linux/drivers/thermal/mtk_thermal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2015 MediaTek Inc.
   4 * Author: Hanyi Wu <hanyi.wu@mediatek.com>
   5 *         Sascha Hauer <s.hauer@pengutronix.de>
   6 *         Dawei Chien <dawei.chien@mediatek.com>
   7 *         Louis Yu <louis.yu@mediatek.com>
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/nvmem-consumer.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/of_device.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/io.h>
  22#include <linux/thermal.h>
  23#include <linux/reset.h>
  24#include <linux/types.h>
  25
  26/* AUXADC Registers */
  27#define AUXADC_CON1_SET_V       0x008
  28#define AUXADC_CON1_CLR_V       0x00c
  29#define AUXADC_CON2_V           0x010
  30#define AUXADC_DATA(channel)    (0x14 + (channel) * 4)
  31
  32#define APMIXED_SYS_TS_CON1     0x604
  33
  34/* Thermal Controller Registers */
  35#define TEMP_MONCTL0            0x000
  36#define TEMP_MONCTL1            0x004
  37#define TEMP_MONCTL2            0x008
  38#define TEMP_MONIDET0           0x014
  39#define TEMP_MONIDET1           0x018
  40#define TEMP_MSRCTL0            0x038
  41#define TEMP_AHBPOLL            0x040
  42#define TEMP_AHBTO              0x044
  43#define TEMP_ADCPNP0            0x048
  44#define TEMP_ADCPNP1            0x04c
  45#define TEMP_ADCPNP2            0x050
  46#define TEMP_ADCPNP3            0x0b4
  47
  48#define TEMP_ADCMUX             0x054
  49#define TEMP_ADCEN              0x060
  50#define TEMP_PNPMUXADDR         0x064
  51#define TEMP_ADCMUXADDR         0x068
  52#define TEMP_ADCENADDR          0x074
  53#define TEMP_ADCVALIDADDR       0x078
  54#define TEMP_ADCVOLTADDR        0x07c
  55#define TEMP_RDCTRL             0x080
  56#define TEMP_ADCVALIDMASK       0x084
  57#define TEMP_ADCVOLTAGESHIFT    0x088
  58#define TEMP_ADCWRITECTRL       0x08c
  59#define TEMP_MSR0               0x090
  60#define TEMP_MSR1               0x094
  61#define TEMP_MSR2               0x098
  62#define TEMP_MSR3               0x0B8
  63
  64#define TEMP_SPARE0             0x0f0
  65
  66#define TEMP_ADCPNP0_1          0x148
  67#define TEMP_ADCPNP1_1          0x14c
  68#define TEMP_ADCPNP2_1          0x150
  69#define TEMP_MSR0_1             0x190
  70#define TEMP_MSR1_1             0x194
  71#define TEMP_MSR2_1             0x198
  72#define TEMP_ADCPNP3_1          0x1b4
  73#define TEMP_MSR3_1             0x1B8
  74
  75#define PTPCORESEL              0x400
  76
  77#define TEMP_MONCTL1_PERIOD_UNIT(x)     ((x) & 0x3ff)
  78
  79#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16)
  80#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff)
  81
  82#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)       (x)
  83
  84#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE         BIT(0)
  85#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE         BIT(1)
  86
  87#define TEMP_ADCVALIDMASK_VALID_HIGH            BIT(5)
  88#define TEMP_ADCVALIDMASK_VALID_POS(bit)        (bit)
  89
  90/* MT8173 thermal sensors */
  91#define MT8173_TS1      0
  92#define MT8173_TS2      1
  93#define MT8173_TS3      2
  94#define MT8173_TS4      3
  95#define MT8173_TSABB    4
  96
  97/* AUXADC channel 11 is used for the temperature sensors */
  98#define MT8173_TEMP_AUXADC_CHANNEL      11
  99
 100/* The total number of temperature sensors in the MT8173 */
 101#define MT8173_NUM_SENSORS              5
 102
 103/* The number of banks in the MT8173 */
 104#define MT8173_NUM_ZONES                4
 105
 106/* The number of sensing points per bank */
 107#define MT8173_NUM_SENSORS_PER_ZONE     4
 108
 109/* The number of controller in the MT8173 */
 110#define MT8173_NUM_CONTROLLER           1
 111
 112/* The calibration coefficient of sensor  */
 113#define MT8173_CALIBRATION      165
 114
 115/*
 116 * Layout of the fuses providing the calibration data
 117 * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
 118 * MT8183 has 6 sensors and needs 6 VTS calibration data.
