linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17
  18static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  19                      *root, struct btrfs_path *path, int level);
  20static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  21                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  22                      int data_size, int extend);
  23static int push_node_left(struct btrfs_trans_handle *trans,
  24                          struct extent_buffer *dst,
  25                          struct extent_buffer *src, int empty);
  26static int balance_node_right(struct btrfs_trans_handle *trans,
  27                              struct extent_buffer *dst_buf,
  28                              struct extent_buffer *src_buf);
  29static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  30                    int level, int slot);
  31
  32static const struct btrfs_csums {
  33        u16             size;
  34        const char      name[10];
  35        const char      driver[12];
  36} btrfs_csums[] = {
  37        [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  38        [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  39        [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  40        [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  41                                     .driver = "blake2b-256" },
  42};
  43
  44int btrfs_super_csum_size(const struct btrfs_super_block *s)
  45{
  46        u16 t = btrfs_super_csum_type(s);
  47        /*
  48         * csum type is validated at mount time
  49         */
  50        return btrfs_csums[t].size;
  51}
  52
  53const char *btrfs_super_csum_name(u16 csum_type)
  54{
  55        /* csum type is validated at mount time */
  56        return btrfs_csums[csum_type].name;
  57}
  58
  59/*
  60 * Return driver name if defined, otherwise the name that's also a valid driver
  61 * name
  62 */
  63const char *btrfs_super_csum_driver(u16 csum_type)
  64{
  65        /* csum type is validated at mount time */
  66        return btrfs_csums[csum_type].driver[0] ?
  67                btrfs_csums[csum_type].driver :
  68                btrfs_csums[csum_type].name;
  69}
  70
  71size_t __const btrfs_get_num_csums(void)
  72{
  73        return ARRAY_SIZE(btrfs_csums);
  74}
  75
  76struct btrfs_path *btrfs_alloc_path(void)
  77{
  78        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  79}
  80
  81/* this also releases the path */
  82void btrfs_free_path(struct btrfs_path *p)
  83{
  84        if (!p)
  85                return;
  86        btrfs_release_path(p);
  87        kmem_cache_free(btrfs_path_cachep, p);
  88}
  89
  90/*
  91 * path release drops references on the extent buffers in the path
  92 * and it drops any locks held by this path
  93 *
  94 * It is safe to call this on paths that no locks or extent buffers held.
  95 */
  96noinline void btrfs_release_path(struct btrfs_path *p)
  97{
  98        int i;
  99
 100        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 101                p->slots[i] = 0;
 102                if (!p->nodes[i])
 103                        continue;
 104                if (p->locks[i]) {
 105                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 106                        p->locks[i] = 0;
 107                }
 108                free_extent_buffer(p->nodes[i]);
 109                p->nodes[i] = NULL;
 110        }
 111}
 112
 113/*
 114 * safely gets a reference on the root node of a tree.  A lock
 115 * is not taken, so a concurrent writer may put a different node
 116 * at the root of the tree.  See btrfs_lock_root_node for the
 117 * looping required.
 118 *
 119 * The extent buffer returned by this has a reference taken, so
 120 * it won't disappear.  It may stop being the root of the tree
 121 * at any time because there are no locks held.
 122 */
 123struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 124{
 125        struct extent_buffer *eb;
 126
 127        while (1) {
 128                rcu_read_lock();
 129                eb = rcu_dereference(root->node);
 130
 131                /*
 132                 * RCU really hurts here, we could free up the root node because
 133                 * it was COWed but we may not get the new root node yet so do
 134                 * the inc_not_zero dance and if it doesn't work then
 135                 * synchronize_rcu and try again.
 136                 */
 137                if (atomic_inc_not_zero(&eb->refs)) {
 138                        rcu_read_unlock();
 139                        break;
 140                }
 141                rcu_read_unlock();
 142                synchronize_rcu();
 143        }
 144        return eb;
 145}
 146
 147/* cowonly root (everything not a reference counted cow subvolume), just get
 148 * put onto a simple dirty list.  transaction.c walks this to make sure they
 149 * get properly updated on disk.
 150 */
 151static void add_root_to_dirty_list(struct btrfs_root *root)
 152{
 153        struct btrfs_fs_info *fs_info = root->fs_info;
 154
 155        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 156            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 157                return;
 158
 159        spin_lock(&fs_info->trans_lock);
 160        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 161                /* Want the extent tree to be the last on the list */
 162                if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 163                        list_move_tail(&root->dirty_list,
 164                                       &fs_info->dirty_cowonly_roots);
 165                else
 166                        list_move(&root->dirty_list,
 167                                  &fs_info->dirty_cowonly_roots);
 168        }
 169        spin_unlock(&fs_info->trans_lock);
 170}
 171
 172/*
 173 * used by snapshot creation to make a copy of a root for a tree with
 174 * a given objectid.  The buffer with the new root node is returned in
 175 * cow_ret, and this func returns zero on success or a negative error code.
 176 */
 177int btrfs_copy_root(struct btrfs_trans_handle *trans,
 178                      struct btrfs_root *root,
 179                      struct extent_buffer *buf,
 180                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 181{
 182        struct btrfs_fs_info *fs_info = root->fs_info;
 183        struct extent_buffer *cow;
 184        int ret = 0;
 185        int level;
 186        struct btrfs_disk_key disk_key;
 187
 188        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 189                trans->transid != fs_info->running_transaction->transid);
 190        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 191                trans->transid != root->last_trans);
 192
 193        level = btrfs_header_level(buf);
 194        if (level == 0)
 195                btrfs_item_key(buf, &disk_key, 0);
 196        else
 197                btrfs_node_key(buf, &disk_key, 0);
 198
 199        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 200                        &disk_key, level, buf->start, 0);
 201        if (IS_ERR(cow))
 202                return PTR_ERR(cow);
 203
 204        copy_extent_buffer_full(cow, buf);
 205        btrfs_set_header_bytenr(cow, cow->start);
 206        btrfs_set_header_generation(cow, trans->transid);
 207        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 208        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 209                                     BTRFS_HEADER_FLAG_RELOC);
 210        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 211                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 212        else
 213                btrfs_set_header_owner(cow, new_root_objectid);
 214
 215        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 216
 217        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 218        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 219                ret = btrfs_inc_ref(trans, root, cow, 1);
 220        else
 221                ret = btrfs_inc_ref(trans, root, cow, 0);
 222
 223        if (ret)
 224                return ret;
 225
 226        btrfs_mark_buffer_dirty(cow);
 227        *cow_ret = cow;
 228        return 0;
 229}
 230
 231enum mod_log_op {
 232        MOD_LOG_KEY_REPLACE,
 233        MOD_LOG_KEY_ADD,
 234        MOD_LOG_KEY_REMOVE,
 235        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 236        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 237        MOD_LOG_MOVE_KEYS,
 238        MOD_LOG_ROOT_REPLACE,
 239};
 240
 241struct tree_mod_root {
 242        u64 logical;
 243        u8 level;
 244};
 245
 246struct tree_mod_elem {
 247        struct rb_node node;
 248        u64 logical;
 249        u64 seq;
 250        enum mod_log_op op;
 251
 252        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 253        int slot;
 254
 255        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 256        u64 generation;
 257
 258        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 259        struct btrfs_disk_key key;
 260        u64 blockptr;
 261
 262        /* this is used for op == MOD_LOG_MOVE_KEYS */
 263        struct {
 264                int dst_slot;
 265                int nr_items;
 266        } move;
 267
 268        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 269        struct tree_mod_root old_root;
 270};
 271
 272/*
 273 * Pull a new tree mod seq number for our operation.
 274 */
 275static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 276{
 277        return atomic64_inc_return(&fs_info->tree_mod_seq);
 278}
 279
 280/*
 281 * This adds a new blocker to the tree mod log's blocker list if the @elem
 282 * passed does not already have a sequence number set. So when a caller expects
 283 * to record tree modifications, it should ensure to set elem->seq to zero
 284 * before calling btrfs_get_tree_mod_seq.
 285 * Returns a fresh, unused tree log modification sequence number, even if no new
 286 * blocker was added.
 287 */
 288u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 289                           struct seq_list *elem)
 290{
 291        write_lock(&fs_info->tree_mod_log_lock);
 292        if (!elem->seq) {
 293                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 294                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 295        }
 296        write_unlock(&fs_info->tree_mod_log_lock);
 297
 298        return elem->seq;
 299}
 300
 301void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 302                            struct seq_list *elem)
 303{
 304        struct rb_root *tm_root;
 305        struct rb_node *node;
 306        struct rb_node *next;
 307        struct tree_mod_elem *tm;
 308        u64 min_seq = (u64)-1;
 309        u64 seq_putting = elem->seq;
 310
 311        if (!seq_putting)
 312                return;
 313
 314        write_lock(&fs_info->tree_mod_log_lock);
 315        list_del(&elem->list);
 316        elem->seq = 0;
 317
 318        if (!list_empty(&fs_info->tree_mod_seq_list)) {
 319                struct seq_list *first;
 320
 321                first = list_first_entry(&fs_info->tree_mod_seq_list,
 322                                         struct seq_list, list);
 323                if (seq_putting > first->seq) {
 324                        /*
 325                         * Blocker with lower sequence number exists, we
 326                         * cannot remove anything from the log.
 327                         */
 328                        write_unlock(&fs_info->tree_mod_log_lock);
 329                        return;
 330                }
 331                min_seq = first->seq;
 332        }
 333
 334        /*
 335         * anything that's lower than the lowest existing (read: blocked)
 336         * sequence number can be removed from the tree.
 337         */
 338        tm_root = &fs_info->tree_mod_log;
 339        for (node = rb_first(tm_root); node; node = next) {
 340                next = rb_next(node);
 341                tm = rb_entry(node, struct tree_mod_elem, node);
 342                if (tm->seq >= min_seq)
 343                        continue;
 344                rb_erase(node, tm_root);
 345                kfree(tm);
 346        }
 347        write_unlock(&fs_info->tree_mod_log_lock);
 348}
 349
 350/*
 351 * key order of the log:
 352 *       node/leaf start address -> sequence
 353 *
 354 * The 'start address' is the logical address of the *new* root node
 355 * for root replace operations, or the logical address of the affected
 356 * block for all other operations.
 357 */
 358static noinline int
 359__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 360{
 361        struct rb_root *tm_root;
 362        struct rb_node **new;
 363        struct rb_node *parent = NULL;
 364        struct tree_mod_elem *cur;
 365
 366        lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 367
 368        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 369
 370        tm_root = &fs_info->tree_mod_log;
 371        new = &tm_root->rb_node;
 372        while (*new) {
 373                cur = rb_entry(*new, struct tree_mod_elem, node);
 374                parent = *new;
 375                if (cur->logical < tm->logical)
 376                        new = &((*new)->rb_left);
 377                else if (cur->logical > tm->logical)
 378                        new = &((*new)->rb_right);
 379                else if (cur->seq < tm->seq)
 380                        new = &((*new)->rb_left);
 381                else if (cur->seq > tm->seq)
 382                        new = &((*new)->rb_right);
 383                else
 384                        return -EEXIST;
 385        }
 386
 387        rb_link_node(&tm->node, parent, new);
 388        rb_insert_color(&tm->node, tm_root);
 389        return 0;
 390}
 391
 392/*
 393 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 394 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 395 * this until all tree mod log insertions are recorded in the rb tree and then
 396 * write unlock fs_info::tree_mod_log_lock.
 397 */
 398static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 399                                    struct extent_buffer *eb) {
 400        smp_mb();
 401        if (list_empty(&(fs_info)->tree_mod_seq_list))
 402                return 1;
 403        if (eb && btrfs_header_level(eb) == 0)
 404                return 1;
 405
 406        write_lock(&fs_info->tree_mod_log_lock);
 407        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 408                write_unlock(&fs_info->tree_mod_log_lock);
 409                return 1;
 410        }
 411
 412        return 0;
 413}
 414
 415/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 416static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 417                                    struct extent_buffer *eb)
 418{
 419        smp_mb();
 420        if (list_empty(&(fs_info)->tree_mod_seq_list))
 421                return 0;
 422        if (eb && btrfs_header_level(eb) == 0)
 423                return 0;
 424
 425        return 1;
 426}
 427
 428static struct tree_mod_elem *
 429alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 430                    enum mod_log_op op, gfp_t flags)
 431{
 432        struct tree_mod_elem *tm;
 433
 434        tm = kzalloc(sizeof(*tm), flags);
 435        if (!tm)
 436                return NULL;
 437
 438        tm->logical = eb->start;
 439        if (op != MOD_LOG_KEY_ADD) {
 440                btrfs_node_key(eb, &tm->key, slot);
 441                tm->blockptr = btrfs_node_blockptr(eb, slot);
 442        }
 443        tm->op = op;
 444        tm->slot = slot;
 445        tm->generation = btrfs_node_ptr_generation(eb, slot);
 446        RB_CLEAR_NODE(&tm->node);
 447
 448        return tm;
 449}
 450
 451static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 452                enum mod_log_op op, gfp_t flags)
 453{
 454        struct tree_mod_elem *tm;
 455        int ret;
 456
 457        if (!tree_mod_need_log(eb->fs_info, eb))
 458                return 0;
 459
 460        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 461        if (!tm)
 462                return -ENOMEM;
 463
 464        if (tree_mod_dont_log(eb->fs_info, eb)) {
 465                kfree(tm);
 466                return 0;
 467        }
 468
 469        ret = __tree_mod_log_insert(eb->fs_info, tm);
 470        write_unlock(&eb->fs_info->tree_mod_log_lock);
 471        if (ret)
 472                kfree(tm);
 473
 474        return ret;
 475}
 476
 477static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
 478                int dst_slot, int src_slot, int nr_items)
 479{
 480        struct tree_mod_elem *tm = NULL;
 481        struct tree_mod_elem **tm_list = NULL;
 482        int ret = 0;
 483        int i;
 484        int locked = 0;
 485
 486        if (!tree_mod_need_log(eb->fs_info, eb))
 487                return 0;
 488
 489        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 490        if (!tm_list)
 491                return -ENOMEM;
 492
 493        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 494        if (!tm) {
 495                ret = -ENOMEM;
 496                goto free_tms;
 497        }
 498
 499        tm->logical = eb->start;
 500        tm->slot = src_slot;
 501        tm->move.dst_slot = dst_slot;
 502        tm->move.nr_items = nr_items;
 503        tm->op = MOD_LOG_MOVE_KEYS;
 504
 505        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 506                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 507                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
 508                if (!tm_list[i]) {
 509                        ret = -ENOMEM;
 510                        goto free_tms;
 511                }
 512        }
 513
 514        if (tree_mod_dont_log(eb->fs_info, eb))
 515                goto free_tms;
 516        locked = 1;
 517
 518        /*
 519         * When we override something during the move, we log these removals.
 520         * This can only happen when we move towards the beginning of the
 521         * buffer, i.e. dst_slot < src_slot.
 522         */
 523        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 524                ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
 525                if (ret)
 526                        goto free_tms;
 527        }
 528
 529        ret = __tree_mod_log_insert(eb->fs_info, tm);
 530        if (ret)
 531                goto free_tms;
 532        write_unlock(&eb->fs_info->tree_mod_log_lock);
 533        kfree(tm_list);
 534
 535        return 0;
 536free_tms:
 537        for (i = 0; i < nr_items; i++) {
 538                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 539                        rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 540                kfree(tm_list[i]);
 541        }
 542        if (locked)
 543                write_unlock(&eb->fs_info->tree_mod_log_lock);
 544        kfree(tm_list);
 545        kfree(tm);
 546
 547        return ret;
 548}
 549
 550static inline int
 551__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 552                       struct tree_mod_elem **tm_list,
 553                       int nritems)
 554{
 555        int i, j;
 556        int ret;
 557
 558        for (i = nritems - 1; i >= 0; i--) {
 559                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 560                if (ret) {
 561                        for (j = nritems - 1; j > i; j--)
 562                                rb_erase(&tm_list[j]->node,
 563                                         &fs_info->tree_mod_log);
 564                        return ret;
 565                }
 566        }
 567
 568        return 0;
 569}
 570
 571static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
 572                         struct extent_buffer *new_root, int log_removal)
 573{
 574        struct btrfs_fs_info *fs_info = old_root->fs_info;
 575        struct tree_mod_elem *tm = NULL;
 576        struct tree_mod_elem **tm_list = NULL;
 577        int nritems = 0;
 578        int ret = 0;
 579        int i;
 580
 581        if (!tree_mod_need_log(fs_info, NULL))
 582                return 0;
 583
 584        if (log_removal && btrfs_header_level(old_root) > 0) {
 585                nritems = btrfs_header_nritems(old_root);
 586                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 587                                  GFP_NOFS);
 588                if (!tm_list) {
 589                        ret = -ENOMEM;
 590                        goto free_tms;
 591                }
 592                for (i = 0; i < nritems; i++) {
 593                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 594                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 595                        if (!tm_list[i]) {
 596                                ret = -ENOMEM;
 597                                goto free_tms;
 598                        }
 599                }
 600        }
 601
 602        tm = kzalloc(sizeof(*tm), GFP_NOFS);
 603        if (!tm) {
 604                ret = -ENOMEM;
 605                goto free_tms;
 606        }
 607
 608        tm->logical = new_root->start;
 609        tm->old_root.logical = old_root->start;
 610        tm->old_root.level = btrfs_header_level(old_root);
 611        tm->generation = btrfs_header_generation(old_root);
 612        tm->op = MOD_LOG_ROOT_REPLACE;
 613
 614        if (tree_mod_dont_log(fs_info, NULL))
 615                goto free_tms;
 616
 617        if (tm_list)
 618                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 619        if (!ret)
 620                ret = __tree_mod_log_insert(fs_info, tm);
 621
 622        write_unlock(&fs_info->tree_mod_log_lock);
 623        if (ret)
 624                goto free_tms;
 625        kfree(tm_list);
 626
 627        return ret;
 628
 629free_tms:
 630        if (tm_list) {
 631                for (i = 0; i < nritems; i++)
 632                        kfree(tm_list[i]);
 633                kfree(tm_list);
 634        }
 635        kfree(tm);
 636
 637        return ret;
 638}
 639
 640static struct tree_mod_elem *
 641__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 642                      int smallest)
 643{
 644        struct rb_root *tm_root;
 645        struct rb_node *node;
 646        struct tree_mod_elem *cur = NULL;
 647        struct tree_mod_elem *found = NULL;
 648
 649        read_lock(&fs_info->tree_mod_log_lock);
 650        tm_root = &fs_info->tree_mod_log;
 651        node = tm_root->rb_node;
 652        while (node) {
 653                cur = rb_entry(node, struct tree_mod_elem, node);
 654                if (cur->logical < start) {
 655                        node = node->rb_left;
 656                } else if (cur->logical > start) {
 657                        node = node->rb_right;
 658                } else if (cur->seq < min_seq) {
 659                        node = node->rb_left;
 660                } else if (!smallest) {
 661                        /* we want the node with the highest seq */
 662                        if (found)
 663                                BUG_ON(found->seq > cur->seq);
 664                        found = cur;
 665                        node = node->rb_left;
 666                } else if (cur->seq > min_seq) {
 667                        /* we want the node with the smallest seq */
 668                        if (found)
 669                                BUG_ON(found->seq < cur->seq);
 670                        found = cur;
 671                        node = node->rb_right;
 672                } else {
 673                        found = cur;
 674                        break;
 675                }
 676        }
 677        read_unlock(&fs_info->tree_mod_log_lock);
 678
 679        return found;
 680}
 681
 682/*
 683 * this returns the element from the log with the smallest time sequence
 684 * value that's in the log (the oldest log item). any element with a time
 685 * sequence lower than min_seq will be ignored.
 686 */
 687static struct tree_mod_elem *
 688tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 689                           u64 min_seq)
 690{
 691        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 692}
 693
 694/*
 695 * this returns the element from the log with the largest time sequence
 696 * value that's in the log (the most recent log item). any element with
 697 * a time sequence lower than min_seq will be ignored.
