linux/fs/ecryptfs/crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * eCryptfs: Linux filesystem encryption layer
   4 *
   5 * Copyright (C) 1997-2004 Erez Zadok
   6 * Copyright (C) 2001-2004 Stony Brook University
   7 * Copyright (C) 2004-2007 International Business Machines Corp.
   8 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
   9 *              Michael C. Thompson <mcthomps@us.ibm.com>
  10 */
  11
  12#include <crypto/hash.h>
  13#include <crypto/skcipher.h>
  14#include <linux/fs.h>
  15#include <linux/mount.h>
  16#include <linux/pagemap.h>
  17#include <linux/random.h>
  18#include <linux/compiler.h>
  19#include <linux/key.h>
  20#include <linux/namei.h>
  21#include <linux/file.h>
  22#include <linux/scatterlist.h>
  23#include <linux/slab.h>
  24#include <asm/unaligned.h>
  25#include <linux/kernel.h>
  26#include <linux/xattr.h>
  27#include "ecryptfs_kernel.h"
  28
  29#define DECRYPT         0
  30#define ENCRYPT         1
  31
  32/**
  33 * ecryptfs_from_hex
  34 * @dst: Buffer to take the bytes from src hex; must be at least of
  35 *       size (src_size / 2)
  36 * @src: Buffer to be converted from a hex string representation to raw value
  37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
  38 */
  39void ecryptfs_from_hex(char *dst, char *src, int dst_size)
  40{
  41        int x;
  42        char tmp[3] = { 0, };
  43
  44        for (x = 0; x < dst_size; x++) {
  45                tmp[0] = src[x * 2];
  46                tmp[1] = src[x * 2 + 1];
  47                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
  48        }
  49}
  50
  51static int ecryptfs_hash_digest(struct crypto_shash *tfm,
  52                                char *src, int len, char *dst)
  53{
  54        SHASH_DESC_ON_STACK(desc, tfm);
  55        int err;
  56
  57        desc->tfm = tfm;
  58        err = crypto_shash_digest(desc, src, len, dst);
  59        shash_desc_zero(desc);
  60        return err;
  61}
  62
  63/**
  64 * ecryptfs_calculate_md5 - calculates the md5 of @src
  65 * @dst: Pointer to 16 bytes of allocated memory
  66 * @crypt_stat: Pointer to crypt_stat struct for the current inode
  67 * @src: Data to be md5'd
  68 * @len: Length of @src
  69 *
  70 * Uses the allocated crypto context that crypt_stat references to
  71 * generate the MD5 sum of the contents of src.
  72 */
  73static int ecryptfs_calculate_md5(char *dst,
  74                                  struct ecryptfs_crypt_stat *crypt_stat,
  75                                  char *src, int len)
  76{
  77        struct crypto_shash *tfm;
  78        int rc = 0;
  79
  80        tfm = crypt_stat->hash_tfm;
  81        rc = ecryptfs_hash_digest(tfm, src, len, dst);
  82        if (rc) {
  83                printk(KERN_ERR
  84                       "%s: Error computing crypto hash; rc = [%d]\n",
  85                       __func__, rc);
  86                goto out;
  87        }
  88out:
  89        return rc;
  90}
  91
  92static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
  93                                                  char *cipher_name,
  94                                                  char *chaining_modifier)
  95{
  96        int cipher_name_len = strlen(cipher_name);
  97        int chaining_modifier_len = strlen(chaining_modifier);
  98        int algified_name_len;
  99        int rc;
 100
 101        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
 102        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
 103        if (!(*algified_name)) {
 104                rc = -ENOMEM;
 105                goto out;
 106        }
 107        snprintf((*algified_name), algified_name_len, "%s(%s)",
 108                 chaining_modifier, cipher_name);
 109        rc = 0;
 110out:
 111        return rc;
 112}
 113
 114/**
 115 * ecryptfs_derive_iv
 116 * @iv: destination for the derived iv vale
 117 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 118 * @offset: Offset of the extent whose IV we are to derive
 119 *
 120 * Generate the initialization vector from the given root IV and page
 121 * offset.
 122 *
 123 * Returns zero on success; non-zero on error.
 124 */
 125int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
 126                       loff_t offset)
 127{
 128        int rc = 0;
 129        char dst[MD5_DIGEST_SIZE];
 130        char src[ECRYPTFS_MAX_IV_BYTES + 16];
 131
 132        if (unlikely(ecryptfs_verbosity > 0)) {
 133                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
 134                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
 135        }
 136        /* TODO: It is probably secure to just cast the least
 137         * significant bits of the root IV into an unsigned long and
 138         * add the offset to that rather than go through all this
 139         * hashing business. -Halcrow */
 140        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
 141        memset((src + crypt_stat->iv_bytes), 0, 16);
 142        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
 143        if (unlikely(ecryptfs_verbosity > 0)) {
 144                ecryptfs_printk(KERN_DEBUG, "source:\n");
 145                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
 146        }
 147        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
 148                                    (crypt_stat->iv_bytes + 16));
 149        if (rc) {
 150                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 151                                "MD5 while generating IV for a page\n");
 152                goto out;
 153        }
 154        memcpy(iv, dst, crypt_stat->iv_bytes);
 155        if (unlikely(ecryptfs_verbosity > 0)) {
 156                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
 157                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
 158        }
 159out:
 160        return rc;
 161}
 162
 163/**
 164 * ecryptfs_init_crypt_stat
 165 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 166 *
 167 * Initialize the crypt_stat structure.
 168 */
 169int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 170{
 171        struct crypto_shash *tfm;
 172        int rc;
 173
 174        tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
 175        if (IS_ERR(tfm)) {
 176                rc = PTR_ERR(tfm);
 177                ecryptfs_printk(KERN_ERR, "Error attempting to "
 178                                "allocate crypto context; rc = [%d]\n",
 179                                rc);
 180                return rc;
 181        }
 182
 183        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 184        INIT_LIST_HEAD(&crypt_stat->keysig_list);
 185        mutex_init(&crypt_stat->keysig_list_mutex);
 186        mutex_init(&crypt_stat->cs_mutex);
 187        mutex_init(&crypt_stat->cs_tfm_mutex);
 188        crypt_stat->hash_tfm = tfm;
 189        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
 190
 191        return 0;
 192}
 193
 194/**
 195 * ecryptfs_destroy_crypt_stat
 196 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 197 *
 198 * Releases all memory associated with a crypt_stat struct.
 199 */
 200void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
 201{
 202        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
 203
 204        crypto_free_skcipher(crypt_stat->tfm);
 205        crypto_free_shash(crypt_stat->hash_tfm);
 206        list_for_each_entry_safe(key_sig, key_sig_tmp,
 207                                 &crypt_stat->keysig_list, crypt_stat_list) {
 208                list_del(&key_sig->crypt_stat_list);
 209                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
 210        }
 211        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
 212}
 213
 214void ecryptfs_destroy_mount_crypt_stat(
 215        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 216{
 217        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
 218
 219        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
 220                return;
 221        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 222        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
 223                                 &mount_crypt_stat->global_auth_tok_list,
 224                                 mount_crypt_stat_list) {
 225                list_del(&auth_tok->mount_crypt_stat_list);
 226                if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
 227                        key_put(auth_tok->global_auth_tok_key);
 228                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
 229        }
 230        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 231        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
 232}
 233
 234/**
 235 * virt_to_scatterlist
 236 * @addr: Virtual address
 237 * @size: Size of data; should be an even multiple of the block size
 238 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 239 *      the number of scatterlist structs required in array
 240 * @sg_size: Max array size
 241 *
 242 * Fills in a scatterlist array with page references for a passed
 243 * virtual address.
