linux/drivers/spi/spi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48        struct spi_device       *spi = to_spi_device(dev);
  49
  50        /* spi controllers may cleanup for released devices */
  51        if (spi->controller->cleanup)
  52                spi->controller->cleanup(spi);
  53
  54        spi_controller_put(spi->controller);
  55        kfree(spi->driver_override);
  56        kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62        const struct spi_device *spi = to_spi_device(dev);
  63        int len;
  64
  65        len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66        if (len != -ENODEV)
  67                return len;
  68
  69        return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static ssize_t driver_override_store(struct device *dev,
  74                                     struct device_attribute *a,
  75                                     const char *buf, size_t count)
  76{
  77        struct spi_device *spi = to_spi_device(dev);
  78        const char *end = memchr(buf, '\n', count);
  79        const size_t len = end ? end - buf : count;
  80        const char *driver_override, *old;
  81
  82        /* We need to keep extra room for a newline when displaying value */
  83        if (len >= (PAGE_SIZE - 1))
  84                return -EINVAL;
  85
  86        driver_override = kstrndup(buf, len, GFP_KERNEL);
  87        if (!driver_override)
  88                return -ENOMEM;
  89
  90        device_lock(dev);
  91        old = spi->driver_override;
  92        if (len) {
  93                spi->driver_override = driver_override;
  94        } else {
  95                /* Empty string, disable driver override */
  96                spi->driver_override = NULL;
  97                kfree(driver_override);
  98        }
  99        device_unlock(dev);
 100        kfree(old);
 101
 102        return count;
 103}
 104
 105static ssize_t driver_override_show(struct device *dev,
 106                                    struct device_attribute *a, char *buf)
 107{
 108        const struct spi_device *spi = to_spi_device(dev);
 109        ssize_t len;
 110
 111        device_lock(dev);
 112        len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 113        device_unlock(dev);
 114        return len;
 115}
 116static DEVICE_ATTR_RW(driver_override);
 117
 118#define SPI_STATISTICS_ATTRS(field, file)                               \
 119static ssize_t spi_controller_##field##_show(struct device *dev,        \
 120                                             struct device_attribute *attr, \
 121                                             char *buf)                 \
 122{                                                                       \
 123        struct spi_controller *ctlr = container_of(dev,                 \
 124                                         struct spi_controller, dev);   \
 125        return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
 126}                                                                       \
 127static struct device_attribute dev_attr_spi_controller_##field = {      \
 128        .attr = { .name = file, .mode = 0444 },                         \
 129        .show = spi_controller_##field##_show,                          \
 130};                                                                      \
 131static ssize_t spi_device_##field##_show(struct device *dev,            \
 132                                         struct device_attribute *attr, \
 133                                        char *buf)                      \
 134{                                                                       \
 135        struct spi_device *spi = to_spi_device(dev);                    \
 136        return spi_statistics_##field##_show(&spi->statistics, buf);    \
 137}                                                                       \
 138static struct device_attribute dev_attr_spi_device_##field = {          \
 139        .attr = { .name = file, .mode = 0444 },                         \
 140        .show = spi_device_##field##_show,                              \
 141}
 142
 143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
 144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 145                                            char *buf)                  \
 146{                                                                       \
 147        unsigned long flags;                                            \
 148        ssize_t len;                                                    \
 149        spin_lock_irqsave(&stat->lock, flags);                          \
 150        len = sprintf(buf, format_string, stat->field);                 \
 151        spin_unlock_irqrestore(&stat->lock, flags);                     \
 152        return len;                                                     \
 153}                                                                       \
 154SPI_STATISTICS_ATTRS(name, file)
 155
 156#define SPI_STATISTICS_SHOW(field, format_string)                       \
 157        SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
 158                                 field, format_string)
 159
 160SPI_STATISTICS_SHOW(messages, "%lu");
 161SPI_STATISTICS_SHOW(transfers, "%lu");
 162SPI_STATISTICS_SHOW(errors, "%lu");
 163SPI_STATISTICS_SHOW(timedout, "%lu");
 164
 165SPI_STATISTICS_SHOW(spi_sync, "%lu");
 166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 167SPI_STATISTICS_SHOW(spi_async, "%lu");
 168
 169SPI_STATISTICS_SHOW(bytes, "%llu");
 170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 172
 173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
 174        SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
 175                                 "transfer_bytes_histo_" number,        \
 176                                 transfer_bytes_histo[index],  "%lu")
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 194
 195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 196
 197static struct attribute *spi_dev_attrs[] = {
 198        &dev_attr_modalias.attr,
 199        &dev_attr_driver_override.attr,
 200        NULL,
 201};
 202
 203static const struct attribute_group spi_dev_group = {
 204        .attrs  = spi_dev_attrs,
 205};
 206
 207static struct attribute *spi_device_statistics_attrs[] = {
 208        &dev_attr_spi_device_messages.attr,
 209        &dev_attr_spi_device_transfers.attr,
 210        &dev_attr_spi_device_errors.attr,
 211        &dev_attr_spi_device_timedout.attr,
 212        &dev_attr_spi_device_spi_sync.attr,
 213        &dev_attr_spi_device_spi_sync_immediate.attr,
 214        &dev_attr_spi_device_spi_async.attr,
 215        &dev_attr_spi_device_bytes.attr,
 216        &dev_attr_spi_device_bytes_rx.attr,
 217        &dev_attr_spi_device_bytes_tx.attr,
 218        &dev_attr_spi_device_transfer_bytes_histo0.attr,
 219        &dev_attr_spi_device_transfer_bytes_histo1.attr,
 220        &dev_attr_spi_device_transfer_bytes_histo2.attr,
 221        &dev_attr_spi_device_transfer_bytes_histo3.attr,
 222        &dev_attr_spi_device_transfer_bytes_histo4.attr,
 223        &dev_attr_spi_device_transfer_bytes_histo5.attr,
 224        &dev_attr_spi_device_transfer_bytes_histo6.attr,
 225        &dev_attr_spi_device_transfer_bytes_histo7.attr,
 226        &dev_attr_spi_device_transfer_bytes_histo8.attr,
 227        &dev_attr_spi_device_transfer_bytes_histo9.attr,
 228        &dev_attr_spi_device_transfer_bytes_histo10.attr,
 229        &dev_attr_spi_device_transfer_bytes_histo11.attr,
 230        &dev_attr_spi_device_transfer_bytes_histo12.attr,
 231        &dev_attr_spi_device_transfer_bytes_histo13.attr,
 232        &dev_attr_spi_device_transfer_bytes_histo14.attr,
 233        &dev_attr_spi_device_transfer_bytes_histo15.attr,
 234        &dev_attr_spi_device_transfer_bytes_histo16.attr,
 235        &dev_attr_spi_device_transfers_split_maxsize.attr,
 236        NULL,
 237};
 238
 239static const struct attribute_group spi_device_statistics_group = {
 240        .name  = "statistics",
 241        .attrs  = spi_device_statistics_attrs,
 242};
 243
 244static const struct attribute_group *spi_dev_groups[] = {
 245        &spi_dev_group,
 246        &spi_device_statistics_group,
 247        NULL,
 248};
 249
 250static struct attribute *spi_controller_statistics_attrs[] = {
 251        &dev_attr_spi_controller_messages.attr,
 252        &dev_attr_spi_controller_transfers.attr,
 253        &dev_attr_spi_controller_errors.attr,
 254        &dev_attr_spi_controller_timedout.attr,
 255        &dev_attr_spi_controller_spi_sync.attr,
 256        &dev_attr_spi_controller_spi_sync_immediate.attr,
 257        &dev_attr_spi_controller_spi_async.attr,
 258        &dev_attr_spi_controller_bytes.attr,
 259        &dev_attr_spi_controller_bytes_rx.attr,
 260        &dev_attr_spi_controller_bytes_tx.attr,
 261        &dev_attr_spi_controller_transfer_bytes_histo0.attr,
 262        &dev_attr_spi_controller_transfer_bytes_histo1.attr,
 263        &dev_attr_spi_controller_transfer_bytes_histo2.attr,
 264        &dev_attr_spi_controller_transfer_bytes_histo3.attr,
 265        &dev_attr_spi_controller_transfer_bytes_histo4.attr,
 266        &dev_attr_spi_controller_transfer_bytes_histo5.attr,
 267        &dev_attr_spi_controller_transfer_bytes_histo6.attr,
 268        &dev_attr_spi_controller_transfer_bytes_histo7.attr,
 269        &dev_attr_spi_controller_transfer_bytes_histo8.attr,
 270        &dev_attr_spi_controller_transfer_bytes_histo9.attr,
 271        &dev_attr_spi_controller_transfer_bytes_histo10.attr,
 272        &dev_attr_spi_controller_transfer_bytes_histo11.attr,
 273        &dev_attr_spi_controller_transfer_bytes_histo12.attr,
 274        &dev_attr_spi_controller_transfer_bytes_histo13.attr,
 275        &dev_attr_spi_controller_transfer_bytes_histo14.attr,
 276        &dev_attr_spi_controller_transfer_bytes_histo15.attr,
 277        &dev_attr_spi_controller_transfer_bytes_histo16.attr,
 278        &dev_attr_spi_controller_transfers_split_maxsize.attr,
 279        NULL,
 280};
 281
 282static const struct attribute_group spi_controller_statistics_group = {
 283        .name  = "statistics",
 284        .attrs  = spi_controller_statistics_attrs,
 285};
 286
 287static const struct attribute_group *spi_master_groups[] = {
 288        &spi_controller_statistics_group,
 289        NULL,
 290};
 291
 292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 293                                       struct spi_transfer *xfer,
 294                                       struct spi_controller *ctlr)
 295{
 296        unsigned long flags;
 297        int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 298
 299        if (l2len < 0)
 300                l2len = 0;
 301
 302        spin_lock_irqsave(&stats->lock, flags);
 303
 304        stats->transfers++;
 305        stats->transfer_bytes_histo[l2len]++;
 306
 307        stats->bytes += xfer->len;
 308        if ((xfer->tx_buf) &&
 309            (xfer->tx_buf != ctlr->dummy_tx))
 310                stats->bytes_tx += xfer->len;
 311        if ((xfer->rx_buf) &&
 312            (xfer->rx_buf != ctlr->dummy_rx))
 313                stats->bytes_rx += xfer->len;
 314
 315        spin_unlock_irqrestore(&stats->lock, flags);
 316}
 317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 318
 319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 320 * and the sysfs version makes coldplug work too.
 321 */
 322
 323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 324                                                const struct spi_device *sdev)
 325{
 326        while (id->name[0]) {
 327                if (!strcmp(sdev->modalias, id->name))
 328                        return id;
 329                id++;
 330        }
 331        return NULL;
 332}
 333
 334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 335{
 336        const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 337
 338        return spi_match_id(sdrv->id_table, sdev);
 339}
 340EXPORT_SYMBOL_GPL(spi_get_device_id);
 341
 342static int spi_match_device(struct device *dev, struct device_driver *drv)
 343{
 344        const struct spi_device *spi = to_spi_device(dev);
 345        const struct spi_driver *sdrv = to_spi_driver(drv);
 346
 347        /* Check override first, and if set, only use the named driver */
 348        if (spi->driver_override)
 349                return strcmp(spi->driver_override, drv->name) == 0;
 350
 351        /* Attempt an OF style match */
 352        if (of_driver_match_device(dev, drv))
 353                return 1;
 354
 355        /* Then try ACPI */
 356        if (acpi_driver_match_device(dev, drv))
 357                return 1;
 358
 359        if (sdrv->id_table)
 360                return !!spi_match_id(sdrv->id_table, spi);
 361
 362        return strcmp(spi->modalias, drv->name) == 0;
 363}
 364
 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 366{
 367        const struct spi_device         *spi = to_spi_device(dev);
 368        int rc;
 369
 370        rc = acpi_device_uevent_modalias(dev, env);
 371        if (rc != -ENODEV)
 372                return rc;
 373
 374        return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 375}
 376
 377struct bus_type spi_bus_type = {
 378        .name           = "spi",
 379        .dev_groups     = spi_dev_groups,
 380        .match          = spi_match_device,
 381        .uevent         = spi_uevent,
 382};
 383EXPORT_SYMBOL_GPL(spi_bus_type);
 384
 385
 386static int spi_drv_probe(struct device *dev)
 387{
 388        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 389        struct spi_device               *spi = to_spi_device(dev);
 390        int ret;
 391
 392        ret = of_clk_set_defaults(dev->of_node, false);
 393        if (ret)
 394                return ret;
 395
 396        if (dev->of_node) {
 397                spi->irq = of_irq_get(dev->of_node, 0);
 398                if (spi->irq == -EPROBE_DEFER)
 399                        return -EPROBE_DEFER;
 400                if (spi->irq < 0)
 401                        spi->irq = 0;
 402        }
 403
 404        ret = dev_pm_domain_attach(dev, true);
 405        if (ret)
 406                return ret;
 407
 408        ret = sdrv->probe(spi);
 409        if (ret)
 410                dev_pm_domain_detach(dev, true);
 411
 412        return ret;
 413}
 414
 415static int spi_drv_remove(struct device *dev)
 416{
 417        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 418        int ret;
 419
 420        ret = sdrv->remove(to_spi_device(dev));
 421        dev_pm_domain_detach(dev, true);
 422
 423        return ret;
 424}
 425
 426static void spi_drv_shutdown(struct device *dev)
 427{
 428        const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
 429
 430        sdrv->shutdown(to_spi_device(dev));
 431}
 432
 433/**
 434 * __spi_register_driver - register a SPI driver
 435 * @owner: owner module of the driver to register
 436 * @sdrv: the driver to register
 437 * Context: can sleep
 438 *
 439 * Return: zero on success, else a negative error code.
 440 */
 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 442{
 443        sdrv->driver.owner = owner;
 444        sdrv->driver.bus = &spi_bus_type;
 445        if (sdrv->probe)
 446                sdrv->driver.probe = spi_drv_probe;
 447        if (sdrv->remove)
 448                sdrv->driver.remove = spi_drv_remove;
 449        if (sdrv->shutdown)
 450                sdrv->driver.shutdown = spi_drv_shutdown;
 451        return driver_register(&sdrv->driver);
 452}
 453EXPORT_SYMBOL_GPL(__spi_register_driver);
 454
 455/*-------------------------------------------------------------------------*/
 456
 457/* SPI devices should normally not be created by SPI device drivers; that
 458 * would make them board-specific.  Similarly with SPI controller drivers.
 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 460 * with other readonly (flashable) information about mainboard devices.
 461 */
 462
 463struct boardinfo {
 464        struct list_head        list;
 465        struct spi_board_info   board_info;
 466};
 467
 468static LIST_HEAD(board_list);
 469static LIST_HEAD(spi_controller_list);
 470
 471/*
 472 * Used to protect add/del operation for board_info list and
 473 * spi_controller list, and their matching process
 474 * also used to protect object of type struct idr
 475 */
 476static DEFINE_MUTEX(board_lock);
 477
 478/**
 479 * spi_alloc_device - Allocate a new SPI device
 480 * @ctlr: Controller to which device is connected
 481 * Context: can sleep
 482 *
 483 * Allows a driver to allocate and initialize a spi_device without
 484 * registering it immediately.  This allows a driver to directly
 485 * fill the spi_device with device parameters before calling
 486 * spi_add_device() on it.
 487 *
 488 * Caller is responsible to call spi_add_device() on the returned
 489 * spi_device structure to add it to the SPI controller.  If the caller
 490 * needs to discard the spi_device without adding it, then it should
 491 * call spi_dev_put() on it.
 492 *
 493 * Return: a pointer to the new device, or NULL.
