linux/drivers/spi/spi-stm32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// STMicroelectronics STM32 SPI Controller driver (master mode only)
   4//
   5// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
   6// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
   7
   8#include <linux/debugfs.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/interrupt.h>
  13#include <linux/iopoll.h>
  14#include <linux/module.h>
  15#include <linux/of_platform.h>
  16#include <linux/pm_runtime.h>
  17#include <linux/reset.h>
  18#include <linux/spi/spi.h>
  19
  20#define DRIVER_NAME "spi_stm32"
  21
  22/* STM32F4 SPI registers */
  23#define STM32F4_SPI_CR1                 0x00
  24#define STM32F4_SPI_CR2                 0x04
  25#define STM32F4_SPI_SR                  0x08
  26#define STM32F4_SPI_DR                  0x0C
  27#define STM32F4_SPI_I2SCFGR             0x1C
  28
  29/* STM32F4_SPI_CR1 bit fields */
  30#define STM32F4_SPI_CR1_CPHA            BIT(0)
  31#define STM32F4_SPI_CR1_CPOL            BIT(1)
  32#define STM32F4_SPI_CR1_MSTR            BIT(2)
  33#define STM32F4_SPI_CR1_BR_SHIFT        3
  34#define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
  35#define STM32F4_SPI_CR1_SPE             BIT(6)
  36#define STM32F4_SPI_CR1_LSBFRST         BIT(7)
  37#define STM32F4_SPI_CR1_SSI             BIT(8)
  38#define STM32F4_SPI_CR1_SSM             BIT(9)
  39#define STM32F4_SPI_CR1_RXONLY          BIT(10)
  40#define STM32F4_SPI_CR1_DFF             BIT(11)
  41#define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
  42#define STM32F4_SPI_CR1_CRCEN           BIT(13)
  43#define STM32F4_SPI_CR1_BIDIOE          BIT(14)
  44#define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
  45#define STM32F4_SPI_CR1_BR_MIN          0
  46#define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
  47
  48/* STM32F4_SPI_CR2 bit fields */
  49#define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
  50#define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
  51#define STM32F4_SPI_CR2_SSOE            BIT(2)
  52#define STM32F4_SPI_CR2_FRF             BIT(4)
  53#define STM32F4_SPI_CR2_ERRIE           BIT(5)
  54#define STM32F4_SPI_CR2_RXNEIE          BIT(6)
  55#define STM32F4_SPI_CR2_TXEIE           BIT(7)
  56
  57/* STM32F4_SPI_SR bit fields */
  58#define STM32F4_SPI_SR_RXNE             BIT(0)
  59#define STM32F4_SPI_SR_TXE              BIT(1)
  60#define STM32F4_SPI_SR_CHSIDE           BIT(2)
  61#define STM32F4_SPI_SR_UDR              BIT(3)
  62#define STM32F4_SPI_SR_CRCERR           BIT(4)
  63#define STM32F4_SPI_SR_MODF             BIT(5)
  64#define STM32F4_SPI_SR_OVR              BIT(6)
  65#define STM32F4_SPI_SR_BSY              BIT(7)
  66#define STM32F4_SPI_SR_FRE              BIT(8)
  67
  68/* STM32F4_SPI_I2SCFGR bit fields */
  69#define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
  70
  71/* STM32F4 SPI Baud Rate min/max divisor */
  72#define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
  73#define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
  74
  75/* STM32H7 SPI registers */
  76#define STM32H7_SPI_CR1                 0x00
  77#define STM32H7_SPI_CR2                 0x04
  78#define STM32H7_SPI_CFG1                0x08
  79#define STM32H7_SPI_CFG2                0x0C
  80#define STM32H7_SPI_IER                 0x10
  81#define STM32H7_SPI_SR                  0x14
  82#define STM32H7_SPI_IFCR                0x18
  83#define STM32H7_SPI_TXDR                0x20
  84#define STM32H7_SPI_RXDR                0x30
  85#define STM32H7_SPI_I2SCFGR             0x50
  86
  87/* STM32H7_SPI_CR1 bit fields */
  88#define STM32H7_SPI_CR1_SPE             BIT(0)
  89#define STM32H7_SPI_CR1_MASRX           BIT(8)
  90#define STM32H7_SPI_CR1_CSTART          BIT(9)
  91#define STM32H7_SPI_CR1_CSUSP           BIT(10)
  92#define STM32H7_SPI_CR1_HDDIR           BIT(11)
  93#define STM32H7_SPI_CR1_SSI             BIT(12)
  94
  95/* STM32H7_SPI_CR2 bit fields */
  96#define STM32H7_SPI_CR2_TSIZE_SHIFT     0
  97#define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
  98
  99/* STM32H7_SPI_CFG1 bit fields */
 100#define STM32H7_SPI_CFG1_DSIZE_SHIFT    0
 101#define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
 102#define STM32H7_SPI_CFG1_FTHLV_SHIFT    5
 103#define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
 104#define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
 105#define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
 106#define STM32H7_SPI_CFG1_MBR_SHIFT      28
 107#define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
 108#define STM32H7_SPI_CFG1_MBR_MIN        0
 109#define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
 110
 111/* STM32H7_SPI_CFG2 bit fields */
 112#define STM32H7_SPI_CFG2_MIDI_SHIFT     4
 113#define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
 114#define STM32H7_SPI_CFG2_COMM_SHIFT     17
 115#define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
 116#define STM32H7_SPI_CFG2_SP_SHIFT       19
 117#define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
 118#define STM32H7_SPI_CFG2_MASTER         BIT(22)
 119#define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
 120#define STM32H7_SPI_CFG2_CPHA           BIT(24)
 121#define STM32H7_SPI_CFG2_CPOL           BIT(25)
 122#define STM32H7_SPI_CFG2_SSM            BIT(26)
 123#define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
 124
 125/* STM32H7_SPI_IER bit fields */
 126#define STM32H7_SPI_IER_RXPIE           BIT(0)
 127#define STM32H7_SPI_IER_TXPIE           BIT(1)
 128#define STM32H7_SPI_IER_DXPIE           BIT(2)
 129#define STM32H7_SPI_IER_EOTIE           BIT(3)
 130#define STM32H7_SPI_IER_TXTFIE          BIT(4)
 131#define STM32H7_SPI_IER_OVRIE           BIT(6)
 132#define STM32H7_SPI_IER_MODFIE          BIT(9)
 133#define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
 134
 135/* STM32H7_SPI_SR bit fields */
 136#define STM32H7_SPI_SR_RXP              BIT(0)
 137#define STM32H7_SPI_SR_TXP              BIT(1)
 138#define STM32H7_SPI_SR_EOT              BIT(3)
 139#define STM32H7_SPI_SR_OVR              BIT(6)
 140#define STM32H7_SPI_SR_MODF             BIT(9)
 141#define STM32H7_SPI_SR_SUSP             BIT(11)
 142#define STM32H7_SPI_SR_RXPLVL_SHIFT     13
 143#define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
 144#define STM32H7_SPI_SR_RXWNE            BIT(15)
 145
 146/* STM32H7_SPI_IFCR bit fields */
 147#define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
 148
 149/* STM32H7_SPI_I2SCFGR bit fields */
 150#define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
 151
 152/* STM32H7 SPI Master Baud Rate min/max divisor */
 153#define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
 154#define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
 155
 156/* STM32H7 SPI Communication mode */
 157#define STM32H7_SPI_FULL_DUPLEX         0
 158#define STM32H7_SPI_SIMPLEX_TX          1
 159#define STM32H7_SPI_SIMPLEX_RX          2
 160#define STM32H7_SPI_HALF_DUPLEX         3
 161
 162/* SPI Communication type */
 163#define SPI_FULL_DUPLEX         0
 164#define SPI_SIMPLEX_TX          1
 165#define SPI_SIMPLEX_RX          2
 166#define SPI_3WIRE_TX            3
 167#define SPI_3WIRE_RX            4
 168
 169#define SPI_1HZ_NS              1000000000
 170
 171/*
 172 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 173 * without fifo buffers.
