linux/drivers/spi/spi-nxp-fspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019 NXP.
   7 *
   8 * FlexSPI is a flexsible SPI host controller which supports two SPI
   9 * channels and up to 4 external devices. Each channel supports
  10 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  11 * data lines).
  12 *
  13 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  14 * LUT registers are a look-up-table for sequences of instructions.
  15 * A valid sequence consists of four LUT registers.
  16 * Maximum 32 LUT sequences can be programmed simultaneously.
  17 *
  18 * LUTs are being created at run-time based on the commands passed
  19 * from the spi-mem framework, thus using single LUT index.
  20 *
  21 * Software triggered Flash read/write access by IP Bus.
  22 *
  23 * Memory mapped read access by AHB Bus.
  24 *
  25 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  26 *
  27 * Author:
  28 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  29 *     Boris Brezillon <bbrezillon@kernel.org>
  30 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  31 */
  32
  33#include <linux/bitops.h>
  34#include <linux/clk.h>
  35#include <linux/completion.h>
  36#include <linux/delay.h>
  37#include <linux/err.h>
  38#include <linux/errno.h>
  39#include <linux/interrupt.h>
  40#include <linux/io.h>
  41#include <linux/iopoll.h>
  42#include <linux/jiffies.h>
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/mutex.h>
  46#include <linux/of.h>
  47#include <linux/of_device.h>
  48#include <linux/platform_device.h>
  49#include <linux/pm_qos.h>
  50#include <linux/sizes.h>
  51
  52#include <linux/spi/spi.h>
  53#include <linux/spi/spi-mem.h>
  54
  55/*
  56 * The driver only uses one single LUT entry, that is updated on
  57 * each call of exec_op(). Index 0 is preset at boot with a basic
  58 * read operation, so let's use the last entry (31).
  59 */
  60#define SEQID_LUT                       31
  61
  62/* Registers used by the driver */
  63#define FSPI_MCR0                       0x00
  64#define FSPI_MCR0_AHB_TIMEOUT(x)        ((x) << 24)
  65#define FSPI_MCR0_IP_TIMEOUT(x)         ((x) << 16)
  66#define FSPI_MCR0_LEARN_EN              BIT(15)
  67#define FSPI_MCR0_SCRFRUN_EN            BIT(14)
  68#define FSPI_MCR0_OCTCOMB_EN            BIT(13)
  69#define FSPI_MCR0_DOZE_EN               BIT(12)
  70#define FSPI_MCR0_HSEN                  BIT(11)
  71#define FSPI_MCR0_SERCLKDIV             BIT(8)
  72#define FSPI_MCR0_ATDF_EN               BIT(7)
  73#define FSPI_MCR0_ARDF_EN               BIT(6)
  74#define FSPI_MCR0_RXCLKSRC(x)           ((x) << 4)
  75#define FSPI_MCR0_END_CFG(x)            ((x) << 2)
  76#define FSPI_MCR0_MDIS                  BIT(1)
  77#define FSPI_MCR0_SWRST                 BIT(0)
  78
  79#define FSPI_MCR1                       0x04
  80#define FSPI_MCR1_SEQ_TIMEOUT(x)        ((x) << 16)
  81#define FSPI_MCR1_AHB_TIMEOUT(x)        (x)
  82
  83#define FSPI_MCR2                       0x08
  84#define FSPI_MCR2_IDLE_WAIT(x)          ((x) << 24)
  85#define FSPI_MCR2_SAMEDEVICEEN          BIT(15)
  86#define FSPI_MCR2_CLRLRPHS              BIT(14)
  87#define FSPI_MCR2_ABRDATSZ              BIT(8)
  88#define FSPI_MCR2_ABRLEARN              BIT(7)
  89#define FSPI_MCR2_ABR_READ              BIT(6)
  90#define FSPI_MCR2_ABRWRITE              BIT(5)
  91#define FSPI_MCR2_ABRDUMMY              BIT(4)
  92#define FSPI_MCR2_ABR_MODE              BIT(3)
  93#define FSPI_MCR2_ABRCADDR              BIT(2)
  94#define FSPI_MCR2_ABRRADDR              BIT(1)
  95#define FSPI_MCR2_ABR_CMD               BIT(0)
  96
  97#define FSPI_AHBCR                      0x0c
  98#define FSPI_AHBCR_RDADDROPT            BIT(6)
  99#define FSPI_AHBCR_PREF_EN              BIT(5)
 100#define FSPI_AHBCR_BUFF_EN              BIT(4)
 101#define FSPI_AHBCR_CACH_EN              BIT(3)
 102#define FSPI_AHBCR_CLRTXBUF             BIT(2)