 494 */
 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 496{
 497        struct spi_device       *spi;
 498
 499        if (!spi_controller_get(ctlr))
 500                return NULL;
 501
 502        spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 503        if (!spi) {
 504                spi_controller_put(ctlr);
 505                return NULL;
 506        }
 507
 508        spi->master = spi->controller = ctlr;
 509        spi->dev.parent = &ctlr->dev;
 510        spi->dev.bus = &spi_bus_type;
 511        spi->dev.release = spidev_release;
 512        spi->cs_gpio = -ENOENT;
 513        spi->mode = ctlr->buswidth_override_bits;
 514
 515        spin_lock_init(&spi->statistics.lock);
 516
 517        device_initialize(&spi->dev);
 518        return spi;
 519}
 520EXPORT_SYMBOL_GPL(spi_alloc_device);
 521
 522static void spi_dev_set_name(struct spi_device *spi)
 523{
 524        struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 525
 526        if (adev) {
 527                dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 528                return;
 529        }
 530
 531        dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 532                     spi->chip_select);
 533}
 534
 535static int spi_dev_check(struct device *dev, void *data)
 536{
 537        struct spi_device *spi = to_spi_device(dev);
 538        struct spi_device *new_spi = data;
 539
 540        if (spi->controller == new_spi->controller &&
 541            spi->chip_select == new_spi->chip_select)
 542                return -EBUSY;
 543        return 0;
 544}
 545
 546/**
 547 * spi_add_device - Add spi_device allocated with spi_alloc_device
 548 * @spi: spi_device to register
 549 *
 550 * Companion function to spi_alloc_device.  Devices allocated with
 551 * spi_alloc_device can be added onto the spi bus with this function.
 552 *
 553 * Return: 0 on success; negative errno on failure
 554 */
 555int spi_add_device(struct spi_device *spi)
 556{
 557        static DEFINE_MUTEX(spi_add_lock);
 558        struct spi_controller *ctlr = spi->controller;
 559        struct device *dev = ctlr->dev.parent;
 560        int status;
 561
 562        /* Chipselects are numbered 0..max; validate. */
 563        if (spi->chip_select >= ctlr->num_chipselect) {
 564                dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 565                        ctlr->num_chipselect);
 566                return -EINVAL;
 567        }
 568
 569        /* Set the bus ID string */
 570        spi_dev_set_name(spi);
 571
 572        /* We need to make sure there's no other device with this
 573         * chipselect **BEFORE** we call setup(), else we'll trash
 574         * its configuration.  Lock against concurrent add() calls.
 575         */
 576        mutex_lock(&spi_add_lock);
 577
 578        status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 579        if (status) {
 580                dev_err(dev, "chipselect %d already in use\n",
 581                                spi->chip_select);
 582                goto done;
 583        }
 584
 585        /* Descriptors take precedence */
 586        if (ctlr->cs_gpiods)
 587                spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 588        else if (ctlr->cs_gpios)
 589                spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 590
 591        /* Drivers may modify this initial i/o setup, but will
 592         * normally rely on the device being setup.  Devices
 593         * using SPI_CS_HIGH can't coexist well otherwise...
 594         */
 595        status = spi_setup(spi);
 596        if (status < 0) {
 597                dev_err(dev, "can't setup %s, status %d\n",
 598                                dev_name(&spi->dev), status);
 599                goto done;
 600        }
 601
 602        /* Device may be bound to an active driver when this returns */
 603        status = device_add(&spi->dev);
 604        if (status < 0)
 605                dev_err(dev, "can't add %s, status %d\n",
 606                                dev_name(&spi->dev), status);
 607        else
 608                dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 609
 610done:
 611        mutex_unlock(&spi_add_lock);
 612        return status;
 613}
 614EXPORT_SYMBOL_GPL(spi_add_device);
 615
 616/**
 617 * spi_new_device - instantiate one new SPI device
 618 * @ctlr: Controller to which device is connected
 619 * @chip: Describes the SPI device
 620 * Context: can sleep
 621 *
 622 * On typical mainboards, this is purely internal; and it's not needed
 623 * after board init creates the hard-wired devices.  Some development
 624 * platforms may not be able to use spi_register_board_info though, and
 625 * this is exported so that for example a USB or parport based adapter
 626 * driver could add devices (which it would learn about out-of-band).
 627 *
 628 * Return: the new device, or NULL.
 629 */
 630struct spi_device *spi_new_device(struct spi_controller *ctlr,
 631                                  struct spi_board_info *chip)
 632{
 633        struct spi_device       *proxy;
 634        int                     status;
 635
 636        /* NOTE:  caller did any chip->bus_num checks necessary.
 637         *
 638         * Also, unless we change the return value convention to use
 639         * error-or-pointer (not NULL-or-pointer), troubleshootability
 640         * suggests syslogged diagnostics are best here (ugh).
 641         */
 642
 643        proxy = spi_alloc_device(ctlr);
 644        if (!proxy)
 645                return NULL;
 646
 647        WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 648
 649        proxy->chip_select = chip->chip_select;
 650        proxy->max_speed_hz = chip->max_speed_hz;
 651        proxy->mode = chip->mode;
 652        proxy->irq = chip->irq;
 653        strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 654        proxy->dev.platform_data = (void *) chip->platform_data;
 655        proxy->controller_data = chip->controller_data;
 656        proxy->controller_state = NULL;
 657
 658        if (chip->properties) {
 659                status = device_add_properties(&proxy->dev, chip->properties);
 660                if (status) {
 661                        dev_err(&ctlr->dev,
 662                                "failed to add properties to '%s': %d\n",
 663                                chip->modalias, status);
 664                        goto err_dev_put;
 665                }
 666        }
 667
 668        status = spi_add_device(proxy);
 669        if (status < 0)
 670                goto err_remove_props;
 671
 672        return proxy;
 673
 674err_remove_props:
 675        if (chip->properties)
 676                device_remove_properties(&proxy->dev);
 677err_dev_put:
 678        spi_dev_put(proxy);
 679        return NULL;
 680}
 681EXPORT_SYMBOL_GPL(spi_new_device);
 682
 683/**
 684 * spi_unregister_device - unregister a single SPI device
 685 * @spi: spi_device to unregister
 686 *
 687 * Start making the passed SPI device vanish. Normally this would be handled
 688 * by spi_unregister_controller().
 689 */
 690void spi_unregister_device(struct spi_device *spi)
 691{
 692        if (!spi)
 693                return;
 694
 695        if (spi->dev.of_node) {
 696                of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 697                of_node_put(spi->dev.of_node);
 698        }
 699        if (ACPI_COMPANION(&spi->dev))
 700                acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 701        device_unregister(&spi->dev);
 702}
 703EXPORT_SYMBOL_GPL(spi_unregister_device);
 704
 705static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 706                                              struct spi_board_info *bi)
 707{
 708        struct spi_device *dev;
 709
 710        if (ctlr->bus_num != bi->bus_num)
 711                return;
 712
 713        dev = spi_new_device(ctlr, bi);
 714        if (!dev)
 715                dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 716                        bi->modalias);
 717}
 718
 719/**
 720 * spi_register_board_info - register SPI devices for a given board
 721 * @info: array of chip descriptors
 722 * @n: how many descriptors are provided
 723 * Context: can sleep
 724 *
 725 * Board-specific early init code calls this (probably during arch_initcall)
 726 * with segments of the SPI device table.  Any device nodes are created later,
 727 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 728 * this table of devices forever, so that reloading a controller driver will
 729 * not make Linux forget about these hard-wired devices.
 730 *
 731 * Other code can also call this, e.g. a particular add-on board might provide
 732 * SPI devices through its expansion connector, so code initializing that board
 733 * would naturally declare its SPI devices.
 734 *
 735 * The board info passed can safely be __initdata ... but be careful of
 736 * any embedded pointers (platform_data, etc), they're copied as-is.
 737 * Device properties are deep-copied though.
 738 *
 739 * Return: zero on success, else a negative error code.
 740 */
 741int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 742{
 743        struct boardinfo *bi;
 744        int i;
 745
 746        if (!n)
 747                return 0;
 748
 749        bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 750        if (!bi)
 751                return -ENOMEM;
 752
 753        for (i = 0; i < n; i++, bi++, info++) {
 754                struct spi_controller *ctlr;
 755
 756                memcpy(&bi->board_info, info, sizeof(*info));
 757                if (info->properties) {
 758                        bi->board_info.properties =
 759                                        property_entries_dup(info->properties);
 760                        if (IS_ERR(bi->board_info.properties))
 761                                return PTR_ERR(bi->board_info.properties);
 762                }
 763
 764                mutex_lock(&board_lock);
 765                list_add_tail(&bi->list, &board_list);
 766                list_for_each_entry(ctlr, &spi_controller_list, list)
 767                        spi_match_controller_to_boardinfo(ctlr,
 768                                                          &bi->board_info);
 769                mutex_unlock(&board_lock);
 770        }
 771
 772        return 0;
 773}
 774
 775/*-------------------------------------------------------------------------*/
 776
 777static void spi_set_cs(struct spi_device *spi, bool enable)
 778{
 779        bool enable1 = enable;
 780
 781        if (!spi->controller->set_cs_timing) {
 782                if (enable1)
 783                        spi_delay_exec(&spi->controller->cs_setup, NULL);
 784                else
 785                        spi_delay_exec(&spi->controller->cs_hold, NULL);
 786        }
 787
 788        if (spi->mode & SPI_CS_HIGH)
 789                enable = !enable;
 790
 791        if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 792                /*
 793                 * Honour the SPI_NO_CS flag and invert the enable line, as
 794                 * active low is default for SPI. Execution paths that handle
 795                 * polarity inversion in gpiolib (such as device tree) will
 796                 * enforce active high using the SPI_CS_HIGH resulting in a
 797                 * double inversion through the code above.
 798                 */
 799                if (!(spi->mode & SPI_NO_CS)) {
 800                        if (spi->cs_gpiod)
 801                                gpiod_set_value_cansleep(spi->cs_gpiod,
 802                                                         !enable);
 803                        else
 804                                gpio_set_value_cansleep(spi->cs_gpio, !enable);
 805                }
 806                /* Some SPI masters need both GPIO CS & slave_select */
 807                if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 808                    spi->controller->set_cs)
 809                        spi->controller->set_cs(spi, !enable);
 810        } else if (spi->controller->set_cs) {
 811                spi->controller->set_cs(spi, !enable);
 812        }
 813
 814        if (!spi->controller->set_cs_timing) {
 815                if (!enable1)
 816                        spi_delay_exec(&spi->controller->cs_inactive, NULL);
 817        }
 818}
 819
 820#ifdef CONFIG_HAS_DMA
 821int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 822                struct sg_table *sgt, void *buf, size_t len,
 823                enum dma_data_direction dir)
 824{
 825        const bool vmalloced_buf = is_vmalloc_addr(buf);
 826        unsigned int max_seg_size = dma_get_max_seg_size(dev);
 827#ifdef CONFIG_HIGHMEM
 828        const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 829                                (unsigned long)buf < (PKMAP_BASE +
 830                                        (LAST_PKMAP * PAGE_SIZE)));
 831#else
 832        const bool kmap_buf = false;
 833#endif
 834        int desc_len;
 835        int sgs;
 836        struct page *vm_page;
 837        struct scatterlist *sg;
 838        void *sg_buf;
 839        size_t min;
 840        int i, ret;
 841
 842        if (vmalloced_buf || kmap_buf) {
 843                desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 844                sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 845        } else if (virt_addr_valid(buf)) {
 846                desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 847                sgs = DIV_ROUND_UP(len, desc_len);
 848        } else {
 849                return -EINVAL;
 850        }
 851
 852        ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 853        if (ret != 0)
 854                return ret;
 855
 856        sg = &sgt->sgl[0];
 857        for (i = 0; i < sgs; i++) {
 858
 859                if (vmalloced_buf || kmap_buf) {
 860                        /*
 861                         * Next scatterlist entry size is the minimum between
 862                         * the desc_len and the remaining buffer length that
 863                         * fits in a page.
 864                         */
 865                        min = min_t(size_t, desc_len,
 866                                    min_t(size_t, len,
 867                                          PAGE_SIZE - offset_in_page(buf)));
 868                        if (vmalloced_buf)
 869                                vm_page = vmalloc_to_page(buf);
 870                        else
 871                                vm_page = kmap_to_page(buf);
 872                        if (!vm_page) {
 873                                sg_free_table(sgt);
 874                                return -ENOMEM;
 875                        }
 876                        sg_set_page(sg, vm_page,
 877                                    min, offset_in_page(buf));
 878                } else {
 879                        min = min_t(size_t, len, desc_len);
 880                        sg_buf = buf;
 881                        sg_set_buf(sg, sg_buf, min);
 882                }
 883
 884                buf += min;
 885                len -= min;
 886                sg = sg_next(sg);
 887        }
 888
 889        ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 890        if (!ret)
 891                ret = -ENOMEM;
 892        if (ret < 0) {
 893                sg_free_table(sgt);
 894                return ret;
 895        }
 896
 897        sgt->nents = ret;
 898
 899        return 0;
 900}
 901
 902void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 903                   struct sg_table *sgt, enum dma_data_direction dir)
 904{
 905        if (sgt->orig_nents) {
 906                dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 907                sg_free_table(sgt);
 908        }
 909}
 910
 911static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 912{
 913        struct device *tx_dev, *rx_dev;
 914        struct spi_transfer *xfer;
 915        int ret;
 916
 917        if (!ctlr->can_dma)
 918                return 0;
 919
 920        if (ctlr->dma_tx)
 921                tx_dev = ctlr->dma_tx->device->dev;
 922        else
 923                tx_dev = ctlr->dev.parent;
 924
 925        if (ctlr->dma_rx)
 926                rx_dev = ctlr->dma_rx->device->dev;
 927        else
 928                rx_dev = ctlr->dev.parent;
 929
 930        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 931                if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 932                        continue;
 933
 934                if (xfer->tx_buf != NULL) {
 935                        ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 936                                          (void *)xfer->tx_buf, xfer->len,
 937                                          DMA_TO_DEVICE);
 938                        if (ret != 0)
 939                                return ret;
 940                }
 941
 942                if (xfer->rx_buf != NULL) {
 943                        ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 944                                          xfer->rx_buf, xfer->len,
 945                                          DMA_FROM_DEVICE);
 946                        if (ret != 0) {
 947                                spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 948                                              DMA_TO_DEVICE);
 949                                return ret;
 950                        }
 951                }
 952        }
 953
 954        ctlr->cur_msg_mapped = true;
 955
 956        return 0;
 957}
 958
 959static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 960{
 961        struct spi_transfer *xfer;
 962        struct device *tx_dev, *rx_dev;
 963
 964        if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 965                return 0;
 966
 967        if (ctlr->dma_tx)
 968                tx_dev = ctlr->dma_tx->device->dev;
 969        else
 970                tx_dev = ctlr->dev.parent;
 971
 972        if (ctlr->dma_rx)
 973                rx_dev = ctlr->dma_rx->device->dev;
 974        else
 975                rx_dev = ctlr->dev.parent;
 976
 977        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 978                if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 979                        continue;
 980
 981                spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 982                spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 983        }
 984
 985        return 0;
 986}
 987#else /* !CONFIG_HAS_DMA */
 988static inline int __spi_map_msg(struct spi_controller *ctlr,
 989                                struct spi_message *msg)
 990{
 991        return 0;
 992}
 993
 994static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 995                                  struct spi_message *msg)
 996{
 997        return 0;
 998}
 999#endif /* !CONFIG_HAS_DMA */
1000
1001static inline int spi_unmap_msg(struct spi_controller *ctlr,
1002                                struct spi_message *msg)
1003{
1004        struct spi_transfer *xfer;
1005
1006        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1007                /*
1008                 * Restore the original value of tx_buf or rx_buf if they are
1009                 * NULL.
