linux/fs/ext4/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *      (jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  52                              struct ext4_inode_info *ei)
  53{
  54        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  55        __u32 csum;
  56        __u16 dummy_csum = 0;
  57        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  58        unsigned int csum_size = sizeof(dummy_csum);
  59
  60        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  61        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  62        offset += csum_size;
  63        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  64                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  65
  66        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  67                offset = offsetof(struct ext4_inode, i_checksum_hi);
  68                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  69                                   EXT4_GOOD_OLD_INODE_SIZE,
  70                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  71                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  72                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  73                                           csum_size);
  74                        offset += csum_size;
  75                }
  76                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  77                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  78        }
  79
  80        return csum;
  81}
  82
  83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  84                                  struct ext4_inode_info *ei)
  85{
  86        __u32 provided, calculated;
  87
  88        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  89            cpu_to_le32(EXT4_OS_LINUX) ||
  90            !ext4_has_metadata_csum(inode->i_sb))
  91                return 1;
  92
  93        provided = le16_to_cpu(raw->i_checksum_lo);
  94        calculated = ext4_inode_csum(inode, raw, ei);
  95        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  96            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  97                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  98        else
  99                calculated &= 0xFFFF;
 100
 101        return provided == calculated;
 102}
 103
 104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 105                                struct ext4_inode_info *ei)
 106{
 107        __u32 csum;
 108
 109        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 110            cpu_to_le32(EXT4_OS_LINUX) ||
 111            !ext4_has_metadata_csum(inode->i_sb))
 112                return;
 113
 114        csum = ext4_inode_csum(inode, raw, ei);
 115        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 116        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 117            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 118                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 119}
 120
 121static inline int ext4_begin_ordered_truncate(struct inode *inode,
 122                                              loff_t new_size)
 123{
 124        trace_ext4_begin_ordered_truncate(inode, new_size);
 125        /*
 126         * If jinode is zero, then we never opened the file for
 127         * writing, so there's no need to call
 128         * jbd2_journal_begin_ordered_truncate() since there's no
 129         * outstanding writes we need to flush.
 130         */
 131        if (!EXT4_I(inode)->jinode)
 132                return 0;
 133        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 134                                                   EXT4_I(inode)->jinode,
 135                                                   new_size);
 136}
 137
 138static void ext4_invalidatepage(struct page *page, unsigned int offset,
 139                                unsigned int length);
 140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143                                  int pextents);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 148 */
 149int ext4_inode_is_fast_symlink(struct inode *inode)
 150{
 151        if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 152                int ea_blocks = EXT4_I(inode)->i_file_acl ?
 153                                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 154
 155                if (ext4_has_inline_data(inode))
 156                        return 0;
 157
 158                return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 159        }
 160        return S_ISLNK(inode->i_mode) && inode->i_size &&
 161               (inode->i_size < EXT4_N_BLOCKS * 4);
 162}
 163
 164/*
 165 * Called at the last iput() if i_nlink is zero.
 166 */
 167void ext4_evict_inode(struct inode *inode)
 168{
 169        handle_t *handle;
 170        int err;
 171        /*
 172         * Credits for final inode cleanup and freeing:
 173         * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 174         * (xattr block freeing), bitmap, group descriptor (inode freeing)
 175         */
 176        int extra_credits = 6;
 177        struct ext4_xattr_inode_array *ea_inode_array = NULL;
 178
 179        trace_ext4_evict_inode(inode);
 180
 181        if (inode->i_nlink) {
 182                /*
 183                 * When journalling data dirty buffers are tracked only in the
 184                 * journal. So although mm thinks everything is clean and
 185                 * ready for reaping the inode might still have some pages to
 186                 * write in the running transaction or waiting to be
 187                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 188                 * (via truncate_inode_pages()) to discard these buffers can
 189                 * cause data loss. Also even if we did not discard these
 190                 * buffers, we would have no way to find them after the inode
 191                 * is reaped and thus user could see stale data if he tries to
 192                 * read them before the transaction is checkpointed. So be
 193                 * careful and force everything to disk here... We use
 194                 * ei->i_datasync_tid to store the newest transaction
 195                 * containing inode's data.
 196                 *
 197                 * Note that directories do not have this problem because they
 198                 * don't use page cache.
 199                 */
 200                if (inode->i_ino != EXT4_JOURNAL_INO &&
 201                    ext4_should_journal_data(inode) &&
 202                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 203                    inode->i_data.nrpages) {
 204                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 205                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 206
 207                        jbd2_complete_transaction(journal, commit_tid);
 208                        filemap_write_and_wait(&inode->i_data);
 209                }
 210                truncate_inode_pages_final(&inode->i_data);
 211
 212                goto no_delete;
 213        }
 214
 215        if (is_bad_inode(inode))
 216                goto no_delete;
 217        dquot_initialize(inode);
 218
 219        if (ext4_should_order_data(inode))
 220                ext4_begin_ordered_truncate(inode, 0);
 221        truncate_inode_pages_final(&inode->i_data);
 222
 223        /*
 224         * Protect us against freezing - iput() caller didn't have to have any
 225         * protection against it
 226         */
 227        sb_start_intwrite(inode->i_sb);
 228
 229        if (!IS_NOQUOTA(inode))
 230                extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 231
 232        /*
 233         * Block bitmap, group descriptor, and inode are accounted in both
 234         * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 235         */
 236        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 237                         ext4_blocks_for_truncate(inode) + extra_credits - 3);
 238        if (IS_ERR(handle)) {
 239                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 240                /*
 241                 * If we're going to skip the normal cleanup, we still need to
 242                 * make sure that the in-core orphan linked list is properly
 243                 * cleaned up.
 244                 */
 245                ext4_orphan_del(NULL, inode);
 246                sb_end_intwrite(inode->i_sb);
 247                goto no_delete;
 248        }
 249
 250        if (IS_SYNC(inode))
 251                ext4_handle_sync(handle);
 252
 253        /*
 254         * Set inode->i_size to 0 before calling ext4_truncate(). We need
 255         * special handling of symlinks here because i_size is used to
 256         * determine whether ext4_inode_info->i_data contains symlink data or
 257         * block mappings. Setting i_size to 0 will remove its fast symlink
 258         * status. Erase i_data so that it becomes a valid empty block map.
 259         */
 260        if (ext4_inode_is_fast_symlink(inode))
 261                memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 262        inode->i_size = 0;
 263        err = ext4_mark_inode_dirty(handle, inode);
 264        if (err) {
 265                ext4_warning(inode->i_sb,
 266                             "couldn't mark inode dirty (err %d)", err);
 267                goto stop_handle;
 268        }
 269        if (inode->i_blocks) {
 270                err = ext4_truncate(inode);
 271                if (err) {
 272                        ext4_error_err(inode->i_sb, -err,
 273                                       "couldn't truncate inode %lu (err %d)",
 274                                       inode->i_ino, err);
 275                        goto stop_handle;
 276                }
 277        }
 278
 279        /* Remove xattr references. */
 280        err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 281                                      extra_credits);
 282        if (err) {
 283                ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 284stop_handle:
 285                ext4_journal_stop(handle);
 286                ext4_orphan_del(NULL, inode);
 287                sb_end_intwrite(inode->i_sb);
 288                ext4_xattr_inode_array_free(ea_inode_array);
 289                goto no_delete;
 290        }
 291
 292        /*
 293         * Kill off the orphan record which ext4_truncate created.
 294         * AKPM: I think this can be inside the above `if'.
 295         * Note that ext4_orphan_del() has to be able to cope with the
 296         * deletion of a non-existent orphan - this is because we don't
 297         * know if ext4_truncate() actually created an orphan record.
 298         * (Well, we could do this if we need to, but heck - it works)
 299         */
 300        ext4_orphan_del(handle, inode);
 301        EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
 302
 303        /*
 304         * One subtle ordering requirement: if anything has gone wrong
 305         * (transaction abort, IO errors, whatever), then we can still
 306         * do these next steps (the fs will already have been marked as
 307         * having errors), but we can't free the inode if the mark_dirty
 308         * fails.
 309         */
 310        if (ext4_mark_inode_dirty(handle, inode))
 311                /* If that failed, just do the required in-core inode clear. */
 312                ext4_clear_inode(inode);
 313        else
 314                ext4_free_inode(handle, inode);
 315        ext4_journal_stop(handle);
 316        sb_end_intwrite(inode->i_sb);
 317        ext4_xattr_inode_array_free(ea_inode_array);
 318        return;
 319no_delete:
 320        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 321}
 322
 323#ifdef CONFIG_QUOTA
 324qsize_t *ext4_get_reserved_space(struct inode *inode)
 325{
 326        return &EXT4_I(inode)->i_reserved_quota;
 327}
 328#endif
 329
 330/*
 331 * Called with i_data_sem down, which is important since we can call
 332 * ext4_discard_preallocations() from here.
 333 */
 334void ext4_da_update_reserve_space(struct inode *inode,
 335                                        int used, int quota_claim)
 336{
 337        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 338        struct ext4_inode_info *ei = EXT4_I(inode);
 339
 340        spin_lock(&ei->i_block_reservation_lock);
 341        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 342        if (unlikely(used > ei->i_reserved_data_blocks)) {
 343                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 344                         "with only %d reserved data blocks",
 345                         __func__, inode->i_ino, used,
 346                         ei->i_reserved_data_blocks);
 347                WARN_ON(1);
 348                used = ei->i_reserved_data_blocks;
 349        }
 350
 351        /* Update per-inode reservations */
 352        ei->i_reserved_data_blocks -= used;
 353        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 354
 355        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 356
 357        /* Update quota subsystem for data blocks */
 358        if (quota_claim)
 359                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 360        else {
 361                /*
 362                 * We did fallocate with an offset that is already delayed
 363                 * allocated. So on delayed allocated writeback we should
 364                 * not re-claim the quota for fallocated blocks.
 365                 */
 366                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 367        }
 368
 369        /*
 370         * If we have done all the pending block allocations and if
 371         * there aren't any writers on the inode, we can discard the
 372         * inode's preallocations.