 698 */
 699static struct tree_mod_elem *
 700tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 701{
 702        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 703}
 704
 705static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
 706                     struct extent_buffer *src, unsigned long dst_offset,
 707                     unsigned long src_offset, int nr_items)
 708{
 709        struct btrfs_fs_info *fs_info = dst->fs_info;
 710        int ret = 0;
 711        struct tree_mod_elem **tm_list = NULL;
 712        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 713        int i;
 714        int locked = 0;
 715
 716        if (!tree_mod_need_log(fs_info, NULL))
 717                return 0;
 718
 719        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 720                return 0;
 721
 722        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 723                          GFP_NOFS);
 724        if (!tm_list)
 725                return -ENOMEM;
 726
 727        tm_list_add = tm_list;
 728        tm_list_rem = tm_list + nr_items;
 729        for (i = 0; i < nr_items; i++) {
 730                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 731                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 732                if (!tm_list_rem[i]) {
 733                        ret = -ENOMEM;
 734                        goto free_tms;
 735                }
 736
 737                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 738                    MOD_LOG_KEY_ADD, GFP_NOFS);
 739                if (!tm_list_add[i]) {
 740                        ret = -ENOMEM;
 741                        goto free_tms;
 742                }
 743        }
 744
 745        if (tree_mod_dont_log(fs_info, NULL))
 746                goto free_tms;
 747        locked = 1;
 748
 749        for (i = 0; i < nr_items; i++) {
 750                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 751                if (ret)
 752                        goto free_tms;
 753                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 754                if (ret)
 755                        goto free_tms;
 756        }
 757
 758        write_unlock(&fs_info->tree_mod_log_lock);
 759        kfree(tm_list);
 760
 761        return 0;
 762
 763free_tms:
 764        for (i = 0; i < nr_items * 2; i++) {
 765                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 766                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 767                kfree(tm_list[i]);
 768        }
 769        if (locked)
 770                write_unlock(&fs_info->tree_mod_log_lock);
 771        kfree(tm_list);
 772
 773        return ret;
 774}
 775
 776static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
 777{
 778        struct tree_mod_elem **tm_list = NULL;
 779        int nritems = 0;
 780        int i;
 781        int ret = 0;
 782
 783        if (btrfs_header_level(eb) == 0)
 784                return 0;
 785
 786        if (!tree_mod_need_log(eb->fs_info, NULL))
 787                return 0;
 788
 789        nritems = btrfs_header_nritems(eb);
 790        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 791        if (!tm_list)
 792                return -ENOMEM;
 793
 794        for (i = 0; i < nritems; i++) {
 795                tm_list[i] = alloc_tree_mod_elem(eb, i,
 796                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 797                if (!tm_list[i]) {
 798                        ret = -ENOMEM;
 799                        goto free_tms;
 800                }
 801        }
 802
 803        if (tree_mod_dont_log(eb->fs_info, eb))
 804                goto free_tms;
 805
 806        ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 807        write_unlock(&eb->fs_info->tree_mod_log_lock);
 808        if (ret)
 809                goto free_tms;
 810        kfree(tm_list);
 811
 812        return 0;
 813
 814free_tms:
 815        for (i = 0; i < nritems; i++)
 816                kfree(tm_list[i]);
 817        kfree(tm_list);
 818
 819        return ret;
 820}
 821
 822/*
 823 * check if the tree block can be shared by multiple trees
 824 */
 825int btrfs_block_can_be_shared(struct btrfs_root *root,
 826                              struct extent_buffer *buf)
 827{
 828        /*
 829         * Tree blocks not in reference counted trees and tree roots
 830         * are never shared. If a block was allocated after the last
 831         * snapshot and the block was not allocated by tree relocation,
 832         * we know the block is not shared.
 833         */
 834        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 835            buf != root->node && buf != root->commit_root &&
 836            (btrfs_header_generation(buf) <=
 837             btrfs_root_last_snapshot(&root->root_item) ||
 838             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 839                return 1;
 840
 841        return 0;
 842}
 843
 844static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 845                                       struct btrfs_root *root,
 846                                       struct extent_buffer *buf,
 847                                       struct extent_buffer *cow,
 848                                       int *last_ref)
 849{
 850        struct btrfs_fs_info *fs_info = root->fs_info;
 851        u64 refs;
 852        u64 owner;
 853        u64 flags;
 854        u64 new_flags = 0;
 855        int ret;
 856
 857        /*
 858         * Backrefs update rules:
 859         *
 860         * Always use full backrefs for extent pointers in tree block
 861         * allocated by tree relocation.
 862         *
 863         * If a shared tree block is no longer referenced by its owner
 864         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 865         * use full backrefs for extent pointers in tree block.
 866         *
 867         * If a tree block is been relocating
 868         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 869         * use full backrefs for extent pointers in tree block.
 870         * The reason for this is some operations (such as drop tree)
 871         * are only allowed for blocks use full backrefs.
 872         */
 873
 874        if (btrfs_block_can_be_shared(root, buf)) {
 875                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 876                                               btrfs_header_level(buf), 1,
 877                                               &refs, &flags);
 878                if (ret)
 879                        return ret;
 880                if (refs == 0) {
 881                        ret = -EROFS;
 882                        btrfs_handle_fs_error(fs_info, ret, NULL);
 883                        return ret;
 884                }
 885        } else {
 886                refs = 1;
 887                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 888                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 889                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 890                else
 891                        flags = 0;
 892        }
 893
 894        owner = btrfs_header_owner(buf);
 895        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 896               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 897
 898        if (refs > 1) {
 899                if ((owner == root->root_key.objectid ||
 900                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 901                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 902                        ret = btrfs_inc_ref(trans, root, buf, 1);
 903                        if (ret)
 904                                return ret;
 905
 906                        if (root->root_key.objectid ==
 907                            BTRFS_TREE_RELOC_OBJECTID) {
 908                                ret = btrfs_dec_ref(trans, root, buf, 0);
 909                                if (ret)
 910                                        return ret;
 911                                ret = btrfs_inc_ref(trans, root, cow, 1);
 912                                if (ret)
 913                                        return ret;
 914                        }
 915                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 916                } else {
 917
 918                        if (root->root_key.objectid ==
 919                            BTRFS_TREE_RELOC_OBJECTID)
 920                                ret = btrfs_inc_ref(trans, root, cow, 1);
 921                        else
 922                                ret = btrfs_inc_ref(trans, root, cow, 0);
 923                        if (ret)
 924                                return ret;
 925                }
 926                if (new_flags != 0) {
 927                        int level = btrfs_header_level(buf);
 928
 929                        ret = btrfs_set_disk_extent_flags(trans, buf,
 930                                                          new_flags, level, 0);
 931                        if (ret)
 932                                return ret;
 933                }
 934        } else {
 935                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 936                        if (root->root_key.objectid ==
 937                            BTRFS_TREE_RELOC_OBJECTID)
 938                                ret = btrfs_inc_ref(trans, root, cow, 1);
 939                        else
 940                                ret = btrfs_inc_ref(trans, root, cow, 0);
 941                        if (ret)
 942                                return ret;
 943                        ret = btrfs_dec_ref(trans, root, buf, 1);
 944                        if (ret)
 945                                return ret;
 946                }
 947                btrfs_clean_tree_block(buf);
 948                *last_ref = 1;
 949        }
 950        return 0;
 951}
 952
 953static struct extent_buffer *alloc_tree_block_no_bg_flush(
 954                                          struct btrfs_trans_handle *trans,
 955                                          struct btrfs_root *root,
 956                                          u64 parent_start,
 957                                          const struct btrfs_disk_key *disk_key,
 958                                          int level,
 959                                          u64 hint,
 960                                          u64 empty_size)
 961{
 962        struct btrfs_fs_info *fs_info = root->fs_info;
 963        struct extent_buffer *ret;
 964
 965        /*
 966         * If we are COWing a node/leaf from the extent, chunk, device or free
 967         * space trees, make sure that we do not finish block group creation of
 968         * pending block groups. We do this to avoid a deadlock.
 969         * COWing can result in allocation of a new chunk, and flushing pending
 970         * block groups (btrfs_create_pending_block_groups()) can be triggered
 971         * when finishing allocation of a new chunk. Creation of a pending block
 972         * group modifies the extent, chunk, device and free space trees,
 973         * therefore we could deadlock with ourselves since we are holding a
 974         * lock on an extent buffer that btrfs_create_pending_block_groups() may
 975         * try to COW later.
 976         * For similar reasons, we also need to delay flushing pending block
 977         * groups when splitting a leaf or node, from one of those trees, since
 978         * we are holding a write lock on it and its parent or when inserting a
 979         * new root node for one of those trees.
 980         */
 981        if (root == fs_info->extent_root ||
 982            root == fs_info->chunk_root ||
 983            root == fs_info->dev_root ||
 984            root == fs_info->free_space_root)
 985                trans->can_flush_pending_bgs = false;
 986
 987        ret = btrfs_alloc_tree_block(trans, root, parent_start,
 988                                     root->root_key.objectid, disk_key, level,
 989                                     hint, empty_size);
 990        trans->can_flush_pending_bgs = true;
 991
 992        return ret;
 993}
 994
 995/*
 996 * does the dirty work in cow of a single block.  The parent block (if
 997 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 998 * dirty and returned locked.  If you modify the block it needs to be marked
 999 * dirty again.
1000 *
1001 * search_start -- an allocation hint for the new block
1002 *
1003 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1004 * bytes the allocator should try to find free next to the block it returns.
1005 * This is just a hint and may be ignored by the allocator.
1006 */
1007static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1008                             struct btrfs_root *root,
1009                             struct extent_buffer *buf,
1010                             struct extent_buffer *parent, int parent_slot,
1011                             struct extent_buffer **cow_ret,
1012                             u64 search_start, u64 empty_size)
1013{
1014        struct btrfs_fs_info *fs_info = root->fs_info;
1015        struct btrfs_disk_key disk_key;
1016        struct extent_buffer *cow;
1017        int level, ret;
1018        int last_ref = 0;
1019        int unlock_orig = 0;
1020        u64 parent_start = 0;
1021
1022        if (*cow_ret == buf)
1023                unlock_orig = 1;
1024
1025        btrfs_assert_tree_locked(buf);
1026
1027        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1028                trans->transid != fs_info->running_transaction->transid);
1029        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1030                trans->transid != root->last_trans);
1031
1032        level = btrfs_header_level(buf);
1033
1034        if (level == 0)
1035                btrfs_item_key(buf, &disk_key, 0);
1036        else
1037                btrfs_node_key(buf, &disk_key, 0);
1038
1039        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1040                parent_start = parent->start;
1041
1042        cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1043                                           level, search_start, empty_size);
1044        if (IS_ERR(cow))
1045                return PTR_ERR(cow);
1046
1047        /* cow is set to blocking by btrfs_init_new_buffer */
1048
1049        copy_extent_buffer_full(cow, buf);
1050        btrfs_set_header_bytenr(cow, cow->start);
1051        btrfs_set_header_generation(cow, trans->transid);
1052        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1053        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1054                                     BTRFS_HEADER_FLAG_RELOC);
1055        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1056                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1057        else
1058                btrfs_set_header_owner(cow, root->root_key.objectid);
1059
1060        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1061
1062        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1063        if (ret) {
1064                btrfs_abort_transaction(trans, ret);
1065                return ret;
1066        }
1067
1068        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1069                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1070                if (ret) {
1071                        btrfs_abort_transaction(trans, ret);
1072                        return ret;
1073                }
1074        }
1075
1076        if (buf == root->node) {
1077                WARN_ON(parent && parent != buf);
1078                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1079                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1080                        parent_start = buf->start;
1081
1082                atomic_inc(&cow->refs);
1083                ret = tree_mod_log_insert_root(root->node, cow, 1);
1084                BUG_ON(ret < 0);
1085                rcu_assign_pointer(root->node, cow);
1086
1087                btrfs_free_tree_block(trans, root, buf, parent_start,
1088                                      last_ref);
1089                free_extent_buffer(buf);
1090                add_root_to_dirty_list(root);
1091        } else {
1092                WARN_ON(trans->transid != btrfs_header_generation(parent));
1093                tree_mod_log_insert_key(parent, parent_slot,
1094                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1095                btrfs_set_node_blockptr(parent, parent_slot,
1096                                        cow->start);
1097                btrfs_set_node_ptr_generation(parent, parent_slot,
1098                                              trans->transid);
1099                btrfs_mark_buffer_dirty(parent);
1100                if (last_ref) {
1101                        ret = tree_mod_log_free_eb(buf);
1102                        if (ret) {
1103                                btrfs_abort_transaction(trans, ret);
1104                                return ret;
1105                        }
1106                }
1107                btrfs_free_tree_block(trans, root, buf, parent_start,
1108                                      last_ref);
1109        }
1110        if (unlock_orig)
1111                btrfs_tree_unlock(buf);
1112        free_extent_buffer_stale(buf);
1113        btrfs_mark_buffer_dirty(cow);
1114        *cow_ret = cow;
1115        return 0;
1116}
1117
1118/*
1119 * returns the logical address of the oldest predecessor of the given root.
1120 * entries older than time_seq are ignored.
1121 */
1122static struct tree_mod_elem *__tree_mod_log_oldest_root(
1123                struct extent_buffer *eb_root, u64 time_seq)
1124{
1125        struct tree_mod_elem *tm;
1126        struct tree_mod_elem *found = NULL;
1127        u64 root_logical = eb_root->start;
1128        int looped = 0;
1129
1130        if (!time_seq)
1131                return NULL;
1132
1133        /*
1134         * the very last operation that's logged for a root is the
1135         * replacement operation (if it is replaced at all). this has
1136         * the logical address of the *new* root, making it the very
1137         * first operation that's logged for this root.
1138         */
1139        while (1) {
1140                tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1141                                                time_seq);
1142                if (!looped && !tm)
1143                        return NULL;
1144                /*
1145                 * if there are no tree operation for the oldest root, we simply
1146                 * return it. this should only happen if that (old) root is at
1147                 * level 0.
1148                 */
1149                if (!tm)
1150                        break;
1151
1152                /*
1153                 * if there's an operation that's not a root replacement, we
1154                 * found the oldest version of our root. normally, we'll find a
1155                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1156                 */
1157                if (tm->op != MOD_LOG_ROOT_REPLACE)
1158                        break;
1159
1160                found = tm;
1161                root_logical = tm->old_root.logical;
1162                looped = 1;
1163        }
1164
1165        /* if there's no old root to return, return what we found instead */
1166        if (!found)
1167                found = tm;
1168
1169        return found;
1170}
1171
1172/*
1173 * tm is a pointer to the first operation to rewind within eb. then, all
1174 * previous operations will be rewound (until we reach something older than
1175 * time_seq).
1176 */
1177static void
1178__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1179                      u64 time_seq, struct tree_mod_elem *first_tm)
1180{
1181        u32 n;
1182        struct rb_node *next;
1183        struct tree_mod_elem *tm = first_tm;
1184        unsigned long o_dst;
1185        unsigned long o_src;
1186        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1187
1188        n = btrfs_header_nritems(eb);
1189        read_lock(&fs_info->tree_mod_log_lock);
1190        while (tm && tm->seq >= time_seq) {
1191                /*
1192                 * all the operations are recorded with the operator used for
1193                 * the modification. as we're going backwards, we do the
1194                 * opposite of each operation here.
1195                 */
1196                switch (tm->op) {
1197                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1198                        BUG_ON(tm->slot < n);
1199                        /* Fallthrough */
1200                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1201                case MOD_LOG_KEY_REMOVE:
1202                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1203                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1204                        btrfs_set_node_ptr_generation(eb, tm->slot,
1205                                                      tm->generation);
1206                        n++;
1207                        break;
1208                case MOD_LOG_KEY_REPLACE:
1209                        BUG_ON(tm->slot >= n);
1210                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1211                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1212                        btrfs_set_node_ptr_generation(eb, tm->slot,
1213                                                      tm->generation);
1214                        break;
1215                case MOD_LOG_KEY_ADD:
1216                        /* if a move operation is needed it's in the log */
1217                        n--;
1218                        break;
1219                case MOD_LOG_MOVE_KEYS:
1220                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1221                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1222                        memmove_extent_buffer(eb, o_dst, o_src,
1223                                              tm->move.nr_items * p_size);
1224                        break;
1225                case MOD_LOG_ROOT_REPLACE:
1226                        /*
1227                         * this operation is special. for roots, this must be
1228                         * handled explicitly before rewinding.
1229                         * for non-roots, this operation may exist if the node
1230                         * was a root: root A -> child B; then A gets empty and
1231                         * B is promoted to the new root. in the mod log, we'll
1232                         * have a root-replace operation for B, a tree block
1233                         * that is no root. we simply ignore that operation.
1234                         */
1235                        break;
1236                }
1237                next = rb_next(&tm->node);
1238                if (!next)
1239                        break;
1240                tm = rb_entry(next, struct tree_mod_elem, node);
1241                if (tm->logical != first_tm->logical)
1242                        break;
1243        }
1244        read_unlock(&fs_info->tree_mod_log_lock);
1245        btrfs_set_header_nritems(eb, n);
1246}
1247
1248/*
1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250 * is returned. If rewind operations happen, a fresh buffer is returned. The
1251 * returned buffer is always read-locked. If the returned buffer is not the
1252 * input buffer, the lock on the input buffer is released and the input buffer
1253 * is freed (its refcount is decremented).
1254 */
1255static struct extent_buffer *
1256tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1257                    struct extent_buffer *eb, u64 time_seq)
1258{
1259        struct extent_buffer *eb_rewin;
1260        struct tree_mod_elem *tm;
1261
1262        if (!time_seq)
1263                return eb;
1264
1265        if (btrfs_header_level(eb) == 0)
1266                return eb;
1267
1268        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1269        if (!tm)
1270                return eb;
1271
1272        btrfs_set_path_blocking(path);
1273        btrfs_set_lock_blocking_read(eb);
1274
1275        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1276                BUG_ON(tm->slot != 0);
1277                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1278                if (!eb_rewin) {
1279                        btrfs_tree_read_unlock_blocking(eb);
1280                        free_extent_buffer(eb);
1281                        return NULL;
1282                }
1283                btrfs_set_header_bytenr(eb_rewin, eb->start);
1284                btrfs_set_header_backref_rev(eb_rewin,
1285                                             btrfs_header_backref_rev(eb));
1286                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1287                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1288        } else {
1289                eb_rewin = btrfs_clone_extent_buffer(eb);
1290                if (!eb_rewin) {
1291                        btrfs_tree_read_unlock_blocking(eb);
1292                        free_extent_buffer(eb);
1293                        return NULL;
1294                }
1295        }
1296
1297        btrfs_tree_read_unlock_blocking(eb);
1298        free_extent_buffer(eb);
1299
1300        btrfs_tree_read_lock(eb_rewin);
1301        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1302        WARN_ON(btrfs_header_nritems(eb_rewin) >
1303                BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1304
1305        return eb_rewin;
1306}
1307
1308/*
1309 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1310 * value. If there are no changes, the current root->root_node is returned. If
1311 * anything changed in between, there's a fresh buffer allocated on which the
1312 * rewind operations are done. In any case, the returned buffer is read locked.
1313 * Returns NULL on error (with no locks held).
1314 */
1315static inline struct extent_buffer *
1316get_old_root(struct btrfs_root *root, u64 time_seq)
1317{
1318        struct btrfs_fs_info *fs_info = root->fs_info;
1319        struct tree_mod_elem *tm;
1320        struct extent_buffer *eb = NULL;
1321        struct extent_buffer *eb_root;
1322        u64 eb_root_owner = 0;
1323        struct extent_buffer *old;
1324        struct tree_mod_root *old_root = NULL;
1325        u64 old_generation = 0;
1326        u64 logical;
1327        int level;
1328
1329        eb_root = btrfs_read_lock_root_node(root);
1330        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1331        if (!tm)
1332                return eb_root;
1333
1334        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1335                old_root = &tm->old_root;
1336                old_generation = tm->generation;
1337                logical = old_root->logical;
1338                level = old_root->level;
1339        } else {
1340                logical = eb_root->start;
1341                level = btrfs_header_level(eb_root);
1342        }
1343
1344        tm = tree_mod_log_search(fs_info, logical, time_seq);
1345        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1346                btrfs_tree_read_unlock(eb_root);
1347                free_extent_buffer(eb_root);
1348                old = read_tree_block(fs_info, logical, 0, level, NULL);
1349                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1350                        if (!IS_ERR(old))
1351                                free_extent_buffer(old);
1352                        btrfs_warn(fs_info,
1353                                   "failed to read tree block %llu from get_old_root",
1354                                   logical);
1355                } else {
1356                        eb = btrfs_clone_extent_buffer(old);
1357                        free_extent_buffer(old);
1358                }
1359        } else if (old_root) {
1360                eb_root_owner = btrfs_header_owner(eb_root);
1361                btrfs_tree_read_unlock(eb_root);
1362                free_extent_buffer(eb_root);
1363                eb = alloc_dummy_extent_buffer(fs_info, logical);
1364        } else {
1365                btrfs_set_lock_blocking_read(eb_root);
1366                eb = btrfs_clone_extent_buffer(eb_root);
1367                btrfs_tree_read_unlock_blocking(eb_root);
1368                free_extent_buffer(eb_root);
1369        }
1370
1371        if (!eb)
1372                return NULL;
1373        btrfs_tree_read_lock(eb);
1374        if (old_root) {
1375                btrfs_set_header_bytenr(eb, eb->start);
1376                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1377                btrfs_set_header_owner(eb, eb_root_owner);
1378                btrfs_set_header_level(eb, old_root->level);
1379                btrfs_set_header_generation(eb, old_generation);
1380        }
1381        if (tm)
1382                __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1383        else
1384                WARN_ON(btrfs_header_level(eb) != 0);
1385        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1386
1387        return eb;
1388}
1389
1390int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1391{
1392        struct tree_mod_elem *tm;
1393        int level;
1394        struct extent_buffer *eb_root = btrfs_root_node(root);
1395
1396        tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1397        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1398                level = tm->old_root.level;
1399        } else {
1400                level = btrfs_header_level(eb_root);
1401        }
1402        free_extent_buffer(eb_root);
1403
1404        return level;
1405}
1406
1407static inline int should_cow_block(struct btrfs_trans_handle *trans,
1408                                   struct btrfs_root *root,
1409                                   struct extent_buffer *buf)
1410{
1411        if (btrfs_is_testing(root->fs_info))
1412                return 0;
1413
1414        /* Ensure we can see the FORCE_COW bit */
1415        smp_mb__before_atomic();
1416
1417        /*
1418         * We do not need to cow a block if
1419         * 1) this block is not created or changed in this transaction;
1420         * 2) this block does not belong to TREE_RELOC tree;
1421         * 3) the root is not forced COW.
1422         *
1423         * What is forced COW:
1424         *    when we create snapshot during committing the transaction,
1425         *    after we've finished copying src root, we must COW the shared
1426         *    block to ensure the metadata consistency.