 244 *
 245 * Returns the number of scatterlist structs in array used
 246 */
 247int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
 248                        int sg_size)
 249{
 250        int i = 0;
 251        struct page *pg;
 252        int offset;
 253        int remainder_of_page;
 254
 255        sg_init_table(sg, sg_size);
 256
 257        while (size > 0 && i < sg_size) {
 258                pg = virt_to_page(addr);
 259                offset = offset_in_page(addr);
 260                sg_set_page(&sg[i], pg, 0, offset);
 261                remainder_of_page = PAGE_SIZE - offset;
 262                if (size >= remainder_of_page) {
 263                        sg[i].length = remainder_of_page;
 264                        addr += remainder_of_page;
 265                        size -= remainder_of_page;
 266                } else {
 267                        sg[i].length = size;
 268                        addr += size;
 269                        size = 0;
 270                }
 271                i++;
 272        }
 273        if (size > 0)
 274                return -ENOMEM;
 275        return i;
 276}
 277
 278struct extent_crypt_result {
 279        struct completion completion;
 280        int rc;
 281};
 282
 283static void extent_crypt_complete(struct crypto_async_request *req, int rc)
 284{
 285        struct extent_crypt_result *ecr = req->data;
 286
 287        if (rc == -EINPROGRESS)
 288                return;
 289
 290        ecr->rc = rc;
 291        complete(&ecr->completion);
 292}
 293
 294/**
 295 * crypt_scatterlist
 296 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 297 * @dst_sg: Destination of the data after performing the crypto operation
 298 * @src_sg: Data to be encrypted or decrypted
 299 * @size: Length of data
 300 * @iv: IV to use
 301 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 302 *
 303 * Returns the number of bytes encrypted or decrypted; negative value on error
 304 */
 305static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
 306                             struct scatterlist *dst_sg,
 307                             struct scatterlist *src_sg, int size,
 308                             unsigned char *iv, int op)
 309{
 310        struct skcipher_request *req = NULL;
 311        struct extent_crypt_result ecr;
 312        int rc = 0;
 313
 314        if (!crypt_stat || !crypt_stat->tfm
 315               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
 316                return -EINVAL;
 317
 318        if (unlikely(ecryptfs_verbosity > 0)) {
 319                ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
 320                                crypt_stat->key_size);
 321                ecryptfs_dump_hex(crypt_stat->key,
 322                                  crypt_stat->key_size);
 323        }
 324
 325        init_completion(&ecr.completion);
 326
 327        mutex_lock(&crypt_stat->cs_tfm_mutex);
 328        req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
 329        if (!req) {
 330                mutex_unlock(&crypt_stat->cs_tfm_mutex);
 331                rc = -ENOMEM;
 332                goto out;
 333        }
 334
 335        skcipher_request_set_callback(req,
 336                        CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 337                        extent_crypt_complete, &ecr);
 338        /* Consider doing this once, when the file is opened */
 339        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
 340                rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
 341                                            crypt_stat->key_size);
 342                if (rc) {
 343                        ecryptfs_printk(KERN_ERR,
 344                                        "Error setting key; rc = [%d]\n",
 345                                        rc);
 346                        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 347                        rc = -EINVAL;
 348                        goto out;
 349                }
 350                crypt_stat->flags |= ECRYPTFS_KEY_SET;
 351        }
 352        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 353        skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
 354        rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
 355                             crypto_skcipher_decrypt(req);
 356        if (rc == -EINPROGRESS || rc == -EBUSY) {
 357                struct extent_crypt_result *ecr = req->base.data;
 358
 359                wait_for_completion(&ecr->completion);
 360                rc = ecr->rc;
 361                reinit_completion(&ecr->completion);
 362        }
 363out:
 364        skcipher_request_free(req);
 365        return rc;
 366}
 367
 368/**
 369 * lower_offset_for_page
 370 *
 371 * Convert an eCryptfs page index into a lower byte offset
 372 */
 373static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
 374                                    struct page *page)
 375{
 376        return ecryptfs_lower_header_size(crypt_stat) +
 377               ((loff_t)page->index << PAGE_SHIFT);
 378}
 379
 380/**
 381 * crypt_extent
 382 * @crypt_stat: crypt_stat containing cryptographic context for the
 383 *              encryption operation
 384 * @dst_page: The page to write the result into
 385 * @src_page: The page to read from
 386 * @extent_offset: Page extent offset for use in generating IV
 387 * @op: ENCRYPT or DECRYPT to indicate the desired operation
 388 *
 389 * Encrypts or decrypts one extent of data.
 390 *
 391 * Return zero on success; non-zero otherwise
 392 */
 393static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
 394                        struct page *dst_page,
 395                        struct page *src_page,
 396                        unsigned long extent_offset, int op)
 397{
 398        pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
 399        loff_t extent_base;
 400        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
 401        struct scatterlist src_sg, dst_sg;
 402        size_t extent_size = crypt_stat->extent_size;
 403        int rc;
 404
 405        extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
 406        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
 407                                (extent_base + extent_offset));
 408        if (rc) {
 409                ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
 410                        "extent [0x%.16llx]; rc = [%d]\n",
 411                        (unsigned long long)(extent_base + extent_offset), rc);
 412                goto out;
 413        }
 414
 415        sg_init_table(&src_sg, 1);
 416        sg_init_table(&dst_sg, 1);
 417
 418        sg_set_page(&src_sg, src_page, extent_size,
 419                    extent_offset * extent_size);
 420        sg_set_page(&dst_sg, dst_page, extent_size,
 421                    extent_offset * extent_size);
 422
 423        rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
 424                               extent_iv, op);
 425        if (rc < 0) {
 426                printk(KERN_ERR "%s: Error attempting to crypt page with "
 427                       "page_index = [%ld], extent_offset = [%ld]; "
 428                       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
 429                goto out;
 430        }
 431        rc = 0;
 432out:
 433        return rc;
 434}
 435
 436/**
 437 * ecryptfs_encrypt_page
 438 * @page: Page mapped from the eCryptfs inode for the file; contains
 439 *        decrypted content that needs to be encrypted (to a temporary
 440 *        page; not in place) and written out to the lower file
 441 *
 442 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 443 * that eCryptfs pages may straddle the lower pages -- for instance,
 444 * if the file was created on a machine with an 8K page size
 445 * (resulting in an 8K header), and then the file is copied onto a
 446 * host with a 32K page size, then when reading page 0 of the eCryptfs
 447 * file, 24K of page 0 of the lower file will be read and decrypted,
 448 * and then 8K of page 1 of the lower file will be read and decrypted.
 449 *
 450 * Returns zero on success; negative on error
 451 */
 452int ecryptfs_encrypt_page(struct page *page)
 453{
 454        struct inode *ecryptfs_inode;
 455        struct ecryptfs_crypt_stat *crypt_stat;
 456        char *enc_extent_virt;
 457        struct page *enc_extent_page = NULL;
 458        loff_t extent_offset;
 459        loff_t lower_offset;
 460        int rc = 0;
 461
 462        ecryptfs_inode = page->mapping->host;
 463        crypt_stat =
 464                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 465        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 466        enc_extent_page = alloc_page(GFP_USER);
 467        if (!enc_extent_page) {
 468                rc = -ENOMEM;
 469                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
 470                                "encrypted extent\n");
 471                goto out;
 472        }
 473
 474        for (extent_offset = 0;
 475             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 476             extent_offset++) {
 477                rc = crypt_extent(crypt_stat, enc_extent_page, page,
 478                                  extent_offset, ENCRYPT);
 479                if (rc) {
 480                        printk(KERN_ERR "%s: Error encrypting extent; "
 481                               "rc = [%d]\n", __func__, rc);
 482                        goto out;
 483                }
 484        }
 485
 486        lower_offset = lower_offset_for_page(crypt_stat, page);
 487        enc_extent_virt = kmap(enc_extent_page);
 488        rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
 489                                  PAGE_SIZE);
 490        kunmap(enc_extent_page);
 491        if (rc < 0) {
 492                ecryptfs_printk(KERN_ERR,
 493                        "Error attempting to write lower page; rc = [%d]\n",
 494                        rc);
 495                goto out;
 496        }
 497        rc = 0;
 498out:
 499        if (enc_extent_page) {
 500                __free_page(enc_extent_page);
 501        }
 502        return rc;
 503}
 504
 505/**
 506 * ecryptfs_decrypt_page
 507 * @page: Page mapped from the eCryptfs inode for the file; data read
 508 *        and decrypted from the lower file will be written into this
 509 *        page
 510 *
 511 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 512 * that eCryptfs pages may straddle the lower pages -- for instance,
 513 * if the file was created on a machine with an 8K page size
 514 * (resulting in an 8K header), and then the file is copied onto a
 515 * host with a 32K page size, then when reading page 0 of the eCryptfs
 516 * file, 24K of page 0 of the lower file will be read and decrypted,
 517 * and then 8K of page 1 of the lower file will be read and decrypted.