 373         */
 374        if ((ei->i_reserved_data_blocks == 0) &&
 375            !inode_is_open_for_write(inode))
 376                ext4_discard_preallocations(inode);
 377}
 378
 379static int __check_block_validity(struct inode *inode, const char *func,
 380                                unsigned int line,
 381                                struct ext4_map_blocks *map)
 382{
 383        if (ext4_has_feature_journal(inode->i_sb) &&
 384            (inode->i_ino ==
 385             le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 386                return 0;
 387        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 388                                   map->m_len)) {
 389                ext4_error_inode(inode, func, line, map->m_pblk,
 390                                 "lblock %lu mapped to illegal pblock %llu "
 391                                 "(length %d)", (unsigned long) map->m_lblk,
 392                                 map->m_pblk, map->m_len);
 393                return -EFSCORRUPTED;
 394        }
 395        return 0;
 396}
 397
 398int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 399                       ext4_lblk_t len)
 400{
 401        int ret;
 402
 403        if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 404                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 405
 406        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 407        if (ret > 0)
 408                ret = 0;
 409
 410        return ret;
 411}
 412
 413#define check_block_validity(inode, map)        \
 414        __check_block_validity((inode), __func__, __LINE__, (map))
 415
 416#ifdef ES_AGGRESSIVE_TEST
 417static void ext4_map_blocks_es_recheck(handle_t *handle,
 418                                       struct inode *inode,
 419                                       struct ext4_map_blocks *es_map,
 420                                       struct ext4_map_blocks *map,
 421                                       int flags)
 422{
 423        int retval;
 424
 425        map->m_flags = 0;
 426        /*
 427         * There is a race window that the result is not the same.
 428         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 429         * is that we lookup a block mapping in extent status tree with
 430         * out taking i_data_sem.  So at the time the unwritten extent
 431         * could be converted.
 432         */
 433        down_read(&EXT4_I(inode)->i_data_sem);
 434        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 435                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 436                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 437        } else {
 438                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 439                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 440        }
 441        up_read((&EXT4_I(inode)->i_data_sem));
 442
 443        /*
 444         * We don't check m_len because extent will be collpased in status
 445         * tree.  So the m_len might not equal.
 446         */
 447        if (es_map->m_lblk != map->m_lblk ||
 448            es_map->m_flags != map->m_flags ||
 449            es_map->m_pblk != map->m_pblk) {
 450                printk("ES cache assertion failed for inode: %lu "
 451                       "es_cached ex [%d/%d/%llu/%x] != "
 452                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 453                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 454                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 455                       map->m_len, map->m_pblk, map->m_flags,
 456                       retval, flags);
 457        }
 458}
 459#endif /* ES_AGGRESSIVE_TEST */
 460
 461/*
 462 * The ext4_map_blocks() function tries to look up the requested blocks,
 463 * and returns if the blocks are already mapped.
 464 *
 465 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 466 * and store the allocated blocks in the result buffer head and mark it
 467 * mapped.
 468 *
 469 * If file type is extents based, it will call ext4_ext_map_blocks(),
 470 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 471 * based files
 472 *
 473 * On success, it returns the number of blocks being mapped or allocated.  if
 474 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 475 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 476 *
 477 * It returns 0 if plain look up failed (blocks have not been allocated), in
 478 * that case, @map is returned as unmapped but we still do fill map->m_len to
 479 * indicate the length of a hole starting at map->m_lblk.
 480 *
 481 * It returns the error in case of allocation failure.
 482 */
 483int ext4_map_blocks(handle_t *handle, struct inode *inode,
 484                    struct ext4_map_blocks *map, int flags)
 485{
 486        struct extent_status es;
 487        int retval;
 488        int ret = 0;
 489#ifdef ES_AGGRESSIVE_TEST
 490        struct ext4_map_blocks orig_map;
 491
 492        memcpy(&orig_map, map, sizeof(*map));
 493#endif
 494
 495        map->m_flags = 0;
 496        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 497                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 498                  (unsigned long) map->m_lblk);
 499
 500        /*
 501         * ext4_map_blocks returns an int, and m_len is an unsigned int
 502         */
 503        if (unlikely(map->m_len > INT_MAX))
 504                map->m_len = INT_MAX;
 505
 506        /* We can handle the block number less than EXT_MAX_BLOCKS */
 507        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 508                return -EFSCORRUPTED;
 509
 510        /* Lookup extent status tree firstly */
 511        if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 512                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 513                        map->m_pblk = ext4_es_pblock(&es) +
 514                                        map->m_lblk - es.es_lblk;
 515                        map->m_flags |= ext4_es_is_written(&es) ?
 516                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 517                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 518                        if (retval > map->m_len)
 519                                retval = map->m_len;
 520                        map->m_len = retval;
 521                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 522                        map->m_pblk = 0;
 523                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 524                        if (retval > map->m_len)
 525                                retval = map->m_len;
 526                        map->m_len = retval;
 527                        retval = 0;
 528                } else {
 529                        BUG();
 530                }
 531#ifdef ES_AGGRESSIVE_TEST
 532                ext4_map_blocks_es_recheck(handle, inode, map,
 533                                           &orig_map, flags);
 534#endif
 535                goto found;
 536        }
 537
 538        /*
 539         * Try to see if we can get the block without requesting a new
 540         * file system block.
 541         */
 542        down_read(&EXT4_I(inode)->i_data_sem);
 543        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 544                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 545                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 546        } else {
 547                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 548                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 549        }
 550        if (retval > 0) {
 551                unsigned int status;
 552
 553                if (unlikely(retval != map->m_len)) {
 554                        ext4_warning(inode->i_sb,
 555                                     "ES len assertion failed for inode "
 556                                     "%lu: retval %d != map->m_len %d",
 557                                     inode->i_ino, retval, map->m_len);
 558                        WARN_ON(1);
 559                }
 560
 561                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 562                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 563                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 564                    !(status & EXTENT_STATUS_WRITTEN) &&
 565                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 566                                       map->m_lblk + map->m_len - 1))
 567                        status |= EXTENT_STATUS_DELAYED;
 568                ret = ext4_es_insert_extent(inode, map->m_lblk,
 569                                            map->m_len, map->m_pblk, status);
 570                if (ret < 0)
 571                        retval = ret;
 572        }
 573        up_read((&EXT4_I(inode)->i_data_sem));
 574
 575found:
 576        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 577                ret = check_block_validity(inode, map);
 578                if (ret != 0)
 579                        return ret;
 580        }
 581
 582        /* If it is only a block(s) look up */
 583        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 584                return retval;
 585
 586        /*
 587         * Returns if the blocks have already allocated
 588         *
 589         * Note that if blocks have been preallocated
 590         * ext4_ext_get_block() returns the create = 0
 591         * with buffer head unmapped.
 592         */
 593        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 594                /*
 595                 * If we need to convert extent to unwritten
 596                 * we continue and do the actual work in
 597                 * ext4_ext_map_blocks()
 598                 */
 599                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 600                        return retval;
 601
 602        /*
 603         * Here we clear m_flags because after allocating an new extent,
 604         * it will be set again.
 605         */
 606        map->m_flags &= ~EXT4_MAP_FLAGS;
 607
 608        /*
 609         * New blocks allocate and/or writing to unwritten extent
 610         * will possibly result in updating i_data, so we take
 611         * the write lock of i_data_sem, and call get_block()
 612         * with create == 1 flag.
 613         */
 614        down_write(&EXT4_I(inode)->i_data_sem);
 615
 616        /*
 617         * We need to check for EXT4 here because migrate
 618         * could have changed the inode type in between
 619         */
 620        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 621                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 622        } else {
 623                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 624
 625                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 626                        /*
 627                         * We allocated new blocks which will result in
 628                         * i_data's format changing.  Force the migrate
 629                         * to fail by clearing migrate flags
 630                         */
 631                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 632                }
 633
 634                /*
 635                 * Update reserved blocks/metadata blocks after successful
 636                 * block allocation which had been deferred till now. We don't
 637                 * support fallocate for non extent files. So we can update
 638                 * reserve space here.
 639                 */
 640                if ((retval > 0) &&
 641                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 642                        ext4_da_update_reserve_space(inode, retval, 1);
 643        }
 644
 645        if (retval > 0) {
 646                unsigned int status;
 647
 648                if (unlikely(retval != map->m_len)) {
 649                        ext4_warning(inode->i_sb,
 650                                     "ES len assertion failed for inode "
 651                                     "%lu: retval %d != map->m_len %d",
 652                                     inode->i_ino, retval, map->m_len);
 653                        WARN_ON(1);
 654                }
 655
 656                /*
 657                 * We have to zeroout blocks before inserting them into extent
 658                 * status tree. Otherwise someone could look them up there and
 659                 * use them before they are really zeroed. We also have to
 660                 * unmap metadata before zeroing as otherwise writeback can
 661                 * overwrite zeros with stale data from block device.
 662                 */
 663                if (flags & EXT4_GET_BLOCKS_ZERO &&
 664                    map->m_flags & EXT4_MAP_MAPPED &&
 665                    map->m_flags & EXT4_MAP_NEW) {
 666                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 667                                                 map->m_pblk, map->m_len);
 668                        if (ret) {
 669                                retval = ret;
 670                                goto out_sem;
 671                        }
 672                }
 673
 674                /*
 675                 * If the extent has been zeroed out, we don't need to update
 676                 * extent status tree.
 677                 */
 678                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 679                    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 680                        if (ext4_es_is_written(&es))
 681                                goto out_sem;
 682                }
 683                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 684                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 685                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 686                    !(status & EXTENT_STATUS_WRITTEN) &&
 687                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 688                                       map->m_lblk + map->m_len - 1))
 689                        status |= EXTENT_STATUS_DELAYED;
 690                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 691                                            map->m_pblk, status);
 692                if (ret < 0) {
 693                        retval = ret;
 694                        goto out_sem;
 695                }
 696        }
 697
 698out_sem:
 699        up_write((&EXT4_I(inode)->i_data_sem));
 700        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 701                ret = check_block_validity(inode, map);
 702                if (ret != 0)
 703                        return ret;
 704
 705                /*
 706                 * Inodes with freshly allocated blocks where contents will be
 707                 * visible after transaction commit must be on transaction's
 708                 * ordered data list.
 709                 */
 710                if (map->m_flags & EXT4_MAP_NEW &&
 711                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 712                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 713                    !ext4_is_quota_file(inode) &&
 714                    ext4_should_order_data(inode)) {
 715                        loff_t start_byte =
 716                                (loff_t)map->m_lblk << inode->i_blkbits;
 717                        loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 718
 719                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 720                                ret = ext4_jbd2_inode_add_wait(handle, inode,
 721                                                start_byte, length);
 722                        else
 723                                ret = ext4_jbd2_inode_add_write(handle, inode,
 724                                                start_byte, length);
 725                        if (ret)
 726                                return ret;
 727                }
 728        }
 729        return retval;
 730}
 731
 732/*
 733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 734 * we have to be careful as someone else may be manipulating b_state as well.