1427         */
1428        if (btrfs_header_generation(buf) == trans->transid &&
1429            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1430            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1431              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1432            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1433                return 0;
1434        return 1;
1435}
1436
1437/*
1438 * cows a single block, see __btrfs_cow_block for the real work.
1439 * This version of it has extra checks so that a block isn't COWed more than
1440 * once per transaction, as long as it hasn't been written yet
1441 */
1442noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1443                    struct btrfs_root *root, struct extent_buffer *buf,
1444                    struct extent_buffer *parent, int parent_slot,
1445                    struct extent_buffer **cow_ret)
1446{
1447        struct btrfs_fs_info *fs_info = root->fs_info;
1448        u64 search_start;
1449        int ret;
1450
1451        if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1452                btrfs_err(fs_info,
1453                        "COW'ing blocks on a fs root that's being dropped");
1454
1455        if (trans->transaction != fs_info->running_transaction)
1456                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1457                       trans->transid,
1458                       fs_info->running_transaction->transid);
1459
1460        if (trans->transid != fs_info->generation)
1461                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1462                       trans->transid, fs_info->generation);
1463
1464        if (!should_cow_block(trans, root, buf)) {
1465                trans->dirty = true;
1466                *cow_ret = buf;
1467                return 0;
1468        }
1469
1470        search_start = buf->start & ~((u64)SZ_1G - 1);
1471
1472        if (parent)
1473                btrfs_set_lock_blocking_write(parent);
1474        btrfs_set_lock_blocking_write(buf);
1475
1476        /*
1477         * Before CoWing this block for later modification, check if it's
1478         * the subtree root and do the delayed subtree trace if needed.
1479         *
1480         * Also We don't care about the error, as it's handled internally.
1481         */
1482        btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1483        ret = __btrfs_cow_block(trans, root, buf, parent,
1484                                 parent_slot, cow_ret, search_start, 0);
1485
1486        trace_btrfs_cow_block(root, buf, *cow_ret);
1487
1488        return ret;
1489}
1490
1491/*
1492 * helper function for defrag to decide if two blocks pointed to by a
1493 * node are actually close by
1494 */
1495static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1496{
1497        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1498                return 1;
1499        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1500                return 1;
1501        return 0;
1502}
1503
1504/*
1505 * compare two keys in a memcmp fashion
1506 */
1507static int comp_keys(const struct btrfs_disk_key *disk,
1508                     const struct btrfs_key *k2)
1509{
1510        struct btrfs_key k1;
1511
1512        btrfs_disk_key_to_cpu(&k1, disk);
1513
1514        return btrfs_comp_cpu_keys(&k1, k2);
1515}
1516
1517/*
1518 * same as comp_keys only with two btrfs_key's
1519 */
1520int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1521{
1522        if (k1->objectid > k2->objectid)
1523                return 1;
1524        if (k1->objectid < k2->objectid)
1525                return -1;
1526        if (k1->type > k2->type)
1527                return 1;
1528        if (k1->type < k2->type)
1529                return -1;
1530        if (k1->offset > k2->offset)
1531                return 1;
1532        if (k1->offset < k2->offset)
1533                return -1;
1534        return 0;
1535}
1536
1537/*
1538 * this is used by the defrag code to go through all the
1539 * leaves pointed to by a node and reallocate them so that
1540 * disk order is close to key order
1541 */
1542int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1543                       struct btrfs_root *root, struct extent_buffer *parent,
1544                       int start_slot, u64 *last_ret,
1545                       struct btrfs_key *progress)
1546{
1547        struct btrfs_fs_info *fs_info = root->fs_info;
1548        struct extent_buffer *cur;
1549        u64 blocknr;
1550        u64 gen;
1551        u64 search_start = *last_ret;
1552        u64 last_block = 0;
1553        u64 other;
1554        u32 parent_nritems;
1555        int end_slot;
1556        int i;
1557        int err = 0;
1558        int parent_level;
1559        int uptodate;
1560        u32 blocksize;
1561        int progress_passed = 0;
1562        struct btrfs_disk_key disk_key;
1563
1564        parent_level = btrfs_header_level(parent);
1565
1566        WARN_ON(trans->transaction != fs_info->running_transaction);
1567        WARN_ON(trans->transid != fs_info->generation);
1568
1569        parent_nritems = btrfs_header_nritems(parent);
1570        blocksize = fs_info->nodesize;
1571        end_slot = parent_nritems - 1;
1572
1573        if (parent_nritems <= 1)
1574                return 0;
1575
1576        btrfs_set_lock_blocking_write(parent);
1577
1578        for (i = start_slot; i <= end_slot; i++) {
1579                struct btrfs_key first_key;
1580                int close = 1;
1581
1582                btrfs_node_key(parent, &disk_key, i);
1583                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1584                        continue;
1585
1586                progress_passed = 1;
1587                blocknr = btrfs_node_blockptr(parent, i);
1588                gen = btrfs_node_ptr_generation(parent, i);
1589                btrfs_node_key_to_cpu(parent, &first_key, i);
1590                if (last_block == 0)
1591                        last_block = blocknr;
1592
1593                if (i > 0) {
1594                        other = btrfs_node_blockptr(parent, i - 1);
1595                        close = close_blocks(blocknr, other, blocksize);
1596                }
1597                if (!close && i < end_slot) {
1598                        other = btrfs_node_blockptr(parent, i + 1);
1599                        close = close_blocks(blocknr, other, blocksize);
1600                }
1601                if (close) {
1602                        last_block = blocknr;
1603                        continue;
1604                }
1605
1606                cur = find_extent_buffer(fs_info, blocknr);
1607                if (cur)
1608                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1609                else
1610                        uptodate = 0;
1611                if (!cur || !uptodate) {
1612                        if (!cur) {
1613                                cur = read_tree_block(fs_info, blocknr, gen,
1614                                                      parent_level - 1,
1615                                                      &first_key);
1616                                if (IS_ERR(cur)) {
1617                                        return PTR_ERR(cur);
1618                                } else if (!extent_buffer_uptodate(cur)) {
1619                                        free_extent_buffer(cur);
1620                                        return -EIO;
1621                                }
1622                        } else if (!uptodate) {
1623                                err = btrfs_read_buffer(cur, gen,
1624                                                parent_level - 1,&first_key);
1625                                if (err) {
1626                                        free_extent_buffer(cur);
1627                                        return err;
1628                                }
1629                        }
1630                }
1631                if (search_start == 0)
1632                        search_start = last_block;
1633
1634                btrfs_tree_lock(cur);
1635                btrfs_set_lock_blocking_write(cur);
1636                err = __btrfs_cow_block(trans, root, cur, parent, i,
1637                                        &cur, search_start,
1638                                        min(16 * blocksize,
1639                                            (end_slot - i) * blocksize));
1640                if (err) {
1641                        btrfs_tree_unlock(cur);
1642                        free_extent_buffer(cur);
1643                        break;
1644                }
1645                search_start = cur->start;
1646                last_block = cur->start;
1647                *last_ret = search_start;
1648                btrfs_tree_unlock(cur);
1649                free_extent_buffer(cur);
1650        }
1651        return err;
1652}
1653
1654/*
1655 * search for key in the extent_buffer.  The items start at offset p,
1656 * and they are item_size apart.  There are 'max' items in p.
1657 *
1658 * the slot in the array is returned via slot, and it points to
1659 * the place where you would insert key if it is not found in
1660 * the array.
1661 *
1662 * slot may point to max if the key is bigger than all of the keys
1663 */
1664static noinline int generic_bin_search(struct extent_buffer *eb,
1665                                       unsigned long p, int item_size,
1666                                       const struct btrfs_key *key,
1667                                       int max, int *slot)
1668{
1669        int low = 0;
1670        int high = max;
1671        int mid;
1672        int ret;
1673        struct btrfs_disk_key *tmp = NULL;
1674        struct btrfs_disk_key unaligned;
1675        unsigned long offset;
1676        char *kaddr = NULL;
1677        unsigned long map_start = 0;
1678        unsigned long map_len = 0;
1679        int err;
1680
1681        if (low > high) {
1682                btrfs_err(eb->fs_info,
1683                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1684                          __func__, low, high, eb->start,
1685                          btrfs_header_owner(eb), btrfs_header_level(eb));
1686                return -EINVAL;
1687        }
1688
1689        while (low < high) {
1690                mid = (low + high) / 2;
1691                offset = p + mid * item_size;
1692
1693                if (!kaddr || offset < map_start ||
1694                    (offset + sizeof(struct btrfs_disk_key)) >
1695                    map_start + map_len) {
1696
1697                        err = map_private_extent_buffer(eb, offset,
1698                                                sizeof(struct btrfs_disk_key),
1699                                                &kaddr, &map_start, &map_len);
1700
1701                        if (!err) {
1702                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1703                                                        map_start);
1704                        } else if (err == 1) {
1705                                read_extent_buffer(eb, &unaligned,
1706                                                   offset, sizeof(unaligned));
1707                                tmp = &unaligned;
1708                        } else {
1709                                return err;
1710                        }
1711
1712                } else {
1713                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1714                                                        map_start);
1715                }
1716                ret = comp_keys(tmp, key);
1717
1718                if (ret < 0)
1719                        low = mid + 1;
1720                else if (ret > 0)
1721                        high = mid;
1722                else {
1723                        *slot = mid;
1724                        return 0;
1725                }
1726        }
1727        *slot = low;
1728        return 1;
1729}
1730
1731/*
1732 * simple bin_search frontend that does the right thing for
1733 * leaves vs nodes
1734 */
1735int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1736                     int level, int *slot)
1737{
1738        if (level == 0)
1739                return generic_bin_search(eb,
1740                                          offsetof(struct btrfs_leaf, items),
1741                                          sizeof(struct btrfs_item),
1742                                          key, btrfs_header_nritems(eb),
1743                                          slot);
1744        else
1745                return generic_bin_search(eb,
1746                                          offsetof(struct btrfs_node, ptrs),
1747                                          sizeof(struct btrfs_key_ptr),
1748                                          key, btrfs_header_nritems(eb),
1749                                          slot);
1750}
1751
1752static void root_add_used(struct btrfs_root *root, u32 size)
1753{
1754        spin_lock(&root->accounting_lock);
1755        btrfs_set_root_used(&root->root_item,
1756                            btrfs_root_used(&root->root_item) + size);
1757        spin_unlock(&root->accounting_lock);
1758}
1759
1760static void root_sub_used(struct btrfs_root *root, u32 size)
1761{
1762        spin_lock(&root->accounting_lock);
1763        btrfs_set_root_used(&root->root_item,
1764                            btrfs_root_used(&root->root_item) - size);
1765        spin_unlock(&root->accounting_lock);
1766}
1767
1768/* given a node and slot number, this reads the blocks it points to.  The
1769 * extent buffer is returned with a reference taken (but unlocked).
1770 */
1771struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1772                                           int slot)
1773{
1774        int level = btrfs_header_level(parent);
1775        struct extent_buffer *eb;
1776        struct btrfs_key first_key;
1777
1778        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1779                return ERR_PTR(-ENOENT);
1780
1781        BUG_ON(level == 0);
1782
1783        btrfs_node_key_to_cpu(parent, &first_key, slot);
1784        eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1785                             btrfs_node_ptr_generation(parent, slot),
1786                             level - 1, &first_key);
1787        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1788                free_extent_buffer(eb);
1789                eb = ERR_PTR(-EIO);
1790        }
1791
1792        return eb;
1793}
1794
1795/*
1796 * node level balancing, used to make sure nodes are in proper order for
1797 * item deletion.  We balance from the top down, so we have to make sure
1798 * that a deletion won't leave an node completely empty later on.
1799 */
1800static noinline int balance_level(struct btrfs_trans_handle *trans,
1801                         struct btrfs_root *root,
1802                         struct btrfs_path *path, int level)
1803{
1804        struct btrfs_fs_info *fs_info = root->fs_info;
1805        struct extent_buffer *right = NULL;
1806        struct extent_buffer *mid;
1807        struct extent_buffer *left = NULL;
1808        struct extent_buffer *parent = NULL;
1809        int ret = 0;
1810        int wret;
1811        int pslot;
1812        int orig_slot = path->slots[level];
1813        u64 orig_ptr;
1814
1815        ASSERT(level > 0);
1816
1817        mid = path->nodes[level];
1818
1819        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1820                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1821        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1822
1823        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1824
1825        if (level < BTRFS_MAX_LEVEL - 1) {
1826                parent = path->nodes[level + 1];
1827                pslot = path->slots[level + 1];
1828        }
1829
1830        /*
1831         * deal with the case where there is only one pointer in the root
1832         * by promoting the node below to a root
1833         */
1834        if (!parent) {
1835                struct extent_buffer *child;
1836
1837                if (btrfs_header_nritems(mid) != 1)
1838                        return 0;
1839
1840                /* promote the child to a root */
1841                child = btrfs_read_node_slot(mid, 0);
1842                if (IS_ERR(child)) {
1843                        ret = PTR_ERR(child);
1844                        btrfs_handle_fs_error(fs_info, ret, NULL);
1845                        goto enospc;
1846                }
1847
1848                btrfs_tree_lock(child);
1849                btrfs_set_lock_blocking_write(child);
1850                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1851                if (ret) {
1852                        btrfs_tree_unlock(child);
1853                        free_extent_buffer(child);
1854                        goto enospc;
1855                }
1856
1857                ret = tree_mod_log_insert_root(root->node, child, 1);
1858                BUG_ON(ret < 0);
1859                rcu_assign_pointer(root->node, child);
1860
1861                add_root_to_dirty_list(root);
1862                btrfs_tree_unlock(child);
1863
1864                path->locks[level] = 0;
1865                path->nodes[level] = NULL;
1866                btrfs_clean_tree_block(mid);
1867                btrfs_tree_unlock(mid);
1868                /* once for the path */
1869                free_extent_buffer(mid);
1870
1871                root_sub_used(root, mid->len);
1872                btrfs_free_tree_block(trans, root, mid, 0, 1);
1873                /* once for the root ptr */
1874                free_extent_buffer_stale(mid);
1875                return 0;
1876        }
1877        if (btrfs_header_nritems(mid) >
1878            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1879                return 0;
1880
1881        left = btrfs_read_node_slot(parent, pslot - 1);
1882        if (IS_ERR(left))
1883                left = NULL;
1884
1885        if (left) {
1886                btrfs_tree_lock(left);
1887                btrfs_set_lock_blocking_write(left);
1888                wret = btrfs_cow_block(trans, root, left,
1889                                       parent, pslot - 1, &left);
1890                if (wret) {
1891                        ret = wret;
1892                        goto enospc;
1893                }
1894        }
1895
1896        right = btrfs_read_node_slot(parent, pslot + 1);
1897        if (IS_ERR(right))
1898                right = NULL;
1899
1900        if (right) {
1901                btrfs_tree_lock(right);
1902                btrfs_set_lock_blocking_write(right);
1903                wret = btrfs_cow_block(trans, root, right,
1904                                       parent, pslot + 1, &right);
1905                if (wret) {
1906                        ret = wret;
1907                        goto enospc;
1908                }
1909        }
1910
1911        /* first, try to make some room in the middle buffer */
1912        if (left) {
1913                orig_slot += btrfs_header_nritems(left);
1914                wret = push_node_left(trans, left, mid, 1);
1915                if (wret < 0)
1916                        ret = wret;
1917        }
1918
1919        /*
1920         * then try to empty the right most buffer into the middle
1921         */
1922        if (right) {
1923                wret = push_node_left(trans, mid, right, 1);
1924                if (wret < 0 && wret != -ENOSPC)
1925                        ret = wret;
1926                if (btrfs_header_nritems(right) == 0) {
1927                        btrfs_clean_tree_block(right);
1928                        btrfs_tree_unlock(right);
1929                        del_ptr(root, path, level + 1, pslot + 1);
1930                        root_sub_used(root, right->len);
1931                        btrfs_free_tree_block(trans, root, right, 0, 1);
1932                        free_extent_buffer_stale(right);
1933                        right = NULL;
1934                } else {
1935                        struct btrfs_disk_key right_key;
1936                        btrfs_node_key(right, &right_key, 0);
1937                        ret = tree_mod_log_insert_key(parent, pslot + 1,
1938                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1939                        BUG_ON(ret < 0);
1940                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1941                        btrfs_mark_buffer_dirty(parent);
1942                }
1943        }
1944        if (btrfs_header_nritems(mid) == 1) {
1945                /*
1946                 * we're not allowed to leave a node with one item in the
1947                 * tree during a delete.  A deletion from lower in the tree
1948                 * could try to delete the only pointer in this node.
1949                 * So, pull some keys from the left.
1950                 * There has to be a left pointer at this point because
1951                 * otherwise we would have pulled some pointers from the
1952                 * right
1953                 */
1954                if (!left) {
1955                        ret = -EROFS;
1956                        btrfs_handle_fs_error(fs_info, ret, NULL);
1957                        goto enospc;
1958                }
1959                wret = balance_node_right(trans, mid, left);
1960                if (wret < 0) {
1961                        ret = wret;
1962                        goto enospc;
1963                }
1964                if (wret == 1) {
1965                        wret = push_node_left(trans, left, mid, 1);
1966                        if (wret < 0)
1967                                ret = wret;
1968                }
1969                BUG_ON(wret == 1);
1970        }
1971        if (btrfs_header_nritems(mid) == 0) {
1972                btrfs_clean_tree_block(mid);
1973                btrfs_tree_unlock(mid);
1974                del_ptr(root, path, level + 1, pslot);
1975                root_sub_used(root, mid->len);
1976                btrfs_free_tree_block(trans, root, mid, 0, 1);
1977                free_extent_buffer_stale(mid);
1978                mid = NULL;
1979        } else {
1980                /* update the parent key to reflect our changes */
1981                struct btrfs_disk_key mid_key;
1982                btrfs_node_key(mid, &mid_key, 0);
1983                ret = tree_mod_log_insert_key(parent, pslot,
1984                                MOD_LOG_KEY_REPLACE, GFP_NOFS);
1985                BUG_ON(ret < 0);
1986                btrfs_set_node_key(parent, &mid_key, pslot);
1987                btrfs_mark_buffer_dirty(parent);
1988        }
1989
1990        /* update the path */
1991        if (left) {
1992                if (btrfs_header_nritems(left) > orig_slot) {
1993                        atomic_inc(&left->refs);
1994                        /* left was locked after cow */
1995                        path->nodes[level] = left;
1996                        path->slots[level + 1] -= 1;
1997                        path->slots[level] = orig_slot;
1998                        if (mid) {
1999                                btrfs_tree_unlock(mid);
2000                                free_extent_buffer(mid);
2001                        }
2002                } else {
2003                        orig_slot -= btrfs_header_nritems(left);
2004                        path->slots[level] = orig_slot;
2005                }
2006        }
2007        /* double check we haven't messed things up */
2008        if (orig_ptr !=
2009            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2010                BUG();
2011enospc:
2012        if (right) {
2013                btrfs_tree_unlock(right);
2014                free_extent_buffer(right);
2015        }
2016        if (left) {
2017                if (path->nodes[level] != left)
2018                        btrfs_tree_unlock(left);
2019                free_extent_buffer(left);
2020        }
2021        return ret;
2022}
2023
2024/* Node balancing for insertion.  Here we only split or push nodes around
2025 * when they are completely full.  This is also done top down, so we
2026 * have to be pessimistic.