1010                 */
1011                if (xfer->tx_buf == ctlr->dummy_tx)
1012                        xfer->tx_buf = NULL;
1013                if (xfer->rx_buf == ctlr->dummy_rx)
1014                        xfer->rx_buf = NULL;
1015        }
1016
1017        return __spi_unmap_msg(ctlr, msg);
1018}
1019
1020static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1021{
1022        struct spi_transfer *xfer;
1023        void *tmp;
1024        unsigned int max_tx, max_rx;
1025
1026        if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1027                max_tx = 0;
1028                max_rx = 0;
1029
1030                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1031                        if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1032                            !xfer->tx_buf)
1033                                max_tx = max(xfer->len, max_tx);
1034                        if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1035                            !xfer->rx_buf)
1036                                max_rx = max(xfer->len, max_rx);
1037                }
1038
1039                if (max_tx) {
1040                        tmp = krealloc(ctlr->dummy_tx, max_tx,
1041                                       GFP_KERNEL | GFP_DMA);
1042                        if (!tmp)
1043                                return -ENOMEM;
1044                        ctlr->dummy_tx = tmp;
1045                        memset(tmp, 0, max_tx);
1046                }
1047
1048                if (max_rx) {
1049                        tmp = krealloc(ctlr->dummy_rx, max_rx,
1050                                       GFP_KERNEL | GFP_DMA);
1051                        if (!tmp)
1052                                return -ENOMEM;
1053                        ctlr->dummy_rx = tmp;
1054                }
1055
1056                if (max_tx || max_rx) {
1057                        list_for_each_entry(xfer, &msg->transfers,
1058                                            transfer_list) {
1059                                if (!xfer->len)
1060                                        continue;
1061                                if (!xfer->tx_buf)
1062                                        xfer->tx_buf = ctlr->dummy_tx;
1063                                if (!xfer->rx_buf)
1064                                        xfer->rx_buf = ctlr->dummy_rx;
1065                        }
1066                }
1067        }
1068
1069        return __spi_map_msg(ctlr, msg);
1070}
1071
1072static int spi_transfer_wait(struct spi_controller *ctlr,
1073                             struct spi_message *msg,
1074                             struct spi_transfer *xfer)
1075{
1076        struct spi_statistics *statm = &ctlr->statistics;
1077        struct spi_statistics *stats = &msg->spi->statistics;
1078        unsigned long long ms = 1;
1079
1080        if (spi_controller_is_slave(ctlr)) {
1081                if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1082                        dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1083                        return -EINTR;
1084                }
1085        } else {
1086                ms = 8LL * 1000LL * xfer->len;
1087                do_div(ms, xfer->speed_hz);
1088                ms += ms + 200; /* some tolerance */
1089
1090                if (ms > UINT_MAX)
1091                        ms = UINT_MAX;
1092
1093                ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1094                                                 msecs_to_jiffies(ms));
1095
1096                if (ms == 0) {
1097                        SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1098                        SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1099                        dev_err(&msg->spi->dev,
1100                                "SPI transfer timed out\n");
1101                        return -ETIMEDOUT;
1102                }
1103        }
1104
1105        return 0;
1106}
1107
1108static void _spi_transfer_delay_ns(u32 ns)
1109{
1110        if (!ns)
1111                return;
1112        if (ns <= 1000) {
1113                ndelay(ns);
1114        } else {
1115                u32 us = DIV_ROUND_UP(ns, 1000);
1116
1117                if (us <= 10)
1118                        udelay(us);
1119                else
1120                        usleep_range(us, us + DIV_ROUND_UP(us, 10));
1121        }
1122}
1123
1124int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1125{
1126        u32 delay = _delay->value;
1127        u32 unit = _delay->unit;
1128        u32 hz;
1129
1130        if (!delay)
1131                return 0;
1132
1133        switch (unit) {
1134        case SPI_DELAY_UNIT_USECS:
1135                delay *= 1000;
1136                break;
1137        case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1138                break;
1139        case SPI_DELAY_UNIT_SCK:
1140                /* clock cycles need to be obtained from spi_transfer */
1141                if (!xfer)
1142                        return -EINVAL;
1143                /* if there is no effective speed know, then approximate
1144                 * by underestimating with half the requested hz
1145                 */
1146                hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1147                if (!hz)
1148                        return -EINVAL;
1149                delay *= DIV_ROUND_UP(1000000000, hz);
1150                break;
1151        default:
1152                return -EINVAL;
1153        }
1154
1155        return delay;
1156}
1157EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1158
1159int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1160{
1161        int delay;
1162
1163        if (!_delay)
1164                return -EINVAL;
1165
1166        delay = spi_delay_to_ns(_delay, xfer);
1167        if (delay < 0)
1168                return delay;
1169
1170        _spi_transfer_delay_ns(delay);
1171
1172        return 0;
1173}
1174EXPORT_SYMBOL_GPL(spi_delay_exec);
1175
1176static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1177                                          struct spi_transfer *xfer)
1178{
1179        u32 delay = xfer->cs_change_delay.value;
1180        u32 unit = xfer->cs_change_delay.unit;
1181        int ret;
1182
1183        /* return early on "fast" mode - for everything but USECS */
1184        if (!delay) {
1185                if (unit == SPI_DELAY_UNIT_USECS)
1186                        _spi_transfer_delay_ns(10000);
1187                return;
1188        }
1189
1190        ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1191        if (ret) {
1192                dev_err_once(&msg->spi->dev,
1193                             "Use of unsupported delay unit %i, using default of 10us\n",
1194                             unit);
1195                _spi_transfer_delay_ns(10000);
1196        }
1197}
1198
1199/*
1200 * spi_transfer_one_message - Default implementation of transfer_one_message()
1201 *
1202 * This is a standard implementation of transfer_one_message() for
1203 * drivers which implement a transfer_one() operation.  It provides
1204 * standard handling of delays and chip select management.
1205 */
1206static int spi_transfer_one_message(struct spi_controller *ctlr,
1207                                    struct spi_message *msg)
1208{
1209        struct spi_transfer *xfer;
1210        bool keep_cs = false;
1211        int ret = 0;
1212        struct spi_statistics *statm = &ctlr->statistics;
1213        struct spi_statistics *stats = &msg->spi->statistics;
1214
1215        spi_set_cs(msg->spi, true);
1216
1217        SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1218        SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1219
1220        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1221                trace_spi_transfer_start(msg, xfer);
1222
1223                spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1224                spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1225
1226                if (!ctlr->ptp_sts_supported) {
1227                        xfer->ptp_sts_word_pre = 0;
1228                        ptp_read_system_prets(xfer->ptp_sts);
1229                }
1230
1231                if (xfer->tx_buf || xfer->rx_buf) {
1232                        reinit_completion(&ctlr->xfer_completion);
1233
1234                        ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1235                        if (ret < 0) {
1236                                SPI_STATISTICS_INCREMENT_FIELD(statm,
1237                                                               errors);
1238                                SPI_STATISTICS_INCREMENT_FIELD(stats,
1239                                                               errors);
1240                                dev_err(&msg->spi->dev,
1241                                        "SPI transfer failed: %d\n", ret);
1242                                goto out;
1243                        }
1244
1245                        if (ret > 0) {
1246                                ret = spi_transfer_wait(ctlr, msg, xfer);
1247                                if (ret < 0)
1248                                        msg->status = ret;
1249                        }
1250                } else {
1251                        if (xfer->len)
1252                                dev_err(&msg->spi->dev,
1253                                        "Bufferless transfer has length %u\n",
1254                                        xfer->len);
1255                }
1256
1257                if (!ctlr->ptp_sts_supported) {
1258                        ptp_read_system_postts(xfer->ptp_sts);
1259                        xfer->ptp_sts_word_post = xfer->len;
1260                }
1261
1262                trace_spi_transfer_stop(msg, xfer);
1263
1264                if (msg->status != -EINPROGRESS)
1265                        goto out;
1266
1267                spi_transfer_delay_exec(xfer);
1268
1269                if (xfer->cs_change) {
1270                        if (list_is_last(&xfer->transfer_list,
1271                                         &msg->transfers)) {
1272                                keep_cs = true;
1273                        } else {
1274                                spi_set_cs(msg->spi, false);
1275                                _spi_transfer_cs_change_delay(msg, xfer);
1276                                spi_set_cs(msg->spi, true);
1277                        }
1278                }
1279
1280                msg->actual_length += xfer->len;
1281        }
1282
1283out:
1284        if (ret != 0 || !keep_cs)
1285                spi_set_cs(msg->spi, false);
1286
1287        if (msg->status == -EINPROGRESS)
1288                msg->status = ret;
1289
1290        if (msg->status && ctlr->handle_err)
1291                ctlr->handle_err(ctlr, msg);
1292
1293        spi_res_release(ctlr, msg);
1294
1295        spi_finalize_current_message(ctlr);
1296
1297        return ret;
1298}
1299
1300/**
1301 * spi_finalize_current_transfer - report completion of a transfer
1302 * @ctlr: the controller reporting completion
1303 *
1304 * Called by SPI drivers using the core transfer_one_message()
1305 * implementation to notify it that the current interrupt driven
1306 * transfer has finished and the next one may be scheduled.
1307 */
1308void spi_finalize_current_transfer(struct spi_controller *ctlr)
1309{
1310        complete(&ctlr->xfer_completion);
1311}
1312EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1313
1314/**
1315 * __spi_pump_messages - function which processes spi message queue
1316 * @ctlr: controller to process queue for
1317 * @in_kthread: true if we are in the context of the message pump thread
1318 *
1319 * This function checks if there is any spi message in the queue that
1320 * needs processing and if so call out to the driver to initialize hardware
1321 * and transfer each message.
1322 *
1323 * Note that it is called both from the kthread itself and also from
1324 * inside spi_sync(); the queue extraction handling at the top of the
1325 * function should deal with this safely.
1326 */
1327static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1328{
1329        struct spi_transfer *xfer;
1330        struct spi_message *msg;
1331        bool was_busy = false;
1332        unsigned long flags;
1333        int ret;
1334
1335        /* Lock queue */
1336        spin_lock_irqsave(&ctlr->queue_lock, flags);
1337
1338        /* Make sure we are not already running a message */
1339        if (ctlr->cur_msg) {
1340                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1341                return;
1342        }
1343
1344        /* If another context is idling the device then defer */
1345        if (ctlr->idling) {
1346                kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1347                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348                return;
1349        }
1350
1351        /* Check if the queue is idle */
1352        if (list_empty(&ctlr->queue) || !ctlr->running) {
1353                if (!ctlr->busy) {
1354                        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1355                        return;
1356                }
1357
1358                /* Only do teardown in the thread */
1359                if (!in_kthread) {
1360                        kthread_queue_work(&ctlr->kworker,
1361                                           &ctlr->pump_messages);
1362                        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363                        return;
1364                }
1365
1366                ctlr->busy = false;
1367                ctlr->idling = true;
1368                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1369
1370                kfree(ctlr->dummy_rx);
1371                ctlr->dummy_rx = NULL;
1372                kfree(ctlr->dummy_tx);
1373                ctlr->dummy_tx = NULL;
1374                if (ctlr->unprepare_transfer_hardware &&
1375                    ctlr->unprepare_transfer_hardware(ctlr))
1376                        dev_err(&ctlr->dev,
1377                                "failed to unprepare transfer hardware\n");
1378                if (ctlr->auto_runtime_pm) {
1379                        pm_runtime_mark_last_busy(ctlr->dev.parent);
1380                        pm_runtime_put_autosuspend(ctlr->dev.parent);
1381                }
1382                trace_spi_controller_idle(ctlr);
1383
1384                spin_lock_irqsave(&ctlr->queue_lock, flags);
1385                ctlr->idling = false;
1386                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1387                return;
1388        }
1389
1390        /* Extract head of queue */
1391        msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1392        ctlr->cur_msg = msg;
1393
1394        list_del_init(&msg->queue);
1395        if (ctlr->busy)
1396                was_busy = true;
1397        else
1398                ctlr->busy = true;
1399        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1400
1401        mutex_lock(&ctlr->io_mutex);
1402
1403        if (!was_busy && ctlr->auto_runtime_pm) {
1404                ret = pm_runtime_get_sync(ctlr->dev.parent);
1405                if (ret < 0) {
1406                        pm_runtime_put_noidle(ctlr->dev.parent);
1407                        dev_err(&ctlr->dev, "Failed to power device: %d\n",
1408                                ret);
1409                        mutex_unlock(&ctlr->io_mutex);
1410                        return;
1411                }
1412        }
1413
1414        if (!was_busy)
1415                trace_spi_controller_busy(ctlr);
1416
1417        if (!was_busy && ctlr->prepare_transfer_hardware) {
1418                ret = ctlr->prepare_transfer_hardware(ctlr);
1419                if (ret) {
1420                        dev_err(&ctlr->dev,
1421                                "failed to prepare transfer hardware: %d\n",
1422                                ret);
1423
1424                        if (ctlr->auto_runtime_pm)
1425                                pm_runtime_put(ctlr->dev.parent);
1426
1427                        msg->status = ret;
1428                        spi_finalize_current_message(ctlr);
1429
1430                        mutex_unlock(&ctlr->io_mutex);
1431                        return;
1432                }
1433        }
1434
1435        trace_spi_message_start(msg);
1436
1437        if (ctlr->prepare_message) {
1438                ret = ctlr->prepare_message(ctlr, msg);
1439                if (ret) {
1440                        dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1441                                ret);
1442                        msg->status = ret;
1443                        spi_finalize_current_message(ctlr);
1444                        goto out;
1445                }
1446                ctlr->cur_msg_prepared = true;
1447        }
1448
1449        ret = spi_map_msg(ctlr, msg);
1450        if (ret) {
1451                msg->status = ret;
1452                spi_finalize_current_message(ctlr);
1453                goto out;
1454        }
1455
1456        if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1457                list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1458                        xfer->ptp_sts_word_pre = 0;
1459                        ptp_read_system_prets(xfer->ptp_sts);
1460                }
1461        }
1462
1463        ret = ctlr->transfer_one_message(ctlr, msg);
1464        if (ret) {
1465                dev_err(&ctlr->dev,
1466                        "failed to transfer one message from queue\n");
1467                goto out;
1468        }
1469
1470out:
1471        mutex_unlock(&ctlr->io_mutex);
1472
1473        /* Prod the scheduler in case transfer_one() was busy waiting */
1474        if (!ret)
1475                cond_resched();
1476}
1477
1478/**
1479 * spi_pump_messages - kthread work function which processes spi message queue
1480 * @work: pointer to kthread work struct contained in the controller struct
1481 */
1482static void spi_pump_messages(struct kthread_work *work)
1483{
1484        struct spi_controller *ctlr =
1485                container_of(work, struct spi_controller, pump_messages);
1486
1487        __spi_pump_messages(ctlr, true);
1488}
1489
1490/**
1491 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1492 *                          TX timestamp for the requested byte from the SPI
1493 *                          transfer. The frequency with which this function
1494 *                          must be called (once per word, once for the whole
1495 *                          transfer, once per batch of words etc) is arbitrary
1496 *                          as long as the @tx buffer offset is greater than or
1497 *                          equal to the requested byte at the time of the
1498 *                          call. The timestamp is only taken once, at the
1499 *                          first such call. It is assumed that the driver
1500 *                          advances its @tx buffer pointer monotonically.
1501 * @ctlr: Pointer to the spi_controller structure of the driver
1502 * @xfer: Pointer to the transfer being timestamped
1503 * @progress: How many words (not bytes) have been transferred so far
1504 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505 *            transfer, for less jitter in time measurement. Only compatible
1506 *            with PIO drivers. If true, must follow up with
1507 *            spi_take_timestamp_post or otherwise system will crash.
1508 *            WARNING: for fully predictable results, the CPU frequency must
1509 *            also be under control (governor).
1510 */
1511void spi_take_timestamp_pre(struct spi_controller *ctlr,
1512                            struct spi_transfer *xfer,
1513                            size_t progress, bool irqs_off)
1514{
1515        if (!xfer->ptp_sts)
1516                return;
1517
1518        if (xfer->timestamped)
1519                return;
1520
1521        if (progress > xfer->ptp_sts_word_pre)
1522                return;
1523
1524        /* Capture the resolution of the timestamp */
1525        xfer->ptp_sts_word_pre = progress;
1526
1527        if (irqs_off) {
1528                local_irq_save(ctlr->irq_flags);
1529                preempt_disable();
1530        }
1531
1532        ptp_read_system_prets(xfer->ptp_sts);
1533}
1534EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1535
1536/**
1537 * spi_take_timestamp_post - helper for drivers to collect the end of the
1538 *                           TX timestamp for the requested byte from the SPI
1539 *                           transfer. Can be called with an arbitrary
1540 *                           frequency: only the first call where @tx exceeds
1541 *                           or is equal to the requested word will be
1542 *                           timestamped.
