linux/drivers/spi/spi-fsl-dspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4//
   5// Freescale DSPI driver
   6// This file contains a driver for the Freescale DSPI
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/dmaengine.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/of_device.h>
  16#include <linux/pinctrl/consumer.h>
  17#include <linux/regmap.h>
  18#include <linux/spi/spi.h>
  19#include <linux/spi/spi-fsl-dspi.h>
  20
  21#define DRIVER_NAME                     "fsl-dspi"
  22
  23#define SPI_MCR                         0x00
  24#define SPI_MCR_MASTER                  BIT(31)
  25#define SPI_MCR_PCSIS(x)                ((x) << 16)
  26#define SPI_MCR_CLR_TXF                 BIT(11)
  27#define SPI_MCR_CLR_RXF                 BIT(10)
  28#define SPI_MCR_XSPI                    BIT(3)
  29
  30#define SPI_TCR                         0x08
  31#define SPI_TCR_GET_TCNT(x)             (((x) & GENMASK(31, 16)) >> 16)
  32
  33#define SPI_CTAR(x)                     (0x0c + (((x) & GENMASK(1, 0)) * 4))
  34#define SPI_CTAR_FMSZ(x)                (((x) << 27) & GENMASK(30, 27))
  35#define SPI_CTAR_CPOL                   BIT(26)
  36#define SPI_CTAR_CPHA                   BIT(25)
  37#define SPI_CTAR_LSBFE                  BIT(24)
  38#define SPI_CTAR_PCSSCK(x)              (((x) << 22) & GENMASK(23, 22))
  39#define SPI_CTAR_PASC(x)                (((x) << 20) & GENMASK(21, 20))
  40#define SPI_CTAR_PDT(x)                 (((x) << 18) & GENMASK(19, 18))
  41#define SPI_CTAR_PBR(x)                 (((x) << 16) & GENMASK(17, 16))
  42#define SPI_CTAR_CSSCK(x)               (((x) << 12) & GENMASK(15, 12))
  43#define SPI_CTAR_ASC(x)                 (((x) << 8) & GENMASK(11, 8))
  44#define SPI_CTAR_DT(x)                  (((x) << 4) & GENMASK(7, 4))
  45#define SPI_CTAR_BR(x)                  ((x) & GENMASK(3, 0))
  46#define SPI_CTAR_SCALE_BITS             0xf
  47
  48#define SPI_CTAR0_SLAVE                 0x0c
  49
  50#define SPI_SR                          0x2c
  51#define SPI_SR_TCFQF                    BIT(31)
  52#define SPI_SR_EOQF                     BIT(28)
  53#define SPI_SR_TFUF                     BIT(27)
  54#define SPI_SR_TFFF                     BIT(25)
  55#define SPI_SR_CMDTCF                   BIT(23)
  56#define SPI_SR_SPEF                     BIT(21)
  57#define SPI_SR_RFOF                     BIT(19)
  58#define SPI_SR_TFIWF                    BIT(18)
  59#define SPI_SR_RFDF                     BIT(17)
  60#define SPI_SR_CMDFFF                   BIT(16)
  61#define SPI_SR_CLEAR                    (SPI_SR_TCFQF | SPI_SR_EOQF | \
  62                                        SPI_SR_TFUF | SPI_SR_TFFF | \
  63                                        SPI_SR_CMDTCF | SPI_SR_SPEF | \
  64                                        SPI_SR_RFOF | SPI_SR_TFIWF | \
  65                                        SPI_SR_RFDF | SPI_SR_CMDFFF)
  66
  67#define SPI_RSER_TFFFE                  BIT(25)
  68#define SPI_RSER_TFFFD                  BIT(24)
  69#define SPI_RSER_RFDFE                  BIT(17)
  70#define SPI_RSER_RFDFD                  BIT(16)
  71
  72#define SPI_RSER                        0x30
  73#define SPI_RSER_TCFQE                  BIT(31)
  74#define SPI_RSER_EOQFE                  BIT(28)
  75#define SPI_RSER_CMDTCFE                BIT(23)
  76
  77#define SPI_PUSHR                       0x34
  78#define SPI_PUSHR_CMD_CONT              BIT(15)
  79#define SPI_PUSHR_CMD_CTAS(x)           (((x) << 12 & GENMASK(14, 12)))
  80#define SPI_PUSHR_CMD_EOQ               BIT(11)
  81#define SPI_PUSHR_CMD_CTCNT             BIT(10)
  82#define SPI_PUSHR_CMD_PCS(x)            (BIT(x) & GENMASK(5, 0))
  83
  84#define SPI_PUSHR_SLAVE                 0x34
  85
  86#define SPI_POPR                        0x38
  87
  88#define SPI_TXFR0                       0x3c
  89#define SPI_TXFR1                       0x40
  90#define SPI_TXFR2                       0x44
  91#define SPI_TXFR3                       0x48
  92#define SPI_RXFR0                       0x7c
  93#define SPI_RXFR1                       0x80
  94#define SPI_RXFR2                       0x84
  95#define SPI_RXFR3                       0x88
  96
  97#define SPI_CTARE(x)                    (0x11c + (((x) & GENMASK(1, 0)) * 4))
  98#define SPI_CTARE_FMSZE(x)              (((x) & 0x1) << 16)
  99#define SPI_CTARE_DTCP(x)               ((x) & 0x7ff)
 100
 101#define SPI_SREX                        0x13c
 102
 103#define SPI_FRAME_BITS(bits)            SPI_CTAR_FMSZ((bits) - 1)
 104#define SPI_FRAME_EBITS(bits)           SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 105
 106#define DMA_COMPLETION_TIMEOUT          msecs_to_jiffies(3000)
 107
 108struct chip_data {
 109        u32                     ctar_val;
 110};
 111
 112enum dspi_trans_mode {
 113        DSPI_EOQ_MODE = 0,
 114        DSPI_XSPI_MODE,
 115        DSPI_DMA_MODE,
 116};
 117
 118struct fsl_dspi_devtype_data {
 119        enum dspi_trans_mode    trans_mode;
 120        u8                      max_clock_factor;
 121        int                     fifo_size;
 122};
 123
 124enum {
 125        LS1021A,
 126        LS1012A,
 127        LS1028A,
 128        LS1043A,
 129        LS1046A,
 130        LS2080A,
 131        LS2085A,
 132        LX2160A,
 133        MCF5441X,
 134        VF610,
 135};
 136
 137static const struct fsl_dspi_devtype_data devtype_data[] = {
 138        [VF610] = {
 139                .trans_mode             = DSPI_DMA_MODE,
 140                .max_clock_factor       = 2,
 141                .fifo_size              = 4,
 142        },
 143        [LS1021A] = {
 144                /* Has A-011218 DMA erratum */
 145                .trans_mode             = DSPI_XSPI_MODE,
 146                .max_clock_factor       = 8,
 147                .fifo_size              = 4,
 148        },
 149        [LS1012A] = {
 150                /* Has A-011218 DMA erratum */
 151                .trans_mode             = DSPI_XSPI_MODE,
 152                .max_clock_factor       = 8,
 153                .fifo_size              = 16,
 154        },
 155        [LS1028A] = {
 156                .trans_mode             = DSPI_XSPI_MODE,
 157                .max_clock_factor       = 8,
 158                .fifo_size              = 4,
 159        },
 160        [LS1043A] = {
 161                /* Has A-011218 DMA erratum */
 162                .trans_mode             = DSPI_XSPI_MODE,
 163                .max_clock_factor       = 8,
 164                .fifo_size              = 16,
 165        },
 166        [LS1046A] = {
 167                /* Has A-011218 DMA erratum */