 103#define FSPI_AHBCR_CLRRXBUF             BIT(1)
 104#define FSPI_AHBCR_PAR_EN               BIT(0)
 105
 106#define FSPI_INTEN                      0x10
 107#define FSPI_INTEN_SCLKSBWR             BIT(9)
 108#define FSPI_INTEN_SCLKSBRD             BIT(8)
 109#define FSPI_INTEN_DATALRNFL            BIT(7)
 110#define FSPI_INTEN_IPTXWE               BIT(6)
 111#define FSPI_INTEN_IPRXWA               BIT(5)
 112#define FSPI_INTEN_AHBCMDERR            BIT(4)
 113#define FSPI_INTEN_IPCMDERR             BIT(3)
 114#define FSPI_INTEN_AHBCMDGE             BIT(2)
 115#define FSPI_INTEN_IPCMDGE              BIT(1)
 116#define FSPI_INTEN_IPCMDDONE            BIT(0)
 117
 118#define FSPI_INTR                       0x14
 119#define FSPI_INTR_SCLKSBWR              BIT(9)
 120#define FSPI_INTR_SCLKSBRD              BIT(8)
 121#define FSPI_INTR_DATALRNFL             BIT(7)
 122#define FSPI_INTR_IPTXWE                BIT(6)
 123#define FSPI_INTR_IPRXWA                BIT(5)
 124#define FSPI_INTR_AHBCMDERR             BIT(4)
 125#define FSPI_INTR_IPCMDERR              BIT(3)
 126#define FSPI_INTR_AHBCMDGE              BIT(2)
 127#define FSPI_INTR_IPCMDGE               BIT(1)
 128#define FSPI_INTR_IPCMDDONE             BIT(0)
 129
 130#define FSPI_LUTKEY                     0x18
 131#define FSPI_LUTKEY_VALUE               0x5AF05AF0
 132
 133#define FSPI_LCKCR                      0x1C
 134
 135#define FSPI_LCKER_LOCK                 0x1
 136#define FSPI_LCKER_UNLOCK               0x2
 137
 138#define FSPI_BUFXCR_INVALID_MSTRID      0xE
 139#define FSPI_AHBRX_BUF0CR0              0x20
 140#define FSPI_AHBRX_BUF1CR0              0x24
 141#define FSPI_AHBRX_BUF2CR0              0x28
 142#define FSPI_AHBRX_BUF3CR0              0x2C
 143#define FSPI_AHBRX_BUF4CR0              0x30
 144#define FSPI_AHBRX_BUF5CR0              0x34
 145#define FSPI_AHBRX_BUF6CR0              0x38
 146#define FSPI_AHBRX_BUF7CR0              0x3C
 147#define FSPI_AHBRXBUF0CR7_PREF          BIT(31)
 148
 149#define FSPI_AHBRX_BUF0CR1              0x40
 150#define FSPI_AHBRX_BUF1CR1              0x44
 151#define FSPI_AHBRX_BUF2CR1              0x48
 152#define FSPI_AHBRX_BUF3CR1              0x4C
 153#define FSPI_AHBRX_BUF4CR1              0x50
 154#define FSPI_AHBRX_BUF5CR1              0x54
 155#define FSPI_AHBRX_BUF6CR1              0x58
 156#define FSPI_AHBRX_BUF7CR1              0x5C
 157
 158#define FSPI_FLSHA1CR0                  0x60
 159#define FSPI_FLSHA2CR0                  0x64
 160#define FSPI_FLSHB1CR0                  0x68
 161#define FSPI_FLSHB2CR0                  0x6C
 162#define FSPI_FLSHXCR0_SZ_KB             10
 163#define FSPI_FLSHXCR0_SZ(x)             ((x) >> FSPI_FLSHXCR0_SZ_KB)
 164
 165#define FSPI_FLSHA1CR1                  0x70
 166#define FSPI_FLSHA2CR1                  0x74
 167#define FSPI_FLSHB1CR1                  0x78
 168#define FSPI_FLSHB2CR1                  0x7C
 169#define FSPI_FLSHXCR1_CSINTR(x)         ((x) << 16)
 170#define FSPI_FLSHXCR1_CAS(x)            ((x) << 11)
 171#define FSPI_FLSHXCR1_WA                BIT(10)
 172#define FSPI_FLSHXCR1_TCSH(x)           ((x) << 5)
 173#define FSPI_FLSHXCR1_TCSS(x)           (x)
 174
 175#define FSPI_FLSHA1CR2                  0x80
 176#define FSPI_FLSHA2CR2                  0x84
 177#define FSPI_FLSHB1CR2                  0x88
 178#define FSPI_FLSHB2CR2                  0x8C
 179#define FSPI_FLSHXCR2_CLRINSP           BIT(24)
 180#define FSPI_FLSHXCR2_AWRWAIT           BIT(16)
 181#define FSPI_FLSHXCR2_AWRSEQN_SHIFT     13
 182#define FSPI_FLSHXCR2_AWRSEQI_SHIFT     8
 183#define FSPI_FLSHXCR2_ARDSEQN_SHIFT     5
 184#define FSPI_FLSHXCR2_ARDSEQI_SHIFT     0
 185
 186#define FSPI_IPCR0                      0xA0
 187
 188#define FSPI_IPCR1                      0xA4
 189#define FSPI_IPCR1_IPAREN               BIT(31)
 190#define FSPI_IPCR1_SEQNUM_SHIFT         24