 518 *
 519 * Returns zero on success; negative on error
 520 */
 521int ecryptfs_decrypt_page(struct page *page)
 522{
 523        struct inode *ecryptfs_inode;
 524        struct ecryptfs_crypt_stat *crypt_stat;
 525        char *page_virt;
 526        unsigned long extent_offset;
 527        loff_t lower_offset;
 528        int rc = 0;
 529
 530        ecryptfs_inode = page->mapping->host;
 531        crypt_stat =
 532                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
 533        BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
 534
 535        lower_offset = lower_offset_for_page(crypt_stat, page);
 536        page_virt = kmap(page);
 537        rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
 538                                 ecryptfs_inode);
 539        kunmap(page);
 540        if (rc < 0) {
 541                ecryptfs_printk(KERN_ERR,
 542                        "Error attempting to read lower page; rc = [%d]\n",
 543                        rc);
 544                goto out;
 545        }
 546
 547        for (extent_offset = 0;
 548             extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
 549             extent_offset++) {
 550                rc = crypt_extent(crypt_stat, page, page,
 551                                  extent_offset, DECRYPT);
 552                if (rc) {
 553                        printk(KERN_ERR "%s: Error encrypting extent; "
 554                               "rc = [%d]\n", __func__, rc);
 555                        goto out;
 556                }
 557        }
 558out:
 559        return rc;
 560}
 561
 562#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
 563
 564/**
 565 * ecryptfs_init_crypt_ctx
 566 * @crypt_stat: Uninitialized crypt stats structure
 567 *
 568 * Initialize the crypto context.
 569 *
 570 * TODO: Performance: Keep a cache of initialized cipher contexts;
 571 * only init if needed
 572 */
 573int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
 574{
 575        char *full_alg_name;
 576        int rc = -EINVAL;
 577
 578        ecryptfs_printk(KERN_DEBUG,
 579                        "Initializing cipher [%s]; strlen = [%d]; "
 580                        "key_size_bits = [%zd]\n",
 581                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
 582                        crypt_stat->key_size << 3);
 583        mutex_lock(&crypt_stat->cs_tfm_mutex);
 584        if (crypt_stat->tfm) {
 585                rc = 0;
 586                goto out_unlock;
 587        }
 588        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
 589                                                    crypt_stat->cipher, "cbc");
 590        if (rc)
 591                goto out_unlock;
 592        crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
 593        if (IS_ERR(crypt_stat->tfm)) {
 594                rc = PTR_ERR(crypt_stat->tfm);
 595                crypt_stat->tfm = NULL;
 596                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
 597                                "Error initializing cipher [%s]\n",
 598                                full_alg_name);
 599                goto out_free;
 600        }
 601        crypto_skcipher_set_flags(crypt_stat->tfm,
 602                                  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
 603        rc = 0;
 604out_free:
 605        kfree(full_alg_name);
 606out_unlock:
 607        mutex_unlock(&crypt_stat->cs_tfm_mutex);
 608        return rc;
 609}
 610
 611static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
 612{
 613        int extent_size_tmp;
 614
 615        crypt_stat->extent_mask = 0xFFFFFFFF;
 616        crypt_stat->extent_shift = 0;
 617        if (crypt_stat->extent_size == 0)
 618                return;
 619        extent_size_tmp = crypt_stat->extent_size;
 620        while ((extent_size_tmp & 0x01) == 0) {
 621                extent_size_tmp >>= 1;
 622                crypt_stat->extent_mask <<= 1;
 623                crypt_stat->extent_shift++;
 624        }
 625}
 626
 627void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
 628{
 629        /* Default values; may be overwritten as we are parsing the
 630         * packets. */
 631        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
 632        set_extent_mask_and_shift(crypt_stat);
 633        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
 634        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
 635                crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 636        else {
 637                if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
 638                        crypt_stat->metadata_size =
 639                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
 640                else
 641                        crypt_stat->metadata_size = PAGE_SIZE;
 642        }
 643}
 644
 645/**
 646 * ecryptfs_compute_root_iv
 647 * @crypt_stats
 648 *
 649 * On error, sets the root IV to all 0's.
 650 */
 651int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
 652{
 653        int rc = 0;
 654        char dst[MD5_DIGEST_SIZE];
 655
 656        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
 657        BUG_ON(crypt_stat->iv_bytes <= 0);
 658        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
 659                rc = -EINVAL;
 660                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
 661                                "cannot generate root IV\n");
 662                goto out;
 663        }
 664        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
 665                                    crypt_stat->key_size);
 666        if (rc) {
 667                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
 668                                "MD5 while generating root IV\n");
 669                goto out;
 670        }
 671        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
 672out:
 673        if (rc) {
 674                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
 675                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
 676        }
 677        return rc;
 678}
 679
 680static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
 681{
 682        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
 683        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
 684        ecryptfs_compute_root_iv(crypt_stat);
 685        if (unlikely(ecryptfs_verbosity > 0)) {
 686                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
 687                ecryptfs_dump_hex(crypt_stat->key,
 688                                  crypt_stat->key_size);
 689        }
 690}
 691
 692/**
 693 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 694 * @crypt_stat: The inode's cryptographic context
 695 * @mount_crypt_stat: The mount point's cryptographic context
 696 *
 697 * This function propagates the mount-wide flags to individual inode
 698 * flags.
 699 */
 700static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
 701        struct ecryptfs_crypt_stat *crypt_stat,
 702        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 703{
 704        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
 705                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
 706        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
 707                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
 708        if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
 709                crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
 710                if (mount_crypt_stat->flags
 711                    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
 712                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
 713                else if (mount_crypt_stat->flags
 714                         & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
 715                        crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
 716        }
 717}
 718
 719static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
 720        struct ecryptfs_crypt_stat *crypt_stat,
 721        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 722{
 723        struct ecryptfs_global_auth_tok *global_auth_tok;
 724        int rc = 0;
 725
 726        mutex_lock(&crypt_stat->keysig_list_mutex);
 727        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
 728
 729        list_for_each_entry(global_auth_tok,
 730                            &mount_crypt_stat->global_auth_tok_list,
 731                            mount_crypt_stat_list) {
 732                if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
 733                        continue;
 734                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
 735                if (rc) {
 736                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
 737                        goto out;
 738                }
 739        }
 740
 741out:
 742        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
 743        mutex_unlock(&crypt_stat->keysig_list_mutex);
 744        return rc;
 745}
 746
 747/**
 748 * ecryptfs_set_default_crypt_stat_vals
 749 * @crypt_stat: The inode's cryptographic context
 750 * @mount_crypt_stat: The mount point's cryptographic context
 751 *
 752 * Default values in the event that policy does not override them.
 753 */
 754static void ecryptfs_set_default_crypt_stat_vals(
 755        struct ecryptfs_crypt_stat *crypt_stat,
 756        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
 757{
 758        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 759                                                      mount_crypt_stat);
 760        ecryptfs_set_default_sizes(crypt_stat);
 761        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
 762        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
 763        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
 764        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
 765        crypt_stat->mount_crypt_stat = mount_crypt_stat;
 766}
 767
 768/**
 769 * ecryptfs_new_file_context
 770 * @ecryptfs_inode: The eCryptfs inode
 771 *
 772 * If the crypto context for the file has not yet been established,
 773 * this is where we do that.  Establishing a new crypto context
 774 * involves the following decisions:
 775 *  - What cipher to use?
 776 *  - What set of authentication tokens to use?
 777 * Here we just worry about getting enough information into the
 778 * authentication tokens so that we know that they are available.
 779 * We associate the available authentication tokens with the new file
 780 * via the set of signatures in the crypt_stat struct.  Later, when
 781 * the headers are actually written out, we may again defer to
 782 * userspace to perform the encryption of the session key; for the
 783 * foreseeable future, this will be the case with public key packets.