 735 */
 736static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 737{
 738        unsigned long old_state;
 739        unsigned long new_state;
 740
 741        flags &= EXT4_MAP_FLAGS;
 742
 743        /* Dummy buffer_head? Set non-atomically. */
 744        if (!bh->b_page) {
 745                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 746                return;
 747        }
 748        /*
 749         * Someone else may be modifying b_state. Be careful! This is ugly but
 750         * once we get rid of using bh as a container for mapping information
 751         * to pass to / from get_block functions, this can go away.
 752         */
 753        do {
 754                old_state = READ_ONCE(bh->b_state);
 755                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 756        } while (unlikely(
 757                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 758}
 759
 760static int _ext4_get_block(struct inode *inode, sector_t iblock,
 761                           struct buffer_head *bh, int flags)
 762{
 763        struct ext4_map_blocks map;
 764        int ret = 0;
 765
 766        if (ext4_has_inline_data(inode))
 767                return -ERANGE;
 768
 769        map.m_lblk = iblock;
 770        map.m_len = bh->b_size >> inode->i_blkbits;
 771
 772        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 773                              flags);
 774        if (ret > 0) {
 775                map_bh(bh, inode->i_sb, map.m_pblk);
 776                ext4_update_bh_state(bh, map.m_flags);
 777                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 778                ret = 0;
 779        } else if (ret == 0) {
 780                /* hole case, need to fill in bh->b_size */
 781                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 782        }
 783        return ret;
 784}
 785
 786int ext4_get_block(struct inode *inode, sector_t iblock,
 787                   struct buffer_head *bh, int create)
 788{
 789        return _ext4_get_block(inode, iblock, bh,
 790                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 791}
 792
 793/*
 794 * Get block function used when preparing for buffered write if we require
 795 * creating an unwritten extent if blocks haven't been allocated.  The extent
 796 * will be converted to written after the IO is complete.
 797 */
 798int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 799                             struct buffer_head *bh_result, int create)
 800{
 801        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 802                   inode->i_ino, create);
 803        return _ext4_get_block(inode, iblock, bh_result,
 804                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 805}
 806
 807/* Maximum number of blocks we map for direct IO at once. */
 808#define DIO_MAX_BLOCKS 4096
 809
 810/*
 811 * `handle' can be NULL if create is zero
 812 */
 813struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 814                                ext4_lblk_t block, int map_flags)
 815{
 816        struct ext4_map_blocks map;
 817        struct buffer_head *bh;
 818        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 819        int err;
 820
 821        J_ASSERT(handle != NULL || create == 0);
 822
 823        map.m_lblk = block;
 824        map.m_len = 1;
 825        err = ext4_map_blocks(handle, inode, &map, map_flags);
 826
 827        if (err == 0)
 828                return create ? ERR_PTR(-ENOSPC) : NULL;
 829        if (err < 0)
 830                return ERR_PTR(err);
 831
 832        bh = sb_getblk(inode->i_sb, map.m_pblk);
 833        if (unlikely(!bh))
 834                return ERR_PTR(-ENOMEM);
 835        if (map.m_flags & EXT4_MAP_NEW) {
 836                J_ASSERT(create != 0);
 837                J_ASSERT(handle != NULL);
 838
 839                /*
 840                 * Now that we do not always journal data, we should
 841                 * keep in mind whether this should always journal the
 842                 * new buffer as metadata.  For now, regular file
 843                 * writes use ext4_get_block instead, so it's not a
 844                 * problem.
 845                 */
 846                lock_buffer(bh);
 847                BUFFER_TRACE(bh, "call get_create_access");
 848                err = ext4_journal_get_create_access(handle, bh);
 849                if (unlikely(err)) {
 850                        unlock_buffer(bh);
 851                        goto errout;
 852                }
 853                if (!buffer_uptodate(bh)) {
 854                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 855                        set_buffer_uptodate(bh);
 856                }
 857                unlock_buffer(bh);
 858                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 859                err = ext4_handle_dirty_metadata(handle, inode, bh);
 860                if (unlikely(err))
 861                        goto errout;
 862        } else
 863                BUFFER_TRACE(bh, "not a new buffer");
 864        return bh;
 865errout:
 866        brelse(bh);
 867        return ERR_PTR(err);
 868}
 869
 870struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 871                               ext4_lblk_t block, int map_flags)
 872{
 873        struct buffer_head *bh;
 874
 875        bh = ext4_getblk(handle, inode, block, map_flags);
 876        if (IS_ERR(bh))
 877                return bh;
 878        if (!bh || ext4_buffer_uptodate(bh))
 879                return bh;
 880        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
 881        wait_on_buffer(bh);
 882        if (buffer_uptodate(bh))
 883                return bh;
 884        put_bh(bh);
 885        return ERR_PTR(-EIO);
 886}
 887
 888/* Read a contiguous batch of blocks. */
 889int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 890                     bool wait, struct buffer_head **bhs)
 891{
 892        int i, err;
 893
 894        for (i = 0; i < bh_count; i++) {
 895                bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 896                if (IS_ERR(bhs[i])) {
 897                        err = PTR_ERR(bhs[i]);
 898                        bh_count = i;
 899                        goto out_brelse;
 900                }
 901        }
 902
 903        for (i = 0; i < bh_count; i++)
 904                /* Note that NULL bhs[i] is valid because of holes. */
 905                if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 906                        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
 907                                    &bhs[i]);
 908
 909        if (!wait)
 910                return 0;
 911
 912        for (i = 0; i < bh_count; i++)
 913                if (bhs[i])
 914                        wait_on_buffer(bhs[i]);
 915
 916        for (i = 0; i < bh_count; i++) {
 917                if (bhs[i] && !buffer_uptodate(bhs[i])) {
 918                        err = -EIO;
 919                        goto out_brelse;
 920                }
 921        }
 922        return 0;
 923
 924out_brelse:
 925        for (i = 0; i < bh_count; i++) {
 926                brelse(bhs[i]);
 927                bhs[i] = NULL;
 928        }
 929        return err;
 930}
 931
 932int ext4_walk_page_buffers(handle_t *handle,
 933                           struct buffer_head *head,
 934                           unsigned from,
 935                           unsigned to,
 936                           int *partial,
 937                           int (*fn)(handle_t *handle,
 938                                     struct buffer_head *bh))
 939{
 940        struct buffer_head *bh;
 941        unsigned block_start, block_end;
 942        unsigned blocksize = head->b_size;
 943        int err, ret = 0;
 944        struct buffer_head *next;
 945
 946        for (bh = head, block_start = 0;
 947             ret == 0 && (bh != head || !block_start);
 948             block_start = block_end, bh = next) {
 949                next = bh->b_this_page;
 950                block_end = block_start + blocksize;
 951                if (block_end <= from || block_start >= to) {
 952                        if (partial && !buffer_uptodate(bh))
 953                                *partial = 1;
 954                        continue;
 955                }
 956                err = (*fn)(handle, bh);
 957                if (!ret)
 958                        ret = err;
 959        }
 960        return ret;
 961}
 962
 963/*
 964 * To preserve ordering, it is essential that the hole instantiation and
 965 * the data write be encapsulated in a single transaction.  We cannot
 966 * close off a transaction and start a new one between the ext4_get_block()
 967 * and the commit_write().  So doing the jbd2_journal_start at the start of
 968 * prepare_write() is the right place.
 969 *
 970 * Also, this function can nest inside ext4_writepage().  In that case, we
 971 * *know* that ext4_writepage() has generated enough buffer credits to do the
 972 * whole page.  So we won't block on the journal in that case, which is good,
 973 * because the caller may be PF_MEMALLOC.
 974 *
 975 * By accident, ext4 can be reentered when a transaction is open via
 976 * quota file writes.  If we were to commit the transaction while thus
 977 * reentered, there can be a deadlock - we would be holding a quota
 978 * lock, and the commit would never complete if another thread had a
 979 * transaction open and was blocking on the quota lock - a ranking
 980 * violation.
 981 *
 982 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 983 * will _not_ run commit under these circumstances because handle->h_ref
 984 * is elevated.  We'll still have enough credits for the tiny quotafile
 985 * write.
 986 */
 987int do_journal_get_write_access(handle_t *handle,
 988                                struct buffer_head *bh)
 989{
 990        int dirty = buffer_dirty(bh);
 991        int ret;
 992
 993        if (!buffer_mapped(bh) || buffer_freed(bh))
 994                return 0;
 995        /*
 996         * __block_write_begin() could have dirtied some buffers. Clean
 997         * the dirty bit as jbd2_journal_get_write_access() could complain
 998         * otherwise about fs integrity issues. Setting of the dirty bit
 999         * by __block_write_begin() isn't a real problem here as we clear
1000         * the bit before releasing a page lock and thus writeback cannot
1001         * ever write the buffer.
1002         */
1003        if (dirty)
1004                clear_buffer_dirty(bh);
1005        BUFFER_TRACE(bh, "get write access");
1006        ret = ext4_journal_get_write_access(handle, bh);
1007        if (!ret && dirty)
1008                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1009        return ret;
1010}
1011
1012#ifdef CONFIG_FS_ENCRYPTION
1013static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1014                                  get_block_t *get_block)
1015{
1016        unsigned from = pos & (PAGE_SIZE - 1);
1017        unsigned to = from + len;
1018        struct inode *inode = page->mapping->host;
1019        unsigned block_start, block_end;
1020        sector_t block;
1021        int err = 0;
1022        unsigned blocksize = inode->i_sb->s_blocksize;
1023        unsigned bbits;
1024        struct buffer_head *bh, *head, *wait[2];
1025        int nr_wait = 0;
1026        int i;
1027
1028        BUG_ON(!PageLocked(page));
1029        BUG_ON(from > PAGE_SIZE);
1030        BUG_ON(to > PAGE_SIZE);
1031        BUG_ON(from > to);
1032
1033        if (!page_has_buffers(page))
1034                create_empty_buffers(page, blocksize, 0);
1035        head = page_buffers(page);
1036        bbits = ilog2(blocksize);
1037        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1038
1039        for (bh = head, block_start = 0; bh != head || !block_start;
1040            block++, block_start = block_end, bh = bh->b_this_page) {
1041                block_end = block_start + blocksize;
1042                if (block_end <= from || block_start >= to) {
1043                        if (PageUptodate(page)) {
1044                                if (!buffer_uptodate(bh))
1045                                        set_buffer_uptodate(bh);
1046                        }
1047                        continue;
1048                }
1049                if (buffer_new(bh))
1050                        clear_buffer_new(bh);
1051                if (!buffer_mapped(bh)) {
1052                        WARN_ON(bh->b_size != blocksize);
1053                        err = get_block(inode, block, bh, 1);
1054                        if (err)
1055                                break;
1056                        if (buffer_new(bh)) {
1057                                if (PageUptodate(page)) {
1058                                        clear_buffer_new(bh);
1059                                        set_buffer_uptodate(bh);
1060                                        mark_buffer_dirty(bh);
1061                                        continue;
1062                                }
1063                                if (block_end > to || block_start < from)
1064                                        zero_user_segments(page, to, block_end,
1065                                                           block_start, from);
1066                                continue;
1067                        }
1068                }
1069                if (PageUptodate(page)) {
1070                        if (!buffer_uptodate(bh))
1071                                set_buffer_uptodate(bh);
1072                        continue;
1073                }
1074                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1075                    !buffer_unwritten(bh) &&
1076                    (block_start < from || block_end > to)) {
1077                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1078                        wait[nr_wait++] = bh;
1079                }
1080        }
1081        /*
1082         * If we issued read requests, let them complete.