2027 */
2028static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2029                                          struct btrfs_root *root,
2030                                          struct btrfs_path *path, int level)
2031{
2032        struct btrfs_fs_info *fs_info = root->fs_info;
2033        struct extent_buffer *right = NULL;
2034        struct extent_buffer *mid;
2035        struct extent_buffer *left = NULL;
2036        struct extent_buffer *parent = NULL;
2037        int ret = 0;
2038        int wret;
2039        int pslot;
2040        int orig_slot = path->slots[level];
2041
2042        if (level == 0)
2043                return 1;
2044
2045        mid = path->nodes[level];
2046        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2047
2048        if (level < BTRFS_MAX_LEVEL - 1) {
2049                parent = path->nodes[level + 1];
2050                pslot = path->slots[level + 1];
2051        }
2052
2053        if (!parent)
2054                return 1;
2055
2056        left = btrfs_read_node_slot(parent, pslot - 1);
2057        if (IS_ERR(left))
2058                left = NULL;
2059
2060        /* first, try to make some room in the middle buffer */
2061        if (left) {
2062                u32 left_nr;
2063
2064                btrfs_tree_lock(left);
2065                btrfs_set_lock_blocking_write(left);
2066
2067                left_nr = btrfs_header_nritems(left);
2068                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2069                        wret = 1;
2070                } else {
2071                        ret = btrfs_cow_block(trans, root, left, parent,
2072                                              pslot - 1, &left);
2073                        if (ret)
2074                                wret = 1;
2075                        else {
2076                                wret = push_node_left(trans, left, mid, 0);
2077                        }
2078                }
2079                if (wret < 0)
2080                        ret = wret;
2081                if (wret == 0) {
2082                        struct btrfs_disk_key disk_key;
2083                        orig_slot += left_nr;
2084                        btrfs_node_key(mid, &disk_key, 0);
2085                        ret = tree_mod_log_insert_key(parent, pslot,
2086                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2087                        BUG_ON(ret < 0);
2088                        btrfs_set_node_key(parent, &disk_key, pslot);
2089                        btrfs_mark_buffer_dirty(parent);
2090                        if (btrfs_header_nritems(left) > orig_slot) {
2091                                path->nodes[level] = left;
2092                                path->slots[level + 1] -= 1;
2093                                path->slots[level] = orig_slot;
2094                                btrfs_tree_unlock(mid);
2095                                free_extent_buffer(mid);
2096                        } else {
2097                                orig_slot -=
2098                                        btrfs_header_nritems(left);
2099                                path->slots[level] = orig_slot;
2100                                btrfs_tree_unlock(left);
2101                                free_extent_buffer(left);
2102                        }
2103                        return 0;
2104                }
2105                btrfs_tree_unlock(left);
2106                free_extent_buffer(left);
2107        }
2108        right = btrfs_read_node_slot(parent, pslot + 1);
2109        if (IS_ERR(right))
2110                right = NULL;
2111
2112        /*
2113         * then try to empty the right most buffer into the middle
2114         */
2115        if (right) {
2116                u32 right_nr;
2117
2118                btrfs_tree_lock(right);
2119                btrfs_set_lock_blocking_write(right);
2120
2121                right_nr = btrfs_header_nritems(right);
2122                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2123                        wret = 1;
2124                } else {
2125                        ret = btrfs_cow_block(trans, root, right,
2126                                              parent, pslot + 1,
2127                                              &right);
2128                        if (ret)
2129                                wret = 1;
2130                        else {
2131                                wret = balance_node_right(trans, right, mid);
2132                        }
2133                }
2134                if (wret < 0)
2135                        ret = wret;
2136                if (wret == 0) {
2137                        struct btrfs_disk_key disk_key;
2138
2139                        btrfs_node_key(right, &disk_key, 0);
2140                        ret = tree_mod_log_insert_key(parent, pslot + 1,
2141                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
2142                        BUG_ON(ret < 0);
2143                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2144                        btrfs_mark_buffer_dirty(parent);
2145
2146                        if (btrfs_header_nritems(mid) <= orig_slot) {
2147                                path->nodes[level] = right;
2148                                path->slots[level + 1] += 1;
2149                                path->slots[level] = orig_slot -
2150                                        btrfs_header_nritems(mid);
2151                                btrfs_tree_unlock(mid);
2152                                free_extent_buffer(mid);
2153                        } else {
2154                                btrfs_tree_unlock(right);
2155                                free_extent_buffer(right);
2156                        }
2157                        return 0;
2158                }
2159                btrfs_tree_unlock(right);
2160                free_extent_buffer(right);
2161        }
2162        return 1;
2163}
2164
2165/*
2166 * readahead one full node of leaves, finding things that are close
2167 * to the block in 'slot', and triggering ra on them.
2168 */
2169static void reada_for_search(struct btrfs_fs_info *fs_info,
2170                             struct btrfs_path *path,
2171                             int level, int slot, u64 objectid)
2172{
2173        struct extent_buffer *node;
2174        struct btrfs_disk_key disk_key;
2175        u32 nritems;
2176        u64 search;
2177        u64 target;
2178        u64 nread = 0;
2179        struct extent_buffer *eb;
2180        u32 nr;
2181        u32 blocksize;
2182        u32 nscan = 0;
2183
2184        if (level != 1)
2185                return;
2186
2187        if (!path->nodes[level])
2188                return;
2189
2190        node = path->nodes[level];
2191
2192        search = btrfs_node_blockptr(node, slot);
2193        blocksize = fs_info->nodesize;
2194        eb = find_extent_buffer(fs_info, search);
2195        if (eb) {
2196                free_extent_buffer(eb);
2197                return;
2198        }
2199
2200        target = search;
2201
2202        nritems = btrfs_header_nritems(node);
2203        nr = slot;
2204
2205        while (1) {
2206                if (path->reada == READA_BACK) {
2207                        if (nr == 0)
2208                                break;
2209                        nr--;
2210                } else if (path->reada == READA_FORWARD) {
2211                        nr++;
2212                        if (nr >= nritems)
2213                                break;
2214                }
2215                if (path->reada == READA_BACK && objectid) {
2216                        btrfs_node_key(node, &disk_key, nr);
2217                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2218                                break;
2219                }
2220                search = btrfs_node_blockptr(node, nr);
2221                if ((search <= target && target - search <= 65536) ||
2222                    (search > target && search - target <= 65536)) {
2223                        readahead_tree_block(fs_info, search);
2224                        nread += blocksize;
2225                }
2226                nscan++;
2227                if ((nread > 65536 || nscan > 32))
2228                        break;
2229        }
2230}
2231
2232static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2233                                       struct btrfs_path *path, int level)
2234{
2235        int slot;
2236        int nritems;
2237        struct extent_buffer *parent;
2238        struct extent_buffer *eb;
2239        u64 gen;
2240        u64 block1 = 0;
2241        u64 block2 = 0;
2242
2243        parent = path->nodes[level + 1];
2244        if (!parent)
2245                return;
2246
2247        nritems = btrfs_header_nritems(parent);
2248        slot = path->slots[level + 1];
2249
2250        if (slot > 0) {
2251                block1 = btrfs_node_blockptr(parent, slot - 1);
2252                gen = btrfs_node_ptr_generation(parent, slot - 1);
2253                eb = find_extent_buffer(fs_info, block1);
2254                /*
2255                 * if we get -eagain from btrfs_buffer_uptodate, we
2256                 * don't want to return eagain here.  That will loop
2257                 * forever
2258                 */
2259                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2260                        block1 = 0;
2261                free_extent_buffer(eb);
2262        }
2263        if (slot + 1 < nritems) {
2264                block2 = btrfs_node_blockptr(parent, slot + 1);
2265                gen = btrfs_node_ptr_generation(parent, slot + 1);
2266                eb = find_extent_buffer(fs_info, block2);
2267                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2268                        block2 = 0;
2269                free_extent_buffer(eb);
2270        }
2271
2272        if (block1)
2273                readahead_tree_block(fs_info, block1);
2274        if (block2)
2275                readahead_tree_block(fs_info, block2);
2276}
2277
2278
2279/*
2280 * when we walk down the tree, it is usually safe to unlock the higher layers
2281 * in the tree.  The exceptions are when our path goes through slot 0, because
2282 * operations on the tree might require changing key pointers higher up in the
2283 * tree.
2284 *
2285 * callers might also have set path->keep_locks, which tells this code to keep
2286 * the lock if the path points to the last slot in the block.  This is part of
2287 * walking through the tree, and selecting the next slot in the higher block.
2288 *
2289 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2290 * if lowest_unlock is 1, level 0 won't be unlocked
2291 */
2292static noinline void unlock_up(struct btrfs_path *path, int level,
2293                               int lowest_unlock, int min_write_lock_level,
2294                               int *write_lock_level)
2295{
2296        int i;
2297        int skip_level = level;
2298        int no_skips = 0;
2299        struct extent_buffer *t;
2300
2301        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2302                if (!path->nodes[i])
2303                        break;
2304                if (!path->locks[i])
2305                        break;
2306                if (!no_skips && path->slots[i] == 0) {
2307                        skip_level = i + 1;
2308                        continue;
2309                }
2310                if (!no_skips && path->keep_locks) {
2311                        u32 nritems;
2312                        t = path->nodes[i];
2313                        nritems = btrfs_header_nritems(t);
2314                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2315                                skip_level = i + 1;
2316                                continue;
2317                        }
2318                }
2319                if (skip_level < i && i >= lowest_unlock)
2320                        no_skips = 1;
2321
2322                t = path->nodes[i];
2323                if (i >= lowest_unlock && i > skip_level) {
2324                        btrfs_tree_unlock_rw(t, path->locks[i]);
2325                        path->locks[i] = 0;
2326                        if (write_lock_level &&
2327                            i > min_write_lock_level &&
2328                            i <= *write_lock_level) {
2329                                *write_lock_level = i - 1;
2330                        }
2331                }
2332        }
2333}
2334
2335/*
2336 * helper function for btrfs_search_slot.  The goal is to find a block
2337 * in cache without setting the path to blocking.  If we find the block
2338 * we return zero and the path is unchanged.
2339 *
2340 * If we can't find the block, we set the path blocking and do some
2341 * reada.  -EAGAIN is returned and the search must be repeated.
2342 */
2343static int
2344read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2345                      struct extent_buffer **eb_ret, int level, int slot,
2346                      const struct btrfs_key *key)
2347{
2348        struct btrfs_fs_info *fs_info = root->fs_info;
2349        u64 blocknr;
2350        u64 gen;
2351        struct extent_buffer *b = *eb_ret;
2352        struct extent_buffer *tmp;
2353        struct btrfs_key first_key;
2354        int ret;
2355        int parent_level;
2356
2357        blocknr = btrfs_node_blockptr(b, slot);
2358        gen = btrfs_node_ptr_generation(b, slot);
2359        parent_level = btrfs_header_level(b);
2360        btrfs_node_key_to_cpu(b, &first_key, slot);
2361
2362        tmp = find_extent_buffer(fs_info, blocknr);
2363        if (tmp) {
2364                /* first we do an atomic uptodate check */
2365                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2366                        /*
2367                         * Do extra check for first_key, eb can be stale due to
2368                         * being cached, read from scrub, or have multiple
2369                         * parents (shared tree blocks).
2370                         */
2371                        if (btrfs_verify_level_key(tmp,
2372                                        parent_level - 1, &first_key, gen)) {
2373                                free_extent_buffer(tmp);
2374                                return -EUCLEAN;
2375                        }
2376                        *eb_ret = tmp;
2377                        return 0;
2378                }
2379
2380                /* the pages were up to date, but we failed
2381                 * the generation number check.  Do a full
2382                 * read for the generation number that is correct.
2383                 * We must do this without dropping locks so
2384                 * we can trust our generation number
2385                 */
2386                btrfs_set_path_blocking(p);
2387
2388                /* now we're allowed to do a blocking uptodate check */
2389                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2390                if (!ret) {
2391                        *eb_ret = tmp;
2392                        return 0;
2393                }
2394                free_extent_buffer(tmp);
2395                btrfs_release_path(p);
2396                return -EIO;
2397        }
2398
2399        /*
2400         * reduce lock contention at high levels
2401         * of the btree by dropping locks before
2402         * we read.  Don't release the lock on the current
2403         * level because we need to walk this node to figure
2404         * out which blocks to read.
2405         */
2406        btrfs_unlock_up_safe(p, level + 1);
2407        btrfs_set_path_blocking(p);
2408
2409        if (p->reada != READA_NONE)
2410                reada_for_search(fs_info, p, level, slot, key->objectid);
2411
2412        ret = -EAGAIN;
2413        tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2414                              &first_key);
2415        if (!IS_ERR(tmp)) {
2416                /*
2417                 * If the read above didn't mark this buffer up to date,
2418                 * it will never end up being up to date.  Set ret to EIO now
2419                 * and give up so that our caller doesn't loop forever
2420                 * on our EAGAINs.
2421                 */
2422                if (!extent_buffer_uptodate(tmp))
2423                        ret = -EIO;
2424                free_extent_buffer(tmp);
2425        } else {
2426                ret = PTR_ERR(tmp);
2427        }
2428
2429        btrfs_release_path(p);
2430        return ret;
2431}
2432
2433/*
2434 * helper function for btrfs_search_slot.  This does all of the checks
2435 * for node-level blocks and does any balancing required based on
2436 * the ins_len.
2437 *
2438 * If no extra work was required, zero is returned.  If we had to
2439 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2440 * start over
2441 */
2442static int
2443setup_nodes_for_search(struct btrfs_trans_handle *trans,
2444                       struct btrfs_root *root, struct btrfs_path *p,
2445                       struct extent_buffer *b, int level, int ins_len,
2446                       int *write_lock_level)
2447{
2448        struct btrfs_fs_info *fs_info = root->fs_info;
2449        int ret;
2450
2451        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2452            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2453                int sret;
2454
2455                if (*write_lock_level < level + 1) {
2456                        *write_lock_level = level + 1;
2457                        btrfs_release_path(p);
2458                        goto again;
2459                }
2460
2461                btrfs_set_path_blocking(p);
2462                reada_for_balance(fs_info, p, level);
2463                sret = split_node(trans, root, p, level);
2464
2465                BUG_ON(sret > 0);
2466                if (sret) {
2467                        ret = sret;
2468                        goto done;
2469                }
2470                b = p->nodes[level];
2471        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2472                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2473                int sret;
2474
2475                if (*write_lock_level < level + 1) {
2476                        *write_lock_level = level + 1;
2477                        btrfs_release_path(p);
2478                        goto again;
2479                }
2480
2481                btrfs_set_path_blocking(p);
2482                reada_for_balance(fs_info, p, level);
2483                sret = balance_level(trans, root, p, level);
2484
2485                if (sret) {
2486                        ret = sret;
2487                        goto done;
2488                }
2489                b = p->nodes[level];
2490                if (!b) {
2491                        btrfs_release_path(p);
2492                        goto again;
2493                }
2494                BUG_ON(btrfs_header_nritems(b) == 1);
2495        }
2496        return 0;
2497
2498again:
2499        ret = -EAGAIN;
2500done:
2501        return ret;
2502}
2503
2504static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2505                      int level, int *prev_cmp, int *slot)
2506{
2507        if (*prev_cmp != 0) {
2508                *prev_cmp = btrfs_bin_search(b, key, level, slot);
2509                return *prev_cmp;
2510        }
2511
2512        *slot = 0;
2513
2514        return 0;
2515}
2516
2517int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2518                u64 iobjectid, u64 ioff, u8 key_type,
2519                struct btrfs_key *found_key)
2520{
2521        int ret;
2522        struct btrfs_key key;
2523        struct extent_buffer *eb;
2524
2525        ASSERT(path);
2526        ASSERT(found_key);
2527
2528        key.type = key_type;
2529        key.objectid = iobjectid;
2530        key.offset = ioff;
2531
2532        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2533        if (ret < 0)
2534                return ret;
2535
2536        eb = path->nodes[0];
2537        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2538                ret = btrfs_next_leaf(fs_root, path);
2539                if (ret)
2540                        return ret;
2541                eb = path->nodes[0];
2542        }
2543
2544        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2545        if (found_key->type != key.type ||
2546                        found_key->objectid != key.objectid)
2547                return 1;
2548
2549        return 0;
2550}
2551
2552static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2553                                                        struct btrfs_path *p,
2554                                                        int write_lock_level)
2555{
2556        struct btrfs_fs_info *fs_info = root->fs_info;
2557        struct extent_buffer *b;
2558        int root_lock;
2559        int level = 0;
2560
2561        /* We try very hard to do read locks on the root */
2562        root_lock = BTRFS_READ_LOCK;
2563
2564        if (p->search_commit_root) {
2565                /*
2566                 * The commit roots are read only so we always do read locks,
2567                 * and we always must hold the commit_root_sem when doing
2568                 * searches on them, the only exception is send where we don't
2569                 * want to block transaction commits for a long time, so
2570                 * we need to clone the commit root in order to avoid races
2571                 * with transaction commits that create a snapshot of one of
2572                 * the roots used by a send operation.
2573                 */
2574                if (p->need_commit_sem) {
2575                        down_read(&fs_info->commit_root_sem);
2576                        b = btrfs_clone_extent_buffer(root->commit_root);
2577                        up_read(&fs_info->commit_root_sem);
2578                        if (!b)
2579                                return ERR_PTR(-ENOMEM);
2580
2581                } else {
2582                        b = root->commit_root;
2583                        atomic_inc(&b->refs);
2584                }
2585                level = btrfs_header_level(b);
2586                /*
2587                 * Ensure that all callers have set skip_locking when
2588                 * p->search_commit_root = 1.
2589                 */
2590                ASSERT(p->skip_locking == 1);
2591
2592                goto out;
2593        }
2594
2595        if (p->skip_locking) {
2596                b = btrfs_root_node(root);
2597                level = btrfs_header_level(b);
2598                goto out;
2599        }
2600
2601        /*
2602         * If the level is set to maximum, we can skip trying to get the read
2603         * lock.
2604         */
2605        if (write_lock_level < BTRFS_MAX_LEVEL) {
2606                /*
2607                 * We don't know the level of the root node until we actually
2608                 * have it read locked
2609                 */
2610                b = btrfs_read_lock_root_node(root);
2611                level = btrfs_header_level(b);
2612                if (level > write_lock_level)
2613                        goto out;
2614
2615                /* Whoops, must trade for write lock */
2616                btrfs_tree_read_unlock(b);
2617                free_extent_buffer(b);
2618        }
2619
2620        b = btrfs_lock_root_node(root);
2621        root_lock = BTRFS_WRITE_LOCK;
2622
2623        /* The level might have changed, check again */
2624        level = btrfs_header_level(b);
2625
2626out:
2627        p->nodes[level] = b;
2628        if (!p->skip_locking)
2629                p->locks[level] = root_lock;
2630        /*
2631         * Callers are responsible for dropping b's references.
2632         */
2633        return b;
2634}
2635
2636
2637/*
2638 * btrfs_search_slot - look for a key in a tree and perform necessary
2639 * modifications to preserve tree invariants.
2640 *
2641 * @trans:      Handle of transaction, used when modifying the tree
2642 * @p:          Holds all btree nodes along the search path
2643 * @root:       The root node of the tree
2644 * @key:        The key we are looking for
2645 * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2646 *              deletions it's -1. 0 for plain searches
2647 * @cow:        boolean should CoW operations be performed. Must always be 1
2648 *              when modifying the tree.
2649 *
2650 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2651 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2652 *
2653 * If @key is found, 0 is returned and you can find the item in the leaf level
2654 * of the path (level 0)
2655 *
2656 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2657 * points to the slot where it should be inserted
2658 *
2659 * If an error is encountered while searching the tree a negative error number
2660 * is returned
2661 */
2662int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2663                      const struct btrfs_key *key, struct btrfs_path *p,
2664                      int ins_len, int cow)
2665{
2666        struct extent_buffer *b;
2667        int slot;
2668        int ret;
2669        int err;
2670        int level;
2671        int lowest_unlock = 1;
2672        /* everything at write_lock_level or lower must be write locked */
2673        int write_lock_level = 0;
2674        u8 lowest_level = 0;
2675        int min_write_lock_level;
2676        int prev_cmp;
2677
2678        lowest_level = p->lowest_level;
2679        WARN_ON(lowest_level && ins_len > 0);
2680        WARN_ON(p->nodes[0] != NULL);
2681        BUG_ON(!cow && ins_len);
2682
2683        if (ins_len < 0) {
2684                lowest_unlock = 2;
2685
2686                /* when we are removing items, we might have to go up to level
2687                 * two as we update tree pointers  Make sure we keep write
2688                 * for those levels as well
2689                 */
2690                write_lock_level = 2;
2691        } else if (ins_len > 0) {
2692                /*
2693                 * for inserting items, make sure we have a write lock on
2694                 * level 1 so we can update keys
2695                 */
2696                write_lock_level = 1;
2697        }
2698
2699        if (!cow)
2700                write_lock_level = -1;
2701
2702        if (cow && (p->keep_locks || p->lowest_level))
2703                write_lock_level = BTRFS_MAX_LEVEL;
2704
2705        min_write_lock_level = write_lock_level;
2706
2707again:
2708        prev_cmp = -1;
2709        b = btrfs_search_slot_get_root(root, p, write_lock_level);
2710        if (IS_ERR(b)) {
2711                ret = PTR_ERR(b);
2712                goto done;
2713        }
2714
2715        while (b) {
2716                int dec = 0;
2717
2718                level = btrfs_header_level(b);
2719
2720                if (cow) {
2721                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2722
2723                        /*
2724                         * if we don't really need to cow this block
2725                         * then we don't want to set the path blocking,
2726                         * so we test it here
2727                         */
2728                        if (!should_cow_block(trans, root, b)) {
2729                                trans->dirty = true;
2730                                goto cow_done;
2731                        }
2732
2733                        /*
2734                         * must have write locks on this node and the
2735                         * parent
2736                         */
2737                        if (level > write_lock_level ||
2738                            (level + 1 > write_lock_level &&
2739                            level + 1 < BTRFS_MAX_LEVEL &&
2740                            p->nodes[level + 1])) {
2741                                write_lock_level = level + 1;
2742                                btrfs_release_path(p);
2743                                goto again;
2744                        }
2745
2746                        btrfs_set_path_blocking(p);
2747                        if (last_level)
2748                                err = btrfs_cow_block(trans, root, b, NULL, 0,
2749                                                      &b);
2750                        else
2751                                err = btrfs_cow_block(trans, root, b,
2752                                                      p->nodes[level + 1],
2753                                                      p->slots[level + 1], &b);
2754                        if (err) {
2755                                ret = err;
2756                                goto done;
2757                        }
2758                }
2759cow_done:
2760                p->nodes[level] = b;
2761                /*
2762                 * Leave path with blocking locks to avoid massive
2763                 * lock context switch, this is made on purpose.
2764                 */
2765
2766                /*
2767                 * we have a lock on b and as long as we aren't changing
2768                 * the tree, there is no way to for the items in b to change.
2769                 * It is safe to drop the lock on our parent before we
2770                 * go through the expensive btree search on b.
2771                 *
2772                 * If we're inserting or deleting (ins_len != 0), then we might
2773                 * be changing slot zero, which may require changing the parent.
2774                 * So, we can't drop the lock until after we know which slot
2775                 * we're operating on.