 784 *
 785 * Returns zero on success; non-zero otherwise
 786 */
 787int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
 788{
 789        struct ecryptfs_crypt_stat *crypt_stat =
 790            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
 791        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
 792            &ecryptfs_superblock_to_private(
 793                    ecryptfs_inode->i_sb)->mount_crypt_stat;
 794        int cipher_name_len;
 795        int rc = 0;
 796
 797        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
 798        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
 799        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
 800                                                      mount_crypt_stat);
 801        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
 802                                                         mount_crypt_stat);
 803        if (rc) {
 804                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
 805                       "to the inode key sigs; rc = [%d]\n", rc);
 806                goto out;
 807        }
 808        cipher_name_len =
 809                strlen(mount_crypt_stat->global_default_cipher_name);
 810        memcpy(crypt_stat->cipher,
 811               mount_crypt_stat->global_default_cipher_name,
 812               cipher_name_len);
 813        crypt_stat->cipher[cipher_name_len] = '\0';
 814        crypt_stat->key_size =
 815                mount_crypt_stat->global_default_cipher_key_size;
 816        ecryptfs_generate_new_key(crypt_stat);
 817        rc = ecryptfs_init_crypt_ctx(crypt_stat);
 818        if (rc)
 819                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
 820                                "context for cipher [%s]: rc = [%d]\n",
 821                                crypt_stat->cipher, rc);
 822out:
 823        return rc;
 824}
 825
 826/**
 827 * ecryptfs_validate_marker - check for the ecryptfs marker
 828 * @data: The data block in which to check
 829 *
 830 * Returns zero if marker found; -EINVAL if not found
 831 */
 832static int ecryptfs_validate_marker(char *data)
 833{
 834        u32 m_1, m_2;
 835
 836        m_1 = get_unaligned_be32(data);
 837        m_2 = get_unaligned_be32(data + 4);
 838        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
 839                return 0;
 840        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
 841                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
 842                        MAGIC_ECRYPTFS_MARKER);
 843        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
 844                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
 845        return -EINVAL;
 846}
 847
 848struct ecryptfs_flag_map_elem {
 849        u32 file_flag;
 850        u32 local_flag;
 851};
 852
 853/* Add support for additional flags by adding elements here. */
 854static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
 855        {0x00000001, ECRYPTFS_ENABLE_HMAC},
 856        {0x00000002, ECRYPTFS_ENCRYPTED},
 857        {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
 858        {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
 859};
 860
 861/**
 862 * ecryptfs_process_flags
 863 * @crypt_stat: The cryptographic context
 864 * @page_virt: Source data to be parsed
 865 * @bytes_read: Updated with the number of bytes read
 866 */
 867static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
 868                                  char *page_virt, int *bytes_read)
 869{
 870        int i;
 871        u32 flags;
 872
 873        flags = get_unaligned_be32(page_virt);
 874        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 875                if (flags & ecryptfs_flag_map[i].file_flag) {
 876                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
 877                } else
 878                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
 879        /* Version is in top 8 bits of the 32-bit flag vector */
 880        crypt_stat->file_version = ((flags >> 24) & 0xFF);
 881        (*bytes_read) = 4;
 882}
 883
 884/**
 885 * write_ecryptfs_marker
 886 * @page_virt: The pointer to in a page to begin writing the marker
 887 * @written: Number of bytes written
 888 *
 889 * Marker = 0x3c81b7f5
 890 */
 891static void write_ecryptfs_marker(char *page_virt, size_t *written)
 892{
 893        u32 m_1, m_2;
 894
 895        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
 896        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
 897        put_unaligned_be32(m_1, page_virt);
 898        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
 899        put_unaligned_be32(m_2, page_virt);
 900        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
 901}
 902
 903void ecryptfs_write_crypt_stat_flags(char *page_virt,
 904                                     struct ecryptfs_crypt_stat *crypt_stat,
 905                                     size_t *written)
 906{
 907        u32 flags = 0;
 908        int i;
 909
 910        for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
 911                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
 912                        flags |= ecryptfs_flag_map[i].file_flag;
 913        /* Version is in top 8 bits of the 32-bit flag vector */
 914        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
 915        put_unaligned_be32(flags, page_virt);
 916        (*written) = 4;
 917}
 918
 919struct ecryptfs_cipher_code_str_map_elem {
 920        char cipher_str[16];
 921        u8 cipher_code;
 922};
 923
 924/* Add support for additional ciphers by adding elements here. The
 925 * cipher_code is whatever OpenPGP applications use to identify the
 926 * ciphers. List in order of probability. */
 927static struct ecryptfs_cipher_code_str_map_elem
 928ecryptfs_cipher_code_str_map[] = {
 929        {"aes",RFC2440_CIPHER_AES_128 },
 930        {"blowfish", RFC2440_CIPHER_BLOWFISH},
 931        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
 932        {"cast5", RFC2440_CIPHER_CAST_5},
 933        {"twofish", RFC2440_CIPHER_TWOFISH},
 934        {"cast6", RFC2440_CIPHER_CAST_6},
 935        {"aes", RFC2440_CIPHER_AES_192},
 936        {"aes", RFC2440_CIPHER_AES_256}
 937};
 938
 939/**
 940 * ecryptfs_code_for_cipher_string
 941 * @cipher_name: The string alias for the cipher
 942 * @key_bytes: Length of key in bytes; used for AES code selection
 943 *
 944 * Returns zero on no match, or the cipher code on match
 945 */
 946u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
 947{
 948        int i;
 949        u8 code = 0;
 950        struct ecryptfs_cipher_code_str_map_elem *map =
 951                ecryptfs_cipher_code_str_map;
 952
 953        if (strcmp(cipher_name, "aes") == 0) {
 954                switch (key_bytes) {
 955                case 16:
 956                        code = RFC2440_CIPHER_AES_128;
 957                        break;
 958                case 24:
 959                        code = RFC2440_CIPHER_AES_192;
 960                        break;
 961                case 32:
 962                        code = RFC2440_CIPHER_AES_256;
 963                }
 964        } else {
 965                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 966                        if (strcmp(cipher_name, map[i].cipher_str) == 0) {
 967                                code = map[i].cipher_code;
 968                                break;
 969                        }
 970        }
 971        return code;
 972}
 973
 974/**
 975 * ecryptfs_cipher_code_to_string
 976 * @str: Destination to write out the cipher name
 977 * @cipher_code: The code to convert to cipher name string
 978 *
 979 * Returns zero on success
 980 */
 981int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
 982{
 983        int rc = 0;
 984        int i;
 985
 986        str[0] = '\0';
 987        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
 988                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
 989                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
 990        if (str[0] == '\0') {
 991                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
 992                                "[%d]\n", cipher_code);
 993                rc = -EINVAL;
 994        }
 995        return rc;
 996}
 997
 998int ecryptfs_read_and_validate_header_region(struct inode *inode)
 999{
1000        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1001        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1002        int rc;
1003
1004        rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1005                                 inode);
1006        if (rc < 0)
1007                return rc;
1008        else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1009                return -EINVAL;
1010        rc = ecryptfs_validate_marker(marker);
1011        if (!rc)
1012                ecryptfs_i_size_init(file_size, inode);
1013        return rc;
1014}
1015
1016void
1017ecryptfs_write_header_metadata(char *virt,
1018                               struct ecryptfs_crypt_stat *crypt_stat,
1019                               size_t *written)
1020{
1021        u32 header_extent_size;
1022        u16 num_header_extents_at_front;
1023
1024        header_extent_size = (u32)crypt_stat->extent_size;
1025        num_header_extents_at_front =
1026                (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1027        put_unaligned_be32(header_extent_size, virt);
1028        virt += 4;
1029        put_unaligned_be16(num_header_extents_at_front, virt);
1030        (*written) = 6;
1031}
1032
1033struct kmem_cache *ecryptfs_header_cache;
1034
1035/**
1036 * ecryptfs_write_headers_virt
1037 * @page_virt: The virtual address to write the headers to
1038 * @max: The size of memory allocated at page_virt
1039 * @size: Set to the number of bytes written by this function
1040 * @crypt_stat: The cryptographic context
1041 * @ecryptfs_dentry: The eCryptfs dentry
1042 *
1043 * Format version: 1
1044 *
1045 *   Header Extent:
1046 *     Octets 0-7:        Unencrypted file size (big-endian)
1047 *     Octets 8-15:       eCryptfs special marker
1048 *     Octets 16-19:      Flags
1049 *      Octet 16:         File format version number (between 0 and 255)
1050 *      Octets 17-18:     Reserved
1051 *      Octet 19:         Bit 1 (lsb): Reserved
1052 *                        Bit 2: Encrypted?