 119 * MT8173 has 5 sensors and needs 5 VTS calibration data.
 120 * MT2701 has 3 sensors and needs 3 VTS calibration data.
 121 * MT2712 has 4 sensors and needs 4 VTS calibration data.
 122 */
 123#define CALIB_BUF0_VALID                BIT(0)
 124#define CALIB_BUF1_ADC_GE(x)            (((x) >> 22) & 0x3ff)
 125#define CALIB_BUF0_VTS_TS1(x)           (((x) >> 17) & 0x1ff)
 126#define CALIB_BUF0_VTS_TS2(x)           (((x) >> 8) & 0x1ff)
 127#define CALIB_BUF1_VTS_TS3(x)           (((x) >> 0) & 0x1ff)
 128#define CALIB_BUF2_VTS_TS4(x)           (((x) >> 23) & 0x1ff)
 129#define CALIB_BUF2_VTS_TS5(x)           (((x) >> 5) & 0x1ff)
 130#define CALIB_BUF2_VTS_TSABB(x)         (((x) >> 14) & 0x1ff)
 131#define CALIB_BUF0_DEGC_CALI(x)         (((x) >> 1) & 0x3f)
 132#define CALIB_BUF0_O_SLOPE(x)           (((x) >> 26) & 0x3f)
 133#define CALIB_BUF0_O_SLOPE_SIGN(x)      (((x) >> 7) & 0x1)
 134#define CALIB_BUF1_ID(x)                (((x) >> 9) & 0x1)
 135
 136enum {
 137        VTS1,
 138        VTS2,
 139        VTS3,
 140        VTS4,
 141        VTS5,
 142        VTSABB,
 143        MAX_NUM_VTS,
 144};
 145
 146/* MT2701 thermal sensors */
 147#define MT2701_TS1      0
 148#define MT2701_TS2      1
 149#define MT2701_TSABB    2
 150
 151/* AUXADC channel 11 is used for the temperature sensors */
 152#define MT2701_TEMP_AUXADC_CHANNEL      11
 153
 154/* The total number of temperature sensors in the MT2701 */
 155#define MT2701_NUM_SENSORS      3
 156
 157/* The number of sensing points per bank */
 158#define MT2701_NUM_SENSORS_PER_ZONE     3
 159
 160/* The number of controller in the MT2701 */
 161#define MT2701_NUM_CONTROLLER           1
 162
 163/* The calibration coefficient of sensor  */
 164#define MT2701_CALIBRATION      165
 165
 166/* MT2712 thermal sensors */
 167#define MT2712_TS1      0
 168#define MT2712_TS2      1
 169#define MT2712_TS3      2
 170#define MT2712_TS4      3
 171
 172/* AUXADC channel 11 is used for the temperature sensors */
 173#define MT2712_TEMP_AUXADC_CHANNEL      11
 174
 175/* The total number of temperature sensors in the MT2712 */
 176#define MT2712_NUM_SENSORS      4
 177
 178/* The number of sensing points per bank */
 179#define MT2712_NUM_SENSORS_PER_ZONE     4
 180
 181/* The number of controller in the MT2712 */
 182#define MT2712_NUM_CONTROLLER           1
 183
 184/* The calibration coefficient of sensor  */
 185#define MT2712_CALIBRATION      165
 186
 187#define MT7622_TEMP_AUXADC_CHANNEL      11
 188#define MT7622_NUM_SENSORS              1
 189#define MT7622_NUM_ZONES                1
 190#define MT7622_NUM_SENSORS_PER_ZONE     1
 191#define MT7622_TS1      0
 192#define MT7622_NUM_CONTROLLER           1
 193
 194/* The maximum number of banks */
 195#define MAX_NUM_ZONES           8
 196
 197/* The calibration coefficient of sensor  */
 198#define MT7622_CALIBRATION      165
 199
 200/* MT8183 thermal sensors */
 201#define MT8183_TS1      0
 202#define MT8183_TS2      1
 203#define MT8183_TS3      2
 204#define MT8183_TS4      3
 205#define MT8183_TS5      4
 206#define MT8183_TSABB    5
 207
 208/* AUXADC channel  is used for the temperature sensors */
 209#define MT8183_TEMP_AUXADC_CHANNEL      11
 210
 211/* The total number of temperature sensors in the MT8183 */
 212#define MT8183_NUM_SENSORS      6
 213
 214/* The number of sensing points per bank */
 215#define MT8183_NUM_SENSORS_PER_ZONE      6
 216
 217/* The number of controller in the MT8183 */
 218#define MT8183_NUM_CONTROLLER           2
 219
 220/* The calibration coefficient of sensor  */
 221#define MT8183_CALIBRATION      153
 222
 223struct mtk_thermal;
 224
 225struct thermal_bank_cfg {
 226        unsigned int num_sensors;
 227        const int *sensors;
 228};
 229
 230struct mtk_thermal_bank {
 231        struct mtk_thermal *mt;
 232        int id;
 233};
 234
 235struct mtk_thermal_data {
 236        s32 num_banks;
 237        s32 num_sensors;
 238        s32 auxadc_channel;
 239        const int *vts_index;
 240        const int *sensor_mux_values;
 241        const int *msr;
 242        const int *adcpnp;
 243        const int cali_val;
 244        const int num_controller;
 245        const int *controller_offset;
 246        bool need_switch_bank;
 247        struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
 248};
 249
 250struct mtk_thermal {
 251        struct device *dev;
 252        void __iomem *thermal_base;
 253
 254        struct clk *clk_peri_therm;