1083         */
1084        for (i = 0; i < nr_wait; i++) {
1085                wait_on_buffer(wait[i]);
1086                if (!buffer_uptodate(wait[i]))
1087                        err = -EIO;
1088        }
1089        if (unlikely(err)) {
1090                page_zero_new_buffers(page, from, to);
1091        } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1092                for (i = 0; i < nr_wait; i++) {
1093                        int err2;
1094
1095                        err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1096                                                                bh_offset(wait[i]));
1097                        if (err2) {
1098                                clear_buffer_uptodate(wait[i]);
1099                                err = err2;
1100                        }
1101                }
1102        }
1103
1104        return err;
1105}
1106#endif
1107
1108static int ext4_write_begin(struct file *file, struct address_space *mapping,
1109                            loff_t pos, unsigned len, unsigned flags,
1110                            struct page **pagep, void **fsdata)
1111{
1112        struct inode *inode = mapping->host;
1113        int ret, needed_blocks;
1114        handle_t *handle;
1115        int retries = 0;
1116        struct page *page;
1117        pgoff_t index;
1118        unsigned from, to;
1119
1120        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1121                return -EIO;
1122
1123        trace_ext4_write_begin(inode, pos, len, flags);
1124        /*
1125         * Reserve one block more for addition to orphan list in case
1126         * we allocate blocks but write fails for some reason
1127         */
1128        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1129        index = pos >> PAGE_SHIFT;
1130        from = pos & (PAGE_SIZE - 1);
1131        to = from + len;
1132
1133        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1134                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1135                                                    flags, pagep);
1136                if (ret < 0)
1137                        return ret;
1138                if (ret == 1)
1139                        return 0;
1140        }
1141
1142        /*
1143         * grab_cache_page_write_begin() can take a long time if the
1144         * system is thrashing due to memory pressure, or if the page
1145         * is being written back.  So grab it first before we start
1146         * the transaction handle.  This also allows us to allocate
1147         * the page (if needed) without using GFP_NOFS.
1148         */
1149retry_grab:
1150        page = grab_cache_page_write_begin(mapping, index, flags);
1151        if (!page)
1152                return -ENOMEM;
1153        unlock_page(page);
1154
1155retry_journal:
1156        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1157        if (IS_ERR(handle)) {
1158                put_page(page);
1159                return PTR_ERR(handle);
1160        }
1161
1162        lock_page(page);
1163        if (page->mapping != mapping) {
1164                /* The page got truncated from under us */
1165                unlock_page(page);
1166                put_page(page);
1167                ext4_journal_stop(handle);
1168                goto retry_grab;
1169        }
1170        /* In case writeback began while the page was unlocked */
1171        wait_for_stable_page(page);
1172
1173#ifdef CONFIG_FS_ENCRYPTION
1174        if (ext4_should_dioread_nolock(inode))
1175                ret = ext4_block_write_begin(page, pos, len,
1176                                             ext4_get_block_unwritten);
1177        else
1178                ret = ext4_block_write_begin(page, pos, len,
1179                                             ext4_get_block);
1180#else
1181        if (ext4_should_dioread_nolock(inode))
1182                ret = __block_write_begin(page, pos, len,
1183                                          ext4_get_block_unwritten);
1184        else
1185                ret = __block_write_begin(page, pos, len, ext4_get_block);
1186#endif
1187        if (!ret && ext4_should_journal_data(inode)) {
1188                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1189                                             from, to, NULL,
1190                                             do_journal_get_write_access);
1191        }
1192
1193        if (ret) {
1194                bool extended = (pos + len > inode->i_size) &&
1195                                !ext4_verity_in_progress(inode);
1196
1197                unlock_page(page);
1198                /*
1199                 * __block_write_begin may have instantiated a few blocks
1200                 * outside i_size.  Trim these off again. Don't need
1201                 * i_size_read because we hold i_mutex.
1202                 *
1203                 * Add inode to orphan list in case we crash before
1204                 * truncate finishes
1205                 */
1206                if (extended && ext4_can_truncate(inode))
1207                        ext4_orphan_add(handle, inode);
1208
1209                ext4_journal_stop(handle);
1210                if (extended) {
1211                        ext4_truncate_failed_write(inode);
1212                        /*
1213                         * If truncate failed early the inode might
1214                         * still be on the orphan list; we need to
1215                         * make sure the inode is removed from the
1216                         * orphan list in that case.
1217                         */
1218                        if (inode->i_nlink)
1219                                ext4_orphan_del(NULL, inode);
1220                }
1221
1222                if (ret == -ENOSPC &&
1223                    ext4_should_retry_alloc(inode->i_sb, &retries))
1224                        goto retry_journal;
1225                put_page(page);
1226                return ret;
1227        }
1228        *pagep = page;
1229        return ret;
1230}
1231
1232/* For write_end() in data=journal mode */
1233static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1234{
1235        int ret;
1236        if (!buffer_mapped(bh) || buffer_freed(bh))
1237                return 0;
1238        set_buffer_uptodate(bh);
1239        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1240        clear_buffer_meta(bh);
1241        clear_buffer_prio(bh);
1242        return ret;
1243}
1244
1245/*
1246 * We need to pick up the new inode size which generic_commit_write gave us
1247 * `file' can be NULL - eg, when called from page_symlink().
1248 *
1249 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1250 * buffers are managed internally.
1251 */
1252static int ext4_write_end(struct file *file,
1253                          struct address_space *mapping,
1254                          loff_t pos, unsigned len, unsigned copied,
1255                          struct page *page, void *fsdata)
1256{
1257        handle_t *handle = ext4_journal_current_handle();
1258        struct inode *inode = mapping->host;
1259        loff_t old_size = inode->i_size;
1260        int ret = 0, ret2;
1261        int i_size_changed = 0;
1262        int inline_data = ext4_has_inline_data(inode);
1263        bool verity = ext4_verity_in_progress(inode);
1264
1265        trace_ext4_write_end(inode, pos, len, copied);
1266        if (inline_data) {
1267                ret = ext4_write_inline_data_end(inode, pos, len,
1268                                                 copied, page);
1269                if (ret < 0) {
1270                        unlock_page(page);
1271                        put_page(page);
1272                        goto errout;
1273                }
1274                copied = ret;
1275        } else
1276                copied = block_write_end(file, mapping, pos,
1277                                         len, copied, page, fsdata);
1278        /*
1279         * it's important to update i_size while still holding page lock:
1280         * page writeout could otherwise come in and zero beyond i_size.
1281         *
1282         * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1283         * blocks are being written past EOF, so skip the i_size update.
1284         */
1285        if (!verity)
1286                i_size_changed = ext4_update_inode_size(inode, pos + copied);
1287        unlock_page(page);
1288        put_page(page);
1289
1290        if (old_size < pos && !verity)
1291                pagecache_isize_extended(inode, old_size, pos);
1292        /*
1293         * Don't mark the inode dirty under page lock. First, it unnecessarily
1294         * makes the holding time of page lock longer. Second, it forces lock
1295         * ordering of page lock and transaction start for journaling
1296         * filesystems.
1297         */
1298        if (i_size_changed || inline_data)
1299                ext4_mark_inode_dirty(handle, inode);
1300
1301        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1302                /* if we have allocated more blocks and copied
1303                 * less. We will have blocks allocated outside
1304                 * inode->i_size. So truncate them
1305                 */
1306                ext4_orphan_add(handle, inode);
1307errout:
1308        ret2 = ext4_journal_stop(handle);
1309        if (!ret)
1310                ret = ret2;
1311
1312        if (pos + len > inode->i_size && !verity) {
1313                ext4_truncate_failed_write(inode);
1314                /*
1315                 * If truncate failed early the inode might still be
1316                 * on the orphan list; we need to make sure the inode
1317                 * is removed from the orphan list in that case.
1318                 */
1319                if (inode->i_nlink)
1320                        ext4_orphan_del(NULL, inode);
1321        }
1322
1323        return ret ? ret : copied;
1324}
1325
1326/*
1327 * This is a private version of page_zero_new_buffers() which doesn't
1328 * set the buffer to be dirty, since in data=journalled mode we need
1329 * to call ext4_handle_dirty_metadata() instead.