 191#define FSPI_IPCR1_SEQID_SHIFT          16
 192#define FSPI_IPCR1_IDATSZ(x)            (x)
 193
 194#define FSPI_IPCMD                      0xB0
 195#define FSPI_IPCMD_TRG                  BIT(0)
 196
 197#define FSPI_DLPR                       0xB4
 198
 199#define FSPI_IPRXFCR                    0xB8
 200#define FSPI_IPRXFCR_CLR                BIT(0)
 201#define FSPI_IPRXFCR_DMA_EN             BIT(1)
 202#define FSPI_IPRXFCR_WMRK(x)            ((x) << 2)
 203
 204#define FSPI_IPTXFCR                    0xBC
 205#define FSPI_IPTXFCR_CLR                BIT(0)
 206#define FSPI_IPTXFCR_DMA_EN             BIT(1)
 207#define FSPI_IPTXFCR_WMRK(x)            ((x) << 2)
 208
 209#define FSPI_DLLACR                     0xC0
 210#define FSPI_DLLACR_OVRDEN              BIT(8)
 211
 212#define FSPI_DLLBCR                     0xC4
 213#define FSPI_DLLBCR_OVRDEN              BIT(8)
 214
 215#define FSPI_STS0                       0xE0
 216#define FSPI_STS0_DLPHB(x)              ((x) << 8)
 217#define FSPI_STS0_DLPHA(x)              ((x) << 4)
 218#define FSPI_STS0_CMD_SRC(x)            ((x) << 2)
 219#define FSPI_STS0_ARB_IDLE              BIT(1)
 220#define FSPI_STS0_SEQ_IDLE              BIT(0)
 221
 222#define FSPI_STS1                       0xE4
 223#define FSPI_STS1_IP_ERRCD(x)           ((x) << 24)
 224#define FSPI_STS1_IP_ERRID(x)           ((x) << 16)
 225#define FSPI_STS1_AHB_ERRCD(x)          ((x) << 8)
 226#define FSPI_STS1_AHB_ERRID(x)          (x)
 227
 228#define FSPI_AHBSPNST                   0xEC
 229#define FSPI_AHBSPNST_DATLFT(x)         ((x) << 16)
 230#define FSPI_AHBSPNST_BUFID(x)          ((x) << 1)
 231#define FSPI_AHBSPNST_ACTIVE            BIT(0)
 232
 233#define FSPI_IPRXFSTS                   0xF0
 234#define FSPI_IPRXFSTS_RDCNTR(x)         ((x) << 16)
 235#define FSPI_IPRXFSTS_FILL(x)           (x)
 236
 237#define FSPI_IPTXFSTS                   0xF4
 238#define FSPI_IPTXFSTS_WRCNTR(x)         ((x) << 16)
 239#define FSPI_IPTXFSTS_FILL(x)           (x)
 240
 241#define FSPI_RFDR                       0x100
 242#define FSPI_TFDR                       0x180
 243
 244#define FSPI_LUT_BASE                   0x200
 245#define FSPI_LUT_OFFSET                 (SEQID_LUT * 4 * 4)
 246#define FSPI_LUT_REG(idx) \
 247        (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 248
 249/* register map end */
 250
 251/* Instruction set for the LUT register. */
 252#define LUT_STOP                        0x00
 253#define LUT_CMD                         0x01
 254#define LUT_ADDR                        0x02
 255#define LUT_CADDR_SDR                   0x03
 256#define LUT_MODE                        0x04
 257#define LUT_MODE2                       0x05
 258#define LUT_MODE4                       0x06
 259#define LUT_MODE8                       0x07
 260#define LUT_NXP_WRITE                   0x08
 261#define LUT_NXP_READ                    0x09
 262#define LUT_LEARN_SDR                   0x0A
 263#define LUT_DATSZ_SDR                   0x0B
 264#define LUT_DUMMY                       0x0C
 265#define LUT_DUMMY_RWDS_SDR              0x0D
 266#define LUT_JMP_ON_CS                   0x1F
 267#define LUT_CMD_DDR                     0x21
 268#define LUT_ADDR_DDR                    0x22
 269#define LUT_CADDR_DDR                   0x23
 270#define LUT_MODE_DDR                    0x24
 271#define LUT_MODE2_DDR                   0x25
 272#define LUT_MODE4_DDR                   0x26
 273#define LUT_MODE8_DDR                   0x27
 274#define LUT_WRITE_DDR                   0x28
 275#define LUT_READ_DDR                    0x29
 276#define LUT_LEARN_DDR                   0x2A
 277#define LUT_DATSZ_DDR                   0x2B
 278#define LUT_DUMMY_DDR                   0x2C
 279#define LUT_DUMMY_RWDS_DDR              0x2D
 280
 281/*
 282 * Calculate number of required PAD bits for LUT register.
 283 *
 284 * The pad stands for the number of IO lines [0:7].