1053 *                        Bits 3-8: Reserved
1054 *     Octets 20-23:      Header extent size (big-endian)
1055 *     Octets 24-25:      Number of header extents at front of file
1056 *                        (big-endian)
1057 *     Octet  26:         Begin RFC 2440 authentication token packet set
1058 *   Data Extent 0:
1059 *     Lower data (CBC encrypted)
1060 *   Data Extent 1:
1061 *     Lower data (CBC encrypted)
1062 *   ...
1063 *
1064 * Returns zero on success
1065 */
1066static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1067                                       size_t *size,
1068                                       struct ecryptfs_crypt_stat *crypt_stat,
1069                                       struct dentry *ecryptfs_dentry)
1070{
1071        int rc;
1072        size_t written;
1073        size_t offset;
1074
1075        offset = ECRYPTFS_FILE_SIZE_BYTES;
1076        write_ecryptfs_marker((page_virt + offset), &written);
1077        offset += written;
1078        ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1079                                        &written);
1080        offset += written;
1081        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1082                                       &written);
1083        offset += written;
1084        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1085                                              ecryptfs_dentry, &written,
1086                                              max - offset);
1087        if (rc)
1088                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1089                                "set; rc = [%d]\n", rc);
1090        if (size) {
1091                offset += written;
1092                *size = offset;
1093        }
1094        return rc;
1095}
1096
1097static int
1098ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1099                                    char *virt, size_t virt_len)
1100{
1101        int rc;
1102
1103        rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1104                                  0, virt_len);
1105        if (rc < 0)
1106                printk(KERN_ERR "%s: Error attempting to write header "
1107                       "information to lower file; rc = [%d]\n", __func__, rc);
1108        else
1109                rc = 0;
1110        return rc;
1111}
1112
1113static int
1114ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1115                                 struct inode *ecryptfs_inode,
1116                                 char *page_virt, size_t size)
1117{
1118        int rc;
1119        struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1120        struct inode *lower_inode = d_inode(lower_dentry);
1121
1122        if (!(lower_inode->i_opflags & IOP_XATTR)) {
1123                rc = -EOPNOTSUPP;
1124                goto out;
1125        }
1126
1127        inode_lock(lower_inode);
1128        rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1129                            page_virt, size, 0);
1130        if (!rc && ecryptfs_inode)
1131                fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1132        inode_unlock(lower_inode);
1133out:
1134        return rc;
1135}
1136
1137static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1138                                               unsigned int order)
1139{
1140        struct page *page;
1141
1142        page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1143        if (page)
1144                return (unsigned long) page_address(page);
1145        return 0;
1146}
1147
1148/**
1149 * ecryptfs_write_metadata
1150 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1151 * @ecryptfs_inode: The newly created eCryptfs inode
1152 *
1153 * Write the file headers out.  This will likely involve a userspace
1154 * callout, in which the session key is encrypted with one or more
1155 * public keys and/or the passphrase necessary to do the encryption is
1156 * retrieved via a prompt.  Exactly what happens at this point should
1157 * be policy-dependent.
1158 *
1159 * Returns zero on success; non-zero on error
1160 */
1161int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1162                            struct inode *ecryptfs_inode)
1163{
1164        struct ecryptfs_crypt_stat *crypt_stat =
1165                &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1166        unsigned int order;
1167        char *virt;
1168        size_t virt_len;
1169        size_t size = 0;
1170        int rc = 0;
1171
1172        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1173                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1174                        printk(KERN_ERR "Key is invalid; bailing out\n");
1175                        rc = -EINVAL;
1176                        goto out;
1177                }
1178        } else {
1179                printk(KERN_WARNING "%s: Encrypted flag not set\n",
1180                       __func__);
1181                rc = -EINVAL;
1182                goto out;
1183        }
1184        virt_len = crypt_stat->metadata_size;
1185        order = get_order(virt_len);
1186        /* Released in this function */
1187        virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1188        if (!virt) {
1189                printk(KERN_ERR "%s: Out of memory\n", __func__);
1190                rc = -ENOMEM;
1191                goto out;
1192        }
1193        /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1194        rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1195                                         ecryptfs_dentry);
1196        if (unlikely(rc)) {
1197                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1198                       __func__, rc);
1199                goto out_free;
1200        }
1201        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1202                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1203                                                      virt, size);
1204        else
1205                rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1206                                                         virt_len);
1207        if (rc) {
1208                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1209                       "rc = [%d]\n", __func__, rc);
1210                goto out_free;
1211        }
1212out_free:
1213        free_pages((unsigned long)virt, order);
1214out:
1215        return rc;
1216}
1217
1218#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1219#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1220static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1221                                 char *virt, int *bytes_read,
1222                                 int validate_header_size)
1223{
1224        int rc = 0;
1225        u32 header_extent_size;
1226        u16 num_header_extents_at_front;
1227
1228        header_extent_size = get_unaligned_be32(virt);
1229        virt += sizeof(__be32);
1230        num_header_extents_at_front = get_unaligned_be16(virt);
1231        crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1232                                     * (size_t)header_extent_size));
1233        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1234        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1235            && (crypt_stat->metadata_size
1236                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1237                rc = -EINVAL;
1238                printk(KERN_WARNING "Invalid header size: [%zd]\n",
1239                       crypt_stat->metadata_size);
1240        }
1241        return rc;
1242}
1243
1244/**
1245 * set_default_header_data
1246 * @crypt_stat: The cryptographic context
1247 *
1248 * For version 0 file format; this function is only for backwards
1249 * compatibility for files created with the prior versions of
1250 * eCryptfs.
1251 */
1252static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1253{
1254        crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1255}
1256
1257void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1258{
1259        struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1260        struct ecryptfs_crypt_stat *crypt_stat;
1261        u64 file_size;
1262
1263        crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1264        mount_crypt_stat =
1265                &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1266        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1267                file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1268                if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1269                        file_size += crypt_stat->metadata_size;
1270        } else
1271                file_size = get_unaligned_be64(page_virt);
1272        i_size_write(inode, (loff_t)file_size);
1273        crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1274}
1275
1276/**
1277 * ecryptfs_read_headers_virt
1278 * @page_virt: The virtual address into which to read the headers
1279 * @crypt_stat: The cryptographic context
1280 * @ecryptfs_dentry: The eCryptfs dentry
1281 * @validate_header_size: Whether to validate the header size while reading
1282 *
1283 * Read/parse the header data. The header format is detailed in the
1284 * comment block for the ecryptfs_write_headers_virt() function.
1285 *
1286 * Returns zero on success
1287 */
1288static int ecryptfs_read_headers_virt(char *page_virt,
1289                                      struct ecryptfs_crypt_stat *crypt_stat,
1290                                      struct dentry *ecryptfs_dentry,
1291                                      int validate_header_size)
1292{
1293        int rc = 0;
1294        int offset;
1295        int bytes_read;
1296
1297        ecryptfs_set_default_sizes(crypt_stat);
1298        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1299                ecryptfs_dentry->d_sb)->mount_crypt_stat;
1300        offset = ECRYPTFS_FILE_SIZE_BYTES;
1301        rc = ecryptfs_validate_marker(page_virt + offset);
1302        if (rc)
1303                goto out;
1304        if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1305                ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1306        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1307        ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1308        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1309                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1310                                "file version [%d] is supported by this "
1311                                "version of eCryptfs\n",
1312                                crypt_stat->file_version,
1313                                ECRYPTFS_SUPPORTED_FILE_VERSION);
1314                rc = -EINVAL;
1315                goto out;
1316        }
1317        offset += bytes_read;
1318        if (crypt_stat->file_version >= 1) {
1319                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1320                                           &bytes_read, validate_header_size);
1321                if (rc) {
1322                        ecryptfs_printk(KERN_WARNING, "Error reading header "
1323                                        "metadata; rc = [%d]\n", rc);
1324                }
1325                offset += bytes_read;
1326        } else
1327                set_default_header_data(crypt_stat);
1328        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1329                                       ecryptfs_dentry);
1330out:
1331        return rc;
1332}
1333
1334/**
1335 * ecryptfs_read_xattr_region
1336 * @page_virt: The vitual address into which to read the xattr data
1337 * @ecryptfs_inode: The eCryptfs inode
1338 *
1339 * Attempts to read the crypto metadata from the extended attribute
1340 * region of the lower file.