 255        struct clk *clk_auxadc;
 256        /* lock: for getting and putting banks */
 257        struct mutex lock;
 258
 259        /* Calibration values */
 260        s32 adc_ge;
 261        s32 degc_cali;
 262        s32 o_slope;
 263        s32 vts[MAX_NUM_VTS];
 264
 265        const struct mtk_thermal_data *conf;
 266        struct mtk_thermal_bank banks[MAX_NUM_ZONES];
 267};
 268
 269/* MT8183 thermal sensor data */
 270static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
 271        MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
 272};
 273
 274static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
 275        TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
 276};
 277
 278static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
 279        TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
 280        TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
 281};
 282
 283static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
 284static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
 285
 286static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
 287        VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
 288};
 289
 290/* MT8173 thermal sensor data */
 291static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
 292        { MT8173_TS2, MT8173_TS3 },
 293        { MT8173_TS2, MT8173_TS4 },
 294        { MT8173_TS1, MT8173_TS2, MT8173_TSABB },
 295        { MT8173_TS2 },
 296};
 297
 298static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
 299        TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 300};
 301
 302static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
 303        TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 304};
 305
 306static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
 307static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
 308
 309static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
 310        VTS1, VTS2, VTS3, VTS4, VTSABB
 311};
 312
 313/* MT2701 thermal sensor data */
 314static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
 315        MT2701_TS1, MT2701_TS2, MT2701_TSABB
 316};
 317
 318static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
 319        TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
 320};
 321
 322static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
 323        TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
 324};
 325
 326static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
 327static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
 328
 329static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
 330        VTS1, VTS2, VTS3
 331};
 332
 333/* MT2712 thermal sensor data */
 334static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
 335        MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
 336};
 337
 338static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
 339        TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
 340};
 341
 342static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
 343        TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
 344};
 345
 346static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
 347static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
 348
 349static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
 350        VTS1, VTS2, VTS3, VTS4
 351};
 352
 353/* MT7622 thermal sensor data */
 354static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
 355static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
 356static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
 357static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
 358static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
 359static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
 360
 361/*
 362 * The MT8173 thermal controller has four banks. Each bank can read up to
 363 * four temperature sensors simultaneously. The MT8173 has a total of 5
 364 * temperature sensors. We use each bank to measure a certain area of the
 365 * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
 366 * areas, hence is used in different banks.
 367 *
 368 * The thermal core only gets the maximum temperature of all banks, so
 369 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 370 * Voltage Scaling) unit makes its decisions based on the same bank
 371 * data, and this indeed needs the temperatures of the individual banks
 372 * for making better decisions.