 285 * For example, the octal read needs eight IO lines,
 286 * so you should use LUT_PAD(8). This macro
 287 * returns 3 i.e. use eight (2^3) IP lines for read.
 288 */
 289#define LUT_PAD(x) (fls(x) - 1)
 290
 291/*
 292 * Macro for constructing the LUT entries with the following
 293 * register layout:
 294 *
 295 *  ---------------------------------------------------
 296 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 297 *  ---------------------------------------------------
 298 */
 299#define PAD_SHIFT               8
 300#define INSTR_SHIFT             10
 301#define OPRND_SHIFT             16
 302
 303/* Macros for constructing the LUT register. */
 304#define LUT_DEF(idx, ins, pad, opr)                       \
 305        ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 306        (opr)) << (((idx) % 2) * OPRND_SHIFT))
 307
 308#define POLL_TOUT               5000
 309#define NXP_FSPI_MAX_CHIPSELECT         4
 310#define NXP_FSPI_MIN_IOMAP      SZ_4M
 311
 312struct nxp_fspi_devtype_data {
 313        unsigned int rxfifo;
 314        unsigned int txfifo;
 315        unsigned int ahb_buf_size;
 316        unsigned int quirks;
 317        bool little_endian;
 318};
 319
 320static const struct nxp_fspi_devtype_data lx2160a_data = {
 321        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 322        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 323        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 324        .quirks = 0,
 325        .little_endian = true,  /* little-endian    */
 326};
 327
 328static const struct nxp_fspi_devtype_data imx8mm_data = {
 329        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 330        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 331        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 332        .quirks = 0,
 333        .little_endian = true,  /* little-endian    */
 334};
 335
 336static const struct nxp_fspi_devtype_data imx8qxp_data = {
 337        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 338        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 339        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 340        .quirks = 0,
 341        .little_endian = true,  /* little-endian    */
 342};
 343
 344struct nxp_fspi {
 345        void __iomem *iobase;
 346        void __iomem *ahb_addr;
 347        u32 memmap_phy;
 348        u32 memmap_phy_size;
 349        u32 memmap_start;
 350        u32 memmap_len;
 351        struct clk *clk, *clk_en;
 352        struct device *dev;
 353        struct completion c;
 354        const struct nxp_fspi_devtype_data *devtype_data;
 355        struct mutex lock;
 356        struct pm_qos_request pm_qos_req;
 357        int selected;
 358};
 359
 360/*
 361 * R/W functions for big- or little-endian registers:
 362 * The FSPI controller's endianness is independent of
 363 * the CPU core's endianness. So far, although the CPU
 364 * core is little-endian the FSPI controller can use
 365 * big-endian or little-endian.
 366 */
 367static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 368{
 369        if (f->devtype_data->little_endian)
 370                iowrite32(val, addr);
 371        else
 372                iowrite32be(val, addr);
 373}
 374
 375static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 376{
 377        if (f->devtype_data->little_endian)
 378                return ioread32(addr);
 379        else
 380                return ioread32be(addr);
 381}
 382
 383static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 384{
 385        struct nxp_fspi *f = dev_id;
 386        u32 reg;
 387
 388        /* clear interrupt */
 389        reg = fspi_readl(f, f->iobase + FSPI_INTR);
 390        fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 391
 392        if (reg & FSPI_INTR_IPCMDDONE)
 393                complete(&f->c);
 394
 395        return IRQ_HANDLED;
 396}
 397
 398static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 399{
 400        switch (width) {
 401        case 1:
 402        case 2:
 403        case 4:
 404        case 8:
 405                return 0;
 406        }
 407
 408        return -ENOTSUPP;
 409}
 410
 411static bool nxp_fspi_supports_op(struct spi_mem *mem,
 412                                 const struct spi_mem_op *op)
 413{
 414        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 415        int ret;
 416
 417        ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 418
 419        if (op->addr.nbytes)
 420                ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 421
 422        if (op->dummy.nbytes)
 423                ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 424
 425        if (op->data.nbytes)
 426                ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 427
 428        if (ret)
 429                return false;
 430
 431        /*
 432         * The number of address bytes should be equal to or less than 4 bytes.
 433         */
 434        if (op->addr.nbytes > 4)
 435                return false;
 436
 437        /*
 438         * If requested address value is greater than controller assigned
 439         * memory mapped space, return error as it didn't fit in the range
 440         * of assigned address space.