2776                 */
2777                if (!ins_len && !p->keep_locks) {
2778                        int u = level + 1;
2779
2780                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2781                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2782                                p->locks[u] = 0;
2783                        }
2784                }
2785
2786                ret = key_search(b, key, level, &prev_cmp, &slot);
2787                if (ret < 0)
2788                        goto done;
2789
2790                if (level == 0) {
2791                        p->slots[level] = slot;
2792                        if (ins_len > 0 &&
2793                            btrfs_leaf_free_space(b) < ins_len) {
2794                                if (write_lock_level < 1) {
2795                                        write_lock_level = 1;
2796                                        btrfs_release_path(p);
2797                                        goto again;
2798                                }
2799
2800                                btrfs_set_path_blocking(p);
2801                                err = split_leaf(trans, root, key,
2802                                                 p, ins_len, ret == 0);
2803
2804                                BUG_ON(err > 0);
2805                                if (err) {
2806                                        ret = err;
2807                                        goto done;
2808                                }
2809                        }
2810                        if (!p->search_for_split)
2811                                unlock_up(p, level, lowest_unlock,
2812                                          min_write_lock_level, NULL);
2813                        goto done;
2814                }
2815                if (ret && slot > 0) {
2816                        dec = 1;
2817                        slot--;
2818                }
2819                p->slots[level] = slot;
2820                err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2821                                             &write_lock_level);
2822                if (err == -EAGAIN)
2823                        goto again;
2824                if (err) {
2825                        ret = err;
2826                        goto done;
2827                }
2828                b = p->nodes[level];
2829                slot = p->slots[level];
2830
2831                /*
2832                 * Slot 0 is special, if we change the key we have to update
2833                 * the parent pointer which means we must have a write lock on
2834                 * the parent
2835                 */
2836                if (slot == 0 && ins_len && write_lock_level < level + 1) {
2837                        write_lock_level = level + 1;
2838                        btrfs_release_path(p);
2839                        goto again;
2840                }
2841
2842                unlock_up(p, level, lowest_unlock, min_write_lock_level,
2843                          &write_lock_level);
2844
2845                if (level == lowest_level) {
2846                        if (dec)
2847                                p->slots[level]++;
2848                        goto done;
2849                }
2850
2851                err = read_block_for_search(root, p, &b, level, slot, key);
2852                if (err == -EAGAIN)
2853                        goto again;
2854                if (err) {
2855                        ret = err;
2856                        goto done;
2857                }
2858
2859                if (!p->skip_locking) {
2860                        level = btrfs_header_level(b);
2861                        if (level <= write_lock_level) {
2862                                if (!btrfs_try_tree_write_lock(b)) {
2863                                        btrfs_set_path_blocking(p);
2864                                        btrfs_tree_lock(b);
2865                                }
2866                                p->locks[level] = BTRFS_WRITE_LOCK;
2867                        } else {
2868                                if (!btrfs_tree_read_lock_atomic(b)) {
2869                                        btrfs_set_path_blocking(p);
2870                                        btrfs_tree_read_lock(b);
2871                                }
2872                                p->locks[level] = BTRFS_READ_LOCK;
2873                        }
2874                        p->nodes[level] = b;
2875                }
2876        }
2877        ret = 1;
2878done:
2879        /*
2880         * we don't really know what they plan on doing with the path
2881         * from here on, so for now just mark it as blocking
2882         */
2883        if (!p->leave_spinning)
2884                btrfs_set_path_blocking(p);
2885        if (ret < 0 && !p->skip_release_on_error)
2886                btrfs_release_path(p);
2887        return ret;
2888}
2889
2890/*
2891 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2892 * current state of the tree together with the operations recorded in the tree
2893 * modification log to search for the key in a previous version of this tree, as
2894 * denoted by the time_seq parameter.
2895 *
2896 * Naturally, there is no support for insert, delete or cow operations.
2897 *
2898 * The resulting path and return value will be set up as if we called
2899 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2900 */
2901int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2902                          struct btrfs_path *p, u64 time_seq)
2903{
2904        struct btrfs_fs_info *fs_info = root->fs_info;
2905        struct extent_buffer *b;
2906        int slot;
2907        int ret;
2908        int err;
2909        int level;
2910        int lowest_unlock = 1;
2911        u8 lowest_level = 0;
2912        int prev_cmp = -1;
2913
2914        lowest_level = p->lowest_level;
2915        WARN_ON(p->nodes[0] != NULL);
2916
2917        if (p->search_commit_root) {
2918                BUG_ON(time_seq);
2919                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2920        }
2921
2922again:
2923        b = get_old_root(root, time_seq);
2924        if (!b) {
2925                ret = -EIO;
2926                goto done;
2927        }
2928        level = btrfs_header_level(b);
2929        p->locks[level] = BTRFS_READ_LOCK;
2930
2931        while (b) {
2932                int dec = 0;
2933
2934                level = btrfs_header_level(b);
2935                p->nodes[level] = b;
2936
2937                /*
2938                 * we have a lock on b and as long as we aren't changing
2939                 * the tree, there is no way to for the items in b to change.
2940                 * It is safe to drop the lock on our parent before we
2941                 * go through the expensive btree search on b.
2942                 */
2943                btrfs_unlock_up_safe(p, level + 1);
2944
2945                /*
2946                 * Since we can unwind ebs we want to do a real search every
2947                 * time.
2948                 */
2949                prev_cmp = -1;
2950                ret = key_search(b, key, level, &prev_cmp, &slot);
2951                if (ret < 0)
2952                        goto done;
2953
2954                if (level == 0) {
2955                        p->slots[level] = slot;
2956                        unlock_up(p, level, lowest_unlock, 0, NULL);
2957                        goto done;
2958                }
2959
2960                if (ret && slot > 0) {
2961                        dec = 1;
2962                        slot--;
2963                }
2964                p->slots[level] = slot;
2965                unlock_up(p, level, lowest_unlock, 0, NULL);
2966
2967                if (level == lowest_level) {
2968                        if (dec)
2969                                p->slots[level]++;
2970                        goto done;
2971                }
2972
2973                err = read_block_for_search(root, p, &b, level, slot, key);
2974                if (err == -EAGAIN)
2975                        goto again;
2976                if (err) {
2977                        ret = err;
2978                        goto done;
2979                }
2980
2981                level = btrfs_header_level(b);
2982                if (!btrfs_tree_read_lock_atomic(b)) {
2983                        btrfs_set_path_blocking(p);
2984                        btrfs_tree_read_lock(b);
2985                }
2986                b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2987                if (!b) {
2988                        ret = -ENOMEM;
2989                        goto done;
2990                }
2991                p->locks[level] = BTRFS_READ_LOCK;
2992                p->nodes[level] = b;
2993        }
2994        ret = 1;
2995done:
2996        if (!p->leave_spinning)
2997                btrfs_set_path_blocking(p);
2998        if (ret < 0)
2999                btrfs_release_path(p);
3000
3001        return ret;
3002}
3003
3004/*
3005 * helper to use instead of search slot if no exact match is needed but
3006 * instead the next or previous item should be returned.
3007 * When find_higher is true, the next higher item is returned, the next lower
3008 * otherwise.
3009 * When return_any and find_higher are both true, and no higher item is found,
3010 * return the next lower instead.
3011 * When return_any is true and find_higher is false, and no lower item is found,
3012 * return the next higher instead.
3013 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3014 * < 0 on error
3015 */
3016int btrfs_search_slot_for_read(struct btrfs_root *root,
3017                               const struct btrfs_key *key,
3018                               struct btrfs_path *p, int find_higher,
3019                               int return_any)
3020{
3021        int ret;
3022        struct extent_buffer *leaf;
3023
3024again:
3025        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3026        if (ret <= 0)
3027                return ret;
3028        /*
3029         * a return value of 1 means the path is at the position where the
3030         * item should be inserted. Normally this is the next bigger item,
3031         * but in case the previous item is the last in a leaf, path points
3032         * to the first free slot in the previous leaf, i.e. at an invalid
3033         * item.
3034         */
3035        leaf = p->nodes[0];
3036
3037        if (find_higher) {
3038                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3039                        ret = btrfs_next_leaf(root, p);
3040                        if (ret <= 0)
3041                                return ret;
3042                        if (!return_any)
3043                                return 1;
3044                        /*
3045                         * no higher item found, return the next
3046                         * lower instead
3047                         */
3048                        return_any = 0;
3049                        find_higher = 0;
3050                        btrfs_release_path(p);
3051                        goto again;
3052                }
3053        } else {
3054                if (p->slots[0] == 0) {
3055                        ret = btrfs_prev_leaf(root, p);
3056                        if (ret < 0)
3057                                return ret;
3058                        if (!ret) {
3059                                leaf = p->nodes[0];
3060                                if (p->slots[0] == btrfs_header_nritems(leaf))
3061                                        p->slots[0]--;
3062                                return 0;
3063                        }
3064                        if (!return_any)
3065                                return 1;
3066                        /*
3067                         * no lower item found, return the next
3068                         * higher instead
3069                         */
3070                        return_any = 0;
3071                        find_higher = 1;
3072                        btrfs_release_path(p);
3073                        goto again;
3074                } else {
3075                        --p->slots[0];
3076                }
3077        }
3078        return 0;
3079}
3080
3081/*
3082 * adjust the pointers going up the tree, starting at level
3083 * making sure the right key of each node is points to 'key'.
3084 * This is used after shifting pointers to the left, so it stops
3085 * fixing up pointers when a given leaf/node is not in slot 0 of the
3086 * higher levels
3087 *
3088 */
3089static void fixup_low_keys(struct btrfs_path *path,
3090                           struct btrfs_disk_key *key, int level)
3091{
3092        int i;
3093        struct extent_buffer *t;
3094        int ret;
3095
3096        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3097                int tslot = path->slots[i];
3098
3099                if (!path->nodes[i])
3100                        break;
3101                t = path->nodes[i];
3102                ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3103                                GFP_ATOMIC);
3104                BUG_ON(ret < 0);
3105                btrfs_set_node_key(t, key, tslot);
3106                btrfs_mark_buffer_dirty(path->nodes[i]);
3107                if (tslot != 0)
3108                        break;
3109        }
3110}
3111
3112/*
3113 * update item key.
3114 *
3115 * This function isn't completely safe. It's the caller's responsibility
3116 * that the new key won't break the order
3117 */
3118void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3119                             struct btrfs_path *path,
3120                             const struct btrfs_key *new_key)
3121{
3122        struct btrfs_disk_key disk_key;
3123        struct extent_buffer *eb;
3124        int slot;
3125
3126        eb = path->nodes[0];
3127        slot = path->slots[0];
3128        if (slot > 0) {
3129                btrfs_item_key(eb, &disk_key, slot - 1);
3130                if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3131                        btrfs_crit(fs_info,
3132                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3133                                   slot, btrfs_disk_key_objectid(&disk_key),
3134                                   btrfs_disk_key_type(&disk_key),
3135                                   btrfs_disk_key_offset(&disk_key),
3136                                   new_key->objectid, new_key->type,
3137                                   new_key->offset);
3138                        btrfs_print_leaf(eb);
3139                        BUG();
3140                }
3141        }
3142        if (slot < btrfs_header_nritems(eb) - 1) {
3143                btrfs_item_key(eb, &disk_key, slot + 1);
3144                if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3145                        btrfs_crit(fs_info,
3146                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3147                                   slot, btrfs_disk_key_objectid(&disk_key),
3148                                   btrfs_disk_key_type(&disk_key),
3149                                   btrfs_disk_key_offset(&disk_key),
3150                                   new_key->objectid, new_key->type,
3151                                   new_key->offset);
3152                        btrfs_print_leaf(eb);
3153                        BUG();
3154                }
3155        }
3156
3157        btrfs_cpu_key_to_disk(&disk_key, new_key);
3158        btrfs_set_item_key(eb, &disk_key, slot);
3159        btrfs_mark_buffer_dirty(eb);
3160        if (slot == 0)
3161                fixup_low_keys(path, &disk_key, 1);
3162}
3163
3164/*
3165 * try to push data from one node into the next node left in the
3166 * tree.
3167 *
3168 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3169 * error, and > 0 if there was no room in the left hand block.
3170 */
3171static int push_node_left(struct btrfs_trans_handle *trans,
3172                          struct extent_buffer *dst,
3173                          struct extent_buffer *src, int empty)
3174{
3175        struct btrfs_fs_info *fs_info = trans->fs_info;
3176        int push_items = 0;
3177        int src_nritems;
3178        int dst_nritems;
3179        int ret = 0;
3180
3181        src_nritems = btrfs_header_nritems(src);
3182        dst_nritems = btrfs_header_nritems(dst);
3183        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3184        WARN_ON(btrfs_header_generation(src) != trans->transid);
3185        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3186
3187        if (!empty && src_nritems <= 8)
3188                return 1;
3189
3190        if (push_items <= 0)
3191                return 1;
3192
3193        if (empty) {
3194                push_items = min(src_nritems, push_items);
3195                if (push_items < src_nritems) {
3196                        /* leave at least 8 pointers in the node if
3197                         * we aren't going to empty it
3198                         */
3199                        if (src_nritems - push_items < 8) {
3200                                if (push_items <= 8)
3201                                        return 1;
3202                                push_items -= 8;
3203                        }
3204                }
3205        } else
3206                push_items = min(src_nritems - 8, push_items);
3207
3208        ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3209        if (ret) {
3210                btrfs_abort_transaction(trans, ret);
3211                return ret;
3212        }
3213        copy_extent_buffer(dst, src,
3214                           btrfs_node_key_ptr_offset(dst_nritems),
3215                           btrfs_node_key_ptr_offset(0),
3216                           push_items * sizeof(struct btrfs_key_ptr));
3217
3218        if (push_items < src_nritems) {
3219                /*
3220                 * Don't call tree_mod_log_insert_move here, key removal was
3221                 * already fully logged by tree_mod_log_eb_copy above.
3222                 */
3223                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3224                                      btrfs_node_key_ptr_offset(push_items),
3225                                      (src_nritems - push_items) *
3226                                      sizeof(struct btrfs_key_ptr));
3227        }
3228        btrfs_set_header_nritems(src, src_nritems - push_items);
3229        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3230        btrfs_mark_buffer_dirty(src);
3231        btrfs_mark_buffer_dirty(dst);
3232
3233        return ret;
3234}
3235
3236/*
3237 * try to push data from one node into the next node right in the
3238 * tree.
3239 *
3240 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3241 * error, and > 0 if there was no room in the right hand block.
3242 *
3243 * this will  only push up to 1/2 the contents of the left node over
3244 */
3245static int balance_node_right(struct btrfs_trans_handle *trans,
3246                              struct extent_buffer *dst,
3247                              struct extent_buffer *src)
3248{
3249        struct btrfs_fs_info *fs_info = trans->fs_info;
3250        int push_items = 0;
3251        int max_push;
3252        int src_nritems;
3253        int dst_nritems;
3254        int ret = 0;
3255
3256        WARN_ON(btrfs_header_generation(src) != trans->transid);
3257        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3258
3259        src_nritems = btrfs_header_nritems(src);
3260        dst_nritems = btrfs_header_nritems(dst);
3261        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3262        if (push_items <= 0)
3263                return 1;
3264
3265        if (src_nritems < 4)
3266                return 1;
3267
3268        max_push = src_nritems / 2 + 1;
3269        /* don't try to empty the node */
3270        if (max_push >= src_nritems)
3271                return 1;
3272
3273        if (max_push < push_items)
3274                push_items = max_push;
3275
3276        ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3277        BUG_ON(ret < 0);
3278        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3279                                      btrfs_node_key_ptr_offset(0),
3280                                      (dst_nritems) *
3281                                      sizeof(struct btrfs_key_ptr));
3282
3283        ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3284                                   push_items);
3285        if (ret) {
3286                btrfs_abort_transaction(trans, ret);
3287                return ret;
3288        }
3289        copy_extent_buffer(dst, src,
3290                           btrfs_node_key_ptr_offset(0),
3291                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3292                           push_items * sizeof(struct btrfs_key_ptr));
3293
3294        btrfs_set_header_nritems(src, src_nritems - push_items);
3295        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3296
3297        btrfs_mark_buffer_dirty(src);
3298        btrfs_mark_buffer_dirty(dst);
3299
3300        return ret;
3301}
3302
3303/*
3304 * helper function to insert a new root level in the tree.
3305 * A new node is allocated, and a single item is inserted to
3306 * point to the existing root
3307 *
3308 * returns zero on success or < 0 on failure.
3309 */
3310static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3311                           struct btrfs_root *root,
3312                           struct btrfs_path *path, int level)
3313{
3314        struct btrfs_fs_info *fs_info = root->fs_info;
3315        u64 lower_gen;
3316        struct extent_buffer *lower;
3317        struct extent_buffer *c;
3318        struct extent_buffer *old;
3319        struct btrfs_disk_key lower_key;
3320        int ret;
3321
3322        BUG_ON(path->nodes[level]);
3323        BUG_ON(path->nodes[level-1] != root->node);
3324
3325        lower = path->nodes[level-1];
3326        if (level == 1)
3327                btrfs_item_key(lower, &lower_key, 0);
3328        else
3329                btrfs_node_key(lower, &lower_key, 0);
3330
3331        c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3332                                         root->node->start, 0);
3333        if (IS_ERR(c))
3334                return PTR_ERR(c);
3335
3336        root_add_used(root, fs_info->nodesize);
3337
3338        btrfs_set_header_nritems(c, 1);
3339        btrfs_set_node_key(c, &lower_key, 0);
3340        btrfs_set_node_blockptr(c, 0, lower->start);
3341        lower_gen = btrfs_header_generation(lower);
3342        WARN_ON(lower_gen != trans->transid);
3343
3344        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3345
3346        btrfs_mark_buffer_dirty(c);
3347
3348        old = root->node;
3349        ret = tree_mod_log_insert_root(root->node, c, 0);
3350        BUG_ON(ret < 0);
3351        rcu_assign_pointer(root->node, c);
3352
3353        /* the super has an extra ref to root->node */
3354        free_extent_buffer(old);
3355
3356        add_root_to_dirty_list(root);
3357        atomic_inc(&c->refs);
3358        path->nodes[level] = c;
3359        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3360        path->slots[level] = 0;
3361        return 0;
3362}
3363
3364/*
3365 * worker function to insert a single pointer in a node.
3366 * the node should have enough room for the pointer already
3367 *
3368 * slot and level indicate where you want the key to go, and
3369 * blocknr is the block the key points to.
3370 */
3371static void insert_ptr(struct btrfs_trans_handle *trans,
3372                       struct btrfs_path *path,
3373                       struct btrfs_disk_key *key, u64 bytenr,
3374                       int slot, int level)
3375{
3376        struct extent_buffer *lower;
3377        int nritems;
3378        int ret;
3379
3380        BUG_ON(!path->nodes[level]);
3381        btrfs_assert_tree_locked(path->nodes[level]);
3382        lower = path->nodes[level];
3383        nritems = btrfs_header_nritems(lower);
3384        BUG_ON(slot > nritems);
3385        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3386        if (slot != nritems) {
3387                if (level) {
3388                        ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3389                                        nritems - slot);
3390                        BUG_ON(ret < 0);
3391                }
3392                memmove_extent_buffer(lower,
3393                              btrfs_node_key_ptr_offset(slot + 1),
3394                              btrfs_node_key_ptr_offset(slot),
3395                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3396        }
3397        if (level) {
3398                ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3399                                GFP_NOFS);
3400                BUG_ON(ret < 0);
3401        }
3402        btrfs_set_node_key(lower, key, slot);
3403        btrfs_set_node_blockptr(lower, slot, bytenr);
3404        WARN_ON(trans->transid == 0);
3405        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3406        btrfs_set_header_nritems(lower, nritems + 1);
3407        btrfs_mark_buffer_dirty(lower);
3408}
3409
3410/*
3411 * split the node at the specified level in path in two.
3412 * The path is corrected to point to the appropriate node after the split
3413 *
3414 * Before splitting this tries to make some room in the node by pushing
3415 * left and right, if either one works, it returns right away.
3416 *
3417 * returns 0 on success and < 0 on failure
3418 */
3419static noinline int split_node(struct btrfs_trans_handle *trans,
3420                               struct btrfs_root *root,
3421                               struct btrfs_path *path, int level)
3422{
3423        struct btrfs_fs_info *fs_info = root->fs_info;
3424        struct extent_buffer *c;
3425        struct extent_buffer *split;
3426        struct btrfs_disk_key disk_key;
3427        int mid;
3428        int ret;
3429        u32 c_nritems;
3430
3431        c = path->nodes[level];
3432        WARN_ON(btrfs_header_generation(c) != trans->transid);
3433        if (c == root->node) {
3434                /*
3435                 * trying to split the root, lets make a new one
3436                 *
3437                 * tree mod log: We don't log_removal old root in
3438                 * insert_new_root, because that root buffer will be kept as a
3439                 * normal node. We are going to log removal of half of the
3440                 * elements below with tree_mod_log_eb_copy. We're holding a
3441                 * tree lock on the buffer, which is why we cannot race with
3442                 * other tree_mod_log users.