 373 */
 374static const struct mtk_thermal_data mt8173_thermal_data = {
 375        .auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
 376        .num_banks = MT8173_NUM_ZONES,
 377        .num_sensors = MT8173_NUM_SENSORS,
 378        .vts_index = mt8173_vts_index,
 379        .cali_val = MT8173_CALIBRATION,
 380        .num_controller = MT8173_NUM_CONTROLLER,
 381        .controller_offset = mt8173_tc_offset,
 382        .need_switch_bank = true,
 383        .bank_data = {
 384                {
 385                        .num_sensors = 2,
 386                        .sensors = mt8173_bank_data[0],
 387                }, {
 388                        .num_sensors = 2,
 389                        .sensors = mt8173_bank_data[1],
 390                }, {
 391                        .num_sensors = 3,
 392                        .sensors = mt8173_bank_data[2],
 393                }, {
 394                        .num_sensors = 1,
 395                        .sensors = mt8173_bank_data[3],
 396                },
 397        },
 398        .msr = mt8173_msr,
 399        .adcpnp = mt8173_adcpnp,
 400        .sensor_mux_values = mt8173_mux_values,
 401};
 402
 403/*
 404 * The MT2701 thermal controller has one bank, which can read up to
 405 * three temperature sensors simultaneously. The MT2701 has a total of 3
 406 * temperature sensors.
 407 *
 408 * The thermal core only gets the maximum temperature of this one bank,
 409 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 410 * Voltage Scaling) unit makes its decisions based on the same bank
 411 * data.
 412 */
 413static const struct mtk_thermal_data mt2701_thermal_data = {
 414        .auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
 415        .num_banks = 1,
 416        .num_sensors = MT2701_NUM_SENSORS,
 417        .vts_index = mt2701_vts_index,
 418        .cali_val = MT2701_CALIBRATION,
 419        .num_controller = MT2701_NUM_CONTROLLER,
 420        .controller_offset = mt2701_tc_offset,
 421        .need_switch_bank = true,
 422        .bank_data = {
 423                {
 424                        .num_sensors = 3,
 425                        .sensors = mt2701_bank_data,
 426                },
 427        },
 428        .msr = mt2701_msr,
 429        .adcpnp = mt2701_adcpnp,
 430        .sensor_mux_values = mt2701_mux_values,
 431};
 432
 433/*
 434 * The MT2712 thermal controller has one bank, which can read up to
 435 * four temperature sensors simultaneously. The MT2712 has a total of 4
 436 * temperature sensors.
 437 *
 438 * The thermal core only gets the maximum temperature of this one bank,
 439 * so the bank concept wouldn't be necessary here. However, the SVS (Smart
 440 * Voltage Scaling) unit makes its decisions based on the same bank
 441 * data.
 442 */
 443static const struct mtk_thermal_data mt2712_thermal_data = {
 444        .auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
 445        .num_banks = 1,
 446        .num_sensors = MT2712_NUM_SENSORS,
 447        .vts_index = mt2712_vts_index,
 448        .cali_val = MT2712_CALIBRATION,
 449        .num_controller = MT2712_NUM_CONTROLLER,
 450        .controller_offset = mt2712_tc_offset,
 451        .need_switch_bank = true,
 452        .bank_data = {
 453                {
 454                        .num_sensors = 4,
 455                        .sensors = mt2712_bank_data,
 456                },
 457        },
 458        .msr = mt2712_msr,
 459        .adcpnp = mt2712_adcpnp,
 460        .sensor_mux_values = mt2712_mux_values,
 461};
 462
 463/*
 464 * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
 465 * access.
 466 */
 467static const struct mtk_thermal_data mt7622_thermal_data = {
 468        .auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
 469        .num_banks = MT7622_NUM_ZONES,
 470        .num_sensors = MT7622_NUM_SENSORS,
 471        .vts_index = mt7622_vts_index,
 472        .cali_val = MT7622_CALIBRATION,
 473        .num_controller = MT7622_NUM_CONTROLLER,
 474        .controller_offset = mt7622_tc_offset,
 475        .need_switch_bank = true,
 476        .bank_data = {
 477                {
 478                        .num_sensors = 1,
 479                        .sensors = mt7622_bank_data,
 480                },
 481        },
 482        .msr = mt7622_msr,
 483        .adcpnp = mt7622_adcpnp,
 484        .sensor_mux_values = mt7622_mux_values,
 485};
 486
 487/*
 488 * The MT8183 thermal controller has one bank for the current SW framework.
 489 * The MT8183 has a total of 6 temperature sensors.
 490 * There are two thermal controller to control the six sensor.
 491 * The first one bind 2 sensor, and the other bind 4 sensors.