 168                .trans_mode             = DSPI_XSPI_MODE,
 169                .max_clock_factor       = 8,
 170                .fifo_size              = 16,
 171        },
 172        [LS2080A] = {
 173                .trans_mode             = DSPI_DMA_MODE,
 174                .max_clock_factor       = 8,
 175                .fifo_size              = 4,
 176        },
 177        [LS2085A] = {
 178                .trans_mode             = DSPI_DMA_MODE,
 179                .max_clock_factor       = 8,
 180                .fifo_size              = 4,
 181        },
 182        [LX2160A] = {
 183                .trans_mode             = DSPI_DMA_MODE,
 184                .max_clock_factor       = 8,
 185                .fifo_size              = 4,
 186        },
 187        [MCF5441X] = {
 188                .trans_mode             = DSPI_EOQ_MODE,
 189                .max_clock_factor       = 8,
 190                .fifo_size              = 16,
 191        },
 192};
 193
 194struct fsl_dspi_dma {
 195        u32                                     *tx_dma_buf;
 196        struct dma_chan                         *chan_tx;
 197        dma_addr_t                              tx_dma_phys;
 198        struct completion                       cmd_tx_complete;
 199        struct dma_async_tx_descriptor          *tx_desc;
 200
 201        u32                                     *rx_dma_buf;
 202        struct dma_chan                         *chan_rx;
 203        dma_addr_t                              rx_dma_phys;
 204        struct completion                       cmd_rx_complete;
 205        struct dma_async_tx_descriptor          *rx_desc;
 206};
 207
 208struct fsl_dspi {
 209        struct spi_controller                   *ctlr;
 210        struct platform_device                  *pdev;
 211
 212        struct regmap                           *regmap;
 213        struct regmap                           *regmap_pushr;
 214        int                                     irq;
 215        struct clk                              *clk;
 216
 217        struct spi_transfer                     *cur_transfer;
 218        struct spi_message                      *cur_msg;
 219        struct chip_data                        *cur_chip;
 220        size_t                                  progress;
 221        size_t                                  len;
 222        const void                              *tx;
 223        void                                    *rx;
 224        u16                                     tx_cmd;
 225        const struct fsl_dspi_devtype_data      *devtype_data;
 226
 227        struct completion                       xfer_done;
 228
 229        struct fsl_dspi_dma                     *dma;
 230
 231        int                                     oper_word_size;
 232        int                                     oper_bits_per_word;
 233
 234        int                                     words_in_flight;
 235
 236        /*
 237         * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 238         * individually (in XSPI mode)
 239         */
 240        int                                     pushr_cmd;
 241        int                                     pushr_tx;
 242
 243        void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 244        void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 245};
 246
 247static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 248{
 249        memcpy(txdata, dspi->tx, dspi->oper_word_size);
 250        dspi->tx += dspi->oper_word_size;
 251}
 252
 253static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 254{
 255        memcpy(dspi->rx, &rxdata, dspi->oper_word_size);
 256        dspi->rx += dspi->oper_word_size;
 257}
 258
 259static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 260{
 261        *txdata = cpu_to_be32(*(u32 *)dspi->tx);
 262        dspi->tx += sizeof(u32);
 263}
 264
 265static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 266{
 267        *(u32 *)dspi->rx = be32_to_cpu(rxdata);
 268        dspi->rx += sizeof(u32);
 269}
 270
 271static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 272{
 273        *txdata = cpu_to_be16(*(u16 *)dspi->tx);
 274        dspi->tx += sizeof(u16);
 275}
 276
 277static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 278{
 279        *(u16 *)dspi->rx = be16_to_cpu(rxdata);
 280        dspi->rx += sizeof(u16);
 281}
 282
 283static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 284{
 285        u16 hi = *(u16 *)dspi->tx;
 286        u16 lo = *(u16 *)(dspi->tx + 2);
 287
 288        *txdata = (u32)hi << 16 | lo;
 289        dspi->tx += sizeof(u32);
 290}
 291
 292static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 293{
 294        u16 hi = rxdata & 0xffff;
 295        u16 lo = rxdata >> 16;
 296
 297        *(u16 *)dspi->rx = lo;
 298        *(u16 *)(dspi->rx + 2) = hi;
 299        dspi->rx += sizeof(u32);
 300}
 301
 302/*
 303 * Pop one word from the TX buffer for pushing into the
 304 * PUSHR register (TX FIFO)
 305 */
 306static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 307{
 308        u32 txdata = 0;
 309
 310        if (dspi->tx)
 311                dspi->host_to_dev(dspi, &txdata);
 312        dspi->len -= dspi->oper_word_size;
 313        return txdata;
 314}
 315
 316/* Prepare one TX FIFO entry (txdata plus cmd) */
 317static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 318{
 319        u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 320
 321        if (spi_controller_is_slave(dspi->ctlr))
 322                return data;
 323
 324        if (dspi->len > 0)
 325                cmd |= SPI_PUSHR_CMD_CONT;
 326        return cmd << 16 | data;
 327}
 328
 329/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 330static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 331{
 332        if (!dspi->rx)
 333                return;
 334        dspi->dev_to_host(dspi, rxdata);
 335}
 336
 337static void dspi_tx_dma_callback(void *arg)
 338{
 339        struct fsl_dspi *dspi = arg;
 340        struct fsl_dspi_dma *dma = dspi->dma;
 341
 342        complete(&dma->cmd_tx_complete);
 343}
 344
 345static void dspi_rx_dma_callback(void *arg)
 346{
 347        struct fsl_dspi *dspi = arg;
 348        struct fsl_dspi_dma *dma = dspi->dma;
 349        int i;
 350
 351        if (dspi->rx) {
 352                for (i = 0; i < dspi->words_in_flight; i++)
 353                        dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 354        }
 355
 356        complete(&dma->cmd_rx_complete);
 357}