 174 */
 175#define SPI_DMA_MIN_BYTES       16
 176
 177/**
 178 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 179 * @reg:                register offset
 180 * @mask:               bitfield mask
 181 * @shift:              left shift
 182 */
 183struct stm32_spi_reg {
 184        int reg;
 185        int mask;
 186        int shift;
 187};
 188
 189/**
 190 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 191 * @en: enable register and SPI enable bit
 192 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 193 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 194 * @cpol: clock polarity register and polarity bit
 195 * @cpha: clock phase register and phase bit
 196 * @lsb_first: LSB transmitted first register and bit
 197 * @br: baud rate register and bitfields
 198 * @rx: SPI RX data register
 199 * @tx: SPI TX data register
 200 */
 201struct stm32_spi_regspec {
 202        const struct stm32_spi_reg en;
 203        const struct stm32_spi_reg dma_rx_en;
 204        const struct stm32_spi_reg dma_tx_en;
 205        const struct stm32_spi_reg cpol;
 206        const struct stm32_spi_reg cpha;
 207        const struct stm32_spi_reg lsb_first;
 208        const struct stm32_spi_reg br;
 209        const struct stm32_spi_reg rx;
 210        const struct stm32_spi_reg tx;
 211};
 212
 213struct stm32_spi;
 214
 215/**
 216 * struct stm32_spi_cfg - stm32 compatible configuration data
 217 * @regs: registers descriptions
 218 * @get_fifo_size: routine to get fifo size
 219 * @get_bpw_mask: routine to get bits per word mask
 220 * @disable: routine to disable controller
 221 * @config: routine to configure controller as SPI Master
 222 * @set_bpw: routine to configure registers to for bits per word
 223 * @set_mode: routine to configure registers to desired mode
 224 * @set_data_idleness: optional routine to configure registers to desired idle
 225 * time between frames (if driver has this functionality)
 226 * @set_number_of_data: optional routine to configure registers to desired
 227 * number of data (if driver has this functionality)
 228 * @can_dma: routine to determine if the transfer is eligible for DMA use
 229 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 230 * using DMA
 231 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 232 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 233 * @transfer_one_irq: routine to configure interrupts for driver
 234 * @irq_handler_event: Interrupt handler for SPI controller events
 235 * @irq_handler_thread: thread of interrupt handler for SPI controller
 236 * @baud_rate_div_min: minimum baud rate divisor
 237 * @baud_rate_div_max: maximum baud rate divisor
 238 * @has_fifo: boolean to know if fifo is used for driver
 239 * @has_startbit: boolean to know if start bit is used to start transfer
 240 */
 241struct stm32_spi_cfg {
 242        const struct stm32_spi_regspec *regs;
 243        int (*get_fifo_size)(struct stm32_spi *spi);
 244        int (*get_bpw_mask)(struct stm32_spi *spi);
 245        void (*disable)(struct stm32_spi *spi);
 246        int (*config)(struct stm32_spi *spi);
 247        void (*set_bpw)(struct stm32_spi *spi);
 248        int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
 249        void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
 250        int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
 251        void (*transfer_one_dma_start)(struct stm32_spi *spi);
 252        void (*dma_rx_cb)(void *data);
 253        void (*dma_tx_cb)(void *data);
 254        int (*transfer_one_irq)(struct stm32_spi *spi);
 255        irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
 256        irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
 257        unsigned int baud_rate_div_min;
 258        unsigned int baud_rate_div_max;
 259        bool has_fifo;
 260};
 261
 262/**
 263 * struct stm32_spi - private data of the SPI controller
 264 * @dev: driver model representation of the controller
 265 * @master: controller master interface
 266 * @cfg: compatible configuration data
 267 * @base: virtual memory area
 268 * @clk: hw kernel clock feeding the SPI clock generator
 269 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 270 * @rst: SPI controller reset line
 271 * @lock: prevent I/O concurrent access
 272 * @irq: SPI controller interrupt line
 273 * @fifo_size: size of the embedded fifo in bytes
 274 * @cur_midi: master inter-data idleness in ns
 275 * @cur_speed: speed configured in Hz
 276 * @cur_bpw: number of bits in a single SPI data frame
 277 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 278 * @cur_comm: SPI communication mode
 279 * @cur_xferlen: current transfer length in bytes
 280 * @cur_usedma: boolean to know if dma is used in current transfer
 281 * @tx_buf: data to be written, or NULL
 282 * @rx_buf: data to be read, or NULL
 283 * @tx_len: number of data to be written in bytes
 284 * @rx_len: number of data to be read in bytes
 285 * @dma_tx: dma channel for TX transfer
 286 * @dma_rx: dma channel for RX transfer
 287 * @phys_addr: SPI registers physical base address
 288 */
 289struct stm32_spi {
 290        struct device *dev;
 291        struct spi_master *master;
 292        const struct stm32_spi_cfg *cfg;
 293        void __iomem *base;
 294        struct clk *clk;
 295        u32 clk_rate;
 296        struct reset_control *rst;
 297        spinlock_t lock; /* prevent I/O concurrent access */
 298        int irq;
 299        unsigned int fifo_size;
 300
 301        unsigned int cur_midi;
 302        unsigned int cur_speed;
 303        unsigned int cur_bpw;
 304        unsigned int cur_fthlv;
 305        unsigned int cur_comm;
 306        unsigned int cur_xferlen;
 307        bool cur_usedma;
 308
 309        const void *tx_buf;
 310        void *rx_buf;
 311        int tx_len;
 312        int rx_len;
 313        struct dma_chan *dma_tx;
 314        struct dma_chan *dma_rx;
 315        dma_addr_t phys_addr;
 316};
 317
 318static const struct stm32_spi_regspec stm32f4_spi_regspec = {
 319        .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
 320
 321        .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
 322        .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
 323
 324        .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
 325        .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
 326        .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
 327        .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
 328
 329        .rx = { STM32F4_SPI_DR },
 330        .tx = { STM32F4_SPI_DR },
 331};
 332
 333static const struct stm32_spi_regspec stm32h7_spi_regspec = {
 334        /* SPI data transfer is enabled but spi_ker_ck is idle.
 335         * CFG1 and CFG2 registers are write protected when SPE is enabled.
 336         */
 337        .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
 338
 339        .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
 340        .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
 341
 342        .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
 343        .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
 344        .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
 345        .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
 346                STM32H7_SPI_CFG1_MBR_SHIFT },
 347
 348        .rx = { STM32H7_SPI_RXDR },
 349        .tx = { STM32H7_SPI_TXDR },
 350};
 351
 352static inline void stm32_spi_set_bits(struct stm32_spi *spi,
 353                                      u32 offset, u32 bits)
 354{
 355        writel_relaxed(readl_relaxed(spi->base + offset) | bits,
 356                       spi->base + offset);
 357}
 358
 359static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
 360                                      u32 offset, u32 bits)
 361{
 362        writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
 363                       spi->base + offset);
 364}
 365
 366/**
 367 * stm32h7_spi_get_fifo_size - Return fifo size
 368 * @spi: pointer to the spi controller data structure
 369 */
 370static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
 371{
 372        unsigned long flags;
 373        u32 count = 0;
 374
 375        spin_lock_irqsave(&spi->lock, flags);
 376
 377        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 378
 379        while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
 380                writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
 381
 382        stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 383
 384        spin_unlock_irqrestore(&spi->lock, flags);
 385
 386        dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
 387
 388        return count;
 389}
 390
 391/**
 392 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 393 * @spi: pointer to the spi controller data structure
 394 */
 395static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
 396{
 397        dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
 398        return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
 399}
 400
 401/**
 402 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 403 * @spi: pointer to the spi controller data structure
 404 */
 405static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
 406{
 407        unsigned long flags;
 408        u32 cfg1, max_bpw;
 409
 410        spin_lock_irqsave(&spi->lock, flags);
 411
 412        /*
 413         * The most significant bit at DSIZE bit field is reserved when the
 414         * maximum data size of periperal instances is limited to 16-bit
 415         */
 416        stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
 417
 418        cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
 419        max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
 420                  STM32H7_SPI_CFG1_DSIZE_SHIFT;
 421        max_bpw += 1;
 422
 423        spin_unlock_irqrestore(&spi->lock, flags);
 424
 425        dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
 426
 427        return SPI_BPW_RANGE_MASK(4, max_bpw);
 428}
 429
 430/**
 431 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 432 * @spi: pointer to the spi controller data structure
 433 * @speed_hz: requested speed
 434 * @min_div: minimum baud rate divisor
 435 * @max_div: maximum baud rate divisor
 436 *
 437 * Return baud rate divisor value in case of success or -EINVAL
 438 */
 439static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
 440                                 u32 min_div, u32 max_div)
 441{
 442        u32 div, mbrdiv;
 443
 444        div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
 445
 446        /*
 447         * SPI framework set xfer->speed_hz to master->max_speed_hz if
 448         * xfer->speed_hz is greater than master->max_speed_hz, and it returns
 449         * an error when xfer->speed_hz is lower than master->min_speed_hz, so
 450         * no need to check it there.