3443                 */
3444                ret = insert_new_root(trans, root, path, level + 1);
3445                if (ret)
3446                        return ret;
3447        } else {
3448                ret = push_nodes_for_insert(trans, root, path, level);
3449                c = path->nodes[level];
3450                if (!ret && btrfs_header_nritems(c) <
3451                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3452                        return 0;
3453                if (ret < 0)
3454                        return ret;
3455        }
3456
3457        c_nritems = btrfs_header_nritems(c);
3458        mid = (c_nritems + 1) / 2;
3459        btrfs_node_key(c, &disk_key, mid);
3460
3461        split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3462                                             c->start, 0);
3463        if (IS_ERR(split))
3464                return PTR_ERR(split);
3465
3466        root_add_used(root, fs_info->nodesize);
3467        ASSERT(btrfs_header_level(c) == level);
3468
3469        ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3470        if (ret) {
3471                btrfs_abort_transaction(trans, ret);
3472                return ret;
3473        }
3474        copy_extent_buffer(split, c,
3475                           btrfs_node_key_ptr_offset(0),
3476                           btrfs_node_key_ptr_offset(mid),
3477                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3478        btrfs_set_header_nritems(split, c_nritems - mid);
3479        btrfs_set_header_nritems(c, mid);
3480        ret = 0;
3481
3482        btrfs_mark_buffer_dirty(c);
3483        btrfs_mark_buffer_dirty(split);
3484
3485        insert_ptr(trans, path, &disk_key, split->start,
3486                   path->slots[level + 1] + 1, level + 1);
3487
3488        if (path->slots[level] >= mid) {
3489                path->slots[level] -= mid;
3490                btrfs_tree_unlock(c);
3491                free_extent_buffer(c);
3492                path->nodes[level] = split;
3493                path->slots[level + 1] += 1;
3494        } else {
3495                btrfs_tree_unlock(split);
3496                free_extent_buffer(split);
3497        }
3498        return ret;
3499}
3500
3501/*
3502 * how many bytes are required to store the items in a leaf.  start
3503 * and nr indicate which items in the leaf to check.  This totals up the
3504 * space used both by the item structs and the item data
3505 */
3506static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3507{
3508        struct btrfs_item *start_item;
3509        struct btrfs_item *end_item;
3510        struct btrfs_map_token token;
3511        int data_len;
3512        int nritems = btrfs_header_nritems(l);
3513        int end = min(nritems, start + nr) - 1;
3514
3515        if (!nr)
3516                return 0;
3517        btrfs_init_map_token(&token, l);
3518        start_item = btrfs_item_nr(start);
3519        end_item = btrfs_item_nr(end);
3520        data_len = btrfs_token_item_offset(l, start_item, &token) +
3521                btrfs_token_item_size(l, start_item, &token);
3522        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3523        data_len += sizeof(struct btrfs_item) * nr;
3524        WARN_ON(data_len < 0);
3525        return data_len;
3526}
3527
3528/*
3529 * The space between the end of the leaf items and
3530 * the start of the leaf data.  IOW, how much room
3531 * the leaf has left for both items and data
3532 */
3533noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3534{
3535        struct btrfs_fs_info *fs_info = leaf->fs_info;
3536        int nritems = btrfs_header_nritems(leaf);
3537        int ret;
3538
3539        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3540        if (ret < 0) {
3541                btrfs_crit(fs_info,
3542                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3543                           ret,
3544                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3545                           leaf_space_used(leaf, 0, nritems), nritems);
3546        }
3547        return ret;
3548}
3549
3550/*
3551 * min slot controls the lowest index we're willing to push to the
3552 * right.  We'll push up to and including min_slot, but no lower
3553 */
3554static noinline int __push_leaf_right(struct btrfs_path *path,
3555                                      int data_size, int empty,
3556                                      struct extent_buffer *right,
3557                                      int free_space, u32 left_nritems,
3558                                      u32 min_slot)
3559{
3560        struct btrfs_fs_info *fs_info = right->fs_info;
3561        struct extent_buffer *left = path->nodes[0];
3562        struct extent_buffer *upper = path->nodes[1];
3563        struct btrfs_map_token token;
3564        struct btrfs_disk_key disk_key;
3565        int slot;
3566        u32 i;
3567        int push_space = 0;
3568        int push_items = 0;
3569        struct btrfs_item *item;
3570        u32 nr;
3571        u32 right_nritems;
3572        u32 data_end;
3573        u32 this_item_size;
3574
3575        if (empty)
3576                nr = 0;
3577        else
3578                nr = max_t(u32, 1, min_slot);
3579
3580        if (path->slots[0] >= left_nritems)
3581                push_space += data_size;
3582
3583        slot = path->slots[1];
3584        i = left_nritems - 1;
3585        while (i >= nr) {
3586                item = btrfs_item_nr(i);
3587
3588                if (!empty && push_items > 0) {
3589                        if (path->slots[0] > i)
3590                                break;
3591                        if (path->slots[0] == i) {
3592                                int space = btrfs_leaf_free_space(left);
3593
3594                                if (space + push_space * 2 > free_space)
3595                                        break;
3596                        }
3597                }
3598
3599                if (path->slots[0] == i)
3600                        push_space += data_size;
3601
3602                this_item_size = btrfs_item_size(left, item);
3603                if (this_item_size + sizeof(*item) + push_space > free_space)
3604                        break;
3605
3606                push_items++;
3607                push_space += this_item_size + sizeof(*item);
3608                if (i == 0)
3609                        break;
3610                i--;
3611        }
3612
3613        if (push_items == 0)
3614                goto out_unlock;
3615
3616        WARN_ON(!empty && push_items == left_nritems);
3617
3618        /* push left to right */
3619        right_nritems = btrfs_header_nritems(right);
3620
3621        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3622        push_space -= leaf_data_end(left);
3623
3624        /* make room in the right data area */
3625        data_end = leaf_data_end(right);
3626        memmove_extent_buffer(right,
3627                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3628                              BTRFS_LEAF_DATA_OFFSET + data_end,
3629                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3630
3631        /* copy from the left data area */
3632        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3633                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3634                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3635                     push_space);
3636
3637        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3638                              btrfs_item_nr_offset(0),
3639                              right_nritems * sizeof(struct btrfs_item));
3640
3641        /* copy the items from left to right */
3642        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3643                   btrfs_item_nr_offset(left_nritems - push_items),
3644                   push_items * sizeof(struct btrfs_item));
3645
3646        /* update the item pointers */
3647        btrfs_init_map_token(&token, right);
3648        right_nritems += push_items;
3649        btrfs_set_header_nritems(right, right_nritems);
3650        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3651        for (i = 0; i < right_nritems; i++) {
3652                item = btrfs_item_nr(i);
3653                push_space -= btrfs_token_item_size(right, item, &token);
3654                btrfs_set_token_item_offset(right, item, push_space, &token);
3655        }
3656
3657        left_nritems -= push_items;
3658        btrfs_set_header_nritems(left, left_nritems);
3659
3660        if (left_nritems)
3661                btrfs_mark_buffer_dirty(left);
3662        else
3663                btrfs_clean_tree_block(left);
3664
3665        btrfs_mark_buffer_dirty(right);
3666
3667        btrfs_item_key(right, &disk_key, 0);
3668        btrfs_set_node_key(upper, &disk_key, slot + 1);
3669        btrfs_mark_buffer_dirty(upper);
3670
3671        /* then fixup the leaf pointer in the path */
3672        if (path->slots[0] >= left_nritems) {
3673                path->slots[0] -= left_nritems;
3674                if (btrfs_header_nritems(path->nodes[0]) == 0)
3675                        btrfs_clean_tree_block(path->nodes[0]);
3676                btrfs_tree_unlock(path->nodes[0]);
3677                free_extent_buffer(path->nodes[0]);
3678                path->nodes[0] = right;
3679                path->slots[1] += 1;
3680        } else {
3681                btrfs_tree_unlock(right);
3682                free_extent_buffer(right);
3683        }
3684        return 0;
3685
3686out_unlock:
3687        btrfs_tree_unlock(right);
3688        free_extent_buffer(right);
3689        return 1;
3690}
3691
3692/*
3693 * push some data in the path leaf to the right, trying to free up at
3694 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3695 *
3696 * returns 1 if the push failed because the other node didn't have enough
3697 * room, 0 if everything worked out and < 0 if there were major errors.
3698 *
3699 * this will push starting from min_slot to the end of the leaf.  It won't
3700 * push any slot lower than min_slot
3701 */
3702static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3703                           *root, struct btrfs_path *path,
3704                           int min_data_size, int data_size,
3705                           int empty, u32 min_slot)
3706{
3707        struct extent_buffer *left = path->nodes[0];
3708        struct extent_buffer *right;
3709        struct extent_buffer *upper;
3710        int slot;
3711        int free_space;
3712        u32 left_nritems;
3713        int ret;
3714
3715        if (!path->nodes[1])
3716                return 1;
3717
3718        slot = path->slots[1];
3719        upper = path->nodes[1];
3720        if (slot >= btrfs_header_nritems(upper) - 1)
3721                return 1;
3722
3723        btrfs_assert_tree_locked(path->nodes[1]);
3724
3725        right = btrfs_read_node_slot(upper, slot + 1);
3726        /*
3727         * slot + 1 is not valid or we fail to read the right node,
3728         * no big deal, just return.
3729         */
3730        if (IS_ERR(right))
3731                return 1;
3732
3733        btrfs_tree_lock(right);
3734        btrfs_set_lock_blocking_write(right);
3735
3736        free_space = btrfs_leaf_free_space(right);
3737        if (free_space < data_size)
3738                goto out_unlock;
3739
3740        /* cow and double check */
3741        ret = btrfs_cow_block(trans, root, right, upper,
3742                              slot + 1, &right);
3743        if (ret)
3744                goto out_unlock;
3745
3746        free_space = btrfs_leaf_free_space(right);
3747        if (free_space < data_size)
3748                goto out_unlock;
3749
3750        left_nritems = btrfs_header_nritems(left);
3751        if (left_nritems == 0)
3752                goto out_unlock;
3753
3754        if (path->slots[0] == left_nritems && !empty) {
3755                /* Key greater than all keys in the leaf, right neighbor has
3756                 * enough room for it and we're not emptying our leaf to delete
3757                 * it, therefore use right neighbor to insert the new item and
3758                 * no need to touch/dirty our left leaf. */
3759                btrfs_tree_unlock(left);
3760                free_extent_buffer(left);
3761                path->nodes[0] = right;
3762                path->slots[0] = 0;
3763                path->slots[1]++;
3764                return 0;
3765        }
3766
3767        return __push_leaf_right(path, min_data_size, empty,
3768                                right, free_space, left_nritems, min_slot);
3769out_unlock:
3770        btrfs_tree_unlock(right);
3771        free_extent_buffer(right);
3772        return 1;
3773}
3774
3775/*
3776 * push some data in the path leaf to the left, trying to free up at
3777 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3778 *
3779 * max_slot can put a limit on how far into the leaf we'll push items.  The
3780 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3781 * items
3782 */
3783static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3784                                     int empty, struct extent_buffer *left,
3785                                     int free_space, u32 right_nritems,
3786                                     u32 max_slot)
3787{
3788        struct btrfs_fs_info *fs_info = left->fs_info;
3789        struct btrfs_disk_key disk_key;
3790        struct extent_buffer *right = path->nodes[0];
3791        int i;
3792        int push_space = 0;
3793        int push_items = 0;
3794        struct btrfs_item *item;
3795        u32 old_left_nritems;
3796        u32 nr;
3797        int ret = 0;
3798        u32 this_item_size;
3799        u32 old_left_item_size;
3800        struct btrfs_map_token token;
3801
3802        if (empty)
3803                nr = min(right_nritems, max_slot);
3804        else
3805                nr = min(right_nritems - 1, max_slot);
3806
3807        for (i = 0; i < nr; i++) {
3808                item = btrfs_item_nr(i);
3809
3810                if (!empty && push_items > 0) {
3811                        if (path->slots[0] < i)
3812                                break;
3813                        if (path->slots[0] == i) {
3814                                int space = btrfs_leaf_free_space(right);
3815
3816                                if (space + push_space * 2 > free_space)
3817                                        break;
3818                        }
3819                }
3820
3821                if (path->slots[0] == i)
3822                        push_space += data_size;
3823
3824                this_item_size = btrfs_item_size(right, item);
3825                if (this_item_size + sizeof(*item) + push_space > free_space)
3826                        break;
3827
3828                push_items++;
3829                push_space += this_item_size + sizeof(*item);
3830        }
3831
3832        if (push_items == 0) {
3833                ret = 1;
3834                goto out;
3835        }
3836        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3837
3838        /* push data from right to left */
3839        copy_extent_buffer(left, right,
3840                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3841                           btrfs_item_nr_offset(0),
3842                           push_items * sizeof(struct btrfs_item));
3843
3844        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3845                     btrfs_item_offset_nr(right, push_items - 1);
3846
3847        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3848                     leaf_data_end(left) - push_space,
3849                     BTRFS_LEAF_DATA_OFFSET +
3850                     btrfs_item_offset_nr(right, push_items - 1),
3851                     push_space);
3852        old_left_nritems = btrfs_header_nritems(left);
3853        BUG_ON(old_left_nritems <= 0);
3854
3855        btrfs_init_map_token(&token, left);
3856        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3857        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3858                u32 ioff;
3859
3860                item = btrfs_item_nr(i);
3861
3862                ioff = btrfs_token_item_offset(left, item, &token);
3863                btrfs_set_token_item_offset(left, item,
3864                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3865                      &token);
3866        }
3867        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3868
3869        /* fixup right node */
3870        if (push_items > right_nritems)
3871                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3872                       right_nritems);
3873
3874        if (push_items < right_nritems) {
3875                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3876                                                  leaf_data_end(right);
3877                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3878                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3879                                      BTRFS_LEAF_DATA_OFFSET +
3880                                      leaf_data_end(right), push_space);
3881
3882                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3883                              btrfs_item_nr_offset(push_items),
3884                             (btrfs_header_nritems(right) - push_items) *
3885                             sizeof(struct btrfs_item));
3886        }
3887
3888        btrfs_init_map_token(&token, right);
3889        right_nritems -= push_items;
3890        btrfs_set_header_nritems(right, right_nritems);
3891        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3892        for (i = 0; i < right_nritems; i++) {
3893                item = btrfs_item_nr(i);
3894
3895                push_space = push_space - btrfs_token_item_size(right,
3896                                                                item, &token);
3897                btrfs_set_token_item_offset(right, item, push_space, &token);
3898        }
3899
3900        btrfs_mark_buffer_dirty(left);
3901        if (right_nritems)
3902                btrfs_mark_buffer_dirty(right);
3903        else
3904                btrfs_clean_tree_block(right);
3905
3906        btrfs_item_key(right, &disk_key, 0);
3907        fixup_low_keys(path, &disk_key, 1);
3908
3909        /* then fixup the leaf pointer in the path */
3910        if (path->slots[0] < push_items) {
3911                path->slots[0] += old_left_nritems;
3912                btrfs_tree_unlock(path->nodes[0]);
3913                free_extent_buffer(path->nodes[0]);
3914                path->nodes[0] = left;
3915                path->slots[1] -= 1;
3916        } else {
3917                btrfs_tree_unlock(left);
3918                free_extent_buffer(left);
3919                path->slots[0] -= push_items;
3920        }
3921        BUG_ON(path->slots[0] < 0);
3922        return ret;
3923out:
3924        btrfs_tree_unlock(left);
3925        free_extent_buffer(left);
3926        return ret;
3927}
3928
3929/*
3930 * push some data in the path leaf to the left, trying to free up at
3931 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3932 *
3933 * max_slot can put a limit on how far into the leaf we'll push items.  The
3934 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3935 * items
3936 */
3937static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3938                          *root, struct btrfs_path *path, int min_data_size,
3939                          int data_size, int empty, u32 max_slot)
3940{
3941        struct extent_buffer *right = path->nodes[0];
3942        struct extent_buffer *left;
3943        int slot;
3944        int free_space;
3945        u32 right_nritems;
3946        int ret = 0;
3947
3948        slot = path->slots[1];
3949        if (slot == 0)
3950                return 1;
3951        if (!path->nodes[1])
3952                return 1;
3953
3954        right_nritems = btrfs_header_nritems(right);
3955        if (right_nritems == 0)
3956                return 1;
3957
3958        btrfs_assert_tree_locked(path->nodes[1]);
3959
3960        left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3961        /*
3962         * slot - 1 is not valid or we fail to read the left node,
3963         * no big deal, just return.
3964         */
3965        if (IS_ERR(left))
3966                return 1;
3967
3968        btrfs_tree_lock(left);
3969        btrfs_set_lock_blocking_write(left);
3970
3971        free_space = btrfs_leaf_free_space(left);
3972        if (free_space < data_size) {
3973                ret = 1;
3974                goto out;
3975        }
3976
3977        /* cow and double check */
3978        ret = btrfs_cow_block(trans, root, left,
3979                              path->nodes[1], slot - 1, &left);
3980        if (ret) {
3981                /* we hit -ENOSPC, but it isn't fatal here */
3982                if (ret == -ENOSPC)
3983                        ret = 1;
3984                goto out;
3985        }
3986
3987        free_space = btrfs_leaf_free_space(left);
3988        if (free_space < data_size) {
3989                ret = 1;
3990                goto out;
3991        }
3992
3993        return __push_leaf_left(path, min_data_size,
3994                               empty, left, free_space, right_nritems,
3995                               max_slot);
3996out:
3997        btrfs_tree_unlock(left);
3998        free_extent_buffer(left);
3999        return ret;
4000}
4001
4002/*
4003 * split the path's leaf in two, making sure there is at least data_size
4004 * available for the resulting leaf level of the path.
4005 */
4006static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4007                                    struct btrfs_path *path,
4008                                    struct extent_buffer *l,
4009                                    struct extent_buffer *right,
4010                                    int slot, int mid, int nritems)
4011{
4012        struct btrfs_fs_info *fs_info = trans->fs_info;
4013        int data_copy_size;
4014        int rt_data_off;
4015        int i;
4016        struct btrfs_disk_key disk_key;
4017        struct btrfs_map_token token;
4018
4019        nritems = nritems - mid;
4020        btrfs_set_header_nritems(right, nritems);
4021        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4022
4023        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4024                           btrfs_item_nr_offset(mid),
4025                           nritems * sizeof(struct btrfs_item));
4026
4027        copy_extent_buffer(right, l,
4028                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4029                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4030                     leaf_data_end(l), data_copy_size);
4031
4032        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4033
4034        btrfs_init_map_token(&token, right);
4035        for (i = 0; i < nritems; i++) {
4036                struct btrfs_item *item = btrfs_item_nr(i);
4037                u32 ioff;
4038
4039                ioff = btrfs_token_item_offset(right, item, &token);
4040                btrfs_set_token_item_offset(right, item,
4041                                            ioff + rt_data_off, &token);
4042        }
4043
4044        btrfs_set_header_nritems(l, mid);
4045        btrfs_item_key(right, &disk_key, 0);
4046        insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4047
4048        btrfs_mark_buffer_dirty(right);
4049        btrfs_mark_buffer_dirty(l);
4050        BUG_ON(path->slots[0] != slot);
4051
4052        if (mid <= slot) {
4053                btrfs_tree_unlock(path->nodes[0]);
4054                free_extent_buffer(path->nodes[0]);
4055                path->nodes[0] = right;
4056                path->slots[0] -= mid;
4057                path->slots[1] += 1;
4058        } else {
4059                btrfs_tree_unlock(right);
4060                free_extent_buffer(right);
4061        }
4062
4063        BUG_ON(path->slots[0] < 0);
4064}
4065
4066/*
4067 * double splits happen when we need to insert a big item in the middle
4068 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4069 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4070 *          A                 B                 C
4071 *
4072 * We avoid this by trying to push the items on either side of our target
4073 * into the adjacent leaves.  If all goes well we can avoid the double split
4074 * completely.
4075 */
4076static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4077                                          struct btrfs_root *root,
4078                                          struct btrfs_path *path,
4079                                          int data_size)
4080{
4081        int ret;
4082        int progress = 0;
4083        int slot;
4084        u32 nritems;
4085        int space_needed = data_size;
4086
4087        slot = path->slots[0];
4088        if (slot < btrfs_header_nritems(path->nodes[0]))
4089                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4090
4091        /*
4092         * try to push all the items after our slot into the
4093         * right leaf
4094         */
4095        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4096        if (ret < 0)
4097                return ret;
4098
4099        if (ret == 0)
4100                progress++;
4101
4102        nritems = btrfs_header_nritems(path->nodes[0]);
4103        /*
4104         * our goal is to get our slot at the start or end of a leaf.  If
4105         * we've done so we're done
4106         */
4107        if (path->slots[0] == 0 || path->slots[0] == nritems)
4108                return 0;
4109
4110        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4111                return 0;
4112
4113        /* try to push all the items before our slot into the next leaf */
4114        slot = path->slots[0];
4115        space_needed = data_size;
4116        if (slot > 0)
4117                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4118        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4119        if (ret < 0)
4120                return ret;
4121
4122        if (ret == 0)
4123                progress++;
4124
4125        if (progress)
4126                return 0;
4127        return 1;
4128}
4129
4130/*
4131 * split the path's leaf in two, making sure there is at least data_size
4132 * available for the resulting leaf level of the path.
4133 *
4134 * returns 0 if all went well and < 0 on failure.