 358
 359static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 360{
 361        struct device *dev = &dspi->pdev->dev;
 362        struct fsl_dspi_dma *dma = dspi->dma;
 363        int time_left;
 364        int i;
 365
 366        for (i = 0; i < dspi->words_in_flight; i++)
 367                dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 368
 369        dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 370                                        dma->tx_dma_phys,
 371                                        dspi->words_in_flight *
 372                                        DMA_SLAVE_BUSWIDTH_4_BYTES,
 373                                        DMA_MEM_TO_DEV,
 374                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 375        if (!dma->tx_desc) {
 376                dev_err(dev, "Not able to get desc for DMA xfer\n");
 377                return -EIO;
 378        }
 379
 380        dma->tx_desc->callback = dspi_tx_dma_callback;
 381        dma->tx_desc->callback_param = dspi;
 382        if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 383                dev_err(dev, "DMA submit failed\n");
 384                return -EINVAL;
 385        }
 386
 387        dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 388                                        dma->rx_dma_phys,
 389                                        dspi->words_in_flight *
 390                                        DMA_SLAVE_BUSWIDTH_4_BYTES,
 391                                        DMA_DEV_TO_MEM,
 392                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 393        if (!dma->rx_desc) {
 394                dev_err(dev, "Not able to get desc for DMA xfer\n");
 395                return -EIO;
 396        }
 397
 398        dma->rx_desc->callback = dspi_rx_dma_callback;
 399        dma->rx_desc->callback_param = dspi;
 400        if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 401                dev_err(dev, "DMA submit failed\n");
 402                return -EINVAL;
 403        }
 404
 405        reinit_completion(&dspi->dma->cmd_rx_complete);
 406        reinit_completion(&dspi->dma->cmd_tx_complete);
 407
 408        dma_async_issue_pending(dma->chan_rx);
 409        dma_async_issue_pending(dma->chan_tx);
 410
 411        if (spi_controller_is_slave(dspi->ctlr)) {
 412                wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 413                return 0;
 414        }
 415
 416        time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 417                                                DMA_COMPLETION_TIMEOUT);
 418        if (time_left == 0) {
 419                dev_err(dev, "DMA tx timeout\n");
 420                dmaengine_terminate_all(dma->chan_tx);
 421                dmaengine_terminate_all(dma->chan_rx);
 422                return -ETIMEDOUT;
 423        }
 424
 425        time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 426                                                DMA_COMPLETION_TIMEOUT);
 427        if (time_left == 0) {
 428                dev_err(dev, "DMA rx timeout\n");
 429                dmaengine_terminate_all(dma->chan_tx);
 430                dmaengine_terminate_all(dma->chan_rx);
 431                return -ETIMEDOUT;
 432        }
 433
 434        return 0;
 435}
 436
 437static void dspi_setup_accel(struct fsl_dspi *dspi);
 438
 439static int dspi_dma_xfer(struct fsl_dspi *dspi)
 440{
 441        struct spi_message *message = dspi->cur_msg;
 442        struct device *dev = &dspi->pdev->dev;
 443        int ret = 0;
 444
 445        /*
 446         * dspi->len gets decremented by dspi_pop_tx_pushr in
 447         * dspi_next_xfer_dma_submit
 448         */
 449        while (dspi->len) {
 450                /* Figure out operational bits-per-word for this chunk */
 451                dspi_setup_accel(dspi);
 452
 453                dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 454                if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 455                        dspi->words_in_flight = dspi->devtype_data->fifo_size;
 456
 457                message->actual_length += dspi->words_in_flight *
 458                                          dspi->oper_word_size;
 459
 460                ret = dspi_next_xfer_dma_submit(dspi);
 461                if (ret) {
 462                        dev_err(dev, "DMA transfer failed\n");
 463                        break;
 464                }
 465        }
 466
 467        return ret;
 468}
 469
 470static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 471{
 472        int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 473        struct device *dev = &dspi->pdev->dev;
 474        struct dma_slave_config cfg;
 475        struct fsl_dspi_dma *dma;
 476        int ret;
 477
 478        dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 479        if (!dma)
 480                return -ENOMEM;
 481
 482        dma->chan_rx = dma_request_chan(dev, "rx");
 483        if (IS_ERR(dma->chan_rx)) {
 484                dev_err(dev, "rx dma channel not available\n");
 485                ret = PTR_ERR(dma->chan_rx);
 486                return ret;
 487        }
 488
 489        dma->chan_tx = dma_request_chan(dev, "tx");
 490        if (IS_ERR(dma->chan_tx)) {
 491                dev_err(dev, "tx dma channel not available\n");
 492                ret = PTR_ERR(dma->chan_tx);
 493                goto err_tx_channel;
 494        }
 495
 496        dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 497                                             dma_bufsize, &dma->tx_dma_phys,
 498                                             GFP_KERNEL);
 499        if (!dma->tx_dma_buf) {
 500                ret = -ENOMEM;
 501                goto err_tx_dma_buf;
 502        }
 503
 504        dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 505                                             dma_bufsize, &dma->rx_dma_phys,
 506                                             GFP_KERNEL);
 507        if (!dma->rx_dma_buf) {
 508                ret = -ENOMEM;
 509                goto err_rx_dma_buf;
 510        }
 511
 512        cfg.src_addr = phy_addr + SPI_POPR;
 513        cfg.dst_addr = phy_addr + SPI_PUSHR;
 514        cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 515        cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 516        cfg.src_maxburst = 1;
 517        cfg.dst_maxburst = 1;
 518
 519        cfg.direction = DMA_DEV_TO_MEM;
 520        ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 521        if (ret) {