 441         */
 442        if (op->addr.val >= f->memmap_phy_size)
 443                return false;
 444
 445        /* Max 64 dummy clock cycles supported */
 446        if (op->dummy.buswidth &&
 447            (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 448                return false;
 449
 450        /* Max data length, check controller limits and alignment */
 451        if (op->data.dir == SPI_MEM_DATA_IN &&
 452            (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 453             (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 454              !IS_ALIGNED(op->data.nbytes, 8))))
 455                return false;
 456
 457        if (op->data.dir == SPI_MEM_DATA_OUT &&
 458            op->data.nbytes > f->devtype_data->txfifo)
 459                return false;
 460
 461        return spi_mem_default_supports_op(mem, op);
 462}
 463
 464/* Instead of busy looping invoke readl_poll_timeout functionality. */
 465static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 466                                u32 mask, u32 delay_us,
 467                                u32 timeout_us, bool c)
 468{
 469        u32 reg;
 470
 471        if (!f->devtype_data->little_endian)
 472                mask = (u32)cpu_to_be32(mask);
 473
 474        if (c)
 475                return readl_poll_timeout(base, reg, (reg & mask),
 476                                          delay_us, timeout_us);
 477        else
 478                return readl_poll_timeout(base, reg, !(reg & mask),
 479                                          delay_us, timeout_us);
 480}
 481
 482/*
 483 * If the slave device content being changed by Write/Erase, need to
 484 * invalidate the AHB buffer. This can be achieved by doing the reset
 485 * of controller after setting MCR0[SWRESET] bit.
 486 */
 487static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 488{
 489        u32 reg;
 490        int ret;
 491
 492        reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 493        fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 494
 495        /* w1c register, wait unit clear */
 496        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 497                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 498        WARN_ON(ret);
 499}
 500
 501static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 502                                 const struct spi_mem_op *op)
 503{
 504        void __iomem *base = f->iobase;
 505        u32 lutval[4] = {};
 506        int lutidx = 1, i;
 507
 508        /* cmd */
 509        lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 510                             op->cmd.opcode);
 511
 512        /* addr bytes */
 513        if (op->addr.nbytes) {
 514                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 515                                              LUT_PAD(op->addr.buswidth),
 516                                              op->addr.nbytes * 8);
 517                lutidx++;
 518        }
 519
 520        /* dummy bytes, if needed */
 521        if (op->dummy.nbytes) {
 522                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 523                /*
 524                 * Due to FlexSPI controller limitation number of PAD for dummy
 525                 * buswidth needs to be programmed as equal to data buswidth.
 526                 */
 527                                              LUT_PAD(op->data.buswidth),
 528                                              op->dummy.nbytes * 8 /
 529                                              op->dummy.buswidth);
 530                lutidx++;
 531        }
 532
 533        /* read/write data bytes */
 534        if (op->data.nbytes) {
 535                lutval[lutidx / 2] |= LUT_DEF(lutidx,
 536                                              op->data.dir == SPI_MEM_DATA_IN ?
 537                                              LUT_NXP_READ : LUT_NXP_WRITE,
 538                                              LUT_PAD(op->data.buswidth),
 539                                              0);
 540                lutidx++;
 541        }
 542
 543        /* stop condition. */
 544        lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 545
 546        /* unlock LUT */
 547        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 548        fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 549
 550        /* fill LUT */
 551        for (i = 0; i < ARRAY_SIZE(lutval); i++)
 552                fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 553
 554        dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
 555                op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
 556
 557        /* lock LUT */
 558        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 559        fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 560}
 561
 562static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 563{
 564        int ret;
 565
 566        ret = clk_prepare_enable(f->clk_en);
 567        if (ret)
 568                return ret;
 569
 570        ret = clk_prepare_enable(f->clk);
 571        if (ret) {
 572                clk_disable_unprepare(f->clk_en);
 573                return ret;
 574        }
 575
 576        return 0;
 577}
 578
 579static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 580{
 581        clk_disable_unprepare(f->clk);
 582        clk_disable_unprepare(f->clk_en);
 583}
 584
 585/*
 586 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 587 * register and start base address of the slave device.
 588 *
 589 *                                                          (Higher address)
 590 *                              --------    <-- FLSHB2CR0
 591 *                              |  B2  |
 592 *                              |      |
 593 *      B2 start address -->    --------    <-- FLSHB1CR0
 594 *                              |  B1  |
 595 *                              |      |
 596 *      B1 start address -->    --------    <-- FLSHA2CR0
 597 *                              |  A2  |
 598 *                              |      |
 599 *      A2 start address -->    --------    <-- FLSHA1CR0
 600 *                              |  A1  |
 601 *                              |      |
 602 *      A1 start address -->    --------                    (Lower address)
 603 *
 604 *
 605 * Start base address defines the starting address range for given CS and
 606 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 607 *
 608 * But, different targets are having different combinations of number of CS,
 609 * some targets only have single CS or two CS covering controller's full
 610 * memory mapped space area.
 611 * Thus, implementation is being done as independent of the size and number
 612 * of the connected slave device.
 613 * Assign controller memory mapped space size as the size to the connected
 614 * slave device.
 615 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 616 * chip-select Flash configuration register.
 617 *
 618 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 619 * memory mapped size of the controller.
 620 * Value for rest of the CS FLSHxxCR0 register would be zero.
 621 *
 622 */
 623static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 624{
 625        unsigned long rate = spi->max_speed_hz;
 626        int ret;
 627        uint64_t size_kb;
 628
 629        /*
 630         * Return, if previously selected slave device is same as current
 631         * requested slave device.