1543 * @ctlr: Pointer to the spi_controller structure of the driver
1544 * @xfer: Pointer to the transfer being timestamped
1545 * @progress: How many words (not bytes) have been transferred so far
1546 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1547 */
1548void spi_take_timestamp_post(struct spi_controller *ctlr,
1549                             struct spi_transfer *xfer,
1550                             size_t progress, bool irqs_off)
1551{
1552        if (!xfer->ptp_sts)
1553                return;
1554
1555        if (xfer->timestamped)
1556                return;
1557
1558        if (progress < xfer->ptp_sts_word_post)
1559                return;
1560
1561        ptp_read_system_postts(xfer->ptp_sts);
1562
1563        if (irqs_off) {
1564                local_irq_restore(ctlr->irq_flags);
1565                preempt_enable();
1566        }
1567
1568        /* Capture the resolution of the timestamp */
1569        xfer->ptp_sts_word_post = progress;
1570
1571        xfer->timestamped = true;
1572}
1573EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1574
1575/**
1576 * spi_set_thread_rt - set the controller to pump at realtime priority
1577 * @ctlr: controller to boost priority of
1578 *
1579 * This can be called because the controller requested realtime priority
1580 * (by setting the ->rt value before calling spi_register_controller()) or
1581 * because a device on the bus said that its transfers needed realtime
1582 * priority.
1583 *
1584 * NOTE: at the moment if any device on a bus says it needs realtime then
1585 * the thread will be at realtime priority for all transfers on that
1586 * controller.  If this eventually becomes a problem we may see if we can
1587 * find a way to boost the priority only temporarily during relevant
1588 * transfers.
1589 */
1590static void spi_set_thread_rt(struct spi_controller *ctlr)
1591{
1592        struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1593
1594        dev_info(&ctlr->dev,
1595                "will run message pump with realtime priority\n");
1596        sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1597}
1598
1599static int spi_init_queue(struct spi_controller *ctlr)
1600{
1601        ctlr->running = false;
1602        ctlr->busy = false;
1603
1604        kthread_init_worker(&ctlr->kworker);
1605        ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1606                                         "%s", dev_name(&ctlr->dev));
1607        if (IS_ERR(ctlr->kworker_task)) {
1608                dev_err(&ctlr->dev, "failed to create message pump task\n");
1609                return PTR_ERR(ctlr->kworker_task);
1610        }
1611        kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1612
1613        /*
1614         * Controller config will indicate if this controller should run the
1615         * message pump with high (realtime) priority to reduce the transfer
1616         * latency on the bus by minimising the delay between a transfer
1617         * request and the scheduling of the message pump thread. Without this
1618         * setting the message pump thread will remain at default priority.
1619         */
1620        if (ctlr->rt)
1621                spi_set_thread_rt(ctlr);
1622
1623        return 0;
1624}
1625
1626/**
1627 * spi_get_next_queued_message() - called by driver to check for queued
1628 * messages
1629 * @ctlr: the controller to check for queued messages
1630 *
1631 * If there are more messages in the queue, the next message is returned from
1632 * this call.
1633 *
1634 * Return: the next message in the queue, else NULL if the queue is empty.
1635 */
1636struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1637{
1638        struct spi_message *next;
1639        unsigned long flags;
1640
1641        /* get a pointer to the next message, if any */
1642        spin_lock_irqsave(&ctlr->queue_lock, flags);
1643        next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1644                                        queue);
1645        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1646
1647        return next;
1648}
1649EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1650
1651/**
1652 * spi_finalize_current_message() - the current message is complete
1653 * @ctlr: the controller to return the message to
1654 *
1655 * Called by the driver to notify the core that the message in the front of the
1656 * queue is complete and can be removed from the queue.
1657 */
1658void spi_finalize_current_message(struct spi_controller *ctlr)
1659{
1660        struct spi_transfer *xfer;
1661        struct spi_message *mesg;
1662        unsigned long flags;
1663        int ret;
1664
1665        spin_lock_irqsave(&ctlr->queue_lock, flags);
1666        mesg = ctlr->cur_msg;
1667        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1668
1669        if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1670                list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1671                        ptp_read_system_postts(xfer->ptp_sts);
1672                        xfer->ptp_sts_word_post = xfer->len;
1673                }
1674        }
1675
1676        if (unlikely(ctlr->ptp_sts_supported))
1677                list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1678                        WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1679
1680        spi_unmap_msg(ctlr, mesg);
1681
1682        if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1683                ret = ctlr->unprepare_message(ctlr, mesg);
1684                if (ret) {
1685                        dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1686                                ret);
1687                }
1688        }
1689
1690        spin_lock_irqsave(&ctlr->queue_lock, flags);
1691        ctlr->cur_msg = NULL;
1692        ctlr->cur_msg_prepared = false;
1693        kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1694        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1695
1696        trace_spi_message_done(mesg);
1697
1698        mesg->state = NULL;
1699        if (mesg->complete)
1700                mesg->complete(mesg->context);
1701}
1702EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1703
1704static int spi_start_queue(struct spi_controller *ctlr)
1705{
1706        unsigned long flags;
1707
1708        spin_lock_irqsave(&ctlr->queue_lock, flags);
1709
1710        if (ctlr->running || ctlr->busy) {
1711                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1712                return -EBUSY;
1713        }
1714
1715        ctlr->running = true;
1716        ctlr->cur_msg = NULL;
1717        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1718
1719        kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1720
1721        return 0;
1722}
1723
1724static int spi_stop_queue(struct spi_controller *ctlr)
1725{
1726        unsigned long flags;
1727        unsigned limit = 500;
1728        int ret = 0;
1729
1730        spin_lock_irqsave(&ctlr->queue_lock, flags);
1731
1732        /*
1733         * This is a bit lame, but is optimized for the common execution path.
1734         * A wait_queue on the ctlr->busy could be used, but then the common
1735         * execution path (pump_messages) would be required to call wake_up or
1736         * friends on every SPI message. Do this instead.
1737         */
1738        while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1739                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1740                usleep_range(10000, 11000);
1741                spin_lock_irqsave(&ctlr->queue_lock, flags);
1742        }
1743
1744        if (!list_empty(&ctlr->queue) || ctlr->busy)
1745                ret = -EBUSY;
1746        else
1747                ctlr->running = false;
1748
1749        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1750
1751        if (ret) {
1752                dev_warn(&ctlr->dev, "could not stop message queue\n");
1753                return ret;
1754        }
1755        return ret;
1756}
1757
1758static int spi_destroy_queue(struct spi_controller *ctlr)
1759{
1760        int ret;
1761
1762        ret = spi_stop_queue(ctlr);
1763
1764        /*
1765         * kthread_flush_worker will block until all work is done.
1766         * If the reason that stop_queue timed out is that the work will never
1767         * finish, then it does no good to call flush/stop thread, so
1768         * return anyway.
1769         */
1770        if (ret) {
1771                dev_err(&ctlr->dev, "problem destroying queue\n");
1772                return ret;
1773        }
1774
1775        kthread_flush_worker(&ctlr->kworker);
1776        kthread_stop(ctlr->kworker_task);
1777
1778        return 0;
1779}
1780
1781static int __spi_queued_transfer(struct spi_device *spi,
1782                                 struct spi_message *msg,
1783                                 bool need_pump)
1784{
1785        struct spi_controller *ctlr = spi->controller;
1786        unsigned long flags;
1787
1788        spin_lock_irqsave(&ctlr->queue_lock, flags);
1789
1790        if (!ctlr->running) {
1791                spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792                return -ESHUTDOWN;
1793        }
1794        msg->actual_length = 0;
1795        msg->status = -EINPROGRESS;
1796
1797        list_add_tail(&msg->queue, &ctlr->queue);
1798        if (!ctlr->busy && need_pump)
1799                kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1800
1801        spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1802        return 0;
1803}
1804
1805/**
1806 * spi_queued_transfer - transfer function for queued transfers
1807 * @spi: spi device which is requesting transfer
1808 * @msg: spi message which is to handled is queued to driver queue
1809 *
1810 * Return: zero on success, else a negative error code.
1811 */
1812static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1813{
1814        return __spi_queued_transfer(spi, msg, true);
1815}
1816
1817static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1818{
1819        int ret;
1820
1821        ctlr->transfer = spi_queued_transfer;
1822        if (!ctlr->transfer_one_message)
1823                ctlr->transfer_one_message = spi_transfer_one_message;
1824
1825        /* Initialize and start queue */
1826        ret = spi_init_queue(ctlr);
1827        if (ret) {
1828                dev_err(&ctlr->dev, "problem initializing queue\n");
1829                goto err_init_queue;
1830        }
1831        ctlr->queued = true;
1832        ret = spi_start_queue(ctlr);
1833        if (ret) {
1834                dev_err(&ctlr->dev, "problem starting queue\n");
1835                goto err_start_queue;
1836        }
1837
1838        return 0;
1839
1840err_start_queue:
1841        spi_destroy_queue(ctlr);
1842err_init_queue:
1843        return ret;
1844}
1845
1846/**
1847 * spi_flush_queue - Send all pending messages in the queue from the callers'
1848 *                   context
1849 * @ctlr: controller to process queue for
1850 *
1851 * This should be used when one wants to ensure all pending messages have been
1852 * sent before doing something. Is used by the spi-mem code to make sure SPI
1853 * memory operations do not preempt regular SPI transfers that have been queued
1854 * before the spi-mem operation.
1855 */
1856void spi_flush_queue(struct spi_controller *ctlr)
1857{
1858        if (ctlr->transfer == spi_queued_transfer)
1859                __spi_pump_messages(ctlr, false);
1860}
1861
1862/*-------------------------------------------------------------------------*/
1863
1864#if defined(CONFIG_OF)
1865static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1866                           struct device_node *nc)
1867{
1868        u32 value;
1869        int rc;
1870
1871        /* Mode (clock phase/polarity/etc.) */
1872        if (of_property_read_bool(nc, "spi-cpha"))
1873                spi->mode |= SPI_CPHA;
1874        if (of_property_read_bool(nc, "spi-cpol"))
1875                spi->mode |= SPI_CPOL;
1876        if (of_property_read_bool(nc, "spi-3wire"))
1877                spi->mode |= SPI_3WIRE;
1878        if (of_property_read_bool(nc, "spi-lsb-first"))
1879                spi->mode |= SPI_LSB_FIRST;
1880        if (of_property_read_bool(nc, "spi-cs-high"))
1881                spi->mode |= SPI_CS_HIGH;
1882
1883        /* Device DUAL/QUAD mode */
1884        if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1885                switch (value) {
1886                case 1:
1887                        break;
1888                case 2:
1889                        spi->mode |= SPI_TX_DUAL;
1890                        break;
1891                case 4:
1892                        spi->mode |= SPI_TX_QUAD;
1893                        break;
1894                case 8:
1895                        spi->mode |= SPI_TX_OCTAL;
1896                        break;
1897                default:
1898                        dev_warn(&ctlr->dev,
1899                                "spi-tx-bus-width %d not supported\n",
1900                                value);
1901                        break;
1902                }
1903        }
1904
1905        if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1906                switch (value) {
1907                case 1:
1908                        break;
1909                case 2:
1910                        spi->mode |= SPI_RX_DUAL;
1911                        break;
1912                case 4:
1913                        spi->mode |= SPI_RX_QUAD;
1914                        break;
1915                case 8:
1916                        spi->mode |= SPI_RX_OCTAL;
1917                        break;
1918                default:
1919                        dev_warn(&ctlr->dev,
1920                                "spi-rx-bus-width %d not supported\n",
1921                                value);
1922                        break;
1923                }
1924        }
1925
1926        if (spi_controller_is_slave(ctlr)) {
1927                if (!of_node_name_eq(nc, "slave")) {
1928                        dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1929                                nc);
1930                        return -EINVAL;
1931                }
1932                return 0;
1933        }
1934
1935        /* Device address */
1936        rc = of_property_read_u32(nc, "reg", &value);
1937        if (rc) {
1938                dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1939                        nc, rc);
1940                return rc;
1941        }
1942        spi->chip_select = value;
1943
1944        /*
1945         * For descriptors associated with the device, polarity inversion is
1946         * handled in the gpiolib, so all gpio chip selects are "active high"
1947         * in the logical sense, the gpiolib will invert the line if need be.
1948         */
1949        if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1950            ctlr->cs_gpiods[spi->chip_select])
1951                spi->mode |= SPI_CS_HIGH;
1952
1953        /* Device speed */
1954        if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1955                spi->max_speed_hz = value;
1956
1957        return 0;
1958}
1959
1960static struct spi_device *
1961of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1962{
1963        struct spi_device *spi;
1964        int rc;
1965
1966        /* Alloc an spi_device */
1967        spi = spi_alloc_device(ctlr);
1968        if (!spi) {
1969                dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1970                rc = -ENOMEM;
1971                goto err_out;
1972        }
1973
1974        /* Select device driver */
1975        rc = of_modalias_node(nc, spi->modalias,
1976                                sizeof(spi->modalias));
1977        if (rc < 0) {
1978                dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1979                goto err_out;
1980        }
1981
1982        rc = of_spi_parse_dt(ctlr, spi, nc);
1983        if (rc)
1984                goto err_out;
1985
1986        /* Store a pointer to the node in the device structure */
1987        of_node_get(nc);
1988        spi->dev.of_node = nc;
1989
1990        /* Register the new device */
1991        rc = spi_add_device(spi);
1992        if (rc) {
1993                dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1994                goto err_of_node_put;
1995        }
1996
1997        return spi;
1998
1999err_of_node_put:
2000        of_node_put(nc);
2001err_out:
2002        spi_dev_put(spi);
2003        return ERR_PTR(rc);
2004}
2005
2006/**
2007 * of_register_spi_devices() - Register child devices onto the SPI bus
2008 * @ctlr:       Pointer to spi_controller device
2009 *
2010 * Registers an spi_device for each child node of controller node which
2011 * represents a valid SPI slave.
2012 */
2013static void of_register_spi_devices(struct spi_controller *ctlr)
2014{
2015        struct spi_device *spi;
2016        struct device_node *nc;
2017
2018        if (!ctlr->dev.of_node)
2019                return;
2020
2021        for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2022                if (of_node_test_and_set_flag(nc, OF_POPULATED))
2023                        continue;
2024                spi = of_register_spi_device(ctlr, nc);
2025                if (IS_ERR(spi)) {
2026                        dev_warn(&ctlr->dev,
2027                                 "Failed to create SPI device for %pOF\n", nc);
2028                        of_node_clear_flag(nc, OF_POPULATED);
2029                }
2030        }
2031}
2032#else
2033static void of_register_spi_devices(struct spi_controller *ctlr) { }
2034#endif
2035
2036#ifdef CONFIG_ACPI
2037struct acpi_spi_lookup {
2038        struct spi_controller   *ctlr;
2039        u32                     max_speed_hz;
2040        u32                     mode;
2041        int                     irq;
2042        u8                      bits_per_word;
2043        u8                      chip_select;
2044};
2045
2046static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2047                                            struct acpi_spi_lookup *lookup)
2048{
2049        const union acpi_object *obj;
2050
2051        if (!x86_apple_machine)
2052                return;
2053
2054        if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2055            && obj->buffer.length >= 4)
2056                lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2057
2058        if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2059            && obj->buffer.length == 8)
2060                lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2061
2062        if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2063            && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2064                lookup->mode |= SPI_LSB_FIRST;
2065
2066        if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2067            && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2068                lookup->mode |= SPI_CPOL;
2069
2070        if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2071            && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2072                lookup->mode |= SPI_CPHA;
2073}
2074
2075static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2076{
2077        struct acpi_spi_lookup *lookup = data;
2078        struct spi_controller *ctlr = lookup->ctlr;
2079
2080        if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2081                struct acpi_resource_spi_serialbus *sb;
2082                acpi_handle parent_handle;
2083                acpi_status status;
2084
2085                sb = &ares->data.spi_serial_bus;
2086                if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2087
2088                        status = acpi_get_handle(NULL,
2089                                                 sb->resource_source.string_ptr,
2090                                                 &parent_handle);
2091
2092                        if (ACPI_FAILURE(status) ||
2093                            ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2094                                return -ENODEV;
2095
2096                        /*
2097                         * ACPI DeviceSelection numbering is handled by the
2098                         * host controller driver in Windows and can vary
2099                         * from driver to driver. In Linux we always expect
2100                         * 0 .. max - 1 so we need to ask the driver to
2101                         * translate between the two schemes.