4135 */
4136static noinline int split_leaf(struct btrfs_trans_handle *trans,
4137                               struct btrfs_root *root,
4138                               const struct btrfs_key *ins_key,
4139                               struct btrfs_path *path, int data_size,
4140                               int extend)
4141{
4142        struct btrfs_disk_key disk_key;
4143        struct extent_buffer *l;
4144        u32 nritems;
4145        int mid;
4146        int slot;
4147        struct extent_buffer *right;
4148        struct btrfs_fs_info *fs_info = root->fs_info;
4149        int ret = 0;
4150        int wret;
4151        int split;
4152        int num_doubles = 0;
4153        int tried_avoid_double = 0;
4154
4155        l = path->nodes[0];
4156        slot = path->slots[0];
4157        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4158            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4159                return -EOVERFLOW;
4160
4161        /* first try to make some room by pushing left and right */
4162        if (data_size && path->nodes[1]) {
4163                int space_needed = data_size;
4164
4165                if (slot < btrfs_header_nritems(l))
4166                        space_needed -= btrfs_leaf_free_space(l);
4167
4168                wret = push_leaf_right(trans, root, path, space_needed,
4169                                       space_needed, 0, 0);
4170                if (wret < 0)
4171                        return wret;
4172                if (wret) {
4173                        space_needed = data_size;
4174                        if (slot > 0)
4175                                space_needed -= btrfs_leaf_free_space(l);
4176                        wret = push_leaf_left(trans, root, path, space_needed,
4177                                              space_needed, 0, (u32)-1);
4178                        if (wret < 0)
4179                                return wret;
4180                }
4181                l = path->nodes[0];
4182
4183                /* did the pushes work? */
4184                if (btrfs_leaf_free_space(l) >= data_size)
4185                        return 0;
4186        }
4187
4188        if (!path->nodes[1]) {
4189                ret = insert_new_root(trans, root, path, 1);
4190                if (ret)
4191                        return ret;
4192        }
4193again:
4194        split = 1;
4195        l = path->nodes[0];
4196        slot = path->slots[0];
4197        nritems = btrfs_header_nritems(l);
4198        mid = (nritems + 1) / 2;
4199
4200        if (mid <= slot) {
4201                if (nritems == 1 ||
4202                    leaf_space_used(l, mid, nritems - mid) + data_size >
4203                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4204                        if (slot >= nritems) {
4205                                split = 0;
4206                        } else {
4207                                mid = slot;
4208                                if (mid != nritems &&
4209                                    leaf_space_used(l, mid, nritems - mid) +
4210                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4211                                        if (data_size && !tried_avoid_double)
4212                                                goto push_for_double;
4213                                        split = 2;
4214                                }
4215                        }
4216                }
4217        } else {
4218                if (leaf_space_used(l, 0, mid) + data_size >
4219                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4220                        if (!extend && data_size && slot == 0) {
4221                                split = 0;
4222                        } else if ((extend || !data_size) && slot == 0) {
4223                                mid = 1;
4224                        } else {
4225                                mid = slot;
4226                                if (mid != nritems &&
4227                                    leaf_space_used(l, mid, nritems - mid) +
4228                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4229                                        if (data_size && !tried_avoid_double)
4230                                                goto push_for_double;
4231                                        split = 2;
4232                                }
4233                        }
4234                }
4235        }
4236
4237        if (split == 0)
4238                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4239        else
4240                btrfs_item_key(l, &disk_key, mid);
4241
4242        right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4243                                             l->start, 0);
4244        if (IS_ERR(right))
4245                return PTR_ERR(right);
4246
4247        root_add_used(root, fs_info->nodesize);
4248
4249        if (split == 0) {
4250                if (mid <= slot) {
4251                        btrfs_set_header_nritems(right, 0);
4252                        insert_ptr(trans, path, &disk_key,
4253                                   right->start, path->slots[1] + 1, 1);
4254                        btrfs_tree_unlock(path->nodes[0]);
4255                        free_extent_buffer(path->nodes[0]);
4256                        path->nodes[0] = right;
4257                        path->slots[0] = 0;
4258                        path->slots[1] += 1;
4259                } else {
4260                        btrfs_set_header_nritems(right, 0);
4261                        insert_ptr(trans, path, &disk_key,
4262                                   right->start, path->slots[1], 1);
4263                        btrfs_tree_unlock(path->nodes[0]);
4264                        free_extent_buffer(path->nodes[0]);
4265                        path->nodes[0] = right;
4266                        path->slots[0] = 0;
4267                        if (path->slots[1] == 0)
4268                                fixup_low_keys(path, &disk_key, 1);
4269                }
4270                /*
4271                 * We create a new leaf 'right' for the required ins_len and
4272                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4273                 * the content of ins_len to 'right'.
4274                 */
4275                return ret;
4276        }
4277
4278        copy_for_split(trans, path, l, right, slot, mid, nritems);
4279
4280        if (split == 2) {
4281                BUG_ON(num_doubles != 0);
4282                num_doubles++;
4283                goto again;
4284        }
4285
4286        return 0;
4287
4288push_for_double:
4289        push_for_double_split(trans, root, path, data_size);
4290        tried_avoid_double = 1;
4291        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4292                return 0;
4293        goto again;
4294}
4295
4296static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4297                                         struct btrfs_root *root,
4298                                         struct btrfs_path *path, int ins_len)
4299{
4300        struct btrfs_key key;
4301        struct extent_buffer *leaf;
4302        struct btrfs_file_extent_item *fi;
4303        u64 extent_len = 0;
4304        u32 item_size;
4305        int ret;
4306
4307        leaf = path->nodes[0];
4308        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4309
4310        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4311               key.type != BTRFS_EXTENT_CSUM_KEY);
4312
4313        if (btrfs_leaf_free_space(leaf) >= ins_len)
4314                return 0;
4315
4316        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4317        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4318                fi = btrfs_item_ptr(leaf, path->slots[0],
4319                                    struct btrfs_file_extent_item);
4320                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4321        }
4322        btrfs_release_path(path);
4323
4324        path->keep_locks = 1;
4325        path->search_for_split = 1;
4326        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4327        path->search_for_split = 0;
4328        if (ret > 0)
4329                ret = -EAGAIN;
4330        if (ret < 0)
4331                goto err;
4332
4333        ret = -EAGAIN;
4334        leaf = path->nodes[0];
4335        /* if our item isn't there, return now */
4336        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4337                goto err;
4338
4339        /* the leaf has  changed, it now has room.  return now */
4340        if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4341                goto err;
4342
4343        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4344                fi = btrfs_item_ptr(leaf, path->slots[0],
4345                                    struct btrfs_file_extent_item);
4346                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4347                        goto err;
4348        }
4349
4350        btrfs_set_path_blocking(path);
4351        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4352        if (ret)
4353                goto err;
4354
4355        path->keep_locks = 0;
4356        btrfs_unlock_up_safe(path, 1);
4357        return 0;
4358err:
4359        path->keep_locks = 0;
4360        return ret;
4361}
4362
4363static noinline int split_item(struct btrfs_path *path,
4364                               const struct btrfs_key *new_key,
4365                               unsigned long split_offset)
4366{
4367        struct extent_buffer *leaf;
4368        struct btrfs_item *item;
4369        struct btrfs_item *new_item;
4370        int slot;
4371        char *buf;
4372        u32 nritems;
4373        u32 item_size;
4374        u32 orig_offset;
4375        struct btrfs_disk_key disk_key;
4376
4377        leaf = path->nodes[0];
4378        BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4379
4380        btrfs_set_path_blocking(path);
4381
4382        item = btrfs_item_nr(path->slots[0]);
4383        orig_offset = btrfs_item_offset(leaf, item);
4384        item_size = btrfs_item_size(leaf, item);
4385
4386        buf = kmalloc(item_size, GFP_NOFS);
4387        if (!buf)
4388                return -ENOMEM;
4389
4390        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4391                            path->slots[0]), item_size);
4392
4393        slot = path->slots[0] + 1;
4394        nritems = btrfs_header_nritems(leaf);
4395        if (slot != nritems) {
4396                /* shift the items */
4397                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4398                                btrfs_item_nr_offset(slot),
4399                                (nritems - slot) * sizeof(struct btrfs_item));
4400        }
4401
4402        btrfs_cpu_key_to_disk(&disk_key, new_key);
4403        btrfs_set_item_key(leaf, &disk_key, slot);
4404
4405        new_item = btrfs_item_nr(slot);
4406
4407        btrfs_set_item_offset(leaf, new_item, orig_offset);
4408        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4409
4410        btrfs_set_item_offset(leaf, item,
4411                              orig_offset + item_size - split_offset);
4412        btrfs_set_item_size(leaf, item, split_offset);
4413
4414        btrfs_set_header_nritems(leaf, nritems + 1);
4415
4416        /* write the data for the start of the original item */
4417        write_extent_buffer(leaf, buf,
4418                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4419                            split_offset);
4420
4421        /* write the data for the new item */
4422        write_extent_buffer(leaf, buf + split_offset,
4423                            btrfs_item_ptr_offset(leaf, slot),
4424                            item_size - split_offset);
4425        btrfs_mark_buffer_dirty(leaf);
4426
4427        BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4428        kfree(buf);
4429        return 0;
4430}
4431
4432/*
4433 * This function splits a single item into two items,
4434 * giving 'new_key' to the new item and splitting the
4435 * old one at split_offset (from the start of the item).
4436 *
4437 * The path may be released by this operation.  After
4438 * the split, the path is pointing to the old item.  The
4439 * new item is going to be in the same node as the old one.
4440 *
4441 * Note, the item being split must be smaller enough to live alone on
4442 * a tree block with room for one extra struct btrfs_item
4443 *
4444 * This allows us to split the item in place, keeping a lock on the
4445 * leaf the entire time.
4446 */
4447int btrfs_split_item(struct btrfs_trans_handle *trans,
4448                     struct btrfs_root *root,
4449                     struct btrfs_path *path,
4450                     const struct btrfs_key *new_key,
4451                     unsigned long split_offset)
4452{
4453        int ret;
4454        ret = setup_leaf_for_split(trans, root, path,
4455                                   sizeof(struct btrfs_item));
4456        if (ret)
4457                return ret;
4458
4459        ret = split_item(path, new_key, split_offset);
4460        return ret;
4461}
4462
4463/*
4464 * This function duplicate a item, giving 'new_key' to the new item.
4465 * It guarantees both items live in the same tree leaf and the new item
4466 * is contiguous with the original item.
4467 *
4468 * This allows us to split file extent in place, keeping a lock on the
4469 * leaf the entire time.
4470 */
4471int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4472                         struct btrfs_root *root,
4473                         struct btrfs_path *path,
4474                         const struct btrfs_key *new_key)
4475{
4476        struct extent_buffer *leaf;
4477        int ret;
4478        u32 item_size;
4479
4480        leaf = path->nodes[0];
4481        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4482        ret = setup_leaf_for_split(trans, root, path,
4483                                   item_size + sizeof(struct btrfs_item));
4484        if (ret)
4485                return ret;
4486
4487        path->slots[0]++;
4488        setup_items_for_insert(root, path, new_key, &item_size,
4489                               item_size, item_size +
4490                               sizeof(struct btrfs_item), 1);
4491        leaf = path->nodes[0];
4492        memcpy_extent_buffer(leaf,
4493                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4494                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4495                             item_size);
4496        return 0;
4497}
4498
4499/*
4500 * make the item pointed to by the path smaller.  new_size indicates
4501 * how small to make it, and from_end tells us if we just chop bytes
4502 * off the end of the item or if we shift the item to chop bytes off
4503 * the front.
4504 */
4505void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4506{
4507        int slot;
4508        struct extent_buffer *leaf;
4509        struct btrfs_item *item;
4510        u32 nritems;
4511        unsigned int data_end;
4512        unsigned int old_data_start;
4513        unsigned int old_size;
4514        unsigned int size_diff;
4515        int i;
4516        struct btrfs_map_token token;
4517
4518        leaf = path->nodes[0];
4519        slot = path->slots[0];
4520
4521        old_size = btrfs_item_size_nr(leaf, slot);
4522        if (old_size == new_size)
4523                return;
4524
4525        nritems = btrfs_header_nritems(leaf);
4526        data_end = leaf_data_end(leaf);
4527
4528        old_data_start = btrfs_item_offset_nr(leaf, slot);
4529
4530        size_diff = old_size - new_size;
4531
4532        BUG_ON(slot < 0);
4533        BUG_ON(slot >= nritems);
4534
4535        /*
4536         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4537         */
4538        /* first correct the data pointers */
4539        btrfs_init_map_token(&token, leaf);
4540        for (i = slot; i < nritems; i++) {
4541                u32 ioff;
4542                item = btrfs_item_nr(i);
4543
4544                ioff = btrfs_token_item_offset(leaf, item, &token);
4545                btrfs_set_token_item_offset(leaf, item,
4546                                            ioff + size_diff, &token);
4547        }
4548
4549        /* shift the data */
4550        if (from_end) {
4551                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4552                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4553                              data_end, old_data_start + new_size - data_end);
4554        } else {
4555                struct btrfs_disk_key disk_key;
4556                u64 offset;
4557
4558                btrfs_item_key(leaf, &disk_key, slot);
4559
4560                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4561                        unsigned long ptr;
4562                        struct btrfs_file_extent_item *fi;
4563
4564                        fi = btrfs_item_ptr(leaf, slot,
4565                                            struct btrfs_file_extent_item);
4566                        fi = (struct btrfs_file_extent_item *)(
4567                             (unsigned long)fi - size_diff);
4568
4569                        if (btrfs_file_extent_type(leaf, fi) ==
4570                            BTRFS_FILE_EXTENT_INLINE) {
4571                                ptr = btrfs_item_ptr_offset(leaf, slot);
4572                                memmove_extent_buffer(leaf, ptr,
4573                                      (unsigned long)fi,
4574                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4575                        }
4576                }
4577
4578                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4579                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4580                              data_end, old_data_start - data_end);
4581
4582                offset = btrfs_disk_key_offset(&disk_key);
4583                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4584                btrfs_set_item_key(leaf, &disk_key, slot);
4585                if (slot == 0)
4586                        fixup_low_keys(path, &disk_key, 1);
4587        }
4588
4589        item = btrfs_item_nr(slot);
4590        btrfs_set_item_size(leaf, item, new_size);
4591        btrfs_mark_buffer_dirty(leaf);
4592
4593        if (btrfs_leaf_free_space(leaf) < 0) {
4594                btrfs_print_leaf(leaf);
4595                BUG();
4596        }
4597}
4598
4599/*
4600 * make the item pointed to by the path bigger, data_size is the added size.
4601 */
4602void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4603{
4604        int slot;
4605        struct extent_buffer *leaf;
4606        struct btrfs_item *item;
4607        u32 nritems;
4608        unsigned int data_end;
4609        unsigned int old_data;
4610        unsigned int old_size;
4611        int i;
4612        struct btrfs_map_token token;
4613
4614        leaf = path->nodes[0];
4615
4616        nritems = btrfs_header_nritems(leaf);
4617        data_end = leaf_data_end(leaf);
4618
4619        if (btrfs_leaf_free_space(leaf) < data_size) {
4620                btrfs_print_leaf(leaf);
4621                BUG();
4622        }
4623        slot = path->slots[0];
4624        old_data = btrfs_item_end_nr(leaf, slot);
4625
4626        BUG_ON(slot < 0);
4627        if (slot >= nritems) {
4628                btrfs_print_leaf(leaf);
4629                btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4630                           slot, nritems);
4631                BUG();
4632        }
4633
4634        /*
4635         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4636         */
4637        /* first correct the data pointers */
4638        btrfs_init_map_token(&token, leaf);
4639        for (i = slot; i < nritems; i++) {
4640                u32 ioff;
4641                item = btrfs_item_nr(i);
4642
4643                ioff = btrfs_token_item_offset(leaf, item, &token);
4644                btrfs_set_token_item_offset(leaf, item,
4645                                            ioff - data_size, &token);
4646        }
4647
4648        /* shift the data */
4649        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4650                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4651                      data_end, old_data - data_end);
4652
4653        data_end = old_data;
4654        old_size = btrfs_item_size_nr(leaf, slot);
4655        item = btrfs_item_nr(slot);
4656        btrfs_set_item_size(leaf, item, old_size + data_size);
4657        btrfs_mark_buffer_dirty(leaf);
4658
4659        if (btrfs_leaf_free_space(leaf) < 0) {
4660                btrfs_print_leaf(leaf);
4661                BUG();
4662        }
4663}
4664
4665/*
4666 * this is a helper for btrfs_insert_empty_items, the main goal here is
4667 * to save stack depth by doing the bulk of the work in a function
4668 * that doesn't call btrfs_search_slot
4669 */
4670void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4671                            const struct btrfs_key *cpu_key, u32 *data_size,
4672                            u32 total_data, u32 total_size, int nr)
4673{
4674        struct btrfs_fs_info *fs_info = root->fs_info;
4675        struct btrfs_item *item;
4676        int i;
4677        u32 nritems;
4678        unsigned int data_end;
4679        struct btrfs_disk_key disk_key;
4680        struct extent_buffer *leaf;
4681        int slot;
4682        struct btrfs_map_token token;
4683
4684        if (path->slots[0] == 0) {
4685                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4686                fixup_low_keys(path, &disk_key, 1);
4687        }
4688        btrfs_unlock_up_safe(path, 1);
4689
4690        leaf = path->nodes[0];
4691        slot = path->slots[0];
4692
4693        nritems = btrfs_header_nritems(leaf);
4694        data_end = leaf_data_end(leaf);
4695
4696        if (btrfs_leaf_free_space(leaf) < total_size) {
4697                btrfs_print_leaf(leaf);
4698                btrfs_crit(fs_info, "not enough freespace need %u have %d",
4699                           total_size, btrfs_leaf_free_space(leaf));
4700                BUG();
4701        }
4702
4703        btrfs_init_map_token(&token, leaf);
4704        if (slot != nritems) {
4705                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4706
4707                if (old_data < data_end) {
4708                        btrfs_print_leaf(leaf);
4709                        btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4710                                   slot, old_data, data_end);
4711                        BUG();
4712                }
4713                /*
4714                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4715                 */
4716                /* first correct the data pointers */
4717                for (i = slot; i < nritems; i++) {
4718                        u32 ioff;
4719
4720                        item = btrfs_item_nr(i);
4721                        ioff = btrfs_token_item_offset(leaf, item, &token);
4722                        btrfs_set_token_item_offset(leaf, item,
4723                                                    ioff - total_data, &token);
4724                }
4725                /* shift the items */
4726                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4727                              btrfs_item_nr_offset(slot),
4728                              (nritems - slot) * sizeof(struct btrfs_item));
4729
4730                /* shift the data */
4731                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4732                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4733                              data_end, old_data - data_end);
4734                data_end = old_data;
4735        }
4736
4737        /* setup the item for the new data */
4738        for (i = 0; i < nr; i++) {
4739                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4740                btrfs_set_item_key(leaf, &disk_key, slot + i);
4741                item = btrfs_item_nr(slot + i);
4742                btrfs_set_token_item_offset(leaf, item,
4743                                            data_end - data_size[i], &token);
4744                data_end -= data_size[i];
4745                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4746        }
4747
4748        btrfs_set_header_nritems(leaf, nritems + nr);
4749        btrfs_mark_buffer_dirty(leaf);
4750
4751        if (btrfs_leaf_free_space(leaf) < 0) {
4752                btrfs_print_leaf(leaf);
4753                BUG();
4754        }
4755}
4756
4757/*
4758 * Given a key and some data, insert items into the tree.
4759 * This does all the path init required, making room in the tree if needed.
4760 */
4761int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4762                            struct btrfs_root *root,
4763                            struct btrfs_path *path,
4764                            const struct btrfs_key *cpu_key, u32 *data_size,
4765                            int nr)
4766{
4767        int ret = 0;
4768        int slot;
4769        int i;
4770        u32 total_size = 0;
4771        u32 total_data = 0;
4772
4773        for (i = 0; i < nr; i++)
4774                total_data += data_size[i];
4775
4776        total_size = total_data + (nr * sizeof(struct btrfs_item));
4777        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4778        if (ret == 0)
4779                return -EEXIST;
4780        if (ret < 0)
4781                return ret;
4782
4783        slot = path->slots[0];
4784        BUG_ON(slot < 0);
4785
4786        setup_items_for_insert(root, path, cpu_key, data_size,
4787                               total_data, total_size, nr);
4788        return 0;
4789}
4790
4791/*
4792 * Given a key and some data, insert an item into the tree.
4793 * This does all the path init required, making room in the tree if needed.
4794 */
4795int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4796                      const struct btrfs_key *cpu_key, void *data,
4797                      u32 data_size)
4798{
4799        int ret = 0;
4800        struct btrfs_path *path;
4801        struct extent_buffer *leaf;
4802        unsigned long ptr;
4803
4804        path = btrfs_alloc_path();
4805        if (!path)
4806                return -ENOMEM;
4807        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4808        if (!ret) {
4809                leaf = path->nodes[0];
4810                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4811                write_extent_buffer(leaf, data, ptr, data_size);
4812                btrfs_mark_buffer_dirty(leaf);
4813        }
4814        btrfs_free_path(path);
4815        return ret;
4816}
4817
4818/*
4819 * delete the pointer from a given node.
4820 *
4821 * the tree should have been previously balanced so the deletion does not
4822 * empty a node.