1330 */
1331static void ext4_journalled_zero_new_buffers(handle_t *handle,
1332                                            struct page *page,
1333                                            unsigned from, unsigned to)
1334{
1335        unsigned int block_start = 0, block_end;
1336        struct buffer_head *head, *bh;
1337
1338        bh = head = page_buffers(page);
1339        do {
1340                block_end = block_start + bh->b_size;
1341                if (buffer_new(bh)) {
1342                        if (block_end > from && block_start < to) {
1343                                if (!PageUptodate(page)) {
1344                                        unsigned start, size;
1345
1346                                        start = max(from, block_start);
1347                                        size = min(to, block_end) - start;
1348
1349                                        zero_user(page, start, size);
1350                                        write_end_fn(handle, bh);
1351                                }
1352                                clear_buffer_new(bh);
1353                        }
1354                }
1355                block_start = block_end;
1356                bh = bh->b_this_page;
1357        } while (bh != head);
1358}
1359
1360static int ext4_journalled_write_end(struct file *file,
1361                                     struct address_space *mapping,
1362                                     loff_t pos, unsigned len, unsigned copied,
1363                                     struct page *page, void *fsdata)
1364{
1365        handle_t *handle = ext4_journal_current_handle();
1366        struct inode *inode = mapping->host;
1367        loff_t old_size = inode->i_size;
1368        int ret = 0, ret2;
1369        int partial = 0;
1370        unsigned from, to;
1371        int size_changed = 0;
1372        int inline_data = ext4_has_inline_data(inode);
1373        bool verity = ext4_verity_in_progress(inode);
1374
1375        trace_ext4_journalled_write_end(inode, pos, len, copied);
1376        from = pos & (PAGE_SIZE - 1);
1377        to = from + len;
1378
1379        BUG_ON(!ext4_handle_valid(handle));
1380
1381        if (inline_data) {
1382                ret = ext4_write_inline_data_end(inode, pos, len,
1383                                                 copied, page);
1384                if (ret < 0) {
1385                        unlock_page(page);
1386                        put_page(page);
1387                        goto errout;
1388                }
1389                copied = ret;
1390        } else if (unlikely(copied < len) && !PageUptodate(page)) {
1391                copied = 0;
1392                ext4_journalled_zero_new_buffers(handle, page, from, to);
1393        } else {
1394                if (unlikely(copied < len))
1395                        ext4_journalled_zero_new_buffers(handle, page,
1396                                                         from + copied, to);
1397                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1398                                             from + copied, &partial,
1399                                             write_end_fn);
1400                if (!partial)
1401                        SetPageUptodate(page);
1402        }
1403        if (!verity)
1404                size_changed = ext4_update_inode_size(inode, pos + copied);
1405        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1406        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1407        unlock_page(page);
1408        put_page(page);
1409
1410        if (old_size < pos && !verity)
1411                pagecache_isize_extended(inode, old_size, pos);
1412
1413        if (size_changed || inline_data) {
1414                ret2 = ext4_mark_inode_dirty(handle, inode);
1415                if (!ret)
1416                        ret = ret2;
1417        }
1418
1419        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1420                /* if we have allocated more blocks and copied
1421                 * less. We will have blocks allocated outside
1422                 * inode->i_size. So truncate them
1423                 */
1424                ext4_orphan_add(handle, inode);
1425
1426errout:
1427        ret2 = ext4_journal_stop(handle);
1428        if (!ret)
1429                ret = ret2;
1430        if (pos + len > inode->i_size && !verity) {
1431                ext4_truncate_failed_write(inode);
1432                /*
1433                 * If truncate failed early the inode might still be
1434                 * on the orphan list; we need to make sure the inode
1435                 * is removed from the orphan list in that case.
1436                 */
1437                if (inode->i_nlink)
1438                        ext4_orphan_del(NULL, inode);
1439        }
1440
1441        return ret ? ret : copied;
1442}
1443
1444/*
1445 * Reserve space for a single cluster
1446 */
1447static int ext4_da_reserve_space(struct inode *inode)
1448{
1449        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1450        struct ext4_inode_info *ei = EXT4_I(inode);
1451        int ret;
1452
1453        /*
1454         * We will charge metadata quota at writeout time; this saves
1455         * us from metadata over-estimation, though we may go over by
1456         * a small amount in the end.  Here we just reserve for data.
1457         */
1458        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1459        if (ret)
1460                return ret;
1461
1462        spin_lock(&ei->i_block_reservation_lock);
1463        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1464                spin_unlock(&ei->i_block_reservation_lock);
1465                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1466                return -ENOSPC;
1467        }
1468        ei->i_reserved_data_blocks++;
1469        trace_ext4_da_reserve_space(inode);
1470        spin_unlock(&ei->i_block_reservation_lock);
1471
1472        return 0;       /* success */
1473}
1474
1475void ext4_da_release_space(struct inode *inode, int to_free)
1476{
1477        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478        struct ext4_inode_info *ei = EXT4_I(inode);
1479
1480        if (!to_free)
1481                return;         /* Nothing to release, exit */
1482
1483        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1484
1485        trace_ext4_da_release_space(inode, to_free);
1486        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1487                /*
1488                 * if there aren't enough reserved blocks, then the
1489                 * counter is messed up somewhere.  Since this
1490                 * function is called from invalidate page, it's
1491                 * harmless to return without any action.
1492                 */
1493                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1494                         "ino %lu, to_free %d with only %d reserved "
1495                         "data blocks", inode->i_ino, to_free,
1496                         ei->i_reserved_data_blocks);
1497                WARN_ON(1);
1498                to_free = ei->i_reserved_data_blocks;
1499        }
1500        ei->i_reserved_data_blocks -= to_free;
1501
1502        /* update fs dirty data blocks counter */
1503        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1504
1505        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1506
1507        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1508}
1509
1510/*
1511 * Delayed allocation stuff
1512 */
1513
1514struct mpage_da_data {
1515        struct inode *inode;
1516        struct writeback_control *wbc;
1517
1518        pgoff_t first_page;     /* The first page to write */
1519        pgoff_t next_page;      /* Current page to examine */
1520        pgoff_t last_page;      /* Last page to examine */
1521        /*
1522         * Extent to map - this can be after first_page because that can be
1523         * fully mapped. We somewhat abuse m_flags to store whether the extent
1524         * is delalloc or unwritten.
1525         */
1526        struct ext4_map_blocks map;
1527        struct ext4_io_submit io_submit;        /* IO submission data */
1528        unsigned int do_map:1;
1529};
1530
1531static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1532                                       bool invalidate)
1533{
1534        int nr_pages, i;
1535        pgoff_t index, end;
1536        struct pagevec pvec;
1537        struct inode *inode = mpd->inode;
1538        struct address_space *mapping = inode->i_mapping;
1539
1540        /* This is necessary when next_page == 0. */
1541        if (mpd->first_page >= mpd->next_page)
1542                return;
1543
1544        index = mpd->first_page;
1545        end   = mpd->next_page - 1;
1546        if (invalidate) {
1547                ext4_lblk_t start, last;
1548                start = index << (PAGE_SHIFT - inode->i_blkbits);
1549                last = end << (PAGE_SHIFT - inode->i_blkbits);
1550                ext4_es_remove_extent(inode, start, last - start + 1);
1551        }
1552
1553        pagevec_init(&pvec);
1554        while (index <= end) {
1555                nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1556                if (nr_pages == 0)
1557                        break;
1558                for (i = 0; i < nr_pages; i++) {
1559                        struct page *page = pvec.pages[i];
1560
1561                        BUG_ON(!PageLocked(page));
1562                        BUG_ON(PageWriteback(page));
1563                        if (invalidate) {
1564                                if (page_mapped(page))
1565                                        clear_page_dirty_for_io(page);
1566                                block_invalidatepage(page, 0, PAGE_SIZE);
1567                                ClearPageUptodate(page);
1568                        }
1569                        unlock_page(page);
1570                }
1571                pagevec_release(&pvec);
1572        }
1573}
1574
1575static void ext4_print_free_blocks(struct inode *inode)
1576{
1577        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578        struct super_block *sb = inode->i_sb;
1579        struct ext4_inode_info *ei = EXT4_I(inode);
1580
1581        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1582               EXT4_C2B(EXT4_SB(inode->i_sb),
1583                        ext4_count_free_clusters(sb)));
1584        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1585        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1586               (long long) EXT4_C2B(EXT4_SB(sb),
1587                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1588        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1589               (long long) EXT4_C2B(EXT4_SB(sb),
1590                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1591        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1592        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1593                 ei->i_reserved_data_blocks);
1594        return;
1595}
1596
1597static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1598{
1599        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1600}
1601
1602/*
1603 * ext4_insert_delayed_block - adds a delayed block to the extents status
1604 *                             tree, incrementing the reserved cluster/block
1605 *                             count or making a pending reservation
1606 *                             where needed
1607 *
1608 * @inode - file containing the newly added block
1609 * @lblk - logical block to be added
1610 *
1611 * Returns 0 on success, negative error code on failure.
1612 */
1613static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1614{
1615        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616        int ret;
1617        bool allocated = false;
1618
1619        /*
1620         * If the cluster containing lblk is shared with a delayed,
1621         * written, or unwritten extent in a bigalloc file system, it's
1622         * already been accounted for and does not need to be reserved.
1623         * A pending reservation must be made for the cluster if it's
1624         * shared with a written or unwritten extent and doesn't already
1625         * have one.  Written and unwritten extents can be purged from the
1626         * extents status tree if the system is under memory pressure, so
1627         * it's necessary to examine the extent tree if a search of the
1628         * extents status tree doesn't get a match.
1629         */
1630        if (sbi->s_cluster_ratio == 1) {
1631                ret = ext4_da_reserve_space(inode);
1632                if (ret != 0)   /* ENOSPC */
1633                        goto errout;
1634        } else {   /* bigalloc */
1635                if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1636                        if (!ext4_es_scan_clu(inode,
1637                                              &ext4_es_is_mapped, lblk)) {
1638                                ret = ext4_clu_mapped(inode,
1639                                                      EXT4_B2C(sbi, lblk));
1640                                if (ret < 0)
1641                                        goto errout;
1642                                if (ret == 0) {
1643                                        ret = ext4_da_reserve_space(inode);
1644                                        if (ret != 0)   /* ENOSPC */
1645                                                goto errout;
1646                                } else {
1647                                        allocated = true;
1648                                }
1649                        } else {
1650                                allocated = true;
1651                        }
1652                }
1653        }
1654
1655        ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1656
1657errout:
1658        return ret;
1659}
1660
1661/*
1662 * This function is grabs code from the very beginning of
1663 * ext4_map_blocks, but assumes that the caller is from delayed write
1664 * time. This function looks up the requested blocks and sets the
1665 * buffer delay bit under the protection of i_data_sem.
1666 */
1667static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1668                              struct ext4_map_blocks *map,
1669                              struct buffer_head *bh)
1670{
1671        struct extent_status es;
1672        int retval;
1673        sector_t invalid_block = ~((sector_t) 0xffff);
1674#ifdef ES_AGGRESSIVE_TEST
1675        struct ext4_map_blocks orig_map;
1676
1677        memcpy(&orig_map, map, sizeof(*map));
1678#endif
1679
1680        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1681                invalid_block = ~0;
1682
1683        map->m_flags = 0;
1684        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1685                  "logical block %lu\n", inode->i_ino, map->m_len,
1686                  (unsigned long) map->m_lblk);
1687
1688        /* Lookup extent status tree firstly */
1689        if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1690                if (ext4_es_is_hole(&es)) {
1691                        retval = 0;
1692                        down_read(&EXT4_I(inode)->i_data_sem);
1693                        goto add_delayed;
1694                }
1695
1696                /*
1697                 * Delayed extent could be allocated by fallocate.