 451         * However, we need to ensure the following calculations.
 452         */
 453        if ((div < min_div) || (div > max_div))
 454                return -EINVAL;
 455
 456        /* Determine the first power of 2 greater than or equal to div */
 457        if (div & (div - 1))
 458                mbrdiv = fls(div);
 459        else
 460                mbrdiv = fls(div) - 1;
 461
 462        spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
 463
 464        return mbrdiv - 1;
 465}
 466
 467/**
 468 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 469 * @spi: pointer to the spi controller data structure
 470 */
 471static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
 472{
 473        u32 fthlv, half_fifo;
 474
 475        /* data packet should not exceed 1/2 of fifo space */
 476        half_fifo = (spi->fifo_size / 2);
 477
 478        if (spi->cur_bpw <= 8)
 479                fthlv = half_fifo;
 480        else if (spi->cur_bpw <= 16)
 481                fthlv = half_fifo / 2;
 482        else
 483                fthlv = half_fifo / 4;
 484
 485        /* align packet size with data registers access */
 486        if (spi->cur_bpw > 8)
 487                fthlv -= (fthlv % 2); /* multiple of 2 */
 488        else
 489                fthlv -= (fthlv % 4); /* multiple of 4 */
 490
 491        return fthlv;
 492}
 493
 494/**
 495 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 496 * @spi: pointer to the spi controller data structure
 497 *
 498 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 499 * tx_buf end.
 500 */
 501static void stm32f4_spi_write_tx(struct stm32_spi *spi)
 502{
 503        if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 504                                  STM32F4_SPI_SR_TXE)) {
 505                u32 offs = spi->cur_xferlen - spi->tx_len;
 506
 507                if (spi->cur_bpw == 16) {
 508                        const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 509
 510                        writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
 511                        spi->tx_len -= sizeof(u16);
 512                } else {
 513                        const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 514
 515                        writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
 516                        spi->tx_len -= sizeof(u8);
 517                }
 518        }
 519
 520        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 521}
 522
 523/**
 524 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 525 * @spi: pointer to the spi controller data structure
 526 *
 527 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 528 * tx_buf end.
 529 */
 530static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
 531{
 532        while ((spi->tx_len > 0) &&
 533                       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
 534                        STM32H7_SPI_SR_TXP)) {
 535                u32 offs = spi->cur_xferlen - spi->tx_len;
 536
 537                if (spi->tx_len >= sizeof(u32)) {
 538                        const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
 539
 540                        writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
 541                        spi->tx_len -= sizeof(u32);
 542                } else if (spi->tx_len >= sizeof(u16)) {
 543                        const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
 544
 545                        writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
 546                        spi->tx_len -= sizeof(u16);
 547                } else {
 548                        const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
 549
 550                        writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
 551                        spi->tx_len -= sizeof(u8);
 552                }
 553        }
 554
 555        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
 556}
 557
 558/**
 559 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 560 * @spi: pointer to the spi controller data structure
 561 *
 562 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 563 * rx_buf end.
 564 */
 565static void stm32f4_spi_read_rx(struct stm32_spi *spi)
 566{
 567        if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
 568                                  STM32F4_SPI_SR_RXNE)) {
 569                u32 offs = spi->cur_xferlen - spi->rx_len;
 570
 571                if (spi->cur_bpw == 16) {
 572                        u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 573
 574                        *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
 575                        spi->rx_len -= sizeof(u16);
 576                } else {
 577                        u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 578
 579                        *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
 580                        spi->rx_len -= sizeof(u8);
 581                }
 582        }
 583
 584        dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
 585}
 586
 587/**
 588 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 589 * @spi: pointer to the spi controller data structure
 590 * @flush: boolean indicating that FIFO should be flushed
 591 *
 592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 593 * rx_buf end.
 594 */
 595static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
 596{
 597        u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 598        u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 599                     STM32H7_SPI_SR_RXPLVL_SHIFT;
 600
 601        while ((spi->rx_len > 0) &&
 602               ((sr & STM32H7_SPI_SR_RXP) ||
 603                (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
 604                u32 offs = spi->cur_xferlen - spi->rx_len;
 605
 606                if ((spi->rx_len >= sizeof(u32)) ||
 607                    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
 608                        u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
 609
 610                        *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
 611                        spi->rx_len -= sizeof(u32);
 612                } else if ((spi->rx_len >= sizeof(u16)) ||
 613                           (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
 614                        u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
 615
 616                        *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
 617                        spi->rx_len -= sizeof(u16);
 618                } else {
 619                        u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
 620
 621                        *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
 622                        spi->rx_len -= sizeof(u8);
 623                }
 624
 625                sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 626                rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
 627                         STM32H7_SPI_SR_RXPLVL_SHIFT;
 628        }
 629
 630        dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
 631                flush ? "(flush)" : "", spi->rx_len);
 632}
 633
 634/**
 635 * stm32_spi_enable - Enable SPI controller
 636 * @spi: pointer to the spi controller data structure
 637 */
 638static void stm32_spi_enable(struct stm32_spi *spi)
 639{
 640        dev_dbg(spi->dev, "enable controller\n");
 641
 642        stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
 643                           spi->cfg->regs->en.mask);
 644}
 645
 646/**
 647 * stm32f4_spi_disable - Disable SPI controller
 648 * @spi: pointer to the spi controller data structure
 649 */
 650static void stm32f4_spi_disable(struct stm32_spi *spi)
 651{
 652        unsigned long flags;
 653        u32 sr;
 654
 655        dev_dbg(spi->dev, "disable controller\n");
 656
 657        spin_lock_irqsave(&spi->lock, flags);
 658
 659        if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
 660              STM32F4_SPI_CR1_SPE)) {
 661                spin_unlock_irqrestore(&spi->lock, flags);
 662                return;
 663        }
 664
 665        /* Disable interrupts */
 666        stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
 667                                                 STM32F4_SPI_CR2_RXNEIE |
 668                                                 STM32F4_SPI_CR2_ERRIE);
 669
 670        /* Wait until BSY = 0 */
 671        if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
 672                                              sr, !(sr & STM32F4_SPI_SR_BSY),
 673                                              10, 100000) < 0) {
 674                dev_warn(spi->dev, "disabling condition timeout\n");
 675        }
 676
 677        if (spi->cur_usedma && spi->dma_tx)
 678                dmaengine_terminate_all(spi->dma_tx);
 679        if (spi->cur_usedma && spi->dma_rx)
 680                dmaengine_terminate_all(spi->dma_rx);
 681
 682        stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
 683
 684        stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
 685                                                 STM32F4_SPI_CR2_RXDMAEN);
 686
 687        /* Sequence to clear OVR flag */
 688        readl_relaxed(spi->base + STM32F4_SPI_DR);
 689        readl_relaxed(spi->base + STM32F4_SPI_SR);
 690
 691        spin_unlock_irqrestore(&spi->lock, flags);
 692}
 693
 694/**
 695 * stm32h7_spi_disable - Disable SPI controller
 696 * @spi: pointer to the spi controller data structure
 697 *
 698 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 699 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
 700 * RX-Fifo.
 701 * Normally, if TSIZE has been configured, we should relax the hardware at the
 702 * reception of the EOT interrupt. But in case of error, EOT will not be
 703 * raised. So the subsystem unprepare_message call allows us to properly
 704 * complete the transfer from an hardware point of view.