1341 *
1342 * Returns zero on success; non-zero on error
1343 */
1344int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1345{
1346        struct dentry *lower_dentry =
1347                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1348        ssize_t size;
1349        int rc = 0;
1350
1351        size = ecryptfs_getxattr_lower(lower_dentry,
1352                                       ecryptfs_inode_to_lower(ecryptfs_inode),
1353                                       ECRYPTFS_XATTR_NAME,
1354                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1355        if (size < 0) {
1356                if (unlikely(ecryptfs_verbosity > 0))
1357                        printk(KERN_INFO "Error attempting to read the [%s] "
1358                               "xattr from the lower file; return value = "
1359                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1360                rc = -EINVAL;
1361                goto out;
1362        }
1363out:
1364        return rc;
1365}
1366
1367int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1368                                            struct inode *inode)
1369{
1370        u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1371        u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1372        int rc;
1373
1374        rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1375                                     ecryptfs_inode_to_lower(inode),
1376                                     ECRYPTFS_XATTR_NAME, file_size,
1377                                     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1378        if (rc < 0)
1379                return rc;
1380        else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1381                return -EINVAL;
1382        rc = ecryptfs_validate_marker(marker);
1383        if (!rc)
1384                ecryptfs_i_size_init(file_size, inode);
1385        return rc;
1386}
1387
1388/**
1389 * ecryptfs_read_metadata
1390 *
1391 * Common entry point for reading file metadata. From here, we could
1392 * retrieve the header information from the header region of the file,
1393 * the xattr region of the file, or some other repository that is
1394 * stored separately from the file itself. The current implementation
1395 * supports retrieving the metadata information from the file contents
1396 * and from the xattr region.
1397 *
1398 * Returns zero if valid headers found and parsed; non-zero otherwise
1399 */
1400int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1401{
1402        int rc;
1403        char *page_virt;
1404        struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1405        struct ecryptfs_crypt_stat *crypt_stat =
1406            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1407        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1408                &ecryptfs_superblock_to_private(
1409                        ecryptfs_dentry->d_sb)->mount_crypt_stat;
1410
1411        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1412                                                      mount_crypt_stat);
1413        /* Read the first page from the underlying file */
1414        page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1415        if (!page_virt) {
1416                rc = -ENOMEM;
1417                goto out;
1418        }
1419        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1420                                 ecryptfs_inode);
1421        if (rc >= 0)
1422                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1423                                                ecryptfs_dentry,
1424                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
1425        if (rc) {
1426                /* metadata is not in the file header, so try xattrs */
1427                memset(page_virt, 0, PAGE_SIZE);
1428                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1429                if (rc) {
1430                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1431                               "file header region or xattr region, inode %lu\n",
1432                                ecryptfs_inode->i_ino);
1433                        rc = -EINVAL;
1434                        goto out;
1435                }
1436                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1437                                                ecryptfs_dentry,
1438                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1439                if (rc) {
1440                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1441                               "file xattr region either, inode %lu\n",
1442                                ecryptfs_inode->i_ino);
1443                        rc = -EINVAL;
1444                }
1445                if (crypt_stat->mount_crypt_stat->flags
1446                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1447                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1448                } else {
1449                        printk(KERN_WARNING "Attempt to access file with "
1450                               "crypto metadata only in the extended attribute "
1451                               "region, but eCryptfs was mounted without "
1452                               "xattr support enabled. eCryptfs will not treat "
1453                               "this like an encrypted file, inode %lu\n",
1454                                ecryptfs_inode->i_ino);
1455                        rc = -EINVAL;
1456                }
1457        }
1458out:
1459        if (page_virt) {
1460                memset(page_virt, 0, PAGE_SIZE);
1461                kmem_cache_free(ecryptfs_header_cache, page_virt);
1462        }
1463        return rc;
1464}
1465
1466/**
1467 * ecryptfs_encrypt_filename - encrypt filename
1468 *
1469 * CBC-encrypts the filename. We do not want to encrypt the same
1470 * filename with the same key and IV, which may happen with hard
1471 * links, so we prepend random bits to each filename.
1472 *
1473 * Returns zero on success; non-zero otherwise
1474 */
1475static int
1476ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1477                          struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1478{
1479        int rc = 0;
1480
1481        filename->encrypted_filename = NULL;
1482        filename->encrypted_filename_size = 0;
1483        if (mount_crypt_stat && (mount_crypt_stat->flags
1484                                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1485                size_t packet_size;
1486                size_t remaining_bytes;
1487
1488                rc = ecryptfs_write_tag_70_packet(
1489                        NULL, NULL,
1490                        &filename->encrypted_filename_size,
1491                        mount_crypt_stat, NULL,
1492                        filename->filename_size);
1493                if (rc) {
1494                        printk(KERN_ERR "%s: Error attempting to get packet "
1495                               "size for tag 72; rc = [%d]\n", __func__,
1496                               rc);
1497                        filename->encrypted_filename_size = 0;
1498                        goto out;
1499                }
1500                filename->encrypted_filename =
1501                        kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1502                if (!filename->encrypted_filename) {
1503                        rc = -ENOMEM;
1504                        goto out;
1505                }
1506                remaining_bytes = filename->encrypted_filename_size;
1507                rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1508                                                  &remaining_bytes,
1509                                                  &packet_size,
1510                                                  mount_crypt_stat,
1511                                                  filename->filename,
1512                                                  filename->filename_size);
1513                if (rc) {
1514                        printk(KERN_ERR "%s: Error attempting to generate "
1515                               "tag 70 packet; rc = [%d]\n", __func__,
1516                               rc);
1517                        kfree(filename->encrypted_filename);
1518                        filename->encrypted_filename = NULL;
1519                        filename->encrypted_filename_size = 0;
1520                        goto out;
1521                }
1522                filename->encrypted_filename_size = packet_size;
1523        } else {
1524                printk(KERN_ERR "%s: No support for requested filename "
1525                       "encryption method in this release\n", __func__);
1526                rc = -EOPNOTSUPP;
1527                goto out;
1528        }
1529out:
1530        return rc;
1531}
1532
1533static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1534                                  const char *name, size_t name_size)
1535{
1536        int rc = 0;
1537
1538        (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1539        if (!(*copied_name)) {
1540                rc = -ENOMEM;
1541                goto out;
1542        }
1543        memcpy((void *)(*copied_name), (void *)name, name_size);
1544        (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1545                                                 * in printing out the
1546                                                 * string in debug
1547                                                 * messages */
1548        (*copied_name_size) = name_size;
1549out:
1550        return rc;
1551}
1552
1553/**
1554 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1555 * @key_tfm: Crypto context for key material, set by this function
1556 * @cipher_name: Name of the cipher
1557 * @key_size: Size of the key in bytes
1558 *
1559 * Returns zero on success. Any crypto_tfm structs allocated here
1560 * should be released by other functions, such as on a superblock put
1561 * event, regardless of whether this function succeeds for fails.