1698                 * So we need to check it.
1699                 */
1700                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1701                        map_bh(bh, inode->i_sb, invalid_block);
1702                        set_buffer_new(bh);
1703                        set_buffer_delay(bh);
1704                        return 0;
1705                }
1706
1707                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1708                retval = es.es_len - (iblock - es.es_lblk);
1709                if (retval > map->m_len)
1710                        retval = map->m_len;
1711                map->m_len = retval;
1712                if (ext4_es_is_written(&es))
1713                        map->m_flags |= EXT4_MAP_MAPPED;
1714                else if (ext4_es_is_unwritten(&es))
1715                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1716                else
1717                        BUG();
1718
1719#ifdef ES_AGGRESSIVE_TEST
1720                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1721#endif
1722                return retval;
1723        }
1724
1725        /*
1726         * Try to see if we can get the block without requesting a new
1727         * file system block.
1728         */
1729        down_read(&EXT4_I(inode)->i_data_sem);
1730        if (ext4_has_inline_data(inode))
1731                retval = 0;
1732        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1733                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1734        else
1735                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1736
1737add_delayed:
1738        if (retval == 0) {
1739                int ret;
1740
1741                /*
1742                 * XXX: __block_prepare_write() unmaps passed block,
1743                 * is it OK?
1744                 */
1745
1746                ret = ext4_insert_delayed_block(inode, map->m_lblk);
1747                if (ret != 0) {
1748                        retval = ret;
1749                        goto out_unlock;
1750                }
1751
1752                map_bh(bh, inode->i_sb, invalid_block);
1753                set_buffer_new(bh);
1754                set_buffer_delay(bh);
1755        } else if (retval > 0) {
1756                int ret;
1757                unsigned int status;
1758
1759                if (unlikely(retval != map->m_len)) {
1760                        ext4_warning(inode->i_sb,
1761                                     "ES len assertion failed for inode "
1762                                     "%lu: retval %d != map->m_len %d",
1763                                     inode->i_ino, retval, map->m_len);
1764                        WARN_ON(1);
1765                }
1766
1767                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1768                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1769                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1770                                            map->m_pblk, status);
1771                if (ret != 0)
1772                        retval = ret;
1773        }
1774
1775out_unlock:
1776        up_read((&EXT4_I(inode)->i_data_sem));
1777
1778        return retval;
1779}
1780
1781/*
1782 * This is a special get_block_t callback which is used by
1783 * ext4_da_write_begin().  It will either return mapped block or
1784 * reserve space for a single block.
1785 *
1786 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1787 * We also have b_blocknr = -1 and b_bdev initialized properly
1788 *
1789 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1790 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1791 * initialized properly.
1792 */
1793int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1794                           struct buffer_head *bh, int create)
1795{
1796        struct ext4_map_blocks map;
1797        int ret = 0;
1798
1799        BUG_ON(create == 0);
1800        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1801
1802        map.m_lblk = iblock;
1803        map.m_len = 1;
1804
1805        /*
1806         * first, we need to know whether the block is allocated already
1807         * preallocated blocks are unmapped but should treated
1808         * the same as allocated blocks.
1809         */
1810        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1811        if (ret <= 0)
1812                return ret;
1813
1814        map_bh(bh, inode->i_sb, map.m_pblk);
1815        ext4_update_bh_state(bh, map.m_flags);
1816
1817        if (buffer_unwritten(bh)) {
1818                /* A delayed write to unwritten bh should be marked
1819                 * new and mapped.  Mapped ensures that we don't do
1820                 * get_block multiple times when we write to the same
1821                 * offset and new ensures that we do proper zero out
1822                 * for partial write.
1823                 */
1824                set_buffer_new(bh);
1825                set_buffer_mapped(bh);
1826        }
1827        return 0;
1828}
1829
1830static int bget_one(handle_t *handle, struct buffer_head *bh)
1831{
1832        get_bh(bh);
1833        return 0;
1834}
1835
1836static int bput_one(handle_t *handle, struct buffer_head *bh)
1837{
1838        put_bh(bh);
1839        return 0;
1840}
1841
1842static int __ext4_journalled_writepage(struct page *page,
1843                                       unsigned int len)
1844{
1845        struct address_space *mapping = page->mapping;
1846        struct inode *inode = mapping->host;
1847        struct buffer_head *page_bufs = NULL;
1848        handle_t *handle = NULL;
1849        int ret = 0, err = 0;
1850        int inline_data = ext4_has_inline_data(inode);
1851        struct buffer_head *inode_bh = NULL;
1852
1853        ClearPageChecked(page);
1854
1855        if (inline_data) {
1856                BUG_ON(page->index != 0);
1857                BUG_ON(len > ext4_get_max_inline_size(inode));
1858                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1859                if (inode_bh == NULL)
1860                        goto out;
1861        } else {
1862                page_bufs = page_buffers(page);
1863                if (!page_bufs) {
1864                        BUG();
1865                        goto out;
1866                }
1867                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1868                                       NULL, bget_one);
1869        }
1870        /*
1871         * We need to release the page lock before we start the
1872         * journal, so grab a reference so the page won't disappear
1873         * out from under us.
1874         */
1875        get_page(page);
1876        unlock_page(page);
1877
1878        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1879                                    ext4_writepage_trans_blocks(inode));
1880        if (IS_ERR(handle)) {
1881                ret = PTR_ERR(handle);
1882                put_page(page);
1883                goto out_no_pagelock;
1884        }
1885        BUG_ON(!ext4_handle_valid(handle));
1886
1887        lock_page(page);
1888        put_page(page);
1889        if (page->mapping != mapping) {
1890                /* The page got truncated from under us */
1891                ext4_journal_stop(handle);
1892                ret = 0;
1893                goto out;
1894        }
1895
1896        if (inline_data) {
1897                ret = ext4_mark_inode_dirty(handle, inode);
1898        } else {
1899                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1900                                             do_journal_get_write_access);
1901
1902                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1903                                             write_end_fn);
1904        }
1905        if (ret == 0)
1906                ret = err;
1907        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1908        err = ext4_journal_stop(handle);
1909        if (!ret)
1910                ret = err;
1911
1912        if (!ext4_has_inline_data(inode))
1913                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1914                                       NULL, bput_one);
1915        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1916out:
1917        unlock_page(page);
1918out_no_pagelock:
1919        brelse(inode_bh);
1920        return ret;
1921}
1922
1923/*
1924 * Note that we don't need to start a transaction unless we're journaling data
1925 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1926 * need to file the inode to the transaction's list in ordered mode because if
1927 * we are writing back data added by write(), the inode is already there and if
1928 * we are writing back data modified via mmap(), no one guarantees in which
1929 * transaction the data will hit the disk. In case we are journaling data, we
1930 * cannot start transaction directly because transaction start ranks above page
1931 * lock so we have to do some magic.
1932 *
1933 * This function can get called via...
1934 *   - ext4_writepages after taking page lock (have journal handle)
1935 *   - journal_submit_inode_data_buffers (no journal handle)
1936 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1937 *   - grab_page_cache when doing write_begin (have journal handle)
1938 *
1939 * We don't do any block allocation in this function. If we have page with
1940 * multiple blocks we need to write those buffer_heads that are mapped. This
1941 * is important for mmaped based write. So if we do with blocksize 1K
1942 * truncate(f, 1024);
1943 * a = mmap(f, 0, 4096);
1944 * a[0] = 'a';
1945 * truncate(f, 4096);
1946 * we have in the page first buffer_head mapped via page_mkwrite call back
1947 * but other buffer_heads would be unmapped but dirty (dirty done via the
1948 * do_wp_page). So writepage should write the first block. If we modify
1949 * the mmap area beyond 1024 we will again get a page_fault and the
1950 * page_mkwrite callback will do the block allocation and mark the
1951 * buffer_heads mapped.
1952 *
1953 * We redirty the page if we have any buffer_heads that is either delay or
1954 * unwritten in the page.
1955 *
1956 * We can get recursively called as show below.
1957 *
1958 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1959 *              ext4_writepage()
1960 *
1961 * But since we don't do any block allocation we should not deadlock.
1962 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1963 */
1964static int ext4_writepage(struct page *page,
1965                          struct writeback_control *wbc)
1966{
1967        int ret = 0;
1968        loff_t size;
1969        unsigned int len;
1970        struct buffer_head *page_bufs = NULL;
1971        struct inode *inode = page->mapping->host;
1972        struct ext4_io_submit io_submit;
1973        bool keep_towrite = false;
1974
1975        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1976                inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1977                unlock_page(page);
1978                return -EIO;
1979        }
1980
1981        trace_ext4_writepage(page);
1982        size = i_size_read(inode);
1983        if (page->index == size >> PAGE_SHIFT &&
1984            !ext4_verity_in_progress(inode))
1985                len = size & ~PAGE_MASK;
1986        else
1987                len = PAGE_SIZE;
1988
1989        page_bufs = page_buffers(page);
1990        /*
1991         * We cannot do block allocation or other extent handling in this
1992         * function. If there are buffers needing that, we have to redirty
1993         * the page. But we may reach here when we do a journal commit via
1994         * journal_submit_inode_data_buffers() and in that case we must write
1995         * allocated buffers to achieve data=ordered mode guarantees.
1996         *
1997         * Also, if there is only one buffer per page (the fs block
1998         * size == the page size), if one buffer needs block
1999         * allocation or needs to modify the extent tree to clear the
2000         * unwritten flag, we know that the page can't be written at
2001         * all, so we might as well refuse the write immediately.
2002         * Unfortunately if the block size != page size, we can't as
2003         * easily detect this case using ext4_walk_page_buffers(), but
2004         * for the extremely common case, this is an optimization that
2005         * skips a useless round trip through ext4_bio_write_page().
2006         */
2007        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2008                                   ext4_bh_delay_or_unwritten)) {
2009                redirty_page_for_writepage(wbc, page);
2010                if ((current->flags & PF_MEMALLOC) ||
2011                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2012                        /*
2013                         * For memory cleaning there's no point in writing only
2014                         * some buffers. So just bail out. Warn if we came here
2015                         * from direct reclaim.