2102                         */
2103                        if (ctlr->fw_translate_cs) {
2104                                int cs = ctlr->fw_translate_cs(ctlr,
2105                                                sb->device_selection);
2106                                if (cs < 0)
2107                                        return cs;
2108                                lookup->chip_select = cs;
2109                        } else {
2110                                lookup->chip_select = sb->device_selection;
2111                        }
2112
2113                        lookup->max_speed_hz = sb->connection_speed;
2114
2115                        if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2116                                lookup->mode |= SPI_CPHA;
2117                        if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2118                                lookup->mode |= SPI_CPOL;
2119                        if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2120                                lookup->mode |= SPI_CS_HIGH;
2121                }
2122        } else if (lookup->irq < 0) {
2123                struct resource r;
2124
2125                if (acpi_dev_resource_interrupt(ares, 0, &r))
2126                        lookup->irq = r.start;
2127        }
2128
2129        /* Always tell the ACPI core to skip this resource */
2130        return 1;
2131}
2132
2133static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2134                                            struct acpi_device *adev)
2135{
2136        acpi_handle parent_handle = NULL;
2137        struct list_head resource_list;
2138        struct acpi_spi_lookup lookup = {};
2139        struct spi_device *spi;
2140        int ret;
2141
2142        if (acpi_bus_get_status(adev) || !adev->status.present ||
2143            acpi_device_enumerated(adev))
2144                return AE_OK;
2145
2146        lookup.ctlr             = ctlr;
2147        lookup.irq              = -1;
2148
2149        INIT_LIST_HEAD(&resource_list);
2150        ret = acpi_dev_get_resources(adev, &resource_list,
2151                                     acpi_spi_add_resource, &lookup);
2152        acpi_dev_free_resource_list(&resource_list);
2153
2154        if (ret < 0)
2155                /* found SPI in _CRS but it points to another controller */
2156                return AE_OK;
2157
2158        if (!lookup.max_speed_hz &&
2159            !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2160            ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2161                /* Apple does not use _CRS but nested devices for SPI slaves */
2162                acpi_spi_parse_apple_properties(adev, &lookup);
2163        }
2164
2165        if (!lookup.max_speed_hz)
2166                return AE_OK;
2167
2168        spi = spi_alloc_device(ctlr);
2169        if (!spi) {
2170                dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2171                        dev_name(&adev->dev));
2172                return AE_NO_MEMORY;
2173        }
2174
2175
2176        ACPI_COMPANION_SET(&spi->dev, adev);
2177        spi->max_speed_hz       = lookup.max_speed_hz;
2178        spi->mode               |= lookup.mode;
2179        spi->irq                = lookup.irq;
2180        spi->bits_per_word      = lookup.bits_per_word;
2181        spi->chip_select        = lookup.chip_select;
2182
2183        acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2184                          sizeof(spi->modalias));
2185
2186        if (spi->irq < 0)
2187                spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2188
2189        acpi_device_set_enumerated(adev);
2190
2191        adev->power.flags.ignore_parent = true;
2192        if (spi_add_device(spi)) {
2193                adev->power.flags.ignore_parent = false;
2194                dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2195                        dev_name(&adev->dev));
2196                spi_dev_put(spi);
2197        }
2198
2199        return AE_OK;
2200}
2201
2202static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2203                                       void *data, void **return_value)
2204{
2205        struct spi_controller *ctlr = data;
2206        struct acpi_device *adev;
2207
2208        if (acpi_bus_get_device(handle, &adev))
2209                return AE_OK;
2210
2211        return acpi_register_spi_device(ctlr, adev);
2212}
2213
2214#define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2215
2216static void acpi_register_spi_devices(struct spi_controller *ctlr)
2217{
2218        acpi_status status;
2219        acpi_handle handle;
2220
2221        handle = ACPI_HANDLE(ctlr->dev.parent);
2222        if (!handle)
2223                return;
2224
2225        status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2226                                     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2227                                     acpi_spi_add_device, NULL, ctlr, NULL);
2228        if (ACPI_FAILURE(status))
2229                dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2230}
2231#else
2232static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2233#endif /* CONFIG_ACPI */
2234
2235static void spi_controller_release(struct device *dev)
2236{
2237        struct spi_controller *ctlr;
2238
2239        ctlr = container_of(dev, struct spi_controller, dev);
2240        kfree(ctlr);
2241}
2242
2243static struct class spi_master_class = {
2244        .name           = "spi_master",
2245        .owner          = THIS_MODULE,
2246        .dev_release    = spi_controller_release,
2247        .dev_groups     = spi_master_groups,
2248};
2249
2250#ifdef CONFIG_SPI_SLAVE
2251/**
2252 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2253 *                   controller
2254 * @spi: device used for the current transfer
2255 */
2256int spi_slave_abort(struct spi_device *spi)
2257{
2258        struct spi_controller *ctlr = spi->controller;
2259
2260        if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2261                return ctlr->slave_abort(ctlr);
2262
2263        return -ENOTSUPP;
2264}
2265EXPORT_SYMBOL_GPL(spi_slave_abort);
2266
2267static int match_true(struct device *dev, void *data)
2268{
2269        return 1;
2270}
2271
2272static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2273                          char *buf)
2274{
2275        struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2276                                                   dev);
2277        struct device *child;
2278
2279        child = device_find_child(&ctlr->dev, NULL, match_true);
2280        return sprintf(buf, "%s\n",
2281                       child ? to_spi_device(child)->modalias : NULL);
2282}
2283
2284static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2285                           const char *buf, size_t count)
2286{
2287        struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2288                                                   dev);
2289        struct spi_device *spi;
2290        struct device *child;
2291        char name[32];
2292        int rc;
2293
2294        rc = sscanf(buf, "%31s", name);
2295        if (rc != 1 || !name[0])
2296                return -EINVAL;
2297
2298        child = device_find_child(&ctlr->dev, NULL, match_true);
2299        if (child) {
2300                /* Remove registered slave */
2301                device_unregister(child);
2302                put_device(child);
2303        }
2304
2305        if (strcmp(name, "(null)")) {
2306                /* Register new slave */
2307                spi = spi_alloc_device(ctlr);
2308                if (!spi)
2309                        return -ENOMEM;
2310
2311                strlcpy(spi->modalias, name, sizeof(spi->modalias));
2312
2313                rc = spi_add_device(spi);
2314                if (rc) {
2315                        spi_dev_put(spi);
2316                        return rc;
2317                }
2318        }
2319
2320        return count;
2321}
2322
2323static DEVICE_ATTR_RW(slave);
2324
2325static struct attribute *spi_slave_attrs[] = {
2326        &dev_attr_slave.attr,
2327        NULL,
2328};
2329
2330static const struct attribute_group spi_slave_group = {
2331        .attrs = spi_slave_attrs,
2332};
2333
2334static const struct attribute_group *spi_slave_groups[] = {
2335        &spi_controller_statistics_group,
2336        &spi_slave_group,
2337        NULL,
2338};
2339
2340static struct class spi_slave_class = {
2341        .name           = "spi_slave",
2342        .owner          = THIS_MODULE,
2343        .dev_release    = spi_controller_release,
2344        .dev_groups     = spi_slave_groups,
2345};
2346#else
2347extern struct class spi_slave_class;    /* dummy */
2348#endif
2349
2350/**
2351 * __spi_alloc_controller - allocate an SPI master or slave controller
2352 * @dev: the controller, possibly using the platform_bus
2353 * @size: how much zeroed driver-private data to allocate; the pointer to this
2354 *      memory is in the driver_data field of the returned device, accessible
2355 *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2356 *      drivers granting DMA access to portions of their private data need to
2357 *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2358 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2359 *      slave (true) controller
2360 * Context: can sleep
2361 *
2362 * This call is used only by SPI controller drivers, which are the
2363 * only ones directly touching chip registers.  It's how they allocate
2364 * an spi_controller structure, prior to calling spi_register_controller().
2365 *
2366 * This must be called from context that can sleep.
2367 *
2368 * The caller is responsible for assigning the bus number and initializing the
2369 * controller's methods before calling spi_register_controller(); and (after
2370 * errors adding the device) calling spi_controller_put() to prevent a memory
2371 * leak.
2372 *
2373 * Return: the SPI controller structure on success, else NULL.
2374 */
2375struct spi_controller *__spi_alloc_controller(struct device *dev,
2376                                              unsigned int size, bool slave)
2377{
2378        struct spi_controller   *ctlr;
2379        size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2380
2381        if (!dev)
2382                return NULL;
2383
2384        ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2385        if (!ctlr)
2386                return NULL;
2387
2388        device_initialize(&ctlr->dev);
2389        ctlr->bus_num = -1;
2390        ctlr->num_chipselect = 1;
2391        ctlr->slave = slave;
2392        if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2393                ctlr->dev.class = &spi_slave_class;
2394        else
2395                ctlr->dev.class = &spi_master_class;
2396        ctlr->dev.parent = dev;
2397        pm_suspend_ignore_children(&ctlr->dev, true);
2398        spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2399
2400        return ctlr;
2401}
2402EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2403
2404#ifdef CONFIG_OF
2405static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2406{
2407        int nb, i, *cs;
2408        struct device_node *np = ctlr->dev.of_node;
2409
2410        if (!np)
2411                return 0;
2412
2413        nb = of_gpio_named_count(np, "cs-gpios");
2414        ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2415
2416        /* Return error only for an incorrectly formed cs-gpios property */
2417        if (nb == 0 || nb == -ENOENT)
2418                return 0;
2419        else if (nb < 0)
2420                return nb;
2421
2422        cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2423                          GFP_KERNEL);
2424        ctlr->cs_gpios = cs;
2425
2426        if (!ctlr->cs_gpios)
2427                return -ENOMEM;
2428
2429        for (i = 0; i < ctlr->num_chipselect; i++)
2430                cs[i] = -ENOENT;
2431
2432        for (i = 0; i < nb; i++)
2433                cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2434
2435        return 0;
2436}
2437#else
2438static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2439{
2440        return 0;
2441}
2442#endif
2443
2444/**
2445 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2446 * @ctlr: The SPI master to grab GPIO descriptors for
2447 */
2448static int spi_get_gpio_descs(struct spi_controller *ctlr)
2449{
2450        int nb, i;
2451        struct gpio_desc **cs;
2452        struct device *dev = &ctlr->dev;
2453        unsigned long native_cs_mask = 0;
2454        unsigned int num_cs_gpios = 0;
2455
2456        nb = gpiod_count(dev, "cs");
2457        ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2458
2459        /* No GPIOs at all is fine, else return the error */
2460        if (nb == 0 || nb == -ENOENT)
2461                return 0;
2462        else if (nb < 0)
2463                return nb;
2464
2465        cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2466                          GFP_KERNEL);
2467        if (!cs)
2468                return -ENOMEM;
2469        ctlr->cs_gpiods = cs;
2470
2471        for (i = 0; i < nb; i++) {
2472                /*
2473                 * Most chipselects are active low, the inverted
2474                 * semantics are handled by special quirks in gpiolib,
2475                 * so initializing them GPIOD_OUT_LOW here means
2476                 * "unasserted", in most cases this will drive the physical
2477                 * line high.
2478                 */
2479                cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2480                                                      GPIOD_OUT_LOW);
2481                if (IS_ERR(cs[i]))
2482                        return PTR_ERR(cs[i]);
2483
2484                if (cs[i]) {
2485                        /*
2486                         * If we find a CS GPIO, name it after the device and
2487                         * chip select line.
2488                         */
2489                        char *gpioname;
2490
2491                        gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2492                                                  dev_name(dev), i);
2493                        if (!gpioname)
2494                                return -ENOMEM;
2495                        gpiod_set_consumer_name(cs[i], gpioname);
2496                        num_cs_gpios++;
2497                        continue;
2498                }
2499
2500                if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2501                        dev_err(dev, "Invalid native chip select %d\n", i);
2502                        return -EINVAL;
2503                }
2504                native_cs_mask |= BIT(i);
2505        }
2506
2507        ctlr->unused_native_cs = ffz(native_cs_mask);
2508        if (num_cs_gpios && ctlr->max_native_cs &&
2509            ctlr->unused_native_cs >= ctlr->max_native_cs) {
2510                dev_err(dev, "No unused native chip select available\n");
2511                return -EINVAL;
2512        }
2513
2514        return 0;
2515}
2516
2517static int spi_controller_check_ops(struct spi_controller *ctlr)
2518{
2519        /*
2520         * The controller may implement only the high-level SPI-memory like
2521         * operations if it does not support regular SPI transfers, and this is
2522         * valid use case.
2523         * If ->mem_ops is NULL, we request that at least one of the
2524         * ->transfer_xxx() method be implemented.
2525         */
2526        if (ctlr->mem_ops) {
2527                if (!ctlr->mem_ops->exec_op)
2528                        return -EINVAL;
2529        } else if (!ctlr->transfer && !ctlr->transfer_one &&
2530                   !ctlr->transfer_one_message) {
2531                return -EINVAL;
2532        }
2533
2534        return 0;
2535}
2536
2537/**
2538 * spi_register_controller - register SPI master or slave controller
2539 * @ctlr: initialized master, originally from spi_alloc_master() or
2540 *      spi_alloc_slave()
2541 * Context: can sleep
2542 *
2543 * SPI controllers connect to their drivers using some non-SPI bus,
2544 * such as the platform bus.  The final stage of probe() in that code
2545 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2546 *
2547 * SPI controllers use board specific (often SOC specific) bus numbers,
2548 * and board-specific addressing for SPI devices combines those numbers
2549 * with chip select numbers.  Since SPI does not directly support dynamic
2550 * device identification, boards need configuration tables telling which
2551 * chip is at which address.
2552 *
2553 * This must be called from context that can sleep.  It returns zero on
2554 * success, else a negative error code (dropping the controller's refcount).
2555 * After a successful return, the caller is responsible for calling
2556 * spi_unregister_controller().
2557 *
2558 * Return: zero on success, else a negative error code.
2559 */
2560int spi_register_controller(struct spi_controller *ctlr)
2561{
2562        struct device           *dev = ctlr->dev.parent;
2563        struct boardinfo        *bi;
2564        int                     status;
2565        int                     id, first_dynamic;
2566
2567        if (!dev)
2568                return -ENODEV;
2569
2570        /*
2571         * Make sure all necessary hooks are implemented before registering
2572         * the SPI controller.
2573         */
2574        status = spi_controller_check_ops(ctlr);
2575        if (status)
2576                return status;
2577
2578        if (ctlr->bus_num >= 0) {
2579                /* devices with a fixed bus num must check-in with the num */
2580                mutex_lock(&board_lock);
2581                id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2582                        ctlr->bus_num + 1, GFP_KERNEL);
2583                mutex_unlock(&board_lock);
2584                if (WARN(id < 0, "couldn't get idr"))
2585                        return id == -ENOSPC ? -EBUSY : id;
2586                ctlr->bus_num = id;
2587        } else if (ctlr->dev.of_node) {
2588                /* allocate dynamic bus number using Linux idr */
2589                id = of_alias_get_id(ctlr->dev.of_node, "spi");
2590                if (id >= 0) {
2591                        ctlr->bus_num = id;
2592                        mutex_lock(&board_lock);
2593                        id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2594                                       ctlr->bus_num + 1, GFP_KERNEL);
2595                        mutex_unlock(&board_lock);
2596                        if (WARN(id < 0, "couldn't get idr"))
2597                                return id == -ENOSPC ? -EBUSY : id;
2598                }
2599        }
2600        if (ctlr->bus_num < 0) {
2601                first_dynamic = of_alias_get_highest_id("spi");
2602                if (first_dynamic < 0)
2603                        first_dynamic = 0;
2604                else
2605                        first_dynamic++;
2606
2607                mutex_lock(&board_lock);
2608                id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2609                               0, GFP_KERNEL);
2610                mutex_unlock(&board_lock);
2611                if (WARN(id < 0, "couldn't get idr"))
2612                        return id;
2613                ctlr->bus_num = id;
2614        }
2615        INIT_LIST_HEAD(&ctlr->queue);
2616        spin_lock_init(&ctlr->queue_lock);
2617        spin_lock_init(&ctlr->bus_lock_spinlock);
2618        mutex_init(&ctlr->bus_lock_mutex);
2619        mutex_init(&ctlr->io_mutex);
2620        ctlr->bus_lock_flag = 0;
2621        init_completion(&ctlr->xfer_completion);
2622        if (!ctlr->max_dma_len)
2623                ctlr->max_dma_len = INT_MAX;
2624
2625        /* register the device, then userspace will see it.