 705 */
 706static void stm32h7_spi_disable(struct stm32_spi *spi)
 707{
 708        unsigned long flags;
 709        u32 cr1, sr;
 710
 711        dev_dbg(spi->dev, "disable controller\n");
 712
 713        spin_lock_irqsave(&spi->lock, flags);
 714
 715        cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
 716
 717        if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
 718                spin_unlock_irqrestore(&spi->lock, flags);
 719                return;
 720        }
 721
 722        /* Wait on EOT or suspend the flow */
 723        if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
 724                                              sr, !(sr & STM32H7_SPI_SR_EOT),
 725                                              10, 100000) < 0) {
 726                if (cr1 & STM32H7_SPI_CR1_CSTART) {
 727                        writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
 728                                       spi->base + STM32H7_SPI_CR1);
 729                        if (readl_relaxed_poll_timeout_atomic(
 730                                                spi->base + STM32H7_SPI_SR,
 731                                                sr, !(sr & STM32H7_SPI_SR_SUSP),
 732                                                10, 100000) < 0)
 733                                dev_warn(spi->dev,
 734                                         "Suspend request timeout\n");
 735                }
 736        }
 737
 738        if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
 739                stm32h7_spi_read_rxfifo(spi, true);
 740
 741        if (spi->cur_usedma && spi->dma_tx)
 742                dmaengine_terminate_all(spi->dma_tx);
 743        if (spi->cur_usedma && spi->dma_rx)
 744                dmaengine_terminate_all(spi->dma_rx);
 745
 746        stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
 747
 748        stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
 749                                                STM32H7_SPI_CFG1_RXDMAEN);
 750
 751        /* Disable interrupts and clear status flags */
 752        writel_relaxed(0, spi->base + STM32H7_SPI_IER);
 753        writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
 754
 755        spin_unlock_irqrestore(&spi->lock, flags);
 756}
 757
 758/**
 759 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 760 * @master: controller master interface
 761 * @spi_dev: pointer to the spi device
 762 * @transfer: pointer to spi transfer
 763 *
 764 * If driver has fifo and the current transfer size is greater than fifo size,
 765 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 766 */
 767static bool stm32_spi_can_dma(struct spi_master *master,
 768                              struct spi_device *spi_dev,
 769                              struct spi_transfer *transfer)
 770{
 771        unsigned int dma_size;
 772        struct stm32_spi *spi = spi_master_get_devdata(master);
 773
 774        if (spi->cfg->has_fifo)
 775                dma_size = spi->fifo_size;
 776        else
 777                dma_size = SPI_DMA_MIN_BYTES;
 778
 779        dev_dbg(spi->dev, "%s: %s\n", __func__,
 780                (transfer->len > dma_size) ? "true" : "false");
 781
 782        return (transfer->len > dma_size);
 783}
 784
 785/**
 786 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 787 * @irq: interrupt line
 788 * @dev_id: SPI controller master interface
 789 */
 790static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
 791{
 792        struct spi_master *master = dev_id;
 793        struct stm32_spi *spi = spi_master_get_devdata(master);
 794        u32 sr, mask = 0;
 795        unsigned long flags;
 796        bool end = false;
 797
 798        spin_lock_irqsave(&spi->lock, flags);
 799
 800        sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
 801        /*
 802         * BSY flag is not handled in interrupt but it is normal behavior when
 803         * this flag is set.
 804         */
 805        sr &= ~STM32F4_SPI_SR_BSY;
 806
 807        if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
 808                                 spi->cur_comm == SPI_3WIRE_TX)) {
 809                /* OVR flag shouldn't be handled for TX only mode */
 810                sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
 811                mask |= STM32F4_SPI_SR_TXE;
 812        }
 813
 814        if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
 815                /* TXE flag is set and is handled when RXNE flag occurs */
 816                sr &= ~STM32F4_SPI_SR_TXE;
 817                mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
 818        }
 819
 820        if (!(sr & mask)) {
 821                dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
 822                spin_unlock_irqrestore(&spi->lock, flags);
 823                return IRQ_NONE;
 824        }
 825
 826        if (sr & STM32F4_SPI_SR_OVR) {
 827                dev_warn(spi->dev, "Overrun: received value discarded\n");
 828
 829                /* Sequence to clear OVR flag */
 830                readl_relaxed(spi->base + STM32F4_SPI_DR);
 831                readl_relaxed(spi->base + STM32F4_SPI_SR);
 832
 833                /*
 834                 * If overrun is detected, it means that something went wrong,
 835                 * so stop the current transfer. Transfer can wait for next
 836                 * RXNE but DR is already read and end never happens.
 837                 */
 838                end = true;
 839                goto end_irq;
 840        }
 841
 842        if (sr & STM32F4_SPI_SR_TXE) {
 843                if (spi->tx_buf)
 844                        stm32f4_spi_write_tx(spi);
 845                if (spi->tx_len == 0)
 846                        end = true;
 847        }
 848
 849        if (sr & STM32F4_SPI_SR_RXNE) {
 850                stm32f4_spi_read_rx(spi);
 851                if (spi->rx_len == 0)
 852                        end = true;
 853                else /* Load data for discontinuous mode */
 854                        stm32f4_spi_write_tx(spi);
 855        }
 856
 857end_irq:
 858        if (end) {
 859                /* Immediately disable interrupts to do not generate new one */
 860                stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
 861                                        STM32F4_SPI_CR2_TXEIE |
 862                                        STM32F4_SPI_CR2_RXNEIE |
 863                                        STM32F4_SPI_CR2_ERRIE);
 864                spin_unlock_irqrestore(&spi->lock, flags);
 865                return IRQ_WAKE_THREAD;
 866        }
 867
 868        spin_unlock_irqrestore(&spi->lock, flags);
 869        return IRQ_HANDLED;
 870}
 871
 872/**
 873 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 874 * @irq: interrupt line
 875 * @dev_id: SPI controller master interface
 876 */
 877static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
 878{
 879        struct spi_master *master = dev_id;
 880        struct stm32_spi *spi = spi_master_get_devdata(master);
 881
 882        spi_finalize_current_transfer(master);
 883        stm32f4_spi_disable(spi);
 884
 885        return IRQ_HANDLED;
 886}
 887
 888/**
 889 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 890 * @irq: interrupt line
 891 * @dev_id: SPI controller master interface
 892 */
 893static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
 894{
 895        struct spi_master *master = dev_id;
 896        struct stm32_spi *spi = spi_master_get_devdata(master);
 897        u32 sr, ier, mask;
 898        unsigned long flags;
 899        bool end = false;
 900
 901        spin_lock_irqsave(&spi->lock, flags);
 902
 903        sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
 904        ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
 905
 906        mask = ier;
 907        /* EOTIE is triggered on EOT, SUSP and TXC events. */
 908        mask |= STM32H7_SPI_SR_SUSP;
 909        /*
 910         * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
 911         * Full-Duplex, need to poll RXP event to know if there are remaining
 912         * data, before disabling SPI.
 913         */
 914        if (spi->rx_buf && !spi->cur_usedma)
 915                mask |= STM32H7_SPI_SR_RXP;
 916
 917        if (!(sr & mask)) {
 918                dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
 919                        sr, ier);
 920                spin_unlock_irqrestore(&spi->lock, flags);
 921                return IRQ_NONE;
 922        }
 923
 924        if (sr & STM32H7_SPI_SR_SUSP) {
 925                dev_warn(spi->dev, "Communication suspended\n");
 926                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 927                        stm32h7_spi_read_rxfifo(spi, false);
 928                /*
 929                 * If communication is suspended while using DMA, it means
 930                 * that something went wrong, so stop the current transfer
 931                 */
 932                if (spi->cur_usedma)
 933                        end = true;
 934        }
 935
 936        if (sr & STM32H7_SPI_SR_MODF) {
 937                dev_warn(spi->dev, "Mode fault: transfer aborted\n");
 938                end = true;
 939        }
 940
 941        if (sr & STM32H7_SPI_SR_OVR) {
 942                dev_warn(spi->dev, "Overrun: received value discarded\n");
 943                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 944                        stm32h7_spi_read_rxfifo(spi, false);
 945                /*
 946                 * If overrun is detected while using DMA, it means that
 947                 * something went wrong, so stop the current transfer
 948                 */
 949                if (spi->cur_usedma)
 950                        end = true;
 951        }
 952
 953        if (sr & STM32H7_SPI_SR_EOT) {
 954                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 955                        stm32h7_spi_read_rxfifo(spi, true);
 956                end = true;
 957        }
 958
 959        if (sr & STM32H7_SPI_SR_TXP)
 960                if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
 961                        stm32h7_spi_write_txfifo(spi);
 962
 963        if (sr & STM32H7_SPI_SR_RXP)
 964                if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
 965                        stm32h7_spi_read_rxfifo(spi, false);
 966
 967        writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
 968
 969        spin_unlock_irqrestore(&spi->lock, flags);
 970
 971        if (end) {
 972                spi_finalize_current_transfer(master);
 973                stm32h7_spi_disable(spi);
 974        }
 975
 976        return IRQ_HANDLED;
 977}
 978
 979/**
 980 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 981 * @master: controller master interface
 982 * @msg: pointer to spi message
 983 */
 984static int stm32_spi_prepare_msg(struct spi_master *master,
 985                                 struct spi_message *msg)
 986{
 987        struct stm32_spi *spi = spi_master_get_devdata(master);
 988        struct spi_device *spi_dev = msg->spi;
 989        struct device_node *np = spi_dev->dev.of_node;
 990        unsigned long flags;
 991        u32 clrb = 0, setb = 0;
 992
 993        /* SPI slave device may need time between data frames */
 994        spi->cur_midi = 0;
 995        if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
 996                dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
 997
 998        if (spi_dev->mode & SPI_CPOL)
 999                setb |= spi->cfg->regs->cpol.mask;
1000        else
1001                clrb |= spi->cfg->regs->cpol.mask;
1002
1003        if (spi_dev->mode & SPI_CPHA)
1004                setb |= spi->cfg->regs->cpha.mask;
1005        else
1006                clrb |= spi->cfg->regs->cpha.mask;
1007
1008        if (spi_dev->mode & SPI_LSB_FIRST)
1009                setb |= spi->cfg->regs->lsb_first.mask;
1010        else
1011                clrb |= spi->cfg->regs->lsb_first.mask;
1012
1013        dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1014                spi_dev->mode & SPI_CPOL,
1015                spi_dev->mode & SPI_CPHA,
1016                spi_dev->mode & SPI_LSB_FIRST,
1017                spi_dev->mode & SPI_CS_HIGH);
1018
1019        spin_lock_irqsave(&spi->lock, flags);
1020
1021        /* CPOL, CPHA and LSB FIRST bits have common register */
1022        if (clrb || setb)
1023                writel_relaxed(
1024                        (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1025                         ~clrb) | setb,
1026                        spi->base + spi->cfg->regs->cpol.reg);
1027
1028        spin_unlock_irqrestore(&spi->lock, flags);
1029
1030        return 0;
1031}
1032
1033/**
1034 * stm32f4_spi_dma_tx_cb - dma callback
1035 * @data: pointer to the spi controller data structure
1036 *
1037 * DMA callback is called when the transfer is complete for DMA TX channel.