2016                         */
2017                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2018                                                        == PF_MEMALLOC);
2019                        unlock_page(page);
2020                        return 0;
2021                }
2022                keep_towrite = true;
2023        }
2024
2025        if (PageChecked(page) && ext4_should_journal_data(inode))
2026                /*
2027                 * It's mmapped pagecache.  Add buffers and journal it.  There
2028                 * doesn't seem much point in redirtying the page here.
2029                 */
2030                return __ext4_journalled_writepage(page, len);
2031
2032        ext4_io_submit_init(&io_submit, wbc);
2033        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2034        if (!io_submit.io_end) {
2035                redirty_page_for_writepage(wbc, page);
2036                unlock_page(page);
2037                return -ENOMEM;
2038        }
2039        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2040        ext4_io_submit(&io_submit);
2041        /* Drop io_end reference we got from init */
2042        ext4_put_io_end_defer(io_submit.io_end);
2043        return ret;
2044}
2045
2046static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2047{
2048        int len;
2049        loff_t size;
2050        int err;
2051
2052        BUG_ON(page->index != mpd->first_page);
2053        clear_page_dirty_for_io(page);
2054        /*
2055         * We have to be very careful here!  Nothing protects writeback path
2056         * against i_size changes and the page can be writeably mapped into
2057         * page tables. So an application can be growing i_size and writing
2058         * data through mmap while writeback runs. clear_page_dirty_for_io()
2059         * write-protects our page in page tables and the page cannot get
2060         * written to again until we release page lock. So only after
2061         * clear_page_dirty_for_io() we are safe to sample i_size for
2062         * ext4_bio_write_page() to zero-out tail of the written page. We rely
2063         * on the barrier provided by TestClearPageDirty in
2064         * clear_page_dirty_for_io() to make sure i_size is really sampled only
2065         * after page tables are updated.
2066         */
2067        size = i_size_read(mpd->inode);
2068        if (page->index == size >> PAGE_SHIFT &&
2069            !ext4_verity_in_progress(mpd->inode))
2070                len = size & ~PAGE_MASK;
2071        else
2072                len = PAGE_SIZE;
2073        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2074        if (!err)
2075                mpd->wbc->nr_to_write--;
2076        mpd->first_page++;
2077
2078        return err;
2079}
2080
2081#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2082
2083/*
2084 * mballoc gives us at most this number of blocks...
2085 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2086 * The rest of mballoc seems to handle chunks up to full group size.
2087 */
2088#define MAX_WRITEPAGES_EXTENT_LEN 2048
2089
2090/*
2091 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2092 *
2093 * @mpd - extent of blocks
2094 * @lblk - logical number of the block in the file
2095 * @bh - buffer head we want to add to the extent
2096 *
2097 * The function is used to collect contig. blocks in the same state. If the
2098 * buffer doesn't require mapping for writeback and we haven't started the
2099 * extent of buffers to map yet, the function returns 'true' immediately - the
2100 * caller can write the buffer right away. Otherwise the function returns true
2101 * if the block has been added to the extent, false if the block couldn't be
2102 * added.
2103 */
2104static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2105                                   struct buffer_head *bh)
2106{
2107        struct ext4_map_blocks *map = &mpd->map;
2108
2109        /* Buffer that doesn't need mapping for writeback? */
2110        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2111            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2112                /* So far no extent to map => we write the buffer right away */
2113                if (map->m_len == 0)
2114                        return true;
2115                return false;
2116        }
2117
2118        /* First block in the extent? */
2119        if (map->m_len == 0) {
2120                /* We cannot map unless handle is started... */
2121                if (!mpd->do_map)
2122                        return false;
2123                map->m_lblk = lblk;
2124                map->m_len = 1;
2125                map->m_flags = bh->b_state & BH_FLAGS;
2126                return true;
2127        }
2128
2129        /* Don't go larger than mballoc is willing to allocate */
2130        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2131                return false;
2132
2133        /* Can we merge the block to our big extent? */
2134        if (lblk == map->m_lblk + map->m_len &&
2135            (bh->b_state & BH_FLAGS) == map->m_flags) {
2136                map->m_len++;
2137                return true;
2138        }
2139        return false;
2140}
2141
2142/*
2143 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2144 *
2145 * @mpd - extent of blocks for mapping
2146 * @head - the first buffer in the page
2147 * @bh - buffer we should start processing from
2148 * @lblk - logical number of the block in the file corresponding to @bh
2149 *
2150 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2151 * the page for IO if all buffers in this page were mapped and there's no
2152 * accumulated extent of buffers to map or add buffers in the page to the
2153 * extent of buffers to map. The function returns 1 if the caller can continue
2154 * by processing the next page, 0 if it should stop adding buffers to the
2155 * extent to map because we cannot extend it anymore. It can also return value
2156 * < 0 in case of error during IO submission.
2157 */
2158static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2159                                   struct buffer_head *head,
2160                                   struct buffer_head *bh,
2161                                   ext4_lblk_t lblk)
2162{
2163        struct inode *inode = mpd->inode;
2164        int err;
2165        ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2166                                                        >> inode->i_blkbits;
2167
2168        if (ext4_verity_in_progress(inode))
2169                blocks = EXT_MAX_BLOCKS;
2170
2171        do {
2172                BUG_ON(buffer_locked(bh));
2173
2174                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2175                        /* Found extent to map? */
2176                        if (mpd->map.m_len)
2177                                return 0;
2178                        /* Buffer needs mapping and handle is not started? */
2179                        if (!mpd->do_map)
2180                                return 0;
2181                        /* Everything mapped so far and we hit EOF */
2182                        break;
2183                }
2184        } while (lblk++, (bh = bh->b_this_page) != head);
2185        /* So far everything mapped? Submit the page for IO. */
2186        if (mpd->map.m_len == 0) {
2187                err = mpage_submit_page(mpd, head->b_page);
2188                if (err < 0)
2189                        return err;
2190        }
2191        return lblk < blocks;
2192}
2193
2194/*
2195 * mpage_process_page - update page buffers corresponding to changed extent and
2196 *                     may submit fully mapped page for IO
2197 *
2198 * @mpd         - description of extent to map, on return next extent to map
2199 * @m_lblk      - logical block mapping.
2200 * @m_pblk      - corresponding physical mapping.
2201 * @map_bh      - determines on return whether this page requires any further
2202 *                mapping or not.
2203 * Scan given page buffers corresponding to changed extent and update buffer
2204 * state according to new extent state.
2205 * We map delalloc buffers to their physical location, clear unwritten bits.
2206 * If the given page is not fully mapped, we update @map to the next extent in
2207 * the given page that needs mapping & return @map_bh as true.
2208 */
2209static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2210                              ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2211                              bool *map_bh)
2212{
2213        struct buffer_head *head, *bh;
2214        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2215        ext4_lblk_t lblk = *m_lblk;
2216        ext4_fsblk_t pblock = *m_pblk;
2217        int err = 0;
2218        int blkbits = mpd->inode->i_blkbits;
2219        ssize_t io_end_size = 0;
2220        struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2221
2222        bh = head = page_buffers(page);
2223        do {
2224                if (lblk < mpd->map.m_lblk)
2225                        continue;
2226                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2227                        /*
2228                         * Buffer after end of mapped extent.
2229                         * Find next buffer in the page to map.
2230                         */
2231                        mpd->map.m_len = 0;
2232                        mpd->map.m_flags = 0;
2233                        io_end_vec->size += io_end_size;
2234                        io_end_size = 0;
2235
2236                        err = mpage_process_page_bufs(mpd, head, bh, lblk);
2237                        if (err > 0)
2238                                err = 0;
2239                        if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2240                                io_end_vec = ext4_alloc_io_end_vec(io_end);
2241                                if (IS_ERR(io_end_vec)) {
2242                                        err = PTR_ERR(io_end_vec);
2243                                        goto out;
2244                                }
2245                                io_end_vec->offset = mpd->map.m_lblk << blkbits;
2246                        }
2247                        *map_bh = true;
2248                        goto out;
2249                }
2250                if (buffer_delay(bh)) {
2251                        clear_buffer_delay(bh);
2252                        bh->b_blocknr = pblock++;
2253                }
2254                clear_buffer_unwritten(bh);
2255                io_end_size += (1 << blkbits);
2256        } while (lblk++, (bh = bh->b_this_page) != head);
2257
2258        io_end_vec->size += io_end_size;
2259        io_end_size = 0;
2260        *map_bh = false;
2261out:
2262        *m_lblk = lblk;
2263        *m_pblk = pblock;
2264        return err;
2265}
2266
2267/*
2268 * mpage_map_buffers - update buffers corresponding to changed extent and
2269 *                     submit fully mapped pages for IO
2270 *
2271 * @mpd - description of extent to map, on return next extent to map
2272 *
2273 * Scan buffers corresponding to changed extent (we expect corresponding pages
2274 * to be already locked) and update buffer state according to new extent state.
2275 * We map delalloc buffers to their physical location, clear unwritten bits,
2276 * and mark buffers as uninit when we perform writes to unwritten extents
2277 * and do extent conversion after IO is finished. If the last page is not fully
2278 * mapped, we update @map to the next extent in the last page that needs
2279 * mapping. Otherwise we submit the page for IO.
2280 */
2281static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2282{
2283        struct pagevec pvec;
2284        int nr_pages, i;
2285        struct inode *inode = mpd->inode;
2286        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2287        pgoff_t start, end;
2288        ext4_lblk_t lblk;
2289        ext4_fsblk_t pblock;
2290        int err;
2291        bool map_bh = false;
2292
2293        start = mpd->map.m_lblk >> bpp_bits;
2294        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2295        lblk = start << bpp_bits;
2296        pblock = mpd->map.m_pblk;
2297
2298        pagevec_init(&pvec);
2299        while (start <= end) {
2300                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2301                                                &start, end);
2302                if (nr_pages == 0)
2303                        break;
2304                for (i = 0; i < nr_pages; i++) {
2305                        struct page *page = pvec.pages[i];
2306
2307                        err = mpage_process_page(mpd, page, &lblk, &pblock,
2308                                                 &map_bh);
2309                        /*
2310                         * If map_bh is true, means page may require further bh
2311                         * mapping, or maybe the page was submitted for IO.
2312                         * So we return to call further extent mapping.