2626         * registration fails if the bus ID is in use.
2627         */
2628        dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2629
2630        if (!spi_controller_is_slave(ctlr)) {
2631                if (ctlr->use_gpio_descriptors) {
2632                        status = spi_get_gpio_descs(ctlr);
2633                        if (status)
2634                                goto free_bus_id;
2635                        /*
2636                         * A controller using GPIO descriptors always
2637                         * supports SPI_CS_HIGH if need be.
2638                         */
2639                        ctlr->mode_bits |= SPI_CS_HIGH;
2640                } else {
2641                        /* Legacy code path for GPIOs from DT */
2642                        status = of_spi_get_gpio_numbers(ctlr);
2643                        if (status)
2644                                goto free_bus_id;
2645                }
2646        }
2647
2648        /*
2649         * Even if it's just one always-selected device, there must
2650         * be at least one chipselect.
2651         */
2652        if (!ctlr->num_chipselect) {
2653                status = -EINVAL;
2654                goto free_bus_id;
2655        }
2656
2657        status = device_add(&ctlr->dev);
2658        if (status < 0)
2659                goto free_bus_id;
2660        dev_dbg(dev, "registered %s %s\n",
2661                        spi_controller_is_slave(ctlr) ? "slave" : "master",
2662                        dev_name(&ctlr->dev));
2663
2664        /*
2665         * If we're using a queued driver, start the queue. Note that we don't
2666         * need the queueing logic if the driver is only supporting high-level
2667         * memory operations.
2668         */
2669        if (ctlr->transfer) {
2670                dev_info(dev, "controller is unqueued, this is deprecated\n");
2671        } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2672                status = spi_controller_initialize_queue(ctlr);
2673                if (status) {
2674                        device_del(&ctlr->dev);
2675                        goto free_bus_id;
2676                }
2677        }
2678        /* add statistics */
2679        spin_lock_init(&ctlr->statistics.lock);
2680
2681        mutex_lock(&board_lock);
2682        list_add_tail(&ctlr->list, &spi_controller_list);
2683        list_for_each_entry(bi, &board_list, list)
2684                spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2685        mutex_unlock(&board_lock);
2686
2687        /* Register devices from the device tree and ACPI */
2688        of_register_spi_devices(ctlr);
2689        acpi_register_spi_devices(ctlr);
2690        return status;
2691
2692free_bus_id:
2693        mutex_lock(&board_lock);
2694        idr_remove(&spi_master_idr, ctlr->bus_num);
2695        mutex_unlock(&board_lock);
2696        return status;
2697}
2698EXPORT_SYMBOL_GPL(spi_register_controller);
2699
2700static void devm_spi_unregister(struct device *dev, void *res)
2701{
2702        spi_unregister_controller(*(struct spi_controller **)res);
2703}
2704
2705/**
2706 * devm_spi_register_controller - register managed SPI master or slave
2707 *      controller
2708 * @dev:    device managing SPI controller
2709 * @ctlr: initialized controller, originally from spi_alloc_master() or
2710 *      spi_alloc_slave()
2711 * Context: can sleep
2712 *
2713 * Register a SPI device as with spi_register_controller() which will
2714 * automatically be unregistered and freed.
2715 *
2716 * Return: zero on success, else a negative error code.
2717 */
2718int devm_spi_register_controller(struct device *dev,
2719                                 struct spi_controller *ctlr)
2720{
2721        struct spi_controller **ptr;
2722        int ret;
2723
2724        ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2725        if (!ptr)
2726                return -ENOMEM;
2727
2728        ret = spi_register_controller(ctlr);
2729        if (!ret) {
2730                *ptr = ctlr;
2731                devres_add(dev, ptr);
2732        } else {
2733                devres_free(ptr);
2734        }
2735
2736        return ret;
2737}
2738EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2739
2740static int __unregister(struct device *dev, void *null)
2741{
2742        spi_unregister_device(to_spi_device(dev));
2743        return 0;
2744}
2745
2746/**
2747 * spi_unregister_controller - unregister SPI master or slave controller
2748 * @ctlr: the controller being unregistered
2749 * Context: can sleep
2750 *
2751 * This call is used only by SPI controller drivers, which are the
2752 * only ones directly touching chip registers.
2753 *
2754 * This must be called from context that can sleep.
2755 *
2756 * Note that this function also drops a reference to the controller.
2757 */
2758void spi_unregister_controller(struct spi_controller *ctlr)
2759{
2760        struct spi_controller *found;
2761        int id = ctlr->bus_num;
2762
2763        /* First make sure that this controller was ever added */
2764        mutex_lock(&board_lock);
2765        found = idr_find(&spi_master_idr, id);
2766        mutex_unlock(&board_lock);
2767        if (ctlr->queued) {
2768                if (spi_destroy_queue(ctlr))
2769                        dev_err(&ctlr->dev, "queue remove failed\n");
2770        }
2771        mutex_lock(&board_lock);
2772        list_del(&ctlr->list);
2773        mutex_unlock(&board_lock);
2774
2775        device_for_each_child(&ctlr->dev, NULL, __unregister);
2776        device_unregister(&ctlr->dev);
2777        /* free bus id */
2778        mutex_lock(&board_lock);
2779        if (found == ctlr)
2780                idr_remove(&spi_master_idr, id);
2781        mutex_unlock(&board_lock);
2782}
2783EXPORT_SYMBOL_GPL(spi_unregister_controller);
2784
2785int spi_controller_suspend(struct spi_controller *ctlr)
2786{
2787        int ret;
2788
2789        /* Basically no-ops for non-queued controllers */
2790        if (!ctlr->queued)
2791                return 0;
2792
2793        ret = spi_stop_queue(ctlr);
2794        if (ret)
2795                dev_err(&ctlr->dev, "queue stop failed\n");
2796
2797        return ret;
2798}
2799EXPORT_SYMBOL_GPL(spi_controller_suspend);
2800
2801int spi_controller_resume(struct spi_controller *ctlr)
2802{
2803        int ret;
2804
2805        if (!ctlr->queued)
2806                return 0;
2807
2808        ret = spi_start_queue(ctlr);
2809        if (ret)
2810                dev_err(&ctlr->dev, "queue restart failed\n");
2811
2812        return ret;
2813}
2814EXPORT_SYMBOL_GPL(spi_controller_resume);
2815
2816static int __spi_controller_match(struct device *dev, const void *data)
2817{
2818        struct spi_controller *ctlr;
2819        const u16 *bus_num = data;
2820
2821        ctlr = container_of(dev, struct spi_controller, dev);
2822        return ctlr->bus_num == *bus_num;
2823}
2824
2825/**
2826 * spi_busnum_to_master - look up master associated with bus_num
2827 * @bus_num: the master's bus number
2828 * Context: can sleep
2829 *
2830 * This call may be used with devices that are registered after
2831 * arch init time.  It returns a refcounted pointer to the relevant
2832 * spi_controller (which the caller must release), or NULL if there is
2833 * no such master registered.
2834 *
2835 * Return: the SPI master structure on success, else NULL.
2836 */
2837struct spi_controller *spi_busnum_to_master(u16 bus_num)
2838{
2839        struct device           *dev;
2840        struct spi_controller   *ctlr = NULL;
2841
2842        dev = class_find_device(&spi_master_class, NULL, &bus_num,
2843                                __spi_controller_match);
2844        if (dev)
2845                ctlr = container_of(dev, struct spi_controller, dev);
2846        /* reference got in class_find_device */
2847        return ctlr;
2848}
2849EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2850
2851/*-------------------------------------------------------------------------*/
2852
2853/* Core methods for SPI resource management */
2854
2855/**
2856 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2857 *                 during the processing of a spi_message while using
2858 *                 spi_transfer_one
2859 * @spi:     the spi device for which we allocate memory
2860 * @release: the release code to execute for this resource
2861 * @size:    size to alloc and return
2862 * @gfp:     GFP allocation flags
2863 *
2864 * Return: the pointer to the allocated data
2865 *
2866 * This may get enhanced in the future to allocate from a memory pool
2867 * of the @spi_device or @spi_controller to avoid repeated allocations.
2868 */
2869void *spi_res_alloc(struct spi_device *spi,
2870                    spi_res_release_t release,
2871                    size_t size, gfp_t gfp)
2872{
2873        struct spi_res *sres;
2874
2875        sres = kzalloc(sizeof(*sres) + size, gfp);
2876        if (!sres)
2877                return NULL;
2878
2879        INIT_LIST_HEAD(&sres->entry);
2880        sres->release = release;
2881
2882        return sres->data;
2883}
2884EXPORT_SYMBOL_GPL(spi_res_alloc);
2885
2886/**
2887 * spi_res_free - free an spi resource
2888 * @res: pointer to the custom data of a resource
2889 *
2890 */
2891void spi_res_free(void *res)
2892{
2893        struct spi_res *sres = container_of(res, struct spi_res, data);
2894
2895        if (!res)
2896                return;
2897
2898        WARN_ON(!list_empty(&sres->entry));
2899        kfree(sres);
2900}
2901EXPORT_SYMBOL_GPL(spi_res_free);
2902
2903/**
2904 * spi_res_add - add a spi_res to the spi_message
2905 * @message: the spi message
2906 * @res:     the spi_resource
2907 */
2908void spi_res_add(struct spi_message *message, void *res)
2909{
2910        struct spi_res *sres = container_of(res, struct spi_res, data);
2911
2912        WARN_ON(!list_empty(&sres->entry));
2913        list_add_tail(&sres->entry, &message->resources);
2914}
2915EXPORT_SYMBOL_GPL(spi_res_add);
2916
2917/**
2918 * spi_res_release - release all spi resources for this message
2919 * @ctlr:  the @spi_controller
2920 * @message: the @spi_message
2921 */
2922void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2923{
2924        struct spi_res *res, *tmp;
2925
2926        list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2927                if (res->release)
2928                        res->release(ctlr, message, res->data);
2929
2930                list_del(&res->entry);
2931
2932                kfree(res);
2933        }
2934}
2935EXPORT_SYMBOL_GPL(spi_res_release);
2936
2937/*-------------------------------------------------------------------------*/
2938
2939/* Core methods for spi_message alterations */
2940
2941static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2942                                            struct spi_message *msg,
2943                                            void *res)
2944{
2945        struct spi_replaced_transfers *rxfer = res;
2946        size_t i;
2947
2948        /* call extra callback if requested */
2949        if (rxfer->release)
2950                rxfer->release(ctlr, msg, res);
2951
2952        /* insert replaced transfers back into the message */
2953        list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2954
2955        /* remove the formerly inserted entries */
2956        for (i = 0; i < rxfer->inserted; i++)
2957                list_del(&rxfer->inserted_transfers[i].transfer_list);
2958}
2959
2960/**
2961 * spi_replace_transfers - replace transfers with several transfers
2962 *                         and register change with spi_message.resources
2963 * @msg:           the spi_message we work upon
2964 * @xfer_first:    the first spi_transfer we want to replace
2965 * @remove:        number of transfers to remove
2966 * @insert:        the number of transfers we want to insert instead
2967 * @release:       extra release code necessary in some circumstances
2968 * @extradatasize: extra data to allocate (with alignment guarantees
2969 *                 of struct @spi_transfer)
2970 * @gfp:           gfp flags
2971 *
2972 * Returns: pointer to @spi_replaced_transfers,
2973 *          PTR_ERR(...) in case of errors.
2974 */
2975struct spi_replaced_transfers *spi_replace_transfers(
2976        struct spi_message *msg,
2977        struct spi_transfer *xfer_first,
2978        size_t remove,
2979        size_t insert,
2980        spi_replaced_release_t release,
2981        size_t extradatasize,
2982        gfp_t gfp)
2983{
2984        struct spi_replaced_transfers *rxfer;
2985        struct spi_transfer *xfer;
2986        size_t i;
2987
2988        /* allocate the structure using spi_res */
2989        rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2990                              struct_size(rxfer, inserted_transfers, insert)
2991                              + extradatasize,
2992                              gfp);
2993        if (!rxfer)
2994                return ERR_PTR(-ENOMEM);
2995
2996        /* the release code to invoke before running the generic release */
2997        rxfer->release = release;
2998
2999        /* assign extradata */
3000        if (extradatasize)
3001                rxfer->extradata =
3002                        &rxfer->inserted_transfers[insert];
3003
3004        /* init the replaced_transfers list */
3005        INIT_LIST_HEAD(&rxfer->replaced_transfers);
3006
3007        /* assign the list_entry after which we should reinsert
3008         * the @replaced_transfers - it may be spi_message.messages!
3009         */
3010        rxfer->replaced_after = xfer_first->transfer_list.prev;
3011
3012        /* remove the requested number of transfers */
3013        for (i = 0; i < remove; i++) {
3014                /* if the entry after replaced_after it is msg->transfers
3015                 * then we have been requested to remove more transfers
3016                 * than are in the list
3017                 */
3018                if (rxfer->replaced_after->next == &msg->transfers) {
3019                        dev_err(&msg->spi->dev,
3020                                "requested to remove more spi_transfers than are available\n");
3021                        /* insert replaced transfers back into the message */
3022                        list_splice(&rxfer->replaced_transfers,
3023                                    rxfer->replaced_after);
3024
3025                        /* free the spi_replace_transfer structure */
3026                        spi_res_free(rxfer);
3027
3028                        /* and return with an error */
3029                        return ERR_PTR(-EINVAL);
3030                }
3031
3032                /* remove the entry after replaced_after from list of
3033                 * transfers and add it to list of replaced_transfers
3034                 */
3035                list_move_tail(rxfer->replaced_after->next,
3036                               &rxfer->replaced_transfers);
3037        }
3038
3039        /* create copy of the given xfer with identical settings
3040         * based on the first transfer to get removed
3041         */
3042        for (i = 0; i < insert; i++) {
3043                /* we need to run in reverse order */
3044                xfer = &rxfer->inserted_transfers[insert - 1 - i];
3045
3046                /* copy all spi_transfer data */
3047                memcpy(xfer, xfer_first, sizeof(*xfer));
3048
3049                /* add to list */
3050                list_add(&xfer->transfer_list, rxfer->replaced_after);
3051
3052                /* clear cs_change and delay for all but the last */
3053                if (i) {
3054                        xfer->cs_change = false;
3055                        xfer->delay_usecs = 0;
3056                        xfer->delay.value = 0;
3057                }
3058        }
3059
3060        /* set up inserted */
3061        rxfer->inserted = insert;
3062
3063        /* and register it with spi_res/spi_message */
3064        spi_res_add(msg, rxfer);
3065
3066        return rxfer;
3067}
3068EXPORT_SYMBOL_GPL(spi_replace_transfers);
3069
3070static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3071                                        struct spi_message *msg,
3072                                        struct spi_transfer **xferp,
3073                                        size_t maxsize,
3074                                        gfp_t gfp)
3075{
3076        struct spi_transfer *xfer = *xferp, *xfers;
3077        struct spi_replaced_transfers *srt;
3078        size_t offset;
3079        size_t count, i;
3080
3081        /* calculate how many we have to replace */
3082        count = DIV_ROUND_UP(xfer->len, maxsize);
3083
3084        /* create replacement */
3085        srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3086        if (IS_ERR(srt))
3087                return PTR_ERR(srt);
3088        xfers = srt->inserted_transfers;
3089
3090        /* now handle each of those newly inserted spi_transfers
3091         * note that the replacements spi_transfers all are preset
3092         * to the same values as *xferp, so tx_buf, rx_buf and len
3093         * are all identical (as well as most others)
3094         * so we just have to fix up len and the pointers.