 492 * The thermal core only gets the maximum temperature of all sensor, so
 493 * the bank concept wouldn't be necessary here. However, the SVS (Smart
 494 * Voltage Scaling) unit makes its decisions based on the same bank
 495 * data, and this indeed needs the temperatures of the individual banks
 496 * for making better decisions.
 497 */
 498static const struct mtk_thermal_data mt8183_thermal_data = {
 499        .auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
 500        .num_banks = MT8183_NUM_SENSORS_PER_ZONE,
 501        .num_sensors = MT8183_NUM_SENSORS,
 502        .vts_index = mt8183_vts_index,
 503        .cali_val = MT8183_CALIBRATION,
 504        .num_controller = MT8183_NUM_CONTROLLER,
 505        .controller_offset = mt8183_tc_offset,
 506        .need_switch_bank = false,
 507        .bank_data = {
 508                {
 509                        .num_sensors = 6,
 510                        .sensors = mt8183_bank_data,
 511                },
 512        },
 513
 514        .msr = mt8183_msr,
 515        .adcpnp = mt8183_adcpnp,
 516        .sensor_mux_values = mt8183_mux_values,
 517};
 518
 519/**
 520 * raw_to_mcelsius - convert a raw ADC value to mcelsius
 521 * @mt: The thermal controller
 522 * @sensno:     sensor number
 523 * @raw:        raw ADC value
 524 *
 525 * This converts the raw ADC value to mcelsius using the SoC specific
 526 * calibration constants
 527 */
 528static int raw_to_mcelsius(struct mtk_thermal *mt, int sensno, s32 raw)
 529{
 530        s32 tmp;
 531
 532        raw &= 0xfff;
 533
 534        tmp = 203450520 << 3;
 535        tmp /= mt->conf->cali_val + mt->o_slope;
 536        tmp /= 10000 + mt->adc_ge;
 537        tmp *= raw - mt->vts[sensno] - 3350;
 538        tmp >>= 3;
 539
 540        return mt->degc_cali * 500 - tmp;
 541}
 542
 543/**
 544 * mtk_thermal_get_bank - get bank
 545 * @bank:       The bank
 546 *
 547 * The bank registers are banked, we have to select a bank in the
 548 * PTPCORESEL register to access it.
 549 */
 550static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
 551{
 552        struct mtk_thermal *mt = bank->mt;
 553        u32 val;
 554
 555        if (mt->conf->need_switch_bank) {
 556                mutex_lock(&mt->lock);
 557
 558                val = readl(mt->thermal_base + PTPCORESEL);
 559                val &= ~0xf;
 560                val |= bank->id;
 561                writel(val, mt->thermal_base + PTPCORESEL);
 562        }
 563}
 564
 565/**
 566 * mtk_thermal_put_bank - release bank
 567 * @bank:       The bank
 568 *
 569 * release a bank previously taken with mtk_thermal_get_bank,
 570 */
 571static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
 572{
 573        struct mtk_thermal *mt = bank->mt;
 574
 575        if (mt->conf->need_switch_bank)
 576                mutex_unlock(&mt->lock);
 577}
 578
 579/**
 580 * mtk_thermal_bank_temperature - get the temperature of a bank
 581 * @bank:       The bank
 582 *
 583 * The temperature of a bank is considered the maximum temperature of
 584 * the sensors associated to the bank.
 585 */
 586static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
 587{
 588        struct mtk_thermal *mt = bank->mt;
 589        const struct mtk_thermal_data *conf = mt->conf;
 590        int i, temp = INT_MIN, max = INT_MIN;
 591        u32 raw;
 592
 593        for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
 594                raw = readl(mt->thermal_base +
 595                            conf->msr[conf->bank_data[bank->id].sensors[i]]);
 596
 597                temp = raw_to_mcelsius(mt,
 598                                       conf->bank_data[bank->id].sensors[i],
 599                                       raw);
 600
 601                /*
 602                 * The first read of a sensor often contains very high bogus
 603                 * temperature value. Filter these out so that the system does
 604                 * not immediately shut down.
