR(qspi->base[MSPI]);
1255                        goto qspi_resource_err;
1256                }
1257        } else {
1258                goto qspi_resource_err;
1259        }
1260
1261        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1262        if (res) {
1263                qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1264                if (IS_ERR(qspi->base[BSPI])) {
1265                        ret = PTR_ERR(qspi->base[BSPI]);
1266                        goto qspi_resource_err;
1267                }
1268                qspi->bspi_mode = true;
1269        } else {
1270                qspi->bspi_mode = false;
1271        }
1272
1273        dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1274
1275        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1276        if (res) {
1277                qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1278                if (IS_ERR(qspi->base[CHIP_SELECT])) {
1279                        ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1280                        goto qspi_resource_err;
1281                }
1282        }
1283
1284        qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1285                                GFP_KERNEL);
1286        if (!qspi->dev_ids) {
1287                ret = -ENOMEM;
1288                goto qspi_resource_err;
1289        }
1290
1291        for (val = 0; val < num_irqs; val++) {
1292                irq = -1;
1293                name = qspi_irq_tab[val].irq_name;
1294                if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1295                        /* get the l2 interrupts */
1296                        irq = platform_get_irq_byname_optional(pdev, name);
1297                } else if (!num_ints && soc_intc) {
1298                        /* all mspi, bspi intrs muxed to one L1 intr */
1299                        irq = platform_get_irq(pdev, 0);
1300                }
1301
1302                if (irq  >= 0) {
1303                        ret = devm_request_irq(&pdev->dev, irq,
1304                                               qspi_irq_tab[val].irq_handler, 0,
1305                                               name,
1306                                               &qspi->dev_ids[val]);
1307                        if (ret < 0) {
1308                                dev_err(&pdev->dev, "IRQ %s not found\n", name);
1309                                goto qspi_probe_err;
1310                        }
1311
1312                        qspi->dev_ids[val].dev = qspi;
1313                        qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1314                        num_ints++;
1315                        dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1316                                qspi_irq_tab[val].irq_name,
1317                                irq);
1318                }
1319        }
1320
1321        if (!num_ints) {
1322                dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1323                ret = -EINVAL;
1324                goto qspi_probe_err;
1325        }
1326
1327        /*
1328         * Some SoCs integrate spi controller (e.g., its interrupt bits)
1329         * in specific ways
1330         */
1331        if (soc_intc) {
1332                qspi->soc_intc = soc_intc;
1333                soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1334        } else {
1335                qspi->soc_intc = NULL;
1336        }
1337
1338        qspi->clk = devm_clk_get(&pdev->dev, NULL);
1339        if (IS_ERR(qspi->clk)) {
1340                dev_warn(dev, "unable to get clock\n");
1341                ret = PTR_ERR(qspi->clk);
1342                goto qspi_probe_err;
1343        }
1344
1345        ret = clk_prepare_enable(qspi->clk);
1346        if (ret) {
1347                dev_err(dev, "failed to prepare clock\n");
1348                goto qspi_probe_err;
1349        }
1350
1351        qspi->base_clk = clk_get_rate(qspi->clk);
1352        qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1353
1354        bcm_qspi_hw_init(qspi);
1355        init_completion(&qspi->mspi_done);
1356        init_completion(&qspi->bspi_done);
1357        qspi->curr_cs = -1;
1358
1359        platform_set_drvdata(pdev, qspi);
1360
1361        qspi->xfer_mode.width = -1;
1362        qspi->xfer_mode.addrlen = -1;
1363        qspi->xfer_mode.hp = -1;
1364
1365        ret = devm_spi_register_master(&pdev->dev, master);
1366        if (ret < 0) {
1367                dev_err(dev, "can't register master\n");
1368                goto qspi_reg_err;
1369        }
1370
1371        return 0;
1372
1373qspi_reg_err:
1374        bcm_qspi_hw_uninit(qspi);
1375        clk_disable_unprepare(qspi->clk);
1376qspi_probe_err:
1377        kfree(qspi->dev_ids);
1378qspi_resource_err:
1379        spi_master_put(master);
1380        return ret;
1381}
1382/* probe function to be called by SoC specific platform driver probe */
1383EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1384
1385int bcm_qspi_remove(struct platform_device *pdev)
1386{
1387        struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1388
1389        bcm_qspi_hw_uninit(qspi);
1390        clk_disable_unprepare(qspi->clk);
1391        kfree(qspi->dev_ids);
1392        spi_unregister_master(qspi->master);
1393
1394        return 0;
1395}
1396/* function to be called by SoC specific platform driver remove() */
1397EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1398
1399static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1400{
1401        struct bcm_qspi *qspi = dev_get_drvdata(dev);
1402
1403        /* store the override strap value */
1404        if (!bcm_qspi_bspi_ver_three(qspi))
1405                qspi->s3_strap_override_ctrl =
1406                        bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1407
1408        spi_master_suspend(qspi->master);
1409        clk_disable(qspi->clk);
1410        bcm_qspi_hw_uninit(qspi);
1411
1412        return 0;
1413};
1414
1415static int __maybe_unused bcm_qspi_resume(struct device *dev)
1416{
1417        struct bcm_qspi *qspi = dev_get_drvdata(dev);
1418        int ret = 0;
1419
1420        bcm_qspi_hw_init(qspi);
1421        bcm_qspi_chip_select(qspi, qspi->curr_cs);
1422        if (qspi->soc_intc)
1423                /* enable MSPI interrupt */
1424                qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1425                                                 true);
1426
1427        ret = clk_enable(qspi->clk);
1428        if (!ret)
1429                spi_master_resume(qspi->master);
1430
1431        return ret;
1432}
1433
1434SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1435
1436/* pm_ops to be called by SoC specific platform driver */
1437EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1438
1439MODULE_AUTHOR("Kamal Dasu");
1440MODULE_DESCRIPTION("Broadcom QSPI driver");
1441MODULE_LICENSE("GPL v2");
1442MODULE_ALIAS("platform:" DRIVER_NAME);
1443