3095         *
3096         * this also includes support for the depreciated
3097         * spi_message.is_dma_mapped interface
3098         */
3099
3100        /* the first transfer just needs the length modified, so we
3101         * run it outside the loop
3102         */
3103        xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3104
3105        /* all the others need rx_buf/tx_buf also set */
3106        for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3107                /* update rx_buf, tx_buf and dma */
3108                if (xfers[i].rx_buf)
3109                        xfers[i].rx_buf += offset;
3110                if (xfers[i].rx_dma)
3111                        xfers[i].rx_dma += offset;
3112                if (xfers[i].tx_buf)
3113                        xfers[i].tx_buf += offset;
3114                if (xfers[i].tx_dma)
3115                        xfers[i].tx_dma += offset;
3116
3117                /* update length */
3118                xfers[i].len = min(maxsize, xfers[i].len - offset);
3119        }
3120
3121        /* we set up xferp to the last entry we have inserted,
3122         * so that we skip those already split transfers
3123         */
3124        *xferp = &xfers[count - 1];
3125
3126        /* increment statistics counters */
3127        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3128                                       transfers_split_maxsize);
3129        SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3130                                       transfers_split_maxsize);
3131
3132        return 0;
3133}
3134
3135/**
3136 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3137 *                              when an individual transfer exceeds a
3138 *                              certain size
3139 * @ctlr:    the @spi_controller for this transfer
3140 * @msg:   the @spi_message to transform
3141 * @maxsize:  the maximum when to apply this
3142 * @gfp: GFP allocation flags
3143 *
3144 * Return: status of transformation
3145 */
3146int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3147                                struct spi_message *msg,
3148                                size_t maxsize,
3149                                gfp_t gfp)
3150{
3151        struct spi_transfer *xfer;
3152        int ret;
3153
3154        /* iterate over the transfer_list,
3155         * but note that xfer is advanced to the last transfer inserted
3156         * to avoid checking sizes again unnecessarily (also xfer does
3157         * potentiall belong to a different list by the time the
3158         * replacement has happened
3159         */
3160        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3161                if (xfer->len > maxsize) {
3162                        ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3163                                                           maxsize, gfp);
3164                        if (ret)
3165                                return ret;
3166                }
3167        }
3168
3169        return 0;
3170}
3171EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3172
3173/*-------------------------------------------------------------------------*/
3174
3175/* Core methods for SPI controller protocol drivers.  Some of the
3176 * other core methods are currently defined as inline functions.
3177 */
3178
3179static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3180                                        u8 bits_per_word)
3181{
3182        if (ctlr->bits_per_word_mask) {
3183                /* Only 32 bits fit in the mask */
3184                if (bits_per_word > 32)
3185                        return -EINVAL;
3186                if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3187                        return -EINVAL;
3188        }
3189
3190        return 0;
3191}
3192
3193/**
3194 * spi_setup - setup SPI mode and clock rate
3195 * @spi: the device whose settings are being modified
3196 * Context: can sleep, and no requests are queued to the device
3197 *
3198 * SPI protocol drivers may need to update the transfer mode if the
3199 * device doesn't work with its default.  They may likewise need
3200 * to update clock rates or word sizes from initial values.  This function
3201 * changes those settings, and must be called from a context that can sleep.
3202 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3203 * effect the next time the device is selected and data is transferred to
3204 * or from it.  When this function returns, the spi device is deselected.
3205 *
3206 * Note that this call will fail if the protocol driver specifies an option
3207 * that the underlying controller or its driver does not support.  For
3208 * example, not all hardware supports wire transfers using nine bit words,
3209 * LSB-first wire encoding, or active-high chipselects.
3210 *
3211 * Return: zero on success, else a negative error code.
3212 */
3213int spi_setup(struct spi_device *spi)
3214{
3215        unsigned        bad_bits, ugly_bits;
3216        int             status;
3217
3218        /* check mode to prevent that DUAL and QUAD set at the same time
3219         */
3220        if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3221                ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3222                dev_err(&spi->dev,
3223                "setup: can not select dual and quad at the same time\n");
3224                return -EINVAL;
3225        }
3226        /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3227         */
3228        if ((spi->mode & SPI_3WIRE) && (spi->mode &
3229                (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3230                 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3231                return -EINVAL;
3232        /* help drivers fail *cleanly* when they need options
3233         * that aren't supported with their current controller
3234         * SPI_CS_WORD has a fallback software implementation,
3235         * so it is ignored here.
3236         */
3237        bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3238        /* nothing prevents from working with active-high CS in case if it
3239         * is driven by GPIO.
3240         */
3241        if (gpio_is_valid(spi->cs_gpio))
3242                bad_bits &= ~SPI_CS_HIGH;
3243        ugly_bits = bad_bits &
3244                    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3245                     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3246        if (ugly_bits) {
3247                dev_warn(&spi->dev,
3248                         "setup: ignoring unsupported mode bits %x\n",
3249                         ugly_bits);
3250                spi->mode &= ~ugly_bits;
3251                bad_bits &= ~ugly_bits;
3252        }
3253        if (bad_bits) {
3254                dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3255                        bad_bits);
3256                return -EINVAL;
3257        }
3258
3259        if (!spi->bits_per_word)
3260                spi->bits_per_word = 8;
3261
3262        status = __spi_validate_bits_per_word(spi->controller,
3263                                              spi->bits_per_word);
3264        if (status)
3265                return status;
3266
3267        if (!spi->max_speed_hz)
3268                spi->max_speed_hz = spi->controller->max_speed_hz;
3269
3270        if (spi->controller->setup)
3271                status = spi->controller->setup(spi);
3272
3273        if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3274                status = pm_runtime_get_sync(spi->controller->dev.parent);
3275                if (status < 0) {
3276                        pm_runtime_put_noidle(spi->controller->dev.parent);
3277                        dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3278                                status);
3279                        return status;
3280                }
3281
3282                /*
3283                 * We do not want to return positive value from pm_runtime_get,
3284                 * there are many instances of devices calling spi_setup() and
3285                 * checking for a non-zero return value instead of a negative
3286                 * return value.
3287                 */
3288                status = 0;
3289
3290                spi_set_cs(spi, false);
3291                pm_runtime_mark_last_busy(spi->controller->dev.parent);
3292                pm_runtime_put_autosuspend(spi->controller->dev.parent);
3293        } else {
3294                spi_set_cs(spi, false);
3295        }
3296
3297        if (spi->rt && !spi->controller->rt) {
3298                spi->controller->rt = true;
3299                spi_set_thread_rt(spi->controller);
3300        }
3301
3302        dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3303                        (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3304                        (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3305                        (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3306                        (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3307                        (spi->mode & SPI_LOOP) ? "loopback, " : "",
3308                        spi->bits_per_word, spi->max_speed_hz,
3309                        status);
3310
3311        return status;
3312}
3313EXPORT_SYMBOL_GPL(spi_setup);
3314
3315/**
3316 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3317 * @spi: the device that requires specific CS timing configuration
3318 * @setup: CS setup time specified via @spi_delay
3319 * @hold: CS hold time specified via @spi_delay
3320 * @inactive: CS inactive delay between transfers specified via @spi_delay
3321 *
3322 * Return: zero on success, else a negative error code.
3323 */
3324int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3325                      struct spi_delay *hold, struct spi_delay *inactive)
3326{
3327        size_t len;
3328
3329        if (spi->controller->set_cs_timing)
3330                return spi->controller->set_cs_timing(spi, setup, hold,
3331                                                      inactive);
3332
3333        if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3334            (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3335            (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3336                dev_err(&spi->dev,
3337                        "Clock-cycle delays for CS not supported in SW mode\n");
3338                return -ENOTSUPP;
3339        }
3340
3341        len = sizeof(struct spi_delay);
3342
3343        /* copy delays to controller */
3344        if (setup)
3345                memcpy(&spi->controller->cs_setup, setup, len);
3346        else
3347                memset(&spi->controller->cs_setup, 0, len);
3348
3349        if (hold)
3350                memcpy(&spi->controller->cs_hold, hold, len);
3351        else
3352                memset(&spi->controller->cs_hold, 0, len);
3353
3354        if (inactive)
3355                memcpy(&spi->controller->cs_inactive, inactive, len);
3356        else
3357                memset(&spi->controller->cs_inactive, 0, len);
3358
3359        return 0;
3360}
3361EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3362
3363static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3364                                       struct spi_device *spi)
3365{
3366        int delay1, delay2;
3367
3368        delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3369        if (delay1 < 0)
3370                return delay1;
3371
3372        delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3373        if (delay2 < 0)
3374                return delay2;
3375
3376        if (delay1 < delay2)
3377                memcpy(&xfer->word_delay, &spi->word_delay,
3378                       sizeof(xfer->word_delay));
3379
3380        return 0;
3381}
3382
3383static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3384{
3385        struct spi_controller *ctlr = spi->controller;
3386        struct spi_transfer *xfer;
3387        int w_size;
3388
3389        if (list_empty(&message->transfers))
3390                return -EINVAL;
3391
3392        /* If an SPI controller does not support toggling the CS line on each
3393         * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3394         * for the CS line, we can emulate the CS-per-word hardware function by
3395         * splitting transfers into one-word transfers and ensuring that
3396         * cs_change is set for each transfer.
3397         */
3398        if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3399                                          spi->cs_gpiod ||
3400                                          gpio_is_valid(spi->cs_gpio))) {
3401                size_t maxsize;
3402                int ret;
3403
3404                maxsize = (spi->bits_per_word + 7) / 8;
3405
3406                /* spi_split_transfers_maxsize() requires message->spi */
3407                message->spi = spi;
3408
3409                ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3410                                                  GFP_KERNEL);
3411                if (ret)
3412                        return ret;
3413
3414                list_for_each_entry(xfer, &message->transfers, transfer_list) {
3415                        /* don't change cs_change on the last entry in the list */
3416                        if (list_is_last(&xfer->transfer_list, &message->transfers))
3417                                break;
3418                        xfer->cs_change = 1;
3419                }
3420        }
3421
3422        /* Half-duplex links include original MicroWire, and ones with
3423         * only one data pin like SPI_3WIRE (switches direction) or where
3424         * either MOSI or MISO is missing.  They can also be caused by
3425         * software limitations.
3426         */
3427        if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3428            (spi->mode & SPI_3WIRE)) {
3429                unsigned flags = ctlr->flags;
3430
3431                list_for_each_entry(xfer, &message->transfers, transfer_list) {
3432                        if (xfer->rx_buf && xfer->tx_buf)
3433                                return -EINVAL;
3434                        if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3435                                return -EINVAL;
3436                        if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3437                                return -EINVAL;
3438                }
3439        }
3440
3441        /**
3442         * Set transfer bits_per_word and max speed as spi device default if
3443         * it is not set for this transfer.
3444         * Set transfer tx_nbits and rx_nbits as single transfer default
3445         * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3446         * Ensure transfer word_delay is at least as long as that required by
3447         * device itself.
3448         */
3449        message->frame_length = 0;
3450        list_for_each_entry(xfer, &message->transfers, transfer_list) {
3451                xfer->effective_speed_hz = 0;
3452                message->frame_length += xfer->len;
3453                if (!xfer->bits_per_word)
3454                        xfer->bits_per_word = spi->bits_per_word;
3455
3456                if (!xfer->speed_hz)
3457                        xfer->speed_hz = spi->max_speed_hz;
3458
3459                if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3460                        xfer->speed_hz = ctlr->max_speed_hz;
3461
3462                if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3463                        return -EINVAL;
3464
3465                /*
3466                 * SPI transfer length should be multiple of SPI word size
3467                 * where SPI word size should be power-of-two multiple
3468                 */
3469                if (xfer->bits_per_word <= 8)
3470                        w_size = 1;
3471                else if (xfer->bits_per_word <= 16)
3472                        w_size = 2;
3473                else
3474                        w_size = 4;
3475
3476                /* No partial transfers accepted */
3477                if (xfer->len % w_size)
3478                        return -EINVAL;
3479
3480                if (xfer->speed_hz && ctlr->min_speed_hz &&
3481                    xfer->speed_hz < ctlr->min_speed_hz)
3482                        return -EINVAL;
3483
3484                if (xfer->tx_buf && !xfer->tx_nbits)
3485                        xfer->tx_nbits = SPI_NBITS_SINGLE;
3486                if (xfer->rx_buf && !xfer->rx_nbits)
3487                        xfer->rx_nbits = SPI_NBITS_SINGLE;
3488                /* check transfer tx/rx_nbits:
3489                 * 1. check the value matches one of single, dual and quad
3490                 * 2. check tx/rx_nbits match the mode in spi_device
3491                 */
3492                if (xfer->tx_buf) {
3493                        if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3494                                xfer->tx_nbits != SPI_NBITS_DUAL &&
3495                                xfer->tx_nbits != SPI_NBITS_QUAD)
3496                                return -EINVAL;
3497                        if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3498                                !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3499                                return -EINVAL;
3500                        if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3501                                !(spi->mode & SPI_TX_QUAD))
3502                                return -EINVAL;
3503                }
3504                /* check transfer rx_nbits */
3505                if (xfer->rx_buf) {
3506                        if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3507                                xfer->rx_nbits != SPI_NBITS_DUAL &&
3508                                xfer->rx_nbits != SPI_NBITS_QUAD)
3509                                return -EINVAL;
3510                        if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3511                                !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3512                                return -EINVAL;
3513                        if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3514                                !(spi->mode & SPI_RX_QUAD))
3515                                return -EINVAL;
3516                }
3517
3518                if (_spi_xfer_word_delay_update(xfer, spi))
3519                        return -EINVAL;
3520        }
3521
3522        message->status = -EINPROGRESS;
3523
3524        return 0;
3525}
3526
3527static int __spi_async(struct spi_device *spi, struct spi_message *message)
3528{
3529        struct spi_controller *ctlr = spi->controller;
3530        struct spi_transfer *xfer;
3531
3532        /*
3533         * Some controllers do not support doing regular SPI transfers. Return
3534         * ENOTSUPP when this is the case.
3535         */
3536        if (!ctlr->transfer)
3537                return -ENOTSUPP;
3538
3539        message->spi = spi;
3540
3541        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3542        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3543
3544        trace_spi_message_submit(message);
3545
3546        if (!ctlr->ptp_sts_supported) {
3547                list_for_each_entry(xfer, &message->transfers, transfer_list) {
3548                        xfer->ptp_sts_word_pre = 0;
3549                        ptp_read_system_prets(xfer->ptp_sts);
3550                }
3551        }
3552
3553        return ctlr->transfer(spi, message);
3554}
3555
3556/**
3557 * spi_async - asynchronous SPI transfer
3558 * @spi: device with which data will be exchanged
3559 * @message: describes the data transfers, including completion callback
3560 * Context: any (irqs may be blocked, etc)
3561 *
3562 * This call may be used in_irq and other contexts which can't sleep,
3563 * as well as from task contexts which can sleep.
3564 *
3565 * The completion callback is invoked in a context which can't sleep.
3566 * Before that invocation, the value of message->status is undefined.
3567 * When the callback is issued, message->status holds either zero (to
3568 * indicate complete success) or a negative error code.  After that
3569 * callback returns, the driver which issued the transfer request may
3570 * deallocate the associated memory; it's no longer in use by any SPI
3571 * core or controller driver code.
3572 *
3573 * Note that although all messages to a spi_device are handled in
3574 * FIFO order, messages may go to different devices in other orders.
3575 * Some device might be higher priority, or have various "hard" access
3576 * time requirements, for example.
3577 *
3578 * On detection of any fault during the transfer, processing of
3579 * the entire message is aborted, and the device is deselected.
3580 * Until returning from the associated message completion callback,
3581 * no other spi_message queued to that device will be processed.
3582 * (This rule applies equally to all the synchronous transfer calls,
3583 * which are wrappers around this core asynchronous primitive.)
3584 *
3585 * Return: zero on success, else a negative error code.