 605                 */
 606                if (temp > 200000)
 607                        temp = 0;
 608
 609                if (temp > max)
 610                        max = temp;
 611        }
 612
 613        return max;
 614}
 615
 616static int mtk_read_temp(void *data, int *temperature)
 617{
 618        struct mtk_thermal *mt = data;
 619        int i;
 620        int tempmax = INT_MIN;
 621
 622        for (i = 0; i < mt->conf->num_banks; i++) {
 623                struct mtk_thermal_bank *bank = &mt->banks[i];
 624
 625                mtk_thermal_get_bank(bank);
 626
 627                tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
 628
 629                mtk_thermal_put_bank(bank);
 630        }
 631
 632        *temperature = tempmax;
 633
 634        return 0;
 635}
 636
 637static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
 638        .get_temp = mtk_read_temp,
 639};
 640
 641static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
 642                                  u32 apmixed_phys_base, u32 auxadc_phys_base,
 643                                  int ctrl_id)
 644{
 645        struct mtk_thermal_bank *bank = &mt->banks[num];
 646        const struct mtk_thermal_data *conf = mt->conf;
 647        int i;
 648
 649        int offset = mt->conf->controller_offset[ctrl_id];
 650        void __iomem *controller_base = mt->thermal_base + offset;
 651
 652        bank->id = num;
 653        bank->mt = mt;
 654
 655        mtk_thermal_get_bank(bank);
 656
 657        /* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
 658        writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
 659
 660        /*
 661         * filt interval is 1 * 46.540us = 46.54us,
 662         * sen interval is 429 * 46.540us = 19.96ms
 663         */
 664        writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
 665                        TEMP_MONCTL2_SENSOR_INTERVAL(429),
 666                        controller_base + TEMP_MONCTL2);
 667
 668        /* poll is set to 10u */
 669        writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
 670               controller_base + TEMP_AHBPOLL);
 671
 672        /* temperature sampling control, 1 sample */
 673        writel(0x0, controller_base + TEMP_MSRCTL0);
 674
 675        /* exceed this polling time, IRQ would be inserted */
 676        writel(0xffffffff, controller_base + TEMP_AHBTO);
 677
 678        /* number of interrupts per event, 1 is enough */
 679        writel(0x0, controller_base + TEMP_MONIDET0);
 680        writel(0x0, controller_base + TEMP_MONIDET1);
 681
 682        /*
 683         * The MT8173 thermal controller does not have its own ADC. Instead it
 684         * uses AHB bus accesses to control the AUXADC. To do this the thermal
 685         * controller has to be programmed with the physical addresses of the
 686         * AUXADC registers and with the various bit positions in the AUXADC.
 687         * Also the thermal controller controls a mux in the APMIXEDSYS register
 688         * space.
 689         */
 690
 691        /*
 692         * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
 693         * automatically by hw
 694         */
 695        writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
 696
 697        /* AHB address for auxadc mux selection */
 698        writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
 699               controller_base + TEMP_ADCMUXADDR);
 700
 701        /* AHB address for pnp sensor mux selection */
 702        writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
 703               controller_base + TEMP_PNPMUXADDR);
 704
 705        /* AHB value for auxadc enable */
 706        writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
 707
 708        /* AHB address for auxadc enable (channel 0 immediate mode selected) */
 709        writel(auxadc_phys_base + AUXADC_CON1_SET_V,
 710               controller_base + TEMP_ADCENADDR);
 711
 712        /* AHB address for auxadc valid bit */
 713        writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 714               controller_base + TEMP_ADCVALIDADDR);
 715
 716        /* AHB address for auxadc voltage output */
 717        writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
 718               controller_base + TEMP_ADCVOLTADDR);
 719
 720        /* read valid & voltage are at the same register */
 721        writel(0x0, controller_base + TEMP_RDCTRL);
 722
 723        /* indicate where the valid bit is */
 724        writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
 725               controller_base + TEMP_ADCVALIDMASK);
 726
 727        /* no shift */
 728        writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
 729
 730        /* enable auxadc mux write transaction */