 522                dev_err(dev, "can't configure rx dma channel\n");
 523                ret = -EINVAL;
 524                goto err_slave_config;
 525        }
 526
 527        cfg.direction = DMA_MEM_TO_DEV;
 528        ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 529        if (ret) {
 530                dev_err(dev, "can't configure tx dma channel\n");
 531                ret = -EINVAL;
 532                goto err_slave_config;
 533        }
 534
 535        dspi->dma = dma;
 536        init_completion(&dma->cmd_tx_complete);
 537        init_completion(&dma->cmd_rx_complete);
 538
 539        return 0;
 540
 541err_slave_config:
 542        dma_free_coherent(dma->chan_rx->device->dev,
 543                          dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 544err_rx_dma_buf:
 545        dma_free_coherent(dma->chan_tx->device->dev,
 546                          dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 547err_tx_dma_buf:
 548        dma_release_channel(dma->chan_tx);
 549err_tx_channel:
 550        dma_release_channel(dma->chan_rx);
 551
 552        devm_kfree(dev, dma);
 553        dspi->dma = NULL;
 554
 555        return ret;
 556}
 557
 558static void dspi_release_dma(struct fsl_dspi *dspi)
 559{
 560        int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 561        struct fsl_dspi_dma *dma = dspi->dma;
 562
 563        if (!dma)
 564                return;
 565
 566        if (dma->chan_tx) {
 567                dma_unmap_single(dma->chan_tx->device->dev, dma->tx_dma_phys,
 568                                 dma_bufsize, DMA_TO_DEVICE);
 569                dma_release_channel(dma->chan_tx);
 570        }
 571
 572        if (dma->chan_rx) {
 573                dma_unmap_single(dma->chan_rx->device->dev, dma->rx_dma_phys,
 574                                 dma_bufsize, DMA_FROM_DEVICE);
 575                dma_release_channel(dma->chan_rx);
 576        }
 577}
 578
 579static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 580                           unsigned long clkrate)
 581{
 582        /* Valid baud rate pre-scaler values */
 583        int pbr_tbl[4] = {2, 3, 5, 7};
 584        int brs[16] = { 2,      4,      6,      8,
 585                        16,     32,     64,     128,
 586                        256,    512,    1024,   2048,
 587                        4096,   8192,   16384,  32768 };
 588        int scale_needed, scale, minscale = INT_MAX;
 589        int i, j;
 590
 591        scale_needed = clkrate / speed_hz;
 592        if (clkrate % speed_hz)
 593                scale_needed++;
 594
 595        for (i = 0; i < ARRAY_SIZE(brs); i++)
 596                for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 597                        scale = brs[i] * pbr_tbl[j];
 598                        if (scale >= scale_needed) {
 599                                if (scale < minscale) {
 600                                        minscale = scale;
 601                                        *br = i;
 602                                        *pbr = j;
 603                                }
 604                                break;
 605                        }
 606                }
 607
 608        if (minscale == INT_MAX) {
 609                pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 610                        speed_hz, clkrate);
 611                *pbr = ARRAY_SIZE(pbr_tbl) - 1;
 612                *br =  ARRAY_SIZE(brs) - 1;
 613        }
 614}
 615
 616static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 617                           unsigned long clkrate)
 618{
 619        int scale_needed, scale, minscale = INT_MAX;
 620        int pscale_tbl[4] = {1, 3, 5, 7};
 621        u32 remainder;
 622        int i, j;
 623
 624        scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 625                                   &remainder);
 626        if (remainder)
 627                scale_needed++;
 628
 629        for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 630                for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 631                        scale = pscale_tbl[i] * (2 << j);
 632                        if (scale >= scale_needed) {
 633                                if (scale < minscale) {
 634                                        minscale = scale;
 635                                        *psc = i;
 636                                        *sc = j;
 637                                }
 638                                break;
 639                        }
 640                }
 641
 642        if (minscale == INT_MAX) {
 643                pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 644                        delay_ns, clkrate);
 645                *psc = ARRAY_SIZE(pscale_tbl) - 1;
 646                *sc = SPI_CTAR_SCALE_BITS;
 647        }
 648}
 649
 650static void dspi_pushr_write(struct fsl_dspi *dspi)
 651{
 652        regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
 653}
 654
 655static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 656{
 657        /*
 658         * The only time when the PCS doesn't need continuation after this word
 659         * is when it's last. We need to look ahead, because we actually call
 660         * dspi_pop_tx (the function that decrements dspi->len) _after_
 661         * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 662         * word is enough. If there's more to transmit than that,
 663         * dspi_xspi_write will know to split the FIFO writes in 2, and
 664         * generate a new PUSHR command with the final word that will have PCS
 665         * deasserted (not continued) here.
 666         */
 667        if (dspi->len > dspi->oper_word_size)
 668                cmd |= SPI_PUSHR_CMD_CONT;
 669        regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 670}
 671
 672static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 673{
 674        regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 675}
 676
 677static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 678{
 679        int num_bytes = num_words * dspi->oper_word_size;
 680        u16 tx_cmd = dspi->tx_cmd;
 681
 682        /*
 683         * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 684         * and cs_change does not want the PCS to stay on), then we need a new
 685         * PUSHR command, since this one (for the body of the buffer)
 686         * necessarily has the CONT bit set.
 687         * So send one word less during this go, to force a split and a command
 688         * with a single word next time, when CONT will be unset.