1038 */
1039static void stm32f4_spi_dma_tx_cb(void *data)
1040{
1041        struct stm32_spi *spi = data;
1042
1043        if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1044                spi_finalize_current_transfer(spi->master);
1045                stm32f4_spi_disable(spi);
1046        }
1047}
1048
1049/**
1050 * stm32f4_spi_dma_rx_cb - dma callback
1051 * @data: pointer to the spi controller data structure
1052 *
1053 * DMA callback is called when the transfer is complete for DMA RX channel.
1054 */
1055static void stm32f4_spi_dma_rx_cb(void *data)
1056{
1057        struct stm32_spi *spi = data;
1058
1059        spi_finalize_current_transfer(spi->master);
1060        stm32f4_spi_disable(spi);
1061}
1062
1063/**
1064 * stm32h7_spi_dma_cb - dma callback
1065 * @data: pointer to the spi controller data structure
1066 *
1067 * DMA callback is called when the transfer is complete or when an error
1068 * occurs. If the transfer is complete, EOT flag is raised.
1069 */
1070static void stm32h7_spi_dma_cb(void *data)
1071{
1072        struct stm32_spi *spi = data;
1073        unsigned long flags;
1074        u32 sr;
1075
1076        spin_lock_irqsave(&spi->lock, flags);
1077
1078        sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1079
1080        spin_unlock_irqrestore(&spi->lock, flags);
1081
1082        if (!(sr & STM32H7_SPI_SR_EOT))
1083                dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1084
1085        /* Now wait for EOT, or SUSP or OVR in case of error */
1086}
1087
1088/**
1089 * stm32_spi_dma_config - configure dma slave channel depending on current
1090 *                        transfer bits_per_word.
1091 * @spi: pointer to the spi controller data structure
1092 * @dma_conf: pointer to the dma_slave_config structure
1093 * @dir: direction of the dma transfer
1094 */
1095static void stm32_spi_dma_config(struct stm32_spi *spi,
1096                                 struct dma_slave_config *dma_conf,
1097                                 enum dma_transfer_direction dir)
1098{
1099        enum dma_slave_buswidth buswidth;
1100        u32 maxburst;
1101
1102        if (spi->cur_bpw <= 8)
1103                buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1104        else if (spi->cur_bpw <= 16)
1105                buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1106        else
1107                buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1108
1109        if (spi->cfg->has_fifo) {
1110                /* Valid for DMA Half or Full Fifo threshold */
1111                if (spi->cur_fthlv == 2)
1112                        maxburst = 1;
1113                else
1114                        maxburst = spi->cur_fthlv;
1115        } else {
1116                maxburst = 1;
1117        }
1118
1119        memset(dma_conf, 0, sizeof(struct dma_slave_config));
1120        dma_conf->direction = dir;
1121        if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1122                dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1123                dma_conf->src_addr_width = buswidth;
1124                dma_conf->src_maxburst = maxburst;
1125
1126                dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1127                        buswidth, maxburst);
1128        } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1129                dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1130                dma_conf->dst_addr_width = buswidth;
1131                dma_conf->dst_maxburst = maxburst;
1132
1133                dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1134                        buswidth, maxburst);
1135        }
1136}
1137
1138/**
1139 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1140 *                                interrupts
1141 * @spi: pointer to the spi controller data structure
1142 *
1143 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1144 * in progress.
1145 */
1146static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1147{
1148        unsigned long flags;
1149        u32 cr2 = 0;
1150
1151        /* Enable the interrupts relative to the current communication mode */
1152        if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1153                cr2 |= STM32F4_SPI_CR2_TXEIE;
1154        } else if (spi->cur_comm == SPI_FULL_DUPLEX) {
1155                /* In transmit-only mode, the OVR flag is set in the SR register
1156                 * since the received data are never read. Therefore set OVR
1157                 * interrupt only when rx buffer is available.
1158                 */
1159                cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1160        } else {
1161                return -EINVAL;
1162        }
1163
1164        spin_lock_irqsave(&spi->lock, flags);
1165
1166        stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1167
1168        stm32_spi_enable(spi);
1169
1170        /* starting data transfer when buffer is loaded */
1171        if (spi->tx_buf)
1172                stm32f4_spi_write_tx(spi);
1173
1174        spin_unlock_irqrestore(&spi->lock, flags);
1175
1176        return 1;
1177}
1178
1179/**
1180 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1181 *                                interrupts
1182 * @spi: pointer to the spi controller data structure
1183 *
1184 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1185 * in progress.
1186 */
1187static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1188{
1189        unsigned long flags;
1190        u32 ier = 0;
1191
1192        /* Enable the interrupts relative to the current communication mode */
1193        if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1194                ier |= STM32H7_SPI_IER_DXPIE;
1195        else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1196                ier |= STM32H7_SPI_IER_TXPIE;
1197        else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1198                ier |= STM32H7_SPI_IER_RXPIE;
1199
1200        /* Enable the interrupts relative to the end of transfer */
1201        ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1202               STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1203
1204        spin_lock_irqsave(&spi->lock, flags);
1205
1206        stm32_spi_enable(spi);
1207
1208        /* Be sure to have data in fifo before starting data transfer */
1209        if (spi->tx_buf)
1210                stm32h7_spi_write_txfifo(spi);
1211
1212        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1213
1214        writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1215
1216        spin_unlock_irqrestore(&spi->lock, flags);
1217
1218        return 1;
1219}
1220
1221/**
1222 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1223 *                                      transfer using DMA
1224 * @spi: pointer to the spi controller data structure
1225 */
1226static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1227{
1228        /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1229        if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1230            spi->cur_comm == SPI_FULL_DUPLEX) {
1231                /*
1232                 * In transmit-only mode, the OVR flag is set in the SR register
1233                 * since the received data are never read. Therefore set OVR
1234                 * interrupt only when rx buffer is available.
1235                 */
1236                stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1237        }
1238
1239        stm32_spi_enable(spi);
1240}
1241
1242/**
1243 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1244 *                                      transfer using DMA
1245 * @spi: pointer to the spi controller data structure
1246 */
1247static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1248{
1249        /* Enable the interrupts relative to the end of transfer */
1250        stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1251                                                 STM32H7_SPI_IER_TXTFIE |
1252                                                 STM32H7_SPI_IER_OVRIE |
1253                                                 STM32H7_SPI_IER_MODFIE);
1254
1255        stm32_spi_enable(spi);
1256
1257        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1258}
1259
1260/**
1261 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1262 * @spi: pointer to the spi controller data structure
1263 * @xfer: pointer to the spi_transfer structure
1264 *
1265 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1266 * in progress.