 731        writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 732                controller_base + TEMP_ADCWRITECTRL);
 733
 734        for (i = 0; i < conf->bank_data[num].num_sensors; i++)
 735                writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
 736                       mt->thermal_base +
 737                       conf->adcpnp[conf->bank_data[num].sensors[i]]);
 738
 739        writel((1 << conf->bank_data[num].num_sensors) - 1,
 740               controller_base + TEMP_MONCTL0);
 741
 742        writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
 743               TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
 744               controller_base + TEMP_ADCWRITECTRL);
 745
 746        mtk_thermal_put_bank(bank);
 747}
 748
 749static u64 of_get_phys_base(struct device_node *np)
 750{
 751        u64 size64;
 752        const __be32 *regaddr_p;
 753
 754        regaddr_p = of_get_address(np, 0, &size64, NULL);
 755        if (!regaddr_p)
 756                return OF_BAD_ADDR;
 757
 758        return of_translate_address(np, regaddr_p);
 759}
 760
 761static int mtk_thermal_get_calibration_data(struct device *dev,
 762                                            struct mtk_thermal *mt)
 763{
 764        struct nvmem_cell *cell;
 765        u32 *buf;
 766        size_t len;
 767        int i, ret = 0;
 768
 769        /* Start with default values */
 770        mt->adc_ge = 512;
 771        for (i = 0; i < mt->conf->num_sensors; i++)
 772                mt->vts[i] = 260;
 773        mt->degc_cali = 40;
 774        mt->o_slope = 0;
 775
 776        cell = nvmem_cell_get(dev, "calibration-data");
 777        if (IS_ERR(cell)) {
 778                if (PTR_ERR(cell) == -EPROBE_DEFER)
 779                        return PTR_ERR(cell);
 780                return 0;
 781        }
 782
 783        buf = (u32 *)nvmem_cell_read(cell, &len);
 784
 785        nvmem_cell_put(cell);
 786
 787        if (IS_ERR(buf))
 788                return PTR_ERR(buf);
 789
 790        if (len < 3 * sizeof(u32)) {
 791                dev_warn(dev, "invalid calibration data\n");
 792                ret = -EINVAL;
 793                goto out;
 794        }
 795
 796        if (buf[0] & CALIB_BUF0_VALID) {
 797                mt->adc_ge = CALIB_BUF1_ADC_GE(buf[1]);
 798
 799                for (i = 0; i < mt->conf->num_sensors; i++) {
 800                        switch (mt->conf->vts_index[i]) {
 801                        case VTS1:
 802                                mt->vts[VTS1] = CALIB_BUF0_VTS_TS1(buf[0]);
 803                                break;
 804                        case VTS2:
 805                                mt->vts[VTS2] = CALIB_BUF0_VTS_TS2(buf[0]);
 806                                break;
 807                        case VTS3:
 808                                mt->vts[VTS3] = CALIB_BUF1_VTS_TS3(buf[1]);
 809                                break;
 810                        case VTS4:
 811                                mt->vts[VTS4] = CALIB_BUF2_VTS_TS4(buf[2]);
 812                                break;
 813                        case VTS5:
 814                                mt->vts[VTS5] = CALIB_BUF2_VTS_TS5(buf[2]);
 815                                break;
 816                        case VTSABB:
 817                                mt->vts[VTSABB] = CALIB_BUF2_VTS_TSABB(buf[2]);
 818                                break;
 819                        default:
 820                                break;
 821                        }
 822                }
 823
 824                mt->degc_cali = CALIB_BUF0_DEGC_CALI(buf[0]);
 825                if (CALIB_BUF1_ID(buf[1]) &
 826                    CALIB_BUF0_O_SLOPE_SIGN(buf[0]))
 827                        mt->o_slope = -CALIB_BUF0_O_SLOPE(buf[0]);
 828                else
 829                        mt->o_slope = CALIB_BUF0_O_SLOPE(buf[0]);
 830        } else {
 831                dev_info(dev, "Device not calibrated, using default calibration values\n");
 832        }
 833
 834out:
 835        kfree(buf);
 836
 837        return ret;
 838}
 839
 840static const struct of_device_id mtk_thermal_of_match[] = {
 841        {
 842                .compatible = "mediatek,mt8173-thermal",
 843                .data = (void *)&mt8173_thermal_data,
 844        },
 845        {
 846                .compatible = "mediatek,mt2701-thermal",
 847                .data = (void *)&mt2701_thermal_data,
 848        },
 849        {
 850                .compatible = "mediatek,mt2712-thermal",
 851                .data = (void *)&mt2712_thermal_data,
 852        },
 853        {
 854                .compatible = "mediatek,mt7622-thermal",
 855                .data = (void *)&mt7622_thermal_data,
 856        },
 857        {
 858                .compatible = "mediatek,mt8183-thermal",
 859                .data = (void *)&mt8183_thermal_data,