 632         */
 633        if (f->selected == spi->chip_select)
 634                return;
 635
 636        /* Reset FLSHxxCR0 registers */
 637        fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 638        fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 639        fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 640        fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 641
 642        /* Assign controller memory mapped space as size, KBytes, of flash. */
 643        size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 644
 645        fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 646                    4 * spi->chip_select);
 647
 648        dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
 649
 650        nxp_fspi_clk_disable_unprep(f);
 651
 652        ret = clk_set_rate(f->clk, rate);
 653        if (ret)
 654                return;
 655
 656        ret = nxp_fspi_clk_prep_enable(f);
 657        if (ret)
 658                return;
 659
 660        f->selected = spi->chip_select;
 661}
 662
 663static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 664{
 665        u32 start = op->addr.val;
 666        u32 len = op->data.nbytes;
 667
 668        /* if necessary, ioremap before AHB read */
 669        if ((!f->ahb_addr) || start < f->memmap_start ||
 670             start + len > f->memmap_start + f->memmap_len) {
 671                if (f->ahb_addr)
 672                        iounmap(f->ahb_addr);
 673
 674                f->memmap_start = start;
 675                f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
 676                                len : NXP_FSPI_MIN_IOMAP;
 677
 678                f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
 679                                         f->memmap_len);
 680
 681                if (!f->ahb_addr) {
 682                        dev_err(f->dev, "failed to alloc memory\n");
 683                        return -ENOMEM;
 684                }
 685        }
 686
 687        /* Read out the data directly from the AHB buffer. */
 688        memcpy_fromio(op->data.buf.in,
 689                      f->ahb_addr + start - f->memmap_start, len);
 690
 691        return 0;
 692}
 693
 694static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 695                                 const struct spi_mem_op *op)
 696{
 697        void __iomem *base = f->iobase;
 698        int i, ret;
 699        u8 *buf = (u8 *) op->data.buf.out;
 700
 701        /* clear the TX FIFO. */
 702        fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 703
 704        /*
 705         * Default value of water mark level is 8 bytes, hence in single
 706         * write request controller can write max 8 bytes of data.
 707         */
 708
 709        for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 710                /* Wait for TXFIFO empty */
 711                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 712                                           FSPI_INTR_IPTXWE, 0,
 713                                           POLL_TOUT, true);
 714                WARN_ON(ret);
 715
 716                fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 717                fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 718                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 719        }
 720
 721        if (i < op->data.nbytes) {
 722                u32 data = 0;
 723                int j;
 724                /* Wait for TXFIFO empty */
 725                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 726                                           FSPI_INTR_IPTXWE, 0,
 727                                           POLL_TOUT, true);
 728                WARN_ON(ret);
 729
 730                for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 731                        memcpy(&data, buf + i + j, 4);
 732                        fspi_writel(f, data, base + FSPI_TFDR + j);
 733                }
 734                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 735        }
 736}
 737
 738static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 739                          const struct spi_mem_op *op)
 740{
 741        void __iomem *base = f->iobase;
 742        int i, ret;
 743        int len = op->data.nbytes;
 744        u8 *buf = (u8 *) op->data.buf.in;
 745
 746        /*
 747         * Default value of water mark level is 8 bytes, hence in single
 748         * read request controller can read max 8 bytes of data.
 749         */
 750        for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 751                /* Wait for RXFIFO available */
 752                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 753                                           FSPI_INTR_IPRXWA, 0,
 754                                           POLL_TOUT, true);
 755                WARN_ON(ret);
 756
 757                *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 758                *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 759                /* move the FIFO pointer */
 760                fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 761        }
 762
 763        if (i < len) {
 764                u32 tmp;
 765                int size, j;
 766
 767                buf = op->data.buf.in + i;
 768                /* Wait for RXFIFO available */
 769                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 770                                           FSPI_INTR_IPRXWA, 0,
 771                                           POLL_TOUT, true);
 772                WARN_ON(ret);
 773
 774                len = op->data.nbytes - i;
 775                for (j = 0; j < op->data.nbytes - i; j += 4) {
 776                        tmp = fspi_readl(f, base + FSPI_RFDR + j);
 777                        size = min(len, 4);
 778                        memcpy(buf + j, &tmp, size);
 779                        len -= size;
 780                }
 781        }
 782
 783        /* invalid the RXFIFO */
 784        fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 785        /* move the FIFO pointer */
 786        fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 787}
 788
 789static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 790{
 791        void __iomem *base = f->iobase;
 792        int seqnum = 0;
 793        int err = 0;
 794        u32 reg;
 795
 796        reg = fspi_readl(f, base + FSPI_IPRXFCR);
 797        /* invalid RXFIFO first */
 798        reg &= ~FSPI_IPRXFCR_DMA_EN;
 799        reg = reg | FSPI_IPRXFCR_CLR;
 800        fspi_writel(f, reg, base + FSPI_IPRXFCR);
 801
 802        init_completion(&f->c);
 803
 804        fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 805        /*
 806         * Always start the sequence at the same index since we update
 807         * the LUT at each exec_op() call. And also specify the DATA
 808         * length, since it's has not been specified in the LUT.