 689         */
 690        if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 691                tx_cmd |= SPI_PUSHR_CMD_EOQ;
 692
 693        /* Update CTARE */
 694        regmap_write(dspi->regmap, SPI_CTARE(0),
 695                     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 696                     SPI_CTARE_DTCP(num_words));
 697
 698        /*
 699         * Write the CMD FIFO entry first, and then the two
 700         * corresponding TX FIFO entries (or one...).
 701         */
 702        dspi_pushr_cmd_write(dspi, tx_cmd);
 703
 704        /* Fill TX FIFO with as many transfers as possible */
 705        while (num_words--) {
 706                u32 data = dspi_pop_tx(dspi);
 707
 708                dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 709                if (dspi->oper_bits_per_word > 16)
 710                        dspi_pushr_txdata_write(dspi, data >> 16);
 711        }
 712}
 713
 714static void dspi_eoq_fifo_write(struct fsl_dspi *dspi, int num_words)
 715{
 716        u16 xfer_cmd = dspi->tx_cmd;
 717
 718        /* Fill TX FIFO with as many transfers as possible */
 719        while (num_words--) {
 720                dspi->tx_cmd = xfer_cmd;
 721                /* Request EOQF for last transfer in FIFO */
 722                if (num_words == 0)
 723                        dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
 724                /* Write combined TX FIFO and CMD FIFO entry */
 725                dspi_pushr_write(dspi);
 726        }
 727}
 728
 729static u32 dspi_popr_read(struct fsl_dspi *dspi)
 730{
 731        u32 rxdata = 0;
 732
 733        regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 734        return rxdata;
 735}
 736
 737static void dspi_fifo_read(struct fsl_dspi *dspi)
 738{
 739        int num_fifo_entries = dspi->words_in_flight;
 740
 741        /* Read one FIFO entry and push to rx buffer */
 742        while (num_fifo_entries--)
 743                dspi_push_rx(dspi, dspi_popr_read(dspi));
 744}
 745
 746static void dspi_setup_accel(struct fsl_dspi *dspi)
 747{
 748        struct spi_transfer *xfer = dspi->cur_transfer;
 749        bool odd = !!(dspi->len & 1);
 750
 751        /* No accel for frames not multiple of 8 bits at the moment */
 752        if (xfer->bits_per_word % 8)
 753                goto no_accel;
 754
 755        if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 756                dspi->oper_bits_per_word = 16;
 757        } else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 758                dspi->oper_bits_per_word = 8;
 759        } else {
 760                /* Start off with maximum supported by hardware */
 761                if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 762                        dspi->oper_bits_per_word = 32;
 763                else
 764                        dspi->oper_bits_per_word = 16;
 765
 766                /*
 767                 * And go down only if the buffer can't be sent with
 768                 * words this big
 769                 */
 770                do {
 771                        if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 772                                break;
 773
 774                        dspi->oper_bits_per_word /= 2;
 775                } while (dspi->oper_bits_per_word > 8);
 776        }
 777
 778        if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 779                dspi->dev_to_host = dspi_8on32_dev_to_host;
 780                dspi->host_to_dev = dspi_8on32_host_to_dev;
 781        } else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 782                dspi->dev_to_host = dspi_8on16_dev_to_host;
 783                dspi->host_to_dev = dspi_8on16_host_to_dev;
 784        } else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 785                dspi->dev_to_host = dspi_16on32_dev_to_host;
 786                dspi->host_to_dev = dspi_16on32_host_to_dev;
 787        } else {
 788no_accel:
 789                dspi->dev_to_host = dspi_native_dev_to_host;
 790                dspi->host_to_dev = dspi_native_host_to_dev;
 791                dspi->oper_bits_per_word = xfer->bits_per_word;
 792        }
 793
 794        dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 795
 796        /*
 797         * Update CTAR here (code is common for EOQ, XSPI and DMA modes).
 798         * We will update CTARE in the portion specific to XSPI, when we
 799         * also know the preload value (DTCP).
 800         */
 801        regmap_write(dspi->regmap, SPI_CTAR(0),
 802                     dspi->cur_chip->ctar_val |
 803                     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 804}
 805
 806static void dspi_fifo_write(struct fsl_dspi *dspi)
 807{
 808        int num_fifo_entries = dspi->devtype_data->fifo_size;
 809        struct spi_transfer *xfer = dspi->cur_transfer;
 810        struct spi_message *msg = dspi->cur_msg;
 811        int num_words, num_bytes;
 812
 813        dspi_setup_accel(dspi);
 814
 815        /* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 816        if (dspi->oper_word_size == 4)
 817                num_fifo_entries /= 2;
 818
 819        /*
 820         * Integer division intentionally trims off odd (or non-multiple of 4)
 821         * numbers of bytes at the end of the buffer, which will be sent next
 822         * time using a smaller oper_word_size.
 823         */
 824        num_words = dspi->len / dspi->oper_word_size;
 825        if (num_words > num_fifo_entries)
 826                num_words = num_fifo_entries;
 827
 828        /* Update total number of bytes that were transferred */
 829        num_bytes = num_words * dspi->oper_word_size;
 830        msg->actual_length += num_bytes;
 831        dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 832
 833        /*
 834         * Update shared variable for use in the next interrupt (both in
 835         * dspi_fifo_read and in dspi_fifo_write).
 836         */
 837        dspi->words_in_flight = num_words;
 838
 839        spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 840
 841        if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
 842                dspi_eoq_fifo_write(dspi, num_words);
 843        else
 844                dspi_xspi_fifo_write(dspi, num_words);
 845        /*
 846         * Everything after this point is in a potential race with the next
 847         * interrupt, so we must never use dspi->words_in_flight again since it
 848         * might already be modified by the next dspi_fifo_write.