1267 */
1268static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1269                                      struct spi_transfer *xfer)
1270{
1271        struct dma_slave_config tx_dma_conf, rx_dma_conf;
1272        struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1273        unsigned long flags;
1274
1275        spin_lock_irqsave(&spi->lock, flags);
1276
1277        rx_dma_desc = NULL;
1278        if (spi->rx_buf && spi->dma_rx) {
1279                stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1280                dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1281
1282                /* Enable Rx DMA request */
1283                stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1284                                   spi->cfg->regs->dma_rx_en.mask);
1285
1286                rx_dma_desc = dmaengine_prep_slave_sg(
1287                                        spi->dma_rx, xfer->rx_sg.sgl,
1288                                        xfer->rx_sg.nents,
1289                                        rx_dma_conf.direction,
1290                                        DMA_PREP_INTERRUPT);
1291        }
1292
1293        tx_dma_desc = NULL;
1294        if (spi->tx_buf && spi->dma_tx) {
1295                stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1296                dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1297
1298                tx_dma_desc = dmaengine_prep_slave_sg(
1299                                        spi->dma_tx, xfer->tx_sg.sgl,
1300                                        xfer->tx_sg.nents,
1301                                        tx_dma_conf.direction,
1302                                        DMA_PREP_INTERRUPT);
1303        }
1304
1305        if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1306            (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1307                goto dma_desc_error;
1308
1309        if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1310                goto dma_desc_error;
1311
1312        if (rx_dma_desc) {
1313                rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1314                rx_dma_desc->callback_param = spi;
1315
1316                if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1317                        dev_err(spi->dev, "Rx DMA submit failed\n");
1318                        goto dma_desc_error;
1319                }
1320                /* Enable Rx DMA channel */
1321                dma_async_issue_pending(spi->dma_rx);
1322        }
1323
1324        if (tx_dma_desc) {
1325                if (spi->cur_comm == SPI_SIMPLEX_TX ||
1326                    spi->cur_comm == SPI_3WIRE_TX) {
1327                        tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1328                        tx_dma_desc->callback_param = spi;
1329                }
1330
1331                if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1332                        dev_err(spi->dev, "Tx DMA submit failed\n");
1333                        goto dma_submit_error;
1334                }
1335                /* Enable Tx DMA channel */
1336                dma_async_issue_pending(spi->dma_tx);
1337
1338                /* Enable Tx DMA request */
1339                stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1340                                   spi->cfg->regs->dma_tx_en.mask);
1341        }
1342
1343        spi->cfg->transfer_one_dma_start(spi);
1344
1345        spin_unlock_irqrestore(&spi->lock, flags);
1346
1347        return 1;
1348
1349dma_submit_error:
1350        if (spi->dma_rx)
1351                dmaengine_terminate_all(spi->dma_rx);
1352
1353dma_desc_error:
1354        stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1355                           spi->cfg->regs->dma_rx_en.mask);
1356
1357        spin_unlock_irqrestore(&spi->lock, flags);
1358
1359        dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1360
1361        spi->cur_usedma = false;
1362        return spi->cfg->transfer_one_irq(spi);
1363}
1364
1365/**
1366 * stm32f4_spi_set_bpw - Configure bits per word
1367 * @spi: pointer to the spi controller data structure
1368 */
1369static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1370{
1371        if (spi->cur_bpw == 16)
1372                stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1373        else
1374                stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1375}
1376
1377/**
1378 * stm32h7_spi_set_bpw - configure bits per word
1379 * @spi: pointer to the spi controller data structure
1380 */
1381static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1382{
1383        u32 bpw, fthlv;
1384        u32 cfg1_clrb = 0, cfg1_setb = 0;
1385
1386        bpw = spi->cur_bpw - 1;
1387
1388        cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1389        cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1390                     STM32H7_SPI_CFG1_DSIZE;
1391
1392        spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1393        fthlv = spi->cur_fthlv - 1;
1394
1395        cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1396        cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1397                     STM32H7_SPI_CFG1_FTHLV;
1398
1399        writel_relaxed(
1400                (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1401                 ~cfg1_clrb) | cfg1_setb,
1402                spi->base + STM32H7_SPI_CFG1);
1403}
1404
1405/**
1406 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1407 * @spi: pointer to the spi controller data structure
1408 * @mbrdiv: baud rate divisor value
1409 */
1410static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1411{
1412        u32 clrb = 0, setb = 0;
1413
1414        clrb |= spi->cfg->regs->br.mask;
1415        setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1416                spi->cfg->regs->br.mask;
1417
1418        writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1419                        ~clrb) | setb,
1420                       spi->base + spi->cfg->regs->br.reg);
1421}
1422
1423/**
1424 * stm32_spi_communication_type - return transfer communication type
1425 * @spi_dev: pointer to the spi device
1426 * @transfer: pointer to spi transfer
1427 */
1428static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1429                                                 struct spi_transfer *transfer)
1430{
1431        unsigned int type = SPI_FULL_DUPLEX;
1432
1433        if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1434                /*
1435                 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1436                 * is forbidden and unvalidated by SPI subsystem so depending
1437                 * on the valid buffer, we can determine the direction of the
1438                 * transfer.
1439                 */
1440                if (!transfer->tx_buf)
1441                        type = SPI_3WIRE_RX;
1442                else
1443                        type = SPI_3WIRE_TX;
1444        } else {
1445                if (!transfer->tx_buf)
1446                        type = SPI_SIMPLEX_RX;
1447                else if (!transfer->rx_buf)
1448                        type = SPI_SIMPLEX_TX;
1449        }
1450
1451        return type;
1452}
1453
1454/**
1455 * stm32f4_spi_set_mode - configure communication mode
1456 * @spi: pointer to the spi controller data structure
1457 * @comm_type: type of communication to configure
1458 */
1459static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1460{
1461        if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1462                stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1463                                        STM32F4_SPI_CR1_BIDIMODE |
1464                                        STM32F4_SPI_CR1_BIDIOE);
1465        } else if (comm_type == SPI_FULL_DUPLEX) {
1466                stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1467                                        STM32F4_SPI_CR1_BIDIMODE |
1468                                        STM32F4_SPI_CR1_BIDIOE);
1469        } else {
1470                return -EINVAL;
1471        }
1472
1473        return 0;
1474}
1475
1476/**
1477 * stm32h7_spi_set_mode - configure communication mode
1478 * @spi: pointer to the spi controller data structure
1479 * @comm_type: type of communication to configure
1480 */
1481static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1482{
1483        u32 mode;
1484        u32 cfg2_clrb = 0, cfg2_setb = 0;
1485
1486        if (comm_type == SPI_3WIRE_RX) {
1487                mode = STM32H7_SPI_HALF_DUPLEX;
1488                stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1489        } else if (comm_type == SPI_3WIRE_TX) {
1490                mode = STM32H7_SPI_HALF_DUPLEX;
1491                stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1492        } else if (comm_type == SPI_SIMPLEX_RX) {
1493                mode = STM32H7_SPI_SIMPLEX_RX;
1494        } else if (comm_type == SPI_SIMPLEX_TX) {
1495                mode = STM32H7_SPI_SIMPLEX_TX;
1496        } else {
1497                mode = STM32H7_SPI_FULL_DUPLEX;
1498        }
1499
1500        cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1501        cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1502                     STM32H7_SPI_CFG2_COMM;
1503
1504        writel_relaxed(
1505                (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1506                 ~cfg2_clrb) | cfg2_setb,
1507                spi->base + STM32H7_SPI_CFG2);
1508
1509        return 0;
1510}
1511
1512/**
1513 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1514 *                             consecutive data frames in master mode
1515 * @spi: pointer to the spi controller data structure
1516 * @len: transfer len
1517 */
1518static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1519{
1520        u32 cfg2_clrb = 0, cfg2_setb = 0;
1521
1522        cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1523        if ((len > 1) && (spi->cur_midi > 0)) {
1524                u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1525                u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1526                               (u32)STM32H7_SPI_CFG2_MIDI >>
1527                               STM32H7_SPI_CFG2_MIDI_SHIFT);
1528
1529                dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1530                        sck_period_ns, midi, midi * sck_period_ns);
1531                cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1532                             STM32H7_SPI_CFG2_MIDI;
1533        }
1534
1535        writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1536                        ~cfg2_clrb) | cfg2_setb,
1537                       spi->base + STM32H7_SPI_CFG2);
1538}
1539
1540/**
1541 * stm32h7_spi_number_of_data - configure number of data at current transfer
1542 * @spi: pointer to the spi controller data structure
1543 * @nb_words: transfer length (in words)
1544 */
1545static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1546{
1547        u32 cr2_clrb = 0, cr2_setb = 0;
1548
1549        if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1550                         STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1551                cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1552                cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1553                writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1554                                ~cr2_clrb) | cr2_setb,
1555                               spi->base + STM32H7_SPI_CR2);
1556        } else {
1557                return -EMSGSIZE;
1558        }
1559
1560        return 0;
1561}
1562
1563/**
1564 * stm32_spi_transfer_one_setup - common setup to transfer a single
1565 *                                spi_transfer either using DMA or
1566 *                                interrupts.