 809         */
 810        fspi_writel(f, op->data.nbytes |
 811                 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 812                 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 813                 base + FSPI_IPCR1);
 814
 815        /* Trigger the LUT now. */
 816        fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 817
 818        /* Wait for the interrupt. */
 819        if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 820                err = -ETIMEDOUT;
 821
 822        /* Invoke IP data read, if request is of data read. */
 823        if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 824                nxp_fspi_read_rxfifo(f, op);
 825
 826        return err;
 827}
 828
 829static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 830{
 831        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 832        int err = 0;
 833
 834        mutex_lock(&f->lock);
 835
 836        /* Wait for controller being ready. */
 837        err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 838                                   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 839        WARN_ON(err);
 840
 841        nxp_fspi_select_mem(f, mem->spi);
 842
 843        nxp_fspi_prepare_lut(f, op);
 844        /*
 845         * If we have large chunks of data, we read them through the AHB bus
 846         * by accessing the mapped memory. In all other cases we use
 847         * IP commands to access the flash.
 848         */
 849        if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 850            op->data.dir == SPI_MEM_DATA_IN) {
 851                err = nxp_fspi_read_ahb(f, op);
 852        } else {
 853                if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 854                        nxp_fspi_fill_txfifo(f, op);
 855
 856                err = nxp_fspi_do_op(f, op);
 857        }
 858
 859        /* Invalidate the data in the AHB buffer. */
 860        nxp_fspi_invalid(f);
 861
 862        mutex_unlock(&f->lock);
 863
 864        return err;
 865}
 866
 867static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 868{
 869        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 870
 871        if (op->data.dir == SPI_MEM_DATA_OUT) {
 872                if (op->data.nbytes > f->devtype_data->txfifo)
 873                        op->data.nbytes = f->devtype_data->txfifo;
 874        } else {
 875                if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 876                        op->data.nbytes = f->devtype_data->ahb_buf_size;
 877                else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 878                        op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 879        }
 880
 881        return 0;
 882}
 883
 884static int nxp_fspi_default_setup(struct nxp_fspi *f)
 885{
 886        void __iomem *base = f->iobase;
 887        int ret, i;
 888        u32 reg;
 889
 890        /* disable and unprepare clock to avoid glitch pass to controller */
 891        nxp_fspi_clk_disable_unprep(f);
 892
 893        /* the default frequency, we will change it later if necessary. */
 894        ret = clk_set_rate(f->clk, 20000000);
 895        if (ret)
 896                return ret;
 897
 898        ret = nxp_fspi_clk_prep_enable(f);
 899        if (ret)
 900                return ret;
 901
 902        /* Reset the module */
 903        /* w1c register, wait unit clear */
 904        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 905                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 906        WARN_ON(ret);
 907
 908        /* Disable the module */
 909        fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
 910
 911        /* Reset the DLL register to default value */
 912        fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
 913        fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
 914
 915        /* enable module */
 916        fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
 917                    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
 918                    base + FSPI_MCR0);
 919
 920        /*
 921         * Disable same device enable bit and configure all slave devices
 922         * independently.
 923         */
 924        reg = fspi_readl(f, f->iobase + FSPI_MCR2);
 925        reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
 926        fspi_writel(f, reg, base + FSPI_MCR2);
 927
 928        /* AHB configuration for access buffer 0~7. */
 929        for (i = 0; i < 7; i++)
 930                fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
 931
 932        /*
 933         * Set ADATSZ with the maximum AHB buffer size to improve the read
 934         * performance.
 935         */
 936        fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
 937                  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
 938
 939        /* prefetch and no start address alignment limitation */
 940        fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
 941                 base + FSPI_AHBCR);
 942
 943        /* AHB Read - Set lut sequence ID for all CS. */
 944        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
 945        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
 946        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
 947        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
 948
 949        f->selected = -1;
 950
 951        /* enable the interrupt */
 952        fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
 953
 954        return 0;
 955}
 956
 957static const char *nxp_fspi_get_name(struct spi_mem *mem)
 958{
 959        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 960        struct device *dev = &mem->spi->dev;
 961        const char *name;
 962
 963        // Set custom name derived from the platform_device of the controller.