 849         */
 850
 851        spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 852                                dspi->progress, !dspi->irq);
 853}
 854
 855static int dspi_rxtx(struct fsl_dspi *dspi)
 856{
 857        dspi_fifo_read(dspi);
 858
 859        if (!dspi->len)
 860                /* Success! */
 861                return 0;
 862
 863        dspi_fifo_write(dspi);
 864
 865        return -EINPROGRESS;
 866}
 867
 868static int dspi_poll(struct fsl_dspi *dspi)
 869{
 870        int tries = 1000;
 871        u32 spi_sr;
 872
 873        do {
 874                regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 875                regmap_write(dspi->regmap, SPI_SR, spi_sr);
 876
 877                if (spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF))
 878                        break;
 879        } while (--tries);
 880
 881        if (!tries)
 882                return -ETIMEDOUT;
 883
 884        return dspi_rxtx(dspi);
 885}
 886
 887static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 888{
 889        struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 890        u32 spi_sr;
 891
 892        regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 893        regmap_write(dspi->regmap, SPI_SR, spi_sr);
 894
 895        if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_CMDTCF)))
 896                return IRQ_NONE;
 897
 898        if (dspi_rxtx(dspi) == 0)
 899                complete(&dspi->xfer_done);
 900
 901        return IRQ_HANDLED;
 902}
 903
 904static int dspi_transfer_one_message(struct spi_controller *ctlr,
 905                                     struct spi_message *message)
 906{
 907        struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 908        struct spi_device *spi = message->spi;
 909        struct spi_transfer *transfer;
 910        int status = 0;
 911
 912        message->actual_length = 0;
 913
 914        list_for_each_entry(transfer, &message->transfers, transfer_list) {
 915                dspi->cur_transfer = transfer;
 916                dspi->cur_msg = message;
 917                dspi->cur_chip = spi_get_ctldata(spi);
 918                /* Prepare command word for CMD FIFO */
 919                dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
 920                               SPI_PUSHR_CMD_PCS(spi->chip_select);
 921                if (list_is_last(&dspi->cur_transfer->transfer_list,
 922                                 &dspi->cur_msg->transfers)) {
 923                        /* Leave PCS activated after last transfer when
 924                         * cs_change is set.
 925                         */
 926                        if (transfer->cs_change)
 927                                dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 928                } else {
 929                        /* Keep PCS active between transfers in same message
 930                         * when cs_change is not set, and de-activate PCS
 931                         * between transfers in the same message when
 932                         * cs_change is set.
 933                         */
 934                        if (!transfer->cs_change)
 935                                dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 936                }
 937
 938                dspi->tx = transfer->tx_buf;
 939                dspi->rx = transfer->rx_buf;
 940                dspi->len = transfer->len;
 941                dspi->progress = 0;
 942
 943                regmap_update_bits(dspi->regmap, SPI_MCR,
 944                                   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 945                                   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 946
 947                spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 948                                       dspi->progress, !dspi->irq);
 949
 950                if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 951                        status = dspi_dma_xfer(dspi);
 952                } else {
 953                        dspi_fifo_write(dspi);
 954
 955                        if (dspi->irq) {
 956                                wait_for_completion(&dspi->xfer_done);
 957                                reinit_completion(&dspi->xfer_done);
 958                        } else {
 959                                do {
 960                                        status = dspi_poll(dspi);
 961                                } while (status == -EINPROGRESS);
 962                        }
 963                }
 964                if (status)
 965                        break;
 966
 967                spi_transfer_delay_exec(transfer);
 968        }
 969
 970        message->status = status;
 971        spi_finalize_current_message(ctlr);
 972
 973        return status;
 974}
 975
 976static int dspi_setup(struct spi_device *spi)
 977{
 978        struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
 979        unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 980        u32 cs_sck_delay = 0, sck_cs_delay = 0;
 981        struct fsl_dspi_platform_data *pdata;
 982        unsigned char pasc = 0, asc = 0;
 983        struct chip_data *chip;
 984        unsigned long clkrate;
 985
 986        /* Only alloc on first setup */
 987        chip = spi_get_ctldata(spi);
 988        if (chip == NULL) {
 989                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 990                if (!chip)
 991                        return -ENOMEM;
 992        }
 993
 994        pdata = dev_get_platdata(&dspi->pdev->dev);
 995
 996        if (!pdata) {
 997                of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
 998                                     &cs_sck_delay);
 999
1000                of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1001                                     &sck_cs_delay);
1002        } else {
1003                cs_sck_delay = pdata->cs_sck_delay;
1004                sck_cs_delay = pdata->sck_cs_delay;
1005        }
1006
1007        clkrate = clk_get_rate(dspi->clk);
1008        hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1009
1010        /* Set PCS to SCK delay scale values */
1011        ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1012
1013        /* Set After SCK delay scale values */
1014        ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1015
1016        chip->ctar_val = 0;
1017        if (spi->mode & SPI_CPOL)
1018                chip->ctar_val |= SPI_CTAR_CPOL;
1019        if (spi->mode & SPI_CPHA)
1020                chip->ctar_val |= SPI_CTAR_CPHA;
1021
1022        if (!spi_controller_is_slave(dspi->ctlr)) {
1023                chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1024                                  SPI_CTAR_CSSCK(cssck) |
1025                                  SPI_CTAR_PASC(pasc) |
1026                                  SPI_CTAR_ASC(asc) |
1027                                  SPI_CTAR_PBR(pbr) |
1028                                  SPI_CTAR_BR(br);
1029