4823 */
4824static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4825                    int level, int slot)
4826{
4827        struct extent_buffer *parent = path->nodes[level];
4828        u32 nritems;
4829        int ret;
4830
4831        nritems = btrfs_header_nritems(parent);
4832        if (slot != nritems - 1) {
4833                if (level) {
4834                        ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4835                                        nritems - slot - 1);
4836                        BUG_ON(ret < 0);
4837                }
4838                memmove_extent_buffer(parent,
4839                              btrfs_node_key_ptr_offset(slot),
4840                              btrfs_node_key_ptr_offset(slot + 1),
4841                              sizeof(struct btrfs_key_ptr) *
4842                              (nritems - slot - 1));
4843        } else if (level) {
4844                ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4845                                GFP_NOFS);
4846                BUG_ON(ret < 0);
4847        }
4848
4849        nritems--;
4850        btrfs_set_header_nritems(parent, nritems);
4851        if (nritems == 0 && parent == root->node) {
4852                BUG_ON(btrfs_header_level(root->node) != 1);
4853                /* just turn the root into a leaf and break */
4854                btrfs_set_header_level(root->node, 0);
4855        } else if (slot == 0) {
4856                struct btrfs_disk_key disk_key;
4857
4858                btrfs_node_key(parent, &disk_key, 0);
4859                fixup_low_keys(path, &disk_key, level + 1);
4860        }
4861        btrfs_mark_buffer_dirty(parent);
4862}
4863
4864/*
4865 * a helper function to delete the leaf pointed to by path->slots[1] and
4866 * path->nodes[1].
4867 *
4868 * This deletes the pointer in path->nodes[1] and frees the leaf
4869 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4870 *
4871 * The path must have already been setup for deleting the leaf, including
4872 * all the proper balancing.  path->nodes[1] must be locked.
4873 */
4874static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4875                                    struct btrfs_root *root,
4876                                    struct btrfs_path *path,
4877                                    struct extent_buffer *leaf)
4878{
4879        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4880        del_ptr(root, path, 1, path->slots[1]);
4881
4882        /*
4883         * btrfs_free_extent is expensive, we want to make sure we
4884         * aren't holding any locks when we call it
4885         */
4886        btrfs_unlock_up_safe(path, 0);
4887
4888        root_sub_used(root, leaf->len);
4889
4890        atomic_inc(&leaf->refs);
4891        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4892        free_extent_buffer_stale(leaf);
4893}
4894/*
4895 * delete the item at the leaf level in path.  If that empties
4896 * the leaf, remove it from the tree
4897 */
4898int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4899                    struct btrfs_path *path, int slot, int nr)
4900{
4901        struct btrfs_fs_info *fs_info = root->fs_info;
4902        struct extent_buffer *leaf;
4903        struct btrfs_item *item;
4904        u32 last_off;
4905        u32 dsize = 0;
4906        int ret = 0;
4907        int wret;
4908        int i;
4909        u32 nritems;
4910
4911        leaf = path->nodes[0];
4912        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4913
4914        for (i = 0; i < nr; i++)
4915                dsize += btrfs_item_size_nr(leaf, slot + i);
4916
4917        nritems = btrfs_header_nritems(leaf);
4918
4919        if (slot + nr != nritems) {
4920                int data_end = leaf_data_end(leaf);
4921                struct btrfs_map_token token;
4922
4923                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4924                              data_end + dsize,
4925                              BTRFS_LEAF_DATA_OFFSET + data_end,
4926                              last_off - data_end);
4927
4928                btrfs_init_map_token(&token, leaf);
4929                for (i = slot + nr; i < nritems; i++) {
4930                        u32 ioff;
4931
4932                        item = btrfs_item_nr(i);
4933                        ioff = btrfs_token_item_offset(leaf, item, &token);
4934                        btrfs_set_token_item_offset(leaf, item,
4935                                                    ioff + dsize, &token);
4936                }
4937
4938                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4939                              btrfs_item_nr_offset(slot + nr),
4940                              sizeof(struct btrfs_item) *
4941                              (nritems - slot - nr));
4942        }
4943        btrfs_set_header_nritems(leaf, nritems - nr);
4944        nritems -= nr;
4945
4946        /* delete the leaf if we've emptied it */
4947        if (nritems == 0) {
4948                if (leaf == root->node) {
4949                        btrfs_set_header_level(leaf, 0);
4950                } else {
4951                        btrfs_set_path_blocking(path);
4952                        btrfs_clean_tree_block(leaf);
4953                        btrfs_del_leaf(trans, root, path, leaf);
4954                }
4955        } else {
4956                int used = leaf_space_used(leaf, 0, nritems);
4957                if (slot == 0) {
4958                        struct btrfs_disk_key disk_key;
4959
4960                        btrfs_item_key(leaf, &disk_key, 0);
4961                        fixup_low_keys(path, &disk_key, 1);
4962                }
4963
4964                /* delete the leaf if it is mostly empty */
4965                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4966                        /* push_leaf_left fixes the path.
4967                         * make sure the path still points to our leaf
4968                         * for possible call to del_ptr below
4969                         */
4970                        slot = path->slots[1];
4971                        atomic_inc(&leaf->refs);
4972
4973                        btrfs_set_path_blocking(path);
4974                        wret = push_leaf_left(trans, root, path, 1, 1,
4975                                              1, (u32)-1);
4976                        if (wret < 0 && wret != -ENOSPC)
4977                                ret = wret;
4978
4979                        if (path->nodes[0] == leaf &&
4980                            btrfs_header_nritems(leaf)) {
4981                                wret = push_leaf_right(trans, root, path, 1,
4982                                                       1, 1, 0);
4983                                if (wret < 0 && wret != -ENOSPC)
4984                                        ret = wret;
4985                        }
4986
4987                        if (btrfs_header_nritems(leaf) == 0) {
4988                                path->slots[1] = slot;
4989                                btrfs_del_leaf(trans, root, path, leaf);
4990                                free_extent_buffer(leaf);
4991                                ret = 0;
4992                        } else {
4993                                /* if we're still in the path, make sure
4994                                 * we're dirty.  Otherwise, one of the
4995                                 * push_leaf functions must have already
4996                                 * dirtied this buffer
4997                                 */
4998                                if (path->nodes[0] == leaf)
4999                                        btrfs_mark_buffer_dirty(leaf);
5000                                free_extent_buffer(leaf);
5001                        }
5002                } else {
5003                        btrfs_mark_buffer_dirty(leaf);
5004                }
5005        }
5006        return ret;
5007}
5008
5009/*
5010 * search the tree again to find a leaf with lesser keys
5011 * returns 0 if it found something or 1 if there are no lesser leaves.
5012 * returns < 0 on io errors.
5013 *
5014 * This may release the path, and so you may lose any locks held at the
5015 * time you call it.
5016 */
5017int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5018{
5019        struct btrfs_key key;
5020        struct btrfs_disk_key found_key;
5021        int ret;
5022
5023        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5024
5025        if (key.offset > 0) {
5026                key.offset--;
5027        } else if (key.type > 0) {
5028                key.type--;
5029                key.offset = (u64)-1;
5030        } else if (key.objectid > 0) {
5031                key.objectid--;
5032                key.type = (u8)-1;
5033                key.offset = (u64)-1;
5034        } else {
5035                return 1;
5036        }
5037
5038        btrfs_release_path(path);
5039        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5040        if (ret < 0)
5041                return ret;
5042        btrfs_item_key(path->nodes[0], &found_key, 0);
5043        ret = comp_keys(&found_key, &key);
5044        /*
5045         * We might have had an item with the previous key in the tree right
5046         * before we released our path. And after we released our path, that
5047         * item might have been pushed to the first slot (0) of the leaf we
5048         * were holding due to a tree balance. Alternatively, an item with the
5049         * previous key can exist as the only element of a leaf (big fat item).
5050         * Therefore account for these 2 cases, so that our callers (like
5051         * btrfs_previous_item) don't miss an existing item with a key matching
5052         * the previous key we computed above.
5053         */
5054        if (ret <= 0)
5055                return 0;
5056        return 1;
5057}
5058
5059/*
5060 * A helper function to walk down the tree starting at min_key, and looking
5061 * for nodes or leaves that are have a minimum transaction id.
5062 * This is used by the btree defrag code, and tree logging
5063 *
5064 * This does not cow, but it does stuff the starting key it finds back
5065 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5066 * key and get a writable path.
5067 *
5068 * This honors path->lowest_level to prevent descent past a given level
5069 * of the tree.
5070 *
5071 * min_trans indicates the oldest transaction that you are interested
5072 * in walking through.  Any nodes or leaves older than min_trans are
5073 * skipped over (without reading them).
5074 *
5075 * returns zero if something useful was found, < 0 on error and 1 if there
5076 * was nothing in the tree that matched the search criteria.
5077 */
5078int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5079                         struct btrfs_path *path,
5080                         u64 min_trans)
5081{
5082        struct extent_buffer *cur;
5083        struct btrfs_key found_key;
5084        int slot;
5085        int sret;
5086        u32 nritems;
5087        int level;
5088        int ret = 1;
5089        int keep_locks = path->keep_locks;
5090
5091        path->keep_locks = 1;
5092again:
5093        cur = btrfs_read_lock_root_node(root);
5094        level = btrfs_header_level(cur);
5095        WARN_ON(path->nodes[level]);
5096        path->nodes[level] = cur;
5097        path->locks[level] = BTRFS_READ_LOCK;
5098
5099        if (btrfs_header_generation(cur) < min_trans) {
5100                ret = 1;
5101                goto out;
5102        }
5103        while (1) {
5104                nritems = btrfs_header_nritems(cur);
5105                level = btrfs_header_level(cur);
5106                sret = btrfs_bin_search(cur, min_key, level, &slot);
5107                if (sret < 0) {
5108                        ret = sret;
5109                        goto out;
5110                }
5111
5112                /* at the lowest level, we're done, setup the path and exit */
5113                if (level == path->lowest_level) {
5114                        if (slot >= nritems)
5115                                goto find_next_key;
5116                        ret = 0;
5117                        path->slots[level] = slot;
5118                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5119                        goto out;
5120                }
5121                if (sret && slot > 0)
5122                        slot--;
5123                /*
5124                 * check this node pointer against the min_trans parameters.
5125                 * If it is too old, old, skip to the next one.
5126                 */
5127                while (slot < nritems) {
5128                        u64 gen;
5129
5130                        gen = btrfs_node_ptr_generation(cur, slot);
5131                        if (gen < min_trans) {
5132                                slot++;
5133                                continue;
5134                        }
5135                        break;
5136                }
5137find_next_key:
5138                /*
5139                 * we didn't find a candidate key in this node, walk forward
5140                 * and find another one
5141                 */
5142                if (slot >= nritems) {
5143                        path->slots[level] = slot;
5144                        btrfs_set_path_blocking(path);
5145                        sret = btrfs_find_next_key(root, path, min_key, level,
5146                                                  min_trans);
5147                        if (sret == 0) {
5148                                btrfs_release_path(path);
5149                                goto again;
5150                        } else {
5151                                goto out;
5152                        }
5153                }
5154                /* save our key for returning back */
5155                btrfs_node_key_to_cpu(cur, &found_key, slot);
5156                path->slots[level] = slot;
5157                if (level == path->lowest_level) {
5158                        ret = 0;
5159                        goto out;
5160                }
5161                btrfs_set_path_blocking(path);
5162                cur = btrfs_read_node_slot(cur, slot);
5163                if (IS_ERR(cur)) {
5164                        ret = PTR_ERR(cur);
5165                        goto out;
5166                }
5167
5168                btrfs_tree_read_lock(cur);
5169
5170                path->locks[level - 1] = BTRFS_READ_LOCK;
5171                path->nodes[level - 1] = cur;
5172                unlock_up(path, level, 1, 0, NULL);
5173        }
5174out:
5175        path->keep_locks = keep_locks;
5176        if (ret == 0) {
5177                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5178                btrfs_set_path_blocking(path);
5179                memcpy(min_key, &found_key, sizeof(found_key));
5180        }
5181        return ret;
5182}
5183
5184/*
5185 * this is similar to btrfs_next_leaf, but does not try to preserve
5186 * and fixup the path.  It looks for and returns the next key in the
5187 * tree based on the current path and the min_trans parameters.
5188 *
5189 * 0 is returned if another key is found, < 0 if there are any errors
5190 * and 1 is returned if there are no higher keys in the tree
5191 *
5192 * path->keep_locks should be set to 1 on the search made before
5193 * calling this function.
5194 */
5195int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5196                        struct btrfs_key *key, int level, u64 min_trans)
5197{
5198        int slot;
5199        struct extent_buffer *c;
5200
5201        WARN_ON(!path->keep_locks && !path->skip_locking);
5202        while (level < BTRFS_MAX_LEVEL) {
5203                if (!path->nodes[level])
5204                        return 1;
5205
5206                slot = path->slots[level] + 1;
5207                c = path->nodes[level];
5208next:
5209                if (slot >= btrfs_header_nritems(c)) {
5210                        int ret;
5211                        int orig_lowest;
5212                        struct btrfs_key cur_key;
5213                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5214                            !path->nodes[level + 1])
5215                                return 1;
5216
5217                        if (path->locks[level + 1] || path->skip_locking) {
5218                                level++;
5219                                continue;
5220                        }
5221
5222                        slot = btrfs_header_nritems(c) - 1;
5223                        if (level == 0)
5224                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5225                        else
5226                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5227
5228                        orig_lowest = path->lowest_level;
5229                        btrfs_release_path(path);
5230                        path->lowest_level = level;
5231                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5232                                                0, 0);
5233                        path->lowest_level = orig_lowest;
5234                        if (ret < 0)
5235                                return ret;
5236
5237                        c = path->nodes[level];
5238                        slot = path->slots[level];
5239                        if (ret == 0)
5240                                slot++;
5241                        goto next;
5242                }
5243
5244                if (level == 0)
5245                        btrfs_item_key_to_cpu(c, key, slot);
5246                else {
5247                        u64 gen = btrfs_node_ptr_generation(c, slot);
5248
5249                        if (gen < min_trans) {
5250                                slot++;
5251                                goto next;
5252                        }
5253                        btrfs_node_key_to_cpu(c, key, slot);
5254                }
5255                return 0;
5256        }
5257        return 1;
5258}
5259
5260/*
5261 * search the tree again to find a leaf with greater keys
5262 * returns 0 if it found something or 1 if there are no greater leaves.
5263 * returns < 0 on io errors.
5264 */
5265int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5266{
5267        return btrfs_next_old_leaf(root, path, 0);
5268}
5269
5270int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5271                        u64 time_seq)
5272{
5273        int slot;
5274        int level;
5275        struct extent_buffer *c;
5276        struct extent_buffer *next;
5277        struct btrfs_key key;
5278        u32 nritems;
5279        int ret;
5280        int old_spinning = path->leave_spinning;
5281        int next_rw_lock = 0;
5282
5283        nritems = btrfs_header_nritems(path->nodes[0]);
5284        if (nritems == 0)
5285                return 1;
5286
5287        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5288again:
5289        level = 1;
5290        next = NULL;
5291        next_rw_lock = 0;
5292        btrfs_release_path(path);
5293
5294        path->keep_locks = 1;
5295        path->leave_spinning = 1;
5296
5297        if (time_seq)
5298                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5299        else
5300                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5301        path->keep_locks = 0;
5302
5303        if (ret < 0)
5304                return ret;
5305
5306        nritems = btrfs_header_nritems(path->nodes[0]);
5307        /*
5308         * by releasing the path above we dropped all our locks.  A balance
5309         * could have added more items next to the key that used to be
5310         * at the very end of the block.  So, check again here and
5311         * advance the path if there are now more items available.
5312         */
5313        if (nritems > 0 && path->slots[0] < nritems - 1) {
5314                if (ret == 0)
5315                        path->slots[0]++;
5316                ret = 0;
5317                goto done;
5318        }
5319        /*
5320         * So the above check misses one case:
5321         * - after releasing the path above, someone has removed the item that
5322         *   used to be at the very end of the block, and balance between leafs
5323         *   gets another one with bigger key.offset to replace it.
5324         *
5325         * This one should be returned as well, or we can get leaf corruption
5326         * later(esp. in __btrfs_drop_extents()).
5327         *
5328         * And a bit more explanation about this check,
5329         * with ret > 0, the key isn't found, the path points to the slot
5330         * where it should be inserted, so the path->slots[0] item must be the
5331         * bigger one.
5332         */
5333        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5334                ret = 0;
5335                goto done;
5336        }
5337
5338        while (level < BTRFS_MAX_LEVEL) {
5339                if (!path->nodes[level]) {
5340                        ret = 1;
5341                        goto done;
5342                }
5343
5344                slot = path->slots[level] + 1;
5345                c = path->nodes[level];
5346                if (slot >= btrfs_header_nritems(c)) {
5347                        level++;
5348                        if (level == BTRFS_MAX_LEVEL) {
5349                                ret = 1;
5350                                goto done;
5351                        }
5352                        continue;
5353                }
5354
5355                if (next) {
5356                        btrfs_tree_unlock_rw(next, next_rw_lock);
5357                        free_extent_buffer(next);
5358                }
5359
5360                next = c;
5361                next_rw_lock = path->locks[level];
5362                ret = read_block_for_search(root, path, &next, level,
5363                                            slot, &key);
5364                if (ret == -EAGAIN)
5365                        goto again;
5366
5367                if (ret < 0) {
5368                        btrfs_release_path(path);
5369                        goto done;
5370                }
5371
5372                if (!path->skip_locking) {
5373                        ret = btrfs_try_tree_read_lock(next);
5374                        if (!ret && time_seq) {
5375                                /*
5376                                 * If we don't get the lock, we may be racing
5377                                 * with push_leaf_left, holding that lock while
5378                                 * itself waiting for the leaf we've currently
5379                                 * locked. To solve this situation, we give up
5380                                 * on our lock and cycle.
5381                                 */
5382                                free_extent_buffer(next);
5383                                btrfs_release_path(path);
5384                                cond_resched();
5385                                goto again;
5386                        }
5387                        if (!ret) {
5388                                btrfs_set_path_blocking(path);
5389                                btrfs_tree_read_lock(next);
5390                        }
5391                        next_rw_lock = BTRFS_READ_LOCK;
5392                }
5393                break;
5394        }
5395        path->slots[level] = slot;
5396        while (1) {
5397                level--;
5398                c = path->nodes[level];
5399                if (path->locks[level])
5400                        btrfs_tree_unlock_rw(c, path->locks[level]);
5401
5402                free_extent_buffer(c);
5403                path->nodes[level] = next;
5404                path->slots[level] = 0;
5405                if (!path->skip_locking)
5406                        path->locks[level] = next_rw_lock;
5407                if (!level)
5408                        break;
5409
5410                ret = read_block_for_search(root, path, &next, level,
5411                                            0, &key);
5412                if (ret == -EAGAIN)
5413                        goto again;
5414
5415                if (ret < 0) {
5416                        btrfs_release_path(path);
5417                        goto done;
5418                }
5419
5420                if (!path->skip_locking) {
5421                        ret = btrfs_try_tree_read_lock(next);
5422                        if (!ret) {
5423                                btrfs_set_path_blocking(path);
5424                                btrfs_tree_read_lock(next);
5425                        }
5426                        next_rw_lock = BTRFS_READ_LOCK;
5427                }
5428        }
5429        ret = 0;
5430done:
5431        unlock_up(path, 0, 1, 0, NULL);
5432        path->leave_spinning = old_spinning;
5433        if (!old_spinning)
5434                btrfs_set_path_blocking(path);
5435
5436        return ret;
5437}
5438
5439/*
5440 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5441 * searching until it gets past min_objectid or finds an item of 'type'
5442 *
5443 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5444 */
5445int btrfs_previous_item(struct btrfs_root *root,
5446                        struct btrfs_path *path, u64 min_objectid,
5447                        int type)
5448{
5449        struct btrfs_key found_key;
5450        struct extent_buffer *leaf;
5451        u32 nritems;
5452        int ret;
5453
5454        while (1) {
5455                if (path->slots[0] == 0) {
5456                        btrfs_set_path_blocking(path);
5457                        ret = btrfs_prev_leaf(root, path);
5458                        if (ret != 0)
5459                                return ret;
5460                } else {
5461                        path->slots[0]--;
5462                }
5463                leaf = path->nodes[0];
5464                nritems = btrfs_header_nritems(leaf);
5465                if (nritems == 0)
5466                        return 1;
5467                if (path->slots[0] == nritems)
5468                        path->slots[0]--;
5469
5470                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5471                if (found_key.objectid < min_objectid)
5472                        break;
5473                if (found_key.type == type)
5474                        return 0;
5475                if (found_key.objectid == min_objectid &&
5476                    found_key.type < type)
5477                        break;
5478        }
5479        return 1;
5480}
5481
5482/*
5483 * search in extent tree to find a previous Metadata/Data extent item with
5484 * min objecitd.
5485 *
5486 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5487 */
5488int btrfs_previous_extent_item(struct btrfs_root *root,
5489                        struct btrfs_path *path, u64 min_objectid)
5490{
5491        struct btrfs_key found_key;
5492        struct extent_buffer *leaf;
5493        u32 nritems;
5494        int ret;
5495
5496        while (1) {
5497                if (path->slots[0] == 0) {
5498                        btrfs_set_path_blocking(path);
5499                        ret = btrfs_prev_leaf(root, path);
5500                        if (ret != 0)
5501                                return ret;
5502                } else {
5503                        path->slots[0]--;
5504                }
5505                leaf = path->nodes[0];
5506                nritems = btrfs_header_nritems(leaf);
5507                if (nritems == 0)
5508                        return 1;
5509                if (path->slots[0] == nritems)
5510                        path->slots[0]--;
5511
5512                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5513                if (found_key.objectid < min_objectid)
5514                        break;
5515                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5516                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5517                        return 0;
5518                if (found_key.objectid == min_objectid &&
5519                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5520                        break;
5521        }
5522        return 1;
5523}
5524