1562 */
1563static int
1564ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1565                            char *cipher_name, size_t *key_size)
1566{
1567        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1568        char *full_alg_name = NULL;
1569        int rc;
1570
1571        *key_tfm = NULL;
1572        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1573                rc = -EINVAL;
1574                printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1575                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1576                goto out;
1577        }
1578        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1579                                                    "ecb");
1580        if (rc)
1581                goto out;
1582        *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1583        if (IS_ERR(*key_tfm)) {
1584                rc = PTR_ERR(*key_tfm);
1585                printk(KERN_ERR "Unable to allocate crypto cipher with name "
1586                       "[%s]; rc = [%d]\n", full_alg_name, rc);
1587                goto out;
1588        }
1589        crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1590        if (*key_size == 0)
1591                *key_size = crypto_skcipher_max_keysize(*key_tfm);
1592        get_random_bytes(dummy_key, *key_size);
1593        rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1594        if (rc) {
1595                printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1596                       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1597                       rc);
1598                rc = -EINVAL;
1599                goto out;
1600        }
1601out:
1602        kfree(full_alg_name);
1603        return rc;
1604}
1605
1606struct kmem_cache *ecryptfs_key_tfm_cache;
1607static struct list_head key_tfm_list;
1608struct mutex key_tfm_list_mutex;
1609
1610int __init ecryptfs_init_crypto(void)
1611{
1612        mutex_init(&key_tfm_list_mutex);
1613        INIT_LIST_HEAD(&key_tfm_list);
1614        return 0;
1615}
1616
1617/**
1618 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1619 *
1620 * Called only at module unload time
1621 */
1622int ecryptfs_destroy_crypto(void)
1623{
1624        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1625
1626        mutex_lock(&key_tfm_list_mutex);
1627        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1628                                 key_tfm_list) {
1629                list_del(&key_tfm->key_tfm_list);
1630                crypto_free_skcipher(key_tfm->key_tfm);
1631                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1632        }
1633        mutex_unlock(&key_tfm_list_mutex);
1634        return 0;
1635}
1636
1637int
1638ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1639                         size_t key_size)
1640{
1641        struct ecryptfs_key_tfm *tmp_tfm;
1642        int rc = 0;
1643
1644        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1645
1646        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1647        if (key_tfm)
1648                (*key_tfm) = tmp_tfm;
1649        if (!tmp_tfm) {
1650                rc = -ENOMEM;
1651                goto out;
1652        }
1653        mutex_init(&tmp_tfm->key_tfm_mutex);
1654        strncpy(tmp_tfm->cipher_name, cipher_name,
1655                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1656        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1657        tmp_tfm->key_size = key_size;
1658        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1659                                         tmp_tfm->cipher_name,
1660                                         &tmp_tfm->key_size);
1661        if (rc) {
1662                printk(KERN_ERR "Error attempting to initialize key TFM "
1663                       "cipher with name = [%s]; rc = [%d]\n",
1664                       tmp_tfm->cipher_name, rc);
1665                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1666                if (key_tfm)
1667                        (*key_tfm) = NULL;
1668                goto out;
1669        }
1670        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1671out:
1672        return rc;
1673}
1674
1675/**
1676 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1677 * @cipher_name: the name of the cipher to search for
1678 * @key_tfm: set to corresponding tfm if found
1679 *
1680 * Searches for cached key_tfm matching @cipher_name
1681 * Must be called with &key_tfm_list_mutex held
1682 * Returns 1 if found, with @key_tfm set
1683 * Returns 0 if not found, with @key_tfm set to NULL
1684 */
1685int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1686{
1687        struct ecryptfs_key_tfm *tmp_key_tfm;
1688
1689        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1690
1691        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1692                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1693                        if (key_tfm)
1694                                (*key_tfm) = tmp_key_tfm;
1695                        return 1;
1696                }
1697        }
1698        if (key_tfm)
1699                (*key_tfm) = NULL;
1700        return 0;
1701}
1702
1703/**
1704 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1705 *
1706 * @tfm: set to cached tfm found, or new tfm created
1707 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1708 * @cipher_name: the name of the cipher to search for and/or add
1709 *
1710 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1711 * Searches for cached item first, and creates new if not found.
1712 * Returns 0 on success, non-zero if adding new cipher failed
1713 */
1714int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1715                                               struct mutex **tfm_mutex,
1716                                               char *cipher_name)
1717{
1718        struct ecryptfs_key_tfm *key_tfm;
1719        int rc = 0;
1720
1721        (*tfm) = NULL;
1722        (*tfm_mutex) = NULL;
1723
1724        mutex_lock(&key_tfm_list_mutex);
1725        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1726                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1727                if (rc) {
1728                        printk(KERN_ERR "Error adding new key_tfm to list; "
1729                                        "rc = [%d]\n", rc);
1730                        goto out;
1731                }
1732        }
1733        (*tfm) = key_tfm->key_tfm;
1734        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1735out:
1736        mutex_unlock(&key_tfm_list_mutex);
1737        return rc;
1738}
1739
1740/* 64 characters forming a 6-bit target field */
1741static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1742                                                 "EFGHIJKLMNOPQRST"
1743                                                 "UVWXYZabcdefghij"
1744                                                 "klmnopqrstuvwxyz");
1745
1746/* We could either offset on every reverse map or just pad some 0x00's
1747 * at the front here */
1748static const unsigned char filename_rev_map[256] = {
1749        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1750        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1751        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1752        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1753        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1754        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1755        0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1756        0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1757        0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1758        0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1759        0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1760        0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1761        0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1762        0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1763        0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1764        0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1765};
1766
1767/**
1768 * ecryptfs_encode_for_filename
1769 * @dst: Destination location for encoded filename
1770 * @dst_size: Size of the encoded filename in bytes
1771 * @src: Source location for the filename to encode
1772 * @src_size: Size of the source in bytes
1773 */
1774static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1775                                  unsigned char *src, size_t src_size)
1776{
1777        size_t num_blocks;
1778        size_t block_num = 0;
1779        size_t dst_offset = 0;
1780        unsigned char last_block[3];
1781
1782        if (src_size == 0) {
1783                (*dst_size) = 0;
1784                goto out;
1785        }
1786        num_blocks = (src_size / 3);
1787        if ((src_size % 3) == 0) {
1788                memcpy(last_block, (&src[src_size - 3]), 3);
1789        } else {
1790                num_blocks++;
1791                last_block[2] = 0x00;
1792                switch (src_size % 3) {
1793                case 1:
1794                        last_block[0] = src[src_size - 1];
1795                        last_block[1] = 0x00;
1796                        break;
1797                case 2:
1798                        last_block[0] = src[src_size - 2];
1799                        last_block[1] = src[src_size - 1];
1800                }
1801        }
1802        (*dst_size) = (num_blocks * 4);
1803        if (!dst)
1804                goto out;
1805        while (block_num < num_blocks) {
1806                unsigned char *src_block;
1807                unsigned char dst_block[4];
1808
1809                if (block_num == (num_blocks - 1))
1810                        src_block = last_block;
1811                else
1812                        src_block = &src[block_num * 3];
1813                dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1814                dst_block[1] = (((src_block[0] << 4) & 0x30)
1815                                | ((src_block[1] >> 4) & 0x0F));
1816                dst_block[2] = (((src_block[1] << 2) & 0x3C)
1817                                | ((src_block[2] >> 6) & 0x03));
1818                dst_block[3] = (src_block[2] & 0x3F);
1819                dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1820                dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1821                dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1822                dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1823                block_num++;
1824        }
1825out:
1826        return;
1827}
1828
1829static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1830{
1831        /* Not exact; conservatively long. Every block of 4
1832         * encoded characters decodes into a block of 3
1833         * decoded characters. This segment of code provides
1834         * the caller with the maximum amount of allocated
1835         * space that @dst will need to point to in a
1836         * subsequent call. */
1837        return ((encoded_size + 1) * 3) / 4;
1838}
1839
1840/**
1841 * ecryptfs_decode_from_filename
1842 * @dst: If NULL, this function only sets @dst_size and returns. If
1843 *       non-NULL, this function decodes the encoded octets in @src
1844 *       into the memory that @dst points to.
1845 * @dst_size: Set to the size of the decoded string.
1846 * @src: The encoded set of octets to decode.
1847 * @src_size: The size of the encoded set of octets to decode.