1030                if (spi->mode & SPI_LSB_FIRST)
1031                        chip->ctar_val |= SPI_CTAR_LSBFE;
1032        }
1033
1034        spi_set_ctldata(spi, chip);
1035
1036        return 0;
1037}
1038
1039static void dspi_cleanup(struct spi_device *spi)
1040{
1041        struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
1042
1043        dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1044                spi->controller->bus_num, spi->chip_select);
1045
1046        kfree(chip);
1047}
1048
1049static const struct of_device_id fsl_dspi_dt_ids[] = {
1050        {
1051                .compatible = "fsl,vf610-dspi",
1052                .data = &devtype_data[VF610],
1053        }, {
1054                .compatible = "fsl,ls1021a-v1.0-dspi",
1055                .data = &devtype_data[LS1021A],
1056        }, {
1057                .compatible = "fsl,ls1012a-dspi",
1058                .data = &devtype_data[LS1012A],
1059        }, {
1060                .compatible = "fsl,ls1028a-dspi",
1061                .data = &devtype_data[LS1028A],
1062        }, {
1063                .compatible = "fsl,ls1043a-dspi",
1064                .data = &devtype_data[LS1043A],
1065        }, {
1066                .compatible = "fsl,ls1046a-dspi",
1067                .data = &devtype_data[LS1046A],
1068        }, {
1069                .compatible = "fsl,ls2080a-dspi",
1070                .data = &devtype_data[LS2080A],
1071        }, {
1072                .compatible = "fsl,ls2085a-dspi",
1073                .data = &devtype_data[LS2085A],
1074        }, {
1075                .compatible = "fsl,lx2160a-dspi",
1076                .data = &devtype_data[LX2160A],
1077        },
1078        { /* sentinel */ }
1079};
1080MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1081
1082#ifdef CONFIG_PM_SLEEP
1083static int dspi_suspend(struct device *dev)
1084{
1085        struct spi_controller *ctlr = dev_get_drvdata(dev);
1086        struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1087
1088        spi_controller_suspend(ctlr);
1089        clk_disable_unprepare(dspi->clk);
1090
1091        pinctrl_pm_select_sleep_state(dev);
1092
1093        return 0;
1094}
1095
1096static int dspi_resume(struct device *dev)
1097{
1098        struct spi_controller *ctlr = dev_get_drvdata(dev);
1099        struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1100        int ret;
1101
1102        pinctrl_pm_select_default_state(dev);
1103
1104        ret = clk_prepare_enable(dspi->clk);
1105        if (ret)
1106                return ret;
1107        spi_controller_resume(ctlr);
1108
1109        return 0;
1110}
1111#endif /* CONFIG_PM_SLEEP */
1112
1113static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1114
1115static const struct regmap_range dspi_volatile_ranges[] = {
1116        regmap_reg_range(SPI_MCR, SPI_TCR),
1117        regmap_reg_range(SPI_SR, SPI_SR),
1118        regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1119};
1120
1121static const struct regmap_access_table dspi_volatile_table = {
1122        .yes_ranges     = dspi_volatile_ranges,
1123        .n_yes_ranges   = ARRAY_SIZE(dspi_volatile_ranges),
1124};
1125
1126static const struct regmap_config dspi_regmap_config = {
1127        .reg_bits       = 32,
1128        .val_bits       = 32,
1129        .reg_stride     = 4,
1130        .max_register   = 0x88,
1131        .volatile_table = &dspi_volatile_table,
1132};
1133
1134static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1135        regmap_reg_range(SPI_MCR, SPI_TCR),
1136        regmap_reg_range(SPI_SR, SPI_SR),
1137        regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1138        regmap_reg_range(SPI_SREX, SPI_SREX),
1139};
1140
1141static const struct regmap_access_table dspi_xspi_volatile_table = {
1142        .yes_ranges     = dspi_xspi_volatile_ranges,
1143        .n_yes_ranges   = ARRAY_SIZE(dspi_xspi_volatile_ranges),
1144};
1145
1146static const struct regmap_config dspi_xspi_regmap_config[] = {
1147        {
1148                .reg_bits       = 32,
1149                .val_bits       = 32,
1150                .reg_stride     = 4,
1151                .max_register   = 0x13c,
1152                .volatile_table = &dspi_xspi_volatile_table,
1153        },
1154        {
1155                .name           = "pushr",
1156                .reg_bits       = 16,
1157                .val_bits       = 16,
1158                .reg_stride     = 2,
1159                .max_register   = 0x2,
1160        },
1161};
1162
1163static int dspi_init(struct fsl_dspi *dspi)
1164{
1165        unsigned int mcr;
1166
1167        /* Set idle states for all chip select signals to high */
1168        mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->num_chipselect - 1, 0));
1169
1170        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1171                mcr |= SPI_MCR_XSPI;
1172        if (!spi_controller_is_slave(dspi->ctlr))
1173                mcr |= SPI_MCR_MASTER;
1174
1175        regmap_write(dspi->regmap, SPI_MCR, mcr);
1176        regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1177
1178        switch (dspi->devtype_data->trans_mode) {
1179        case DSPI_EOQ_MODE:
1180                regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
1181                break;
1182        case DSPI_XSPI_MODE:
1183                regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1184                break;
1185        case DSPI_DMA_MODE:
1186                regmap_write(dspi->regmap, SPI_RSER,
1187                             SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1188                             SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1189                break;
1190        default:
1191                dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1192                        dspi->devtype_data->trans_mode);
1193                return -EINVAL;
1194        }
1195
1196        return 0;
1197}
1198
1199static int dspi_slave_abort(struct spi_master *master)
1200{
1201        struct fsl_dspi *dspi = spi_master_get_devdata(master);
1202
1203        /*
1204         * Terminate all pending DMA transactions for the SPI working
1205         * in SLAVE mode.
1206         */
1207        if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1208                dmaengine_terminate_sync(dspi->dma->chan_rx);
1209                dmaengine_terminate_sync(dspi->dma->chan_tx);
1210        }
1211
1212        /* Clear the internal DSPI RX and TX FIFO buffers */
1213        regmap_update_bits(dspi->regmap, SPI_MCR,
1214                           SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1215                           SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1216
1217        return 0;
1218}
1219
1220/*
1221 * EOQ mode will inevitably deassert its PCS signal on last word in a queue
1222 * (hardware limitation), so we need to inform the spi_device that larger
1223 * buffers than the FIFO size are going to have the chip select randomly
1224 * toggling, so it has a chance to adapt its message sizes.