3586 */
3587int spi_async(struct spi_device *spi, struct spi_message *message)
3588{
3589        struct spi_controller *ctlr = spi->controller;
3590        int ret;
3591        unsigned long flags;
3592
3593        ret = __spi_validate(spi, message);
3594        if (ret != 0)
3595                return ret;
3596
3597        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3598
3599        if (ctlr->bus_lock_flag)
3600                ret = -EBUSY;
3601        else
3602                ret = __spi_async(spi, message);
3603
3604        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3605
3606        return ret;
3607}
3608EXPORT_SYMBOL_GPL(spi_async);
3609
3610/**
3611 * spi_async_locked - version of spi_async with exclusive bus usage
3612 * @spi: device with which data will be exchanged
3613 * @message: describes the data transfers, including completion callback
3614 * Context: any (irqs may be blocked, etc)
3615 *
3616 * This call may be used in_irq and other contexts which can't sleep,
3617 * as well as from task contexts which can sleep.
3618 *
3619 * The completion callback is invoked in a context which can't sleep.
3620 * Before that invocation, the value of message->status is undefined.
3621 * When the callback is issued, message->status holds either zero (to
3622 * indicate complete success) or a negative error code.  After that
3623 * callback returns, the driver which issued the transfer request may
3624 * deallocate the associated memory; it's no longer in use by any SPI
3625 * core or controller driver code.
3626 *
3627 * Note that although all messages to a spi_device are handled in
3628 * FIFO order, messages may go to different devices in other orders.
3629 * Some device might be higher priority, or have various "hard" access
3630 * time requirements, for example.
3631 *
3632 * On detection of any fault during the transfer, processing of
3633 * the entire message is aborted, and the device is deselected.
3634 * Until returning from the associated message completion callback,
3635 * no other spi_message queued to that device will be processed.
3636 * (This rule applies equally to all the synchronous transfer calls,
3637 * which are wrappers around this core asynchronous primitive.)
3638 *
3639 * Return: zero on success, else a negative error code.
3640 */
3641int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3642{
3643        struct spi_controller *ctlr = spi->controller;
3644        int ret;
3645        unsigned long flags;
3646
3647        ret = __spi_validate(spi, message);
3648        if (ret != 0)
3649                return ret;
3650
3651        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3652
3653        ret = __spi_async(spi, message);
3654
3655        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3656
3657        return ret;
3658
3659}
3660EXPORT_SYMBOL_GPL(spi_async_locked);
3661
3662/*-------------------------------------------------------------------------*/
3663
3664/* Utility methods for SPI protocol drivers, layered on
3665 * top of the core.  Some other utility methods are defined as
3666 * inline functions.
3667 */
3668
3669static void spi_complete(void *arg)
3670{
3671        complete(arg);
3672}
3673
3674static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3675{
3676        DECLARE_COMPLETION_ONSTACK(done);
3677        int status;
3678        struct spi_controller *ctlr = spi->controller;
3679        unsigned long flags;
3680
3681        status = __spi_validate(spi, message);
3682        if (status != 0)
3683                return status;
3684
3685        message->complete = spi_complete;
3686        message->context = &done;
3687        message->spi = spi;
3688
3689        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3690        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3691
3692        /* If we're not using the legacy transfer method then we will
3693         * try to transfer in the calling context so special case.
3694         * This code would be less tricky if we could remove the
3695         * support for driver implemented message queues.
3696         */
3697        if (ctlr->transfer == spi_queued_transfer) {
3698                spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3699
3700                trace_spi_message_submit(message);
3701
3702                status = __spi_queued_transfer(spi, message, false);
3703
3704                spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3705        } else {
3706                status = spi_async_locked(spi, message);
3707        }
3708
3709        if (status == 0) {
3710                /* Push out the messages in the calling context if we
3711                 * can.
3712                 */
3713                if (ctlr->transfer == spi_queued_transfer) {
3714                        SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3715                                                       spi_sync_immediate);
3716                        SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3717                                                       spi_sync_immediate);
3718                        __spi_pump_messages(ctlr, false);
3719                }
3720
3721                wait_for_completion(&done);
3722                status = message->status;
3723        }
3724        message->context = NULL;
3725        return status;
3726}
3727
3728/**
3729 * spi_sync - blocking/synchronous SPI data transfers
3730 * @spi: device with which data will be exchanged
3731 * @message: describes the data transfers
3732 * Context: can sleep
3733 *
3734 * This call may only be used from a context that may sleep.  The sleep
3735 * is non-interruptible, and has no timeout.  Low-overhead controller
3736 * drivers may DMA directly into and out of the message buffers.
3737 *
3738 * Note that the SPI device's chip select is active during the message,
3739 * and then is normally disabled between messages.  Drivers for some
3740 * frequently-used devices may want to minimize costs of selecting a chip,
3741 * by leaving it selected in anticipation that the next message will go
3742 * to the same chip.  (That may increase power usage.)
3743 *
3744 * Also, the caller is guaranteeing that the memory associated with the
3745 * message will not be freed before this call returns.
3746 *
3747 * Return: zero on success, else a negative error code.
3748 */
3749int spi_sync(struct spi_device *spi, struct spi_message *message)
3750{
3751        int ret;
3752
3753        mutex_lock(&spi->controller->bus_lock_mutex);
3754        ret = __spi_sync(spi, message);
3755        mutex_unlock(&spi->controller->bus_lock_mutex);
3756
3757        return ret;
3758}
3759EXPORT_SYMBOL_GPL(spi_sync);
3760
3761/**
3762 * spi_sync_locked - version of spi_sync with exclusive bus usage
3763 * @spi: device with which data will be exchanged
3764 * @message: describes the data transfers
3765 * Context: can sleep
3766 *
3767 * This call may only be used from a context that may sleep.  The sleep
3768 * is non-interruptible, and has no timeout.  Low-overhead controller
3769 * drivers may DMA directly into and out of the message buffers.
3770 *
3771 * This call should be used by drivers that require exclusive access to the
3772 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3773 * be released by a spi_bus_unlock call when the exclusive access is over.
3774 *
3775 * Return: zero on success, else a negative error code.
3776 */
3777int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3778{
3779        return __spi_sync(spi, message);
3780}
3781EXPORT_SYMBOL_GPL(spi_sync_locked);
3782
3783/**
3784 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3785 * @ctlr: SPI bus master that should be locked for exclusive bus access
3786 * Context: can sleep
3787 *
3788 * This call may only be used from a context that may sleep.  The sleep
3789 * is non-interruptible, and has no timeout.
3790 *
3791 * This call should be used by drivers that require exclusive access to the
3792 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3793 * exclusive access is over. Data transfer must be done by spi_sync_locked
3794 * and spi_async_locked calls when the SPI bus lock is held.
3795 *
3796 * Return: always zero.
3797 */
3798int spi_bus_lock(struct spi_controller *ctlr)
3799{
3800        unsigned long flags;
3801
3802        mutex_lock(&ctlr->bus_lock_mutex);
3803
3804        spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3805        ctlr->bus_lock_flag = 1;
3806        spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3807
3808        /* mutex remains locked until spi_bus_unlock is called */
3809
3810        return 0;
3811}
3812EXPORT_SYMBOL_GPL(spi_bus_lock);
3813
3814/**
3815 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3816 * @ctlr: SPI bus master that was locked for exclusive bus access
3817 * Context: can sleep
3818 *
3819 * This call may only be used from a context that may sleep.  The sleep
3820 * is non-interruptible, and has no timeout.
3821 *
3822 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3823 * call.
3824 *
3825 * Return: always zero.
3826 */
3827int spi_bus_unlock(struct spi_controller *ctlr)
3828{
3829        ctlr->bus_lock_flag = 0;
3830
3831        mutex_unlock(&ctlr->bus_lock_mutex);
3832
3833        return 0;
3834}
3835EXPORT_SYMBOL_GPL(spi_bus_unlock);
3836
3837/* portable code must never pass more than 32 bytes */
3838#define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3839
3840static u8       *buf;
3841
3842/**
3843 * spi_write_then_read - SPI synchronous write followed by read
3844 * @spi: device with which data will be exchanged
3845 * @txbuf: data to be written (need not be dma-safe)
3846 * @n_tx: size of txbuf, in bytes
3847 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3848 * @n_rx: size of rxbuf, in bytes
3849 * Context: can sleep
3850 *
3851 * This performs a half duplex MicroWire style transaction with the
3852 * device, sending txbuf and then reading rxbuf.  The return value
3853 * is zero for success, else a negative errno status code.
3854 * This call may only be used from a context that may sleep.
3855 *
3856 * Parameters to this routine are always copied using a small buffer;
3857 * portable code should never use this for more than 32 bytes.
3858 * Performance-sensitive or bulk transfer code should instead use
3859 * spi_{async,sync}() calls with dma-safe buffers.
3860 *
3861 * Return: zero on success, else a negative error code.
3862 */
3863int spi_write_then_read(struct spi_device *spi,
3864                const void *txbuf, unsigned n_tx,
3865                void *rxbuf, unsigned n_rx)
3866{
3867        static DEFINE_MUTEX(lock);
3868
3869        int                     status;
3870        struct spi_message      message;
3871        struct spi_transfer     x[2];
3872        u8                      *local_buf;
3873
3874        /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3875         * copying here, (as a pure convenience thing), but we can
3876         * keep heap costs out of the hot path unless someone else is
3877         * using the pre-allocated buffer or the transfer is too large.
3878         */
3879        if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3880                local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3881                                    GFP_KERNEL | GFP_DMA);
3882                if (!local_buf)
3883                        return -ENOMEM;
3884        } else {
3885                local_buf = buf;
3886        }
3887
3888        spi_message_init(&message);
3889        memset(x, 0, sizeof(x));
3890        if (n_tx) {
3891                x[0].len = n_tx;
3892                spi_message_add_tail(&x[0], &message);
3893        }
3894        if (n_rx) {
3895                x[1].len = n_rx;
3896                spi_message_add_tail(&x[1], &message);
3897        }
3898
3899        memcpy(local_buf, txbuf, n_tx);
3900        x[0].tx_buf = local_buf;
3901        x[1].rx_buf = local_buf + n_tx;
3902
3903        /* do the i/o */
3904        status = spi_sync(spi, &message);
3905        if (status == 0)
3906                memcpy(rxbuf, x[1].rx_buf, n_rx);
3907
3908        if (x[0].tx_buf == buf)
3909                mutex_unlock(&lock);
3910        else
3911                kfree(local_buf);
3912
3913        return status;
3914}
3915EXPORT_SYMBOL_GPL(spi_write_then_read);
3916
3917/*-------------------------------------------------------------------------*/
3918
3919#if IS_ENABLED(CONFIG_OF)
3920/* must call put_device() when done with returned spi_device device */
3921struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3922{
3923        struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3924
3925        return dev ? to_spi_device(dev) : NULL;
3926}
3927EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3928#endif /* IS_ENABLED(CONFIG_OF) */
3929
3930#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3931/* the spi controllers are not using spi_bus, so we find it with another way */
3932static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3933{
3934        struct device *dev;
3935
3936        dev = class_find_device_by_of_node(&spi_master_class, node);
3937        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3938                dev = class_find_device_by_of_node(&spi_slave_class, node);
3939        if (!dev)
3940                return NULL;
3941
3942        /* reference got in class_find_device */
3943        return container_of(dev, struct spi_controller, dev);
3944}
3945
3946static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3947                         void *arg)
3948{
3949        struct of_reconfig_data *rd = arg;
3950        struct spi_controller *ctlr;
3951        struct spi_device *spi;
3952
3953        switch (of_reconfig_get_state_change(action, arg)) {
3954        case OF_RECONFIG_CHANGE_ADD:
3955                ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3956                if (ctlr == NULL)
3957                        return NOTIFY_OK;       /* not for us */
3958
3959                if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3960                        put_device(&ctlr->dev);
3961                        return NOTIFY_OK;
3962                }
3963
3964                spi = of_register_spi_device(ctlr, rd->dn);
3965                put_device(&ctlr->dev);
3966
3967                if (IS_ERR(spi)) {
3968                        pr_err("%s: failed to create for '%pOF'\n",
3969                                        __func__, rd->dn);
3970                        of_node_clear_flag(rd->dn, OF_POPULATED);
3971                        return notifier_from_errno(PTR_ERR(spi));
3972                }
3973                break;
3974
3975        case OF_RECONFIG_CHANGE_REMOVE:
3976                /* already depopulated? */
3977                if (!of_node_check_flag(rd->dn, OF_POPULATED))
3978                        return NOTIFY_OK;
3979
3980                /* find our device by node */
3981                spi = of_find_spi_device_by_node(rd->dn);
3982                if (spi == NULL)
3983                        return NOTIFY_OK;       /* no? not meant for us */
3984
3985                /* unregister takes one ref away */
3986                spi_unregister_device(spi);
3987
3988                /* and put the reference of the find */
3989                put_device(&spi->dev);
3990                break;
3991        }
3992
3993        return NOTIFY_OK;
3994}
3995
3996static struct notifier_block spi_of_notifier = {
3997        .notifier_call = of_spi_notify,
3998};
3999#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4000extern struct notifier_block spi_of_notifier;
4001#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4002
4003#if IS_ENABLED(CONFIG_ACPI)
4004static int spi_acpi_controller_match(struct device *dev, const void *data)
4005{
4006        return ACPI_COMPANION(dev->parent) == data;
4007}
4008
4009static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4010{
4011        struct device *dev;
4012
4013        dev = class_find_device(&spi_master_class, NULL, adev,
4014                                spi_acpi_controller_match);
4015        if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4016                dev = class_find_device(&spi_slave_class, NULL, adev,
4017                                        spi_acpi_controller_match);
4018        if (!dev)
4019                return NULL;
4020
4021        return container_of(dev, struct spi_controller, dev);
4022}
4023
4024static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4025{
4026        struct device *dev;
4027
4028        dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4029        return to_spi_device(dev);
4030}
4031
4032static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4033                           void *arg)
4034{
4035        struct acpi_device *adev = arg;
4036        struct spi_controller *ctlr;
4037        struct spi_device *spi;
4038
4039        switch (value) {
4040        case ACPI_RECONFIG_DEVICE_ADD:
4041                ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4042                if (!ctlr)
4043                        break;
4044
4045                acpi_register_spi_device(ctlr, adev);
4046                put_device(&ctlr->dev);
4047                break;
4048        case ACPI_RECONFIG_DEVICE_REMOVE:
4049                if (!acpi_device_enumerated(adev))
4050                        break;
4051
4052                spi = acpi_spi_find_device_by_adev(adev);
4053                if (!spi)
4054                        break;
4055
4056                spi_unregister_device(spi);
4057                put_device(&spi->dev);
4058                break;
4059        }
4060
4061        return NOTIFY_OK;
4062}
4063
4064static struct notifier_block spi_acpi_notifier = {
4065        .notifier_call = acpi_spi_notify,
4066};
4067#else
4068extern struct notifier_block spi_acpi_notifier;
4069#endif
4070
4071static int __init spi_init(void)
4072{
4073        int     status;
4074
4075        buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4076        if (!buf) {
4077                status = -ENOMEM;
4078                goto err0;
4079        }
4080
4081        status = bus_register(&spi_bus_type);
4082        if (status < 0)
4083                goto err1;
4084
4085        status = class_register(&spi_master_class);
4086        if (status < 0)
4087                goto err2;
4088
4089        if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4090                status = class_register(&spi_slave_class);
4091                if (status < 0)
4092                        goto err3;
4093        }
4094
4095        if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4096                WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4097        if (IS_ENABLED(CONFIG_ACPI))
4098                WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4099
4100        return 0;
4101
4102err3:
4103        class_unregister(&spi_master_class);
4104err2:
4105        bus_unregister(&spi_bus_type);
4106err1:
4107        kfree(buf);
4108        buf = NULL;
4109err0:
4110        return status;
4111}
4112
4113/* board_info is normally registered in arch_initcall(),
4114 * but even essential drivers wait till later
4115 *
4116 * REVISIT only boardinfo really needs static linking. the rest (device and
4117 * driver registration) _could_ be dynamically linked (modular) ... costs
4118 * include needing to have boardinfo data structures be much more public.
4119 */
4120postcore_initcall(spi_init);
4121