 860        }, {
 861        },
 862};
 863MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
 864
 865static int mtk_thermal_probe(struct platform_device *pdev)
 866{
 867        int ret, i, ctrl_id;
 868        struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
 869        struct mtk_thermal *mt;
 870        struct resource *res;
 871        u64 auxadc_phys_base, apmixed_phys_base;
 872        struct thermal_zone_device *tzdev;
 873
 874        mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
 875        if (!mt)
 876                return -ENOMEM;
 877
 878        mt->conf = of_device_get_match_data(&pdev->dev);
 879
 880        mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
 881        if (IS_ERR(mt->clk_peri_therm))
 882                return PTR_ERR(mt->clk_peri_therm);
 883
 884        mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
 885        if (IS_ERR(mt->clk_auxadc))
 886                return PTR_ERR(mt->clk_auxadc);
 887
 888        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 889        mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
 890        if (IS_ERR(mt->thermal_base))
 891                return PTR_ERR(mt->thermal_base);
 892
 893        ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
 894        if (ret)
 895                return ret;
 896
 897        mutex_init(&mt->lock);
 898
 899        mt->dev = &pdev->dev;
 900
 901        auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
 902        if (!auxadc) {
 903                dev_err(&pdev->dev, "missing auxadc node\n");
 904                return -ENODEV;
 905        }
 906
 907        auxadc_phys_base = of_get_phys_base(auxadc);
 908
 909        of_node_put(auxadc);
 910
 911        if (auxadc_phys_base == OF_BAD_ADDR) {
 912                dev_err(&pdev->dev, "Can't get auxadc phys address\n");
 913                return -EINVAL;
 914        }
 915
 916        apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
 917        if (!apmixedsys) {
 918                dev_err(&pdev->dev, "missing apmixedsys node\n");
 919                return -ENODEV;
 920        }
 921
 922        apmixed_phys_base = of_get_phys_base(apmixedsys);
 923
 924        of_node_put(apmixedsys);
 925
 926        if (apmixed_phys_base == OF_BAD_ADDR) {
 927                dev_err(&pdev->dev, "Can't get auxadc phys address\n");
 928                return -EINVAL;
 929        }
 930
 931        ret = device_reset(&pdev->dev);
 932        if (ret)
 933                return ret;
 934
 935        ret = clk_prepare_enable(mt->clk_auxadc);
 936        if (ret) {
 937                dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
 938                return ret;
 939        }
 940
 941        ret = clk_prepare_enable(mt->clk_peri_therm);
 942        if (ret) {
 943                dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
 944                goto err_disable_clk_auxadc;
 945        }
 946
 947        for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
 948                for (i = 0; i < mt->conf->num_banks; i++)
 949                        mtk_thermal_init_bank(mt, i, apmixed_phys_base,
 950                                              auxadc_phys_base, ctrl_id);
 951
 952        platform_set_drvdata(pdev, mt);
 953
 954        tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
 955                                                     &mtk_thermal_ops);
 956        if (IS_ERR(tzdev)) {
 957                ret = PTR_ERR(tzdev);
 958                goto err_disable_clk_peri_therm;
 959        }
 960
 961        return 0;
 962
 963err_disable_clk_peri_therm:
 964        clk_disable_unprepare(mt->clk_peri_therm);
 965err_disable_clk_auxadc:
 966        clk_disable_unprepare(mt->clk_auxadc);
 967
 968        return ret;
 969}
 970
 971static int mtk_thermal_remove(struct platform_device *pdev)
 972{
 973        struct mtk_thermal *mt = platform_get_drvdata(pdev);
 974
 975        clk_disable_unprepare(mt->clk_peri_therm);
 976        clk_disable_unprepare(mt->clk_auxadc);
 977
 978        return 0;
 979}
 980
 981static struct platform_driver mtk_thermal_driver = {
 982        .probe = mtk_thermal_probe,
 983        .remove = mtk_thermal_remove,
 984        .driver = {
 985                .name = "mtk-thermal",
 986                .of_match_table = mtk_thermal_of_match,
 987        },
 988};
 989
 990module_platform_driver(mtk_thermal_driver);
 991
 992MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
 993MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
 994MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
 995MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
 996MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
 997MODULE_DESCRIPTION("Mediatek thermal driver");
 998MODULE_LICENSE("GPL v2");
 999