1225 */
1226static size_t dspi_max_message_size(struct spi_device *spi)
1227{
1228        struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1229
1230        if (dspi->devtype_data->trans_mode == DSPI_EOQ_MODE)
1231                return dspi->devtype_data->fifo_size;
1232
1233        return SIZE_MAX;
1234}
1235
1236static int dspi_probe(struct platform_device *pdev)
1237{
1238        struct device_node *np = pdev->dev.of_node;
1239        const struct regmap_config *regmap_config;
1240        struct fsl_dspi_platform_data *pdata;
1241        struct spi_controller *ctlr;
1242        int ret, cs_num, bus_num = -1;
1243        struct fsl_dspi *dspi;
1244        struct resource *res;
1245        void __iomem *base;
1246        bool big_endian;
1247
1248        ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1249        if (!ctlr)
1250                return -ENOMEM;
1251
1252        dspi = spi_controller_get_devdata(ctlr);
1253        dspi->pdev = pdev;
1254        dspi->ctlr = ctlr;
1255
1256        ctlr->setup = dspi_setup;
1257        ctlr->transfer_one_message = dspi_transfer_one_message;
1258        ctlr->max_message_size = dspi_max_message_size;
1259        ctlr->dev.of_node = pdev->dev.of_node;
1260
1261        ctlr->cleanup = dspi_cleanup;
1262        ctlr->slave_abort = dspi_slave_abort;
1263        ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1264
1265        pdata = dev_get_platdata(&pdev->dev);
1266        if (pdata) {
1267                ctlr->num_chipselect = pdata->cs_num;
1268                ctlr->bus_num = pdata->bus_num;
1269
1270                /* Only Coldfire uses platform data */
1271                dspi->devtype_data = &devtype_data[MCF5441X];
1272                big_endian = true;
1273        } else {
1274
1275                ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1276                if (ret < 0) {
1277                        dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1278                        goto out_ctlr_put;
1279                }
1280                ctlr->num_chipselect = cs_num;
1281
1282                of_property_read_u32(np, "bus-num", &bus_num);
1283                ctlr->bus_num = bus_num;
1284
1285                if (of_property_read_bool(np, "spi-slave"))
1286                        ctlr->slave = true;
1287
1288                dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1289                if (!dspi->devtype_data) {
1290                        dev_err(&pdev->dev, "can't get devtype_data\n");
1291                        ret = -EFAULT;
1292                        goto out_ctlr_put;
1293                }
1294
1295                big_endian = of_device_is_big_endian(np);
1296        }
1297        if (big_endian) {
1298                dspi->pushr_cmd = 0;
1299                dspi->pushr_tx = 2;
1300        } else {
1301                dspi->pushr_cmd = 2;
1302                dspi->pushr_tx = 0;
1303        }
1304
1305        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1306                ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1307        else
1308                ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1309
1310        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311        base = devm_ioremap_resource(&pdev->dev, res);
1312        if (IS_ERR(base)) {
1313                ret = PTR_ERR(base);
1314                goto out_ctlr_put;
1315        }
1316
1317        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1318                regmap_config = &dspi_xspi_regmap_config[0];
1319        else
1320                regmap_config = &dspi_regmap_config;
1321        dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1322        if (IS_ERR(dspi->regmap)) {
1323                dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1324                                PTR_ERR(dspi->regmap));
1325                ret = PTR_ERR(dspi->regmap);
1326                goto out_ctlr_put;
1327        }
1328
1329        if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1330                dspi->regmap_pushr = devm_regmap_init_mmio(
1331                        &pdev->dev, base + SPI_PUSHR,
1332                        &dspi_xspi_regmap_config[1]);
1333                if (IS_ERR(dspi->regmap_pushr)) {
1334                        dev_err(&pdev->dev,
1335                                "failed to init pushr regmap: %ld\n",
1336                                PTR_ERR(dspi->regmap_pushr));
1337                        ret = PTR_ERR(dspi->regmap_pushr);
1338                        goto out_ctlr_put;
1339                }
1340        }
1341
1342        dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1343        if (IS_ERR(dspi->clk)) {
1344                ret = PTR_ERR(dspi->clk);
1345                dev_err(&pdev->dev, "unable to get clock\n");
1346                goto out_ctlr_put;
1347        }
1348        ret = clk_prepare_enable(dspi->clk);
1349        if (ret)
1350                goto out_ctlr_put;
1351
1352        ret = dspi_init(dspi);
1353        if (ret)
1354                goto out_clk_put;
1355
1356        dspi->irq = platform_get_irq(pdev, 0);
1357        if (dspi->irq <= 0) {
1358                dev_info(&pdev->dev,
1359                         "can't get platform irq, using poll mode\n");
1360                dspi->irq = 0;
1361                goto poll_mode;
1362        }
1363
1364        ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1365                               IRQF_SHARED, pdev->name, dspi);
1366        if (ret < 0) {
1367                dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1368                goto out_clk_put;
1369        }
1370
1371        init_completion(&dspi->xfer_done);
1372
1373poll_mode:
1374
1375        if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1376                ret = dspi_request_dma(dspi, res->start);
1377                if (ret < 0) {
1378                        dev_err(&pdev->dev, "can't get dma channels\n");
1379                        goto out_clk_put;
1380                }
1381        }
1382
1383        ctlr->max_speed_hz =
1384                clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1385
1386        if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1387                ctlr->ptp_sts_supported = true;
1388
1389        platform_set_drvdata(pdev, ctlr);
1390
1391        ret = spi_register_controller(ctlr);
1392        if (ret != 0) {
1393                dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1394                goto out_clk_put;
1395        }
1396
1397        return ret;
1398
1399out_clk_put:
1400        clk_disable_unprepare(dspi->clk);
1401out_ctlr_put:
1402        spi_controller_put(ctlr);
1403
1404        return ret;
1405}
1406
1407static int dspi_remove(struct platform_device *pdev)
1408{
1409        struct spi_controller *ctlr = platform_get_drvdata(pdev);
1410        struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1411
1412        /* Disconnect from the SPI framework */
1413        dspi_release_dma(dspi);
1414        clk_disable_unprepare(dspi->clk);
1415        spi_unregister_controller(dspi->ctlr);
1416
1417        return 0;
1418}
1419
1420static struct platform_driver fsl_dspi_driver = {
1421        .driver.name            = DRIVER_NAME,
1422        .driver.of_match_table  = fsl_dspi_dt_ids,
1423        .driver.owner           = THIS_MODULE,
1424        .driver.pm              = &dspi_pm,
1425        .probe                  = dspi_probe,
1426        .remove                 = dspi_remove,
1427};
1428module_platform_driver(fsl_dspi_driver);
1429
1430MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1431MODULE_LICENSE("GPL");
1432MODULE_ALIAS("platform:" DRIVER_NAME);
1433