 964        if (of_get_available_child_count(f->dev->of_node) == 1)
 965                return dev_name(f->dev);
 966
 967        name = devm_kasprintf(dev, GFP_KERNEL,
 968                              "%s-%d", dev_name(f->dev),
 969                              mem->spi->chip_select);
 970
 971        if (!name) {
 972                dev_err(dev, "failed to get memory for custom flash name\n");
 973                return ERR_PTR(-ENOMEM);
 974        }
 975
 976        return name;
 977}
 978
 979static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
 980        .adjust_op_size = nxp_fspi_adjust_op_size,
 981        .supports_op = nxp_fspi_supports_op,
 982        .exec_op = nxp_fspi_exec_op,
 983        .get_name = nxp_fspi_get_name,
 984};
 985
 986static int nxp_fspi_probe(struct platform_device *pdev)
 987{
 988        struct spi_controller *ctlr;
 989        struct device *dev = &pdev->dev;
 990        struct device_node *np = dev->of_node;
 991        struct resource *res;
 992        struct nxp_fspi *f;
 993        int ret;
 994
 995        ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
 996        if (!ctlr)
 997                return -ENOMEM;
 998
 999        ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1000                          SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1001
1002        f = spi_controller_get_devdata(ctlr);
1003        f->dev = dev;
1004        f->devtype_data = of_device_get_match_data(dev);
1005        if (!f->devtype_data) {
1006                ret = -ENODEV;
1007                goto err_put_ctrl;
1008        }
1009
1010        platform_set_drvdata(pdev, f);
1011
1012        /* find the resources - configuration register address space */
1013        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base");
1014        f->iobase = devm_ioremap_resource(dev, res);
1015        if (IS_ERR(f->iobase)) {
1016                ret = PTR_ERR(f->iobase);
1017                goto err_put_ctrl;
1018        }
1019
1020        /* find the resources - controller memory mapped space */
1021        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap");
1022        if (!res) {
1023                ret = -ENODEV;
1024                goto err_put_ctrl;
1025        }
1026
1027        /* assign memory mapped starting address and mapped size. */
1028        f->memmap_phy = res->start;
1029        f->memmap_phy_size = resource_size(res);
1030
1031        /* find the clocks */
1032        f->clk_en = devm_clk_get(dev, "fspi_en");
1033        if (IS_ERR(f->clk_en)) {
1034                ret = PTR_ERR(f->clk_en);
1035                goto err_put_ctrl;
1036        }
1037
1038        f->clk = devm_clk_get(dev, "fspi");
1039        if (IS_ERR(f->clk)) {
1040                ret = PTR_ERR(f->clk);
1041                goto err_put_ctrl;
1042        }
1043
1044        ret = nxp_fspi_clk_prep_enable(f);
1045        if (ret) {
1046                dev_err(dev, "can not enable the clock\n");
1047                goto err_put_ctrl;
1048        }
1049
1050        /* find the irq */
1051        ret = platform_get_irq(pdev, 0);
1052        if (ret < 0)
1053                goto err_disable_clk;
1054
1055        ret = devm_request_irq(dev, ret,
1056                        nxp_fspi_irq_handler, 0, pdev->name, f);
1057        if (ret) {
1058                dev_err(dev, "failed to request irq: %d\n", ret);
1059                goto err_disable_clk;
1060        }
1061
1062        mutex_init(&f->lock);
1063
1064        ctlr->bus_num = -1;
1065        ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1066        ctlr->mem_ops = &nxp_fspi_mem_ops;
1067
1068        nxp_fspi_default_setup(f);
1069
1070        ctlr->dev.of_node = np;
1071
1072        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1073        if (ret)
1074                goto err_destroy_mutex;
1075
1076        return 0;
1077
1078err_destroy_mutex:
1079        mutex_destroy(&f->lock);
1080
1081err_disable_clk:
1082        nxp_fspi_clk_disable_unprep(f);
1083
1084err_put_ctrl:
1085        spi_controller_put(ctlr);
1086
1087        dev_err(dev, "NXP FSPI probe failed\n");
1088        return ret;
1089}
1090
1091static int nxp_fspi_remove(struct platform_device *pdev)
1092{
1093        struct nxp_fspi *f = platform_get_drvdata(pdev);
1094
1095        /* disable the hardware */
1096        fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1097
1098        nxp_fspi_clk_disable_unprep(f);
1099
1100        mutex_destroy(&f->lock);
1101
1102        if (f->ahb_addr)
1103                iounmap(f->ahb_addr);
1104
1105        return 0;
1106}
1107
1108static int nxp_fspi_suspend(struct device *dev)
1109{
1110        return 0;
1111}
1112
1113static int nxp_fspi_resume(struct device *dev)
1114{
1115        struct nxp_fspi *f = dev_get_drvdata(dev);
1116
1117        nxp_fspi_default_setup(f);
1118
1119        return 0;
1120}
1121
1122static const struct of_device_id nxp_fspi_dt_ids[] = {
1123        { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1124        { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1125        { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1126        { /* sentinel */ }
1127};
1128MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1129
1130static const struct dev_pm_ops nxp_fspi_pm_ops = {
1131        .suspend        = nxp_fspi_suspend,
1132        .resume         = nxp_fspi_resume,
1133};
1134
1135static struct platform_driver nxp_fspi_driver = {
1136        .driver = {
1137                .name   = "nxp-fspi",
1138                .of_match_table = nxp_fspi_dt_ids,
1139                .pm =   &nxp_fspi_pm_ops,
1140        },
1141        .probe          = nxp_fspi_probe,
1142        .remove         = nxp_fspi_remove,
1143};
1144module_platform_driver(nxp_fspi_driver);
1145
1146MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1147MODULE_AUTHOR("NXP Semiconductor");
1148MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1149MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1150MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1151MODULE_LICENSE("GPL v2");
1152