1567 * @spi: pointer to the spi controller data structure
1568 * @spi_dev: pointer to the spi device
1569 * @transfer: pointer to spi transfer
1570 */
1571static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1572                                        struct spi_device *spi_dev,
1573                                        struct spi_transfer *transfer)
1574{
1575        unsigned long flags;
1576        unsigned int comm_type;
1577        int nb_words, ret = 0;
1578
1579        spin_lock_irqsave(&spi->lock, flags);
1580
1581        if (spi->cur_bpw != transfer->bits_per_word) {
1582                spi->cur_bpw = transfer->bits_per_word;
1583                spi->cfg->set_bpw(spi);
1584        }
1585
1586        if (spi->cur_speed != transfer->speed_hz) {
1587                int mbr;
1588
1589                /* Update spi->cur_speed with real clock speed */
1590                mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1591                                            spi->cfg->baud_rate_div_min,
1592                                            spi->cfg->baud_rate_div_max);
1593                if (mbr < 0) {
1594                        ret = mbr;
1595                        goto out;
1596                }
1597
1598                transfer->speed_hz = spi->cur_speed;
1599                stm32_spi_set_mbr(spi, mbr);
1600        }
1601
1602        comm_type = stm32_spi_communication_type(spi_dev, transfer);
1603        if (spi->cur_comm != comm_type) {
1604                ret = spi->cfg->set_mode(spi, comm_type);
1605
1606                if (ret < 0)
1607                        goto out;
1608
1609                spi->cur_comm = comm_type;
1610        }
1611
1612        if (spi->cfg->set_data_idleness)
1613                spi->cfg->set_data_idleness(spi, transfer->len);
1614
1615        if (spi->cur_bpw <= 8)
1616                nb_words = transfer->len;
1617        else if (spi->cur_bpw <= 16)
1618                nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1619        else
1620                nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1621
1622        if (spi->cfg->set_number_of_data) {
1623                ret = spi->cfg->set_number_of_data(spi, nb_words);
1624                if (ret < 0)
1625                        goto out;
1626        }
1627
1628        spi->cur_xferlen = transfer->len;
1629
1630        dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1631                spi->cur_comm);
1632        dev_dbg(spi->dev,
1633                "data frame of %d-bit, data packet of %d data frames\n",
1634                spi->cur_bpw, spi->cur_fthlv);
1635        dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1636        dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1637                spi->cur_xferlen, nb_words);
1638        dev_dbg(spi->dev, "dma %s\n",
1639                (spi->cur_usedma) ? "enabled" : "disabled");
1640
1641out:
1642        spin_unlock_irqrestore(&spi->lock, flags);
1643
1644        return ret;
1645}
1646
1647/**
1648 * stm32_spi_transfer_one - transfer a single spi_transfer
1649 * @master: controller master interface
1650 * @spi_dev: pointer to the spi device
1651 * @transfer: pointer to spi transfer
1652 *
1653 * It must return 0 if the transfer is finished or 1 if the transfer is still
1654 * in progress.
1655 */
1656static int stm32_spi_transfer_one(struct spi_master *master,
1657                                  struct spi_device *spi_dev,
1658                                  struct spi_transfer *transfer)
1659{
1660        struct stm32_spi *spi = spi_master_get_devdata(master);
1661        int ret;
1662
1663        spi->tx_buf = transfer->tx_buf;
1664        spi->rx_buf = transfer->rx_buf;
1665        spi->tx_len = spi->tx_buf ? transfer->len : 0;
1666        spi->rx_len = spi->rx_buf ? transfer->len : 0;
1667
1668        spi->cur_usedma = (master->can_dma &&
1669                           master->can_dma(master, spi_dev, transfer));
1670
1671        ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1672        if (ret) {
1673                dev_err(spi->dev, "SPI transfer setup failed\n");
1674                return ret;
1675        }
1676
1677        if (spi->cur_usedma)
1678                return stm32_spi_transfer_one_dma(spi, transfer);
1679        else
1680                return spi->cfg->transfer_one_irq(spi);
1681}
1682
1683/**
1684 * stm32_spi_unprepare_msg - relax the hardware
1685 * @master: controller master interface
1686 * @msg: pointer to the spi message
1687 */
1688static int stm32_spi_unprepare_msg(struct spi_master *master,
1689                                   struct spi_message *msg)
1690{
1691        struct stm32_spi *spi = spi_master_get_devdata(master);
1692
1693        spi->cfg->disable(spi);
1694
1695        return 0;
1696}
1697
1698/**
1699 * stm32f4_spi_config - Configure SPI controller as SPI master
1700 * @spi: pointer to the spi controller data structure
1701 */
1702static int stm32f4_spi_config(struct stm32_spi *spi)
1703{
1704        unsigned long flags;
1705
1706        spin_lock_irqsave(&spi->lock, flags);
1707
1708        /* Ensure I2SMOD bit is kept cleared */
1709        stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1710                           STM32F4_SPI_I2SCFGR_I2SMOD);
1711
1712        /*
1713         * - SS input value high
1714         * - transmitter half duplex direction
1715         * - Set the master mode (default Motorola mode)
1716         * - Consider 1 master/n slaves configuration and
1717         *   SS input value is determined by the SSI bit
1718         */
1719        stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1720                                                 STM32F4_SPI_CR1_BIDIOE |
1721                                                 STM32F4_SPI_CR1_MSTR |
1722                                                 STM32F4_SPI_CR1_SSM);
1723
1724        spin_unlock_irqrestore(&spi->lock, flags);
1725
1726        return 0;
1727}
1728
1729/**
1730 * stm32h7_spi_config - Configure SPI controller as SPI master
1731 * @spi: pointer to the spi controller data structure
1732 */
1733static int stm32h7_spi_config(struct stm32_spi *spi)
1734{
1735        unsigned long flags;
1736
1737        spin_lock_irqsave(&spi->lock, flags);
1738
1739        /* Ensure I2SMOD bit is kept cleared */
1740        stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1741                           STM32H7_SPI_I2SCFGR_I2SMOD);
1742
1743        /*
1744         * - SS input value high
1745         * - transmitter half duplex direction
1746         * - automatic communication suspend when RX-Fifo is full
1747         */
1748        stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1749                                                 STM32H7_SPI_CR1_HDDIR |
1750                                                 STM32H7_SPI_CR1_MASRX);
1751
1752        /*
1753         * - Set the master mode (default Motorola mode)
1754         * - Consider 1 master/n slaves configuration and
1755         *   SS input value is determined by the SSI bit
1756         * - keep control of all associated GPIOs
1757         */
1758        stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1759                                                  STM32H7_SPI_CFG2_SSM |
1760                                                  STM32H7_SPI_CFG2_AFCNTR);
1761
1762        spin_unlock_irqrestore(&spi->lock, flags);
1763
1764        return 0;
1765}
1766
1767static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1768        .regs = &stm32f4_spi_regspec,
1769        .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1770        .disable = stm32f4_spi_disable,
1771        .config = stm32f4_spi_config,
1772        .set_bpw = stm32f4_spi_set_bpw,
1773        .set_mode = stm32f4_spi_set_mode,
1774        .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1775        .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1776        .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1777        .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1778        .irq_handler_event = stm32f4_spi_irq_event,
1779        .irq_handler_thread = stm32f4_spi_irq_thread,
1780        .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1781        .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1782        .has_fifo = false,
1783};
1784
1785static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1786        .regs = &stm32h7_spi_regspec,
1787        .get_fifo_size = stm32h7_spi_get_fifo_size,
1788        .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1789        .disable = stm32h7_spi_disable,
1790        .config = stm32h7_spi_config,
1791        .set_bpw = stm32h7_spi_set_bpw,
1792        .set_mode = stm32h7_spi_set_mode,
1793        .set_data_idleness = stm32h7_spi_data_idleness,
1794        .set_number_of_data = stm32h7_spi_number_of_data,
1795        .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1796        .dma_rx_cb = stm32h7_spi_dma_cb,
1797        .dma_tx_cb = stm32h7_spi_dma_cb,
1798        .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1799        .irq_handler_thread = stm32h7_spi_irq_thread,