1848 */
1849static void
1850ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1851                              const unsigned char *src, size_t src_size)
1852{
1853        u8 current_bit_offset = 0;
1854        size_t src_byte_offset = 0;
1855        size_t dst_byte_offset = 0;
1856
1857        if (!dst) {
1858                (*dst_size) = ecryptfs_max_decoded_size(src_size);
1859                goto out;
1860        }
1861        while (src_byte_offset < src_size) {
1862                unsigned char src_byte =
1863                                filename_rev_map[(int)src[src_byte_offset]];
1864
1865                switch (current_bit_offset) {
1866                case 0:
1867                        dst[dst_byte_offset] = (src_byte << 2);
1868                        current_bit_offset = 6;
1869                        break;
1870                case 6:
1871                        dst[dst_byte_offset++] |= (src_byte >> 4);
1872                        dst[dst_byte_offset] = ((src_byte & 0xF)
1873                                                 << 4);
1874                        current_bit_offset = 4;
1875                        break;
1876                case 4:
1877                        dst[dst_byte_offset++] |= (src_byte >> 2);
1878                        dst[dst_byte_offset] = (src_byte << 6);
1879                        current_bit_offset = 2;
1880                        break;
1881                case 2:
1882                        dst[dst_byte_offset++] |= (src_byte);
1883                        current_bit_offset = 0;
1884                        break;
1885                }
1886                src_byte_offset++;
1887        }
1888        (*dst_size) = dst_byte_offset;
1889out:
1890        return;
1891}
1892
1893/**
1894 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1895 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1896 * @name: The plaintext name
1897 * @length: The length of the plaintext
1898 * @encoded_name: The encypted name
1899 *
1900 * Encrypts and encodes a filename into something that constitutes a
1901 * valid filename for a filesystem, with printable characters.
1902 *
1903 * We assume that we have a properly initialized crypto context,
1904 * pointed to by crypt_stat->tfm.
1905 *
1906 * Returns zero on success; non-zero on otherwise
1907 */
1908int ecryptfs_encrypt_and_encode_filename(
1909        char **encoded_name,
1910        size_t *encoded_name_size,
1911        struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1912        const char *name, size_t name_size)
1913{
1914        size_t encoded_name_no_prefix_size;
1915        int rc = 0;
1916
1917        (*encoded_name) = NULL;
1918        (*encoded_name_size) = 0;
1919        if (mount_crypt_stat && (mount_crypt_stat->flags
1920                                     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1921                struct ecryptfs_filename *filename;
1922
1923                filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1924                if (!filename) {
1925                        rc = -ENOMEM;
1926                        goto out;
1927                }
1928                filename->filename = (char *)name;
1929                filename->filename_size = name_size;
1930                rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1931                if (rc) {
1932                        printk(KERN_ERR "%s: Error attempting to encrypt "
1933                               "filename; rc = [%d]\n", __func__, rc);
1934                        kfree(filename);
1935                        goto out;
1936                }
1937                ecryptfs_encode_for_filename(
1938                        NULL, &encoded_name_no_prefix_size,
1939                        filename->encrypted_filename,
1940                        filename->encrypted_filename_size);
1941                if (mount_crypt_stat
1942                        && (mount_crypt_stat->flags
1943                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1944                        (*encoded_name_size) =
1945                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1946                                 + encoded_name_no_prefix_size);
1947                else
1948                        (*encoded_name_size) =
1949                                (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1950                                 + encoded_name_no_prefix_size);
1951                (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1952                if (!(*encoded_name)) {
1953                        rc = -ENOMEM;
1954                        kfree(filename->encrypted_filename);
1955                        kfree(filename);
1956                        goto out;
1957                }
1958                if (mount_crypt_stat
1959                        && (mount_crypt_stat->flags
1960                            & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1961                        memcpy((*encoded_name),
1962                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1963                               ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1964                        ecryptfs_encode_for_filename(
1965                            ((*encoded_name)
1966                             + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1967                            &encoded_name_no_prefix_size,
1968                            filename->encrypted_filename,
1969                            filename->encrypted_filename_size);
1970                        (*encoded_name_size) =
1971                                (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1972                                 + encoded_name_no_prefix_size);
1973                        (*encoded_name)[(*encoded_name_size)] = '\0';
1974                } else {
1975                        rc = -EOPNOTSUPP;
1976                }
1977                if (rc) {
1978                        printk(KERN_ERR "%s: Error attempting to encode "
1979                               "encrypted filename; rc = [%d]\n", __func__,
1980                               rc);
1981                        kfree((*encoded_name));
1982                        (*encoded_name) = NULL;
1983                        (*encoded_name_size) = 0;
1984                }
1985                kfree(filename->encrypted_filename);
1986                kfree(filename);
1987        } else {
1988                rc = ecryptfs_copy_filename(encoded_name,
1989                                            encoded_name_size,
1990                                            name, name_size);
1991        }
1992out:
1993        return rc;
1994}
1995
1996static bool is_dot_dotdot(const char *name, size_t name_size)
1997{
1998        if (name_size == 1 && name[0] == '.')
1999                return true;
2000        else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2001                return true;
2002
2003        return false;
2004}
2005
2006/**
2007 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2008 * @plaintext_name: The plaintext name
2009 * @plaintext_name_size: The plaintext name size
2010 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2011 * @name: The filename in cipher text
2012 * @name_size: The cipher text name size
2013 *
2014 * Decrypts and decodes the filename.
2015 *
2016 * Returns zero on error; non-zero otherwise
2017 */
2018int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2019                                         size_t *plaintext_name_size,
2020                                         struct super_block *sb,
2021                                         const char *name, size_t name_size)
2022{
2023        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2024                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2025        char *decoded_name;
2026        size_t decoded_name_size;
2027        size_t packet_size;
2028        int rc = 0;
2029
2030        if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2031            !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2032                if (is_dot_dotdot(name, name_size)) {
2033                        rc = ecryptfs_copy_filename(plaintext_name,
2034                                                    plaintext_name_size,
2035                                                    name, name_size);
2036                        goto out;
2037                }
2038
2039                if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2040                    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2041                            ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2042                        rc = -EINVAL;
2043                        goto out;
2044                }
2045
2046                name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2047                name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2048                ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2049                                              name, name_size);
2050                decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2051                if (!decoded_name) {
2052                        rc = -ENOMEM;
2053                        goto out;
2054                }
2055                ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2056                                              name, name_size);
2057                rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2058                                                  plaintext_name_size,
2059                                                  &packet_size,
2060                                                  mount_crypt_stat,
2061                                                  decoded_name,
2062                                                  decoded_name_size);
2063                if (rc) {
2064                        ecryptfs_printk(KERN_DEBUG,
2065                                        "%s: Could not parse tag 70 packet from filename\n",
2066                                        __func__);
2067                        goto out_free;
2068                }
2069        } else {
2070                rc = ecryptfs_copy_filename(plaintext_name,
2071                                            plaintext_name_size,
2072                                            name, name_size);
2073                goto out;
2074        }
2075out_free:
2076        kfree(decoded_name);
2077out:
2078        return rc;
2079}
2080
2081#define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2082
2083int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2084                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2085{
2086        struct crypto_skcipher *tfm;
2087        struct mutex *tfm_mutex;
2088        size_t cipher_blocksize;
2089        int rc;
2090
2091        if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2092                (*namelen) = lower_namelen;
2093                return 0;
2094        }
2095
2096        rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2097                        mount_crypt_stat->global_default_fn_cipher_name);
2098        if (unlikely(rc)) {
2099                (*namelen) = 0;
2100                return rc;
2101        }
2102
2103        mutex_lock(tfm_mutex);
2104        cipher_blocksize = crypto_skcipher_blocksize(tfm);
2105        mutex_unlock(tfm_mutex);
2106
2107        /* Return an exact amount for the common cases */
2108        if (lower_namelen == NAME_MAX
2109            && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2110                (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2111                return 0;
2112        }
2113
2114        /* Return a safe estimate for the uncommon cases */
2115        (*namelen) = lower_namelen;
2116        (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2117        /* Since this is the max decoded size, subtract 1 "decoded block" len */
2118        (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2119        (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2120        (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2121        /* Worst case is that the filename is padded nearly a full block size */
2122        (*namelen) -= cipher_blocksize - 1;
2123
2124        if ((*namelen) < 0)
2125                (*namelen) = 0;
2126
2127        return 0;
2128}
2129