1800        .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1801        .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1802        .has_fifo = true,
1803};
1804
1805static const struct of_device_id stm32_spi_of_match[] = {
1806        { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1807        { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1808        {},
1809};
1810MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1811
1812static int stm32_spi_probe(struct platform_device *pdev)
1813{
1814        struct spi_master *master;
1815        struct stm32_spi *spi;
1816        struct resource *res;
1817        int ret;
1818
1819        master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1820        if (!master) {
1821                dev_err(&pdev->dev, "spi master allocation failed\n");
1822                return -ENOMEM;
1823        }
1824        platform_set_drvdata(pdev, master);
1825
1826        spi = spi_master_get_devdata(master);
1827        spi->dev = &pdev->dev;
1828        spi->master = master;
1829        spin_lock_init(&spi->lock);
1830
1831        spi->cfg = (const struct stm32_spi_cfg *)
1832                of_match_device(pdev->dev.driver->of_match_table,
1833                                &pdev->dev)->data;
1834
1835        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1836        spi->base = devm_ioremap_resource(&pdev->dev, res);
1837        if (IS_ERR(spi->base)) {
1838                ret = PTR_ERR(spi->base);
1839                goto err_master_put;
1840        }
1841
1842        spi->phys_addr = (dma_addr_t)res->start;
1843
1844        spi->irq = platform_get_irq(pdev, 0);
1845        if (spi->irq <= 0) {
1846                ret = spi->irq;
1847                if (ret != -EPROBE_DEFER)
1848                        dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1849                goto err_master_put;
1850        }
1851        ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1852                                        spi->cfg->irq_handler_event,
1853                                        spi->cfg->irq_handler_thread,
1854                                        IRQF_ONESHOT, pdev->name, master);
1855        if (ret) {
1856                dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1857                        ret);
1858                goto err_master_put;
1859        }
1860
1861        spi->clk = devm_clk_get(&pdev->dev, NULL);
1862        if (IS_ERR(spi->clk)) {
1863                ret = PTR_ERR(spi->clk);
1864                dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1865                goto err_master_put;
1866        }
1867
1868        ret = clk_prepare_enable(spi->clk);
1869        if (ret) {
1870                dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1871                goto err_master_put;
1872        }
1873        spi->clk_rate = clk_get_rate(spi->clk);
1874        if (!spi->clk_rate) {
1875                dev_err(&pdev->dev, "clk rate = 0\n");
1876                ret = -EINVAL;
1877                goto err_clk_disable;
1878        }
1879
1880        spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1881        if (!IS_ERR(spi->rst)) {
1882                reset_control_assert(spi->rst);
1883                udelay(2);
1884                reset_control_deassert(spi->rst);
1885        }
1886
1887        if (spi->cfg->has_fifo)
1888                spi->fifo_size = spi->cfg->get_fifo_size(spi);
1889
1890        ret = spi->cfg->config(spi);
1891        if (ret) {
1892                dev_err(&pdev->dev, "controller configuration failed: %d\n",
1893                        ret);
1894                goto err_clk_disable;
1895        }
1896
1897        master->dev.of_node = pdev->dev.of_node;
1898        master->auto_runtime_pm = true;
1899        master->bus_num = pdev->id;
1900        master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1901                            SPI_3WIRE;
1902        master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1903        master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1904        master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1905        master->use_gpio_descriptors = true;
1906        master->prepare_message = stm32_spi_prepare_msg;
1907        master->transfer_one = stm32_spi_transfer_one;
1908        master->unprepare_message = stm32_spi_unprepare_msg;
1909
1910        spi->dma_tx = dma_request_chan(spi->dev, "tx");
1911        if (IS_ERR(spi->dma_tx)) {
1912                ret = PTR_ERR(spi->dma_tx);
1913                spi->dma_tx = NULL;
1914                if (ret == -EPROBE_DEFER)
1915                        goto err_clk_disable;
1916
1917                dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1918        } else {
1919                master->dma_tx = spi->dma_tx;
1920        }
1921
1922        spi->dma_rx = dma_request_chan(spi->dev, "rx");
1923        if (IS_ERR(spi->dma_rx)) {
1924                ret = PTR_ERR(spi->dma_rx);
1925                spi->dma_rx = NULL;
1926                if (ret == -EPROBE_DEFER)
1927                        goto err_dma_release;
1928
1929                dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1930        } else {
1931                master->dma_rx = spi->dma_rx;
1932        }
1933
1934        if (spi->dma_tx || spi->dma_rx)
1935                master->can_dma = stm32_spi_can_dma;
1936
1937        pm_runtime_set_active(&pdev->dev);
1938        pm_runtime_enable(&pdev->dev);
1939
1940        ret = devm_spi_register_master(&pdev->dev, master);
1941        if (ret) {
1942                dev_err(&pdev->dev, "spi master registration failed: %d\n",
1943                        ret);
1944                goto err_pm_disable;
1945        }
1946
1947        if (!master->cs_gpiods) {
1948                dev_err(&pdev->dev, "no CS gpios available\n");
1949                ret = -EINVAL;
1950                goto err_pm_disable;
1951        }
1952
1953        dev_info(&pdev->dev, "driver initialized\n");
1954
1955        return 0;
1956
1957err_pm_disable:
1958        pm_runtime_disable(&pdev->dev);
1959err_dma_release:
1960        if (spi->dma_tx)
1961                dma_release_channel(spi->dma_tx);
1962        if (spi->dma_rx)
1963                dma_release_channel(spi->dma_rx);
1964err_clk_disable:
1965        clk_disable_unprepare(spi->clk);
1966err_master_put:
1967        spi_master_put(master);
1968
1969        return ret;
1970}
1971
1972static int stm32_spi_remove(struct platform_device *pdev)
1973{
1974        struct spi_master *master = platform_get_drvdata(pdev);
1975        struct stm32_spi *spi = spi_master_get_devdata(master);
1976
1977        spi->cfg->disable(spi);
1978
1979        if (master->dma_tx)
1980                dma_release_channel(master->dma_tx);
1981        if (master->dma_rx)
1982                dma_release_channel(master->dma_rx);
1983
1984        clk_disable_unprepare(spi->clk);
1985
1986        pm_runtime_disable(&pdev->dev);
1987
1988        return 0;
1989}
1990
1991#ifdef CONFIG_PM
1992static int stm32_spi_runtime_suspend(struct device *dev)
1993{
1994        struct spi_master *master = dev_get_drvdata(dev);
1995        struct stm32_spi *spi = spi_master_get_devdata(master);
1996
1997        clk_disable_unprepare(spi->clk);
1998
1999        return 0;
2000}
2001
2002static int stm32_spi_runtime_resume(struct device *dev)
2003{
2004        struct spi_master *master = dev_get_drvdata(dev);
2005        struct stm32_spi *spi = spi_master_get_devdata(master);
2006
2007        return clk_prepare_enable(spi->clk);
2008}
2009#endif
2010
2011#ifdef CONFIG_PM_SLEEP
2012static int stm32_spi_suspend(struct device *dev)
2013{
2014        struct spi_master *master = dev_get_drvdata(dev);
2015        int ret;
2016
2017        ret = spi_master_suspend(master);
2018        if (ret)
2019                return ret;
2020
2021        return pm_runtime_force_suspend(dev);
2022}
2023
2024static int stm32_spi_resume(struct device *dev)
2025{
2026        struct spi_master *master = dev_get_drvdata(dev);
2027        struct stm32_spi *spi = spi_master_get_devdata(master);
2028        int ret;
2029
2030        ret = pm_runtime_force_resume(dev);
2031        if (ret)
2032                return ret;
2033
2034        ret = spi_master_resume(master);
2035        if (ret)
2036                clk_disable_unprepare(spi->clk);
2037
2038        return ret;
2039}
2040#endif
2041
2042static const struct dev_pm_ops stm32_spi_pm_ops = {
2043        SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2044        SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2045                           stm32_spi_runtime_resume, NULL)
2046};
2047
2048static struct platform_driver stm32_spi_driver = {
2049        .probe = stm32_spi_probe,
2050        .remove = stm32_spi_remove,
2051        .driver = {
2052                .name = DRIVER_NAME,
2053                .pm = &stm32_spi_pm_ops,
2054                .of_match_table = stm32_spi_of_match,
2055        },
2056};
2057
2058module_platform_driver(stm32_spi_driver);
2059
2060MODULE_ALIAS("platform:" DRIVER_NAME);
2061MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2062MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2063MODULE_LICENSE("GPL v2");
2064