2313                         */
2314                        if (err < 0 || map_bh == true)
2315                                goto out;
2316                        /* Page fully mapped - let IO run! */
2317                        err = mpage_submit_page(mpd, page);
2318                        if (err < 0)
2319                                goto out;
2320                }
2321                pagevec_release(&pvec);
2322        }
2323        /* Extent fully mapped and matches with page boundary. We are done. */
2324        mpd->map.m_len = 0;
2325        mpd->map.m_flags = 0;
2326        return 0;
2327out:
2328        pagevec_release(&pvec);
2329        return err;
2330}
2331
2332static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2333{
2334        struct inode *inode = mpd->inode;
2335        struct ext4_map_blocks *map = &mpd->map;
2336        int get_blocks_flags;
2337        int err, dioread_nolock;
2338
2339        trace_ext4_da_write_pages_extent(inode, map);
2340        /*
2341         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2342         * to convert an unwritten extent to be initialized (in the case
2343         * where we have written into one or more preallocated blocks).  It is
2344         * possible that we're going to need more metadata blocks than
2345         * previously reserved. However we must not fail because we're in
2346         * writeback and there is nothing we can do about it so it might result
2347         * in data loss.  So use reserved blocks to allocate metadata if
2348         * possible.
2349         *
2350         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2351         * the blocks in question are delalloc blocks.  This indicates
2352         * that the blocks and quotas has already been checked when
2353         * the data was copied into the page cache.
2354         */
2355        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2356                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2357                           EXT4_GET_BLOCKS_IO_SUBMIT;
2358        dioread_nolock = ext4_should_dioread_nolock(inode);
2359        if (dioread_nolock)
2360                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2361        if (map->m_flags & (1 << BH_Delay))
2362                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2363
2364        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2365        if (err < 0)
2366                return err;
2367        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2368                if (!mpd->io_submit.io_end->handle &&
2369                    ext4_handle_valid(handle)) {
2370                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2371                        handle->h_rsv_handle = NULL;
2372                }
2373                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2374        }
2375
2376        BUG_ON(map->m_len == 0);
2377        return 0;
2378}
2379
2380/*
2381 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2382 *                               mpd->len and submit pages underlying it for IO
2383 *
2384 * @handle - handle for journal operations
2385 * @mpd - extent to map
2386 * @give_up_on_write - we set this to true iff there is a fatal error and there
2387 *                     is no hope of writing the data. The caller should discard
2388 *                     dirty pages to avoid infinite loops.
2389 *
2390 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2391 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2392 * them to initialized or split the described range from larger unwritten
2393 * extent. Note that we need not map all the described range since allocation
2394 * can return less blocks or the range is covered by more unwritten extents. We
2395 * cannot map more because we are limited by reserved transaction credits. On
2396 * the other hand we always make sure that the last touched page is fully
2397 * mapped so that it can be written out (and thus forward progress is
2398 * guaranteed). After mapping we submit all mapped pages for IO.
2399 */
2400static int mpage_map_and_submit_extent(handle_t *handle,
2401                                       struct mpage_da_data *mpd,
2402                                       bool *give_up_on_write)
2403{
2404        struct inode *inode = mpd->inode;
2405        struct ext4_map_blocks *map = &mpd->map;
2406        int err;
2407        loff_t disksize;
2408        int progress = 0;
2409        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2410        struct ext4_io_end_vec *io_end_vec;
2411
2412        io_end_vec = ext4_alloc_io_end_vec(io_end);
2413        if (IS_ERR(io_end_vec))
2414                return PTR_ERR(io_end_vec);
2415        io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2416        do {
2417                err = mpage_map_one_extent(handle, mpd);
2418                if (err < 0) {
2419                        struct super_block *sb = inode->i_sb;
2420
2421                        if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2422                            EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2423                                goto invalidate_dirty_pages;
2424                        /*
2425                         * Let the uper layers retry transient errors.
2426                         * In the case of ENOSPC, if ext4_count_free_blocks()
2427                         * is non-zero, a commit should free up blocks.
2428                         */
2429                        if ((err == -ENOMEM) ||
2430                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2431                                if (progress)
2432                                        goto update_disksize;
2433                                return err;
2434                        }
2435                        ext4_msg(sb, KERN_CRIT,
2436                                 "Delayed block allocation failed for "
2437                                 "inode %lu at logical offset %llu with"
2438                                 " max blocks %u with error %d",
2439                                 inode->i_ino,
2440                                 (unsigned long long)map->m_lblk,
2441                                 (unsigned)map->m_len, -err);
2442                        ext4_msg(sb, KERN_CRIT,
2443                                 "This should not happen!! Data will "
2444                                 "be lost\n");
2445                        if (err == -ENOSPC)
2446                                ext4_print_free_blocks(inode);
2447                invalidate_dirty_pages:
2448                        *give_up_on_write = true;
2449                        return err;
2450                }
2451                progress = 1;
2452                /*
2453                 * Update buffer state, submit mapped pages, and get us new
2454                 * extent to map
2455                 */
2456                err = mpage_map_and_submit_buffers(mpd);
2457                if (err < 0)
2458                        goto update_disksize;
2459        } while (map->m_len);
2460
2461update_disksize:
2462        /*
2463         * Update on-disk size after IO is submitted.  Races with
2464         * truncate are avoided by checking i_size under i_data_sem.
2465         */
2466        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2467        if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2468                int err2;
2469                loff_t i_size;
2470
2471                down_write(&EXT4_I(inode)->i_data_sem);
2472                i_size = i_size_read(inode);
2473                if (disksize > i_size)
2474                        disksize = i_size;
2475                if (disksize > EXT4_I(inode)->i_disksize)
2476                        EXT4_I(inode)->i_disksize = disksize;
2477                up_write(&EXT4_I(inode)->i_data_sem);
2478                err2 = ext4_mark_inode_dirty(handle, inode);
2479                if (err2) {
2480                        ext4_error_err(inode->i_sb, -err2,
2481                                       "Failed to mark inode %lu dirty",
2482                                       inode->i_ino);
2483                }
2484                if (!err)
2485                        err = err2;
2486        }
2487        return err;
2488}
2489
2490/*
2491 * Calculate the total number of credits to reserve for one writepages
2492 * iteration. This is called from ext4_writepages(). We map an extent of
2493 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2494 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2495 * bpp - 1 blocks in bpp different extents.
2496 */
2497static int ext4_da_writepages_trans_blocks(struct inode *inode)
2498{
2499        int bpp = ext4_journal_blocks_per_page(inode);
2500
2501        return ext4_meta_trans_blocks(inode,
2502                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2503}
2504
2505/*
2506 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2507 *                               and underlying extent to map
2508 *
2509 * @mpd - where to look for pages
2510 *
2511 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2512 * IO immediately. When we find a page which isn't mapped we start accumulating
2513 * extent of buffers underlying these pages that needs mapping (formed by
2514 * either delayed or unwritten buffers). We also lock the pages containing
2515 * these buffers. The extent found is returned in @mpd structure (starting at
2516 * mpd->lblk with length mpd->len blocks).
2517 *
2518 * Note that this function can attach bios to one io_end structure which are
2519 * neither logically nor physically contiguous. Although it may seem as an
2520 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2521 * case as we need to track IO to all buffers underlying a page in one io_end.
2522 */
2523static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2524{
2525        struct address_space *mapping = mpd->inode->i_mapping;
2526        struct pagevec pvec;
2527        unsigned int nr_pages;
2528        long left = mpd->wbc->nr_to_write;
2529        pgoff_t index = mpd->first_page;
2530        pgoff_t end = mpd->last_page;
2531        xa_mark_t tag;
2532        int i, err = 0;
2533        int blkbits = mpd->inode->i_blkbits;
2534        ext4_lblk_t lblk;
2535        struct buffer_head *head;
2536
2537        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2538                tag = PAGECACHE_TAG_TOWRITE;
2539        else
2540                tag = PAGECACHE_TAG_DIRTY;
2541
2542        pagevec_init(&pvec);
2543        mpd->map.m_len = 0;
2544        mpd->next_page = index;
2545        while (index <= end) {
2546                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2547                                tag);
2548                if (nr_pages == 0)
2549                        goto out;
2550
2551                for (i = 0; i < nr_pages; i++) {
2552                        struct page *page = pvec.pages[i];
2553
2554                        /*
2555                         * Accumulated enough dirty pages? This doesn't apply
2556                         * to WB_SYNC_ALL mode. For integrity sync we have to
2557                         * keep going because someone may be concurrently
2558                         * dirtying pages, and we might have synced a lot of
2559                         * newly appeared dirty pages, but have not synced all
2560                         * of the old dirty pages.
2561                         */
2562                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2563                                goto out;
2564
2565                        /* If we can't merge this page, we are done. */
2566                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2567                                goto out;
2568
2569                        lock_page(page);
2570                        /*
2571                         * If the page is no longer dirty, or its mapping no
2572                         * longer corresponds to inode we are writing (which
2573                         * means it has been truncated or invalidated), or the
2574                         * page is already under writeback and we are not doing
2575                         * a data integrity writeback, skip the page
2576                         */
2577                        if (!PageDirty(page) ||
2578                            (PageWriteback(page) &&
2579                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2580                            unlikely(page->mapping != mapping)) {
2581                                unlock_page(page);
2582                                continue;
2583                        }
2584
2585                        wait_on_page_writeback(page);
2586                        BUG_ON(PageWriteback(page));
2587
2588                        if (mpd->map.m_len == 0)
2589                                mpd->first_page = page->index;
2590                        mpd->next_page = page->index + 1;
2591                        /* Add all dirty buffers to mpd */
2592                        lblk = ((ext4_lblk_t)page->index) <<
2593                                (PAGE_SHIFT - blkbits);
2594                        head = page_buffers(page);
2595                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2596                        if (err <= 0)
2597                                goto out;
2598                        err = 0;
2599                        left--;
2600                }
2601                pagevec_release(&pvec);
2602                cond_resched();
2603        }
2604        return 0;
2605out:
2606        pagevec_release(&pvec);
2607        return err;
2608}
2609
2610static int ext4_writepages(struct address_space *mapping,
2611                           struct writeback_control *wbc)
2612{
2613        pgoff_t writeback_index = 0;
2614        long nr_to_write = wbc->nr_to_write;
2615        int range_whole = 0;
2616        int cycled = 1;
2617        handle_t *handle = NULL;
2618        struct mpage_da_data mpd;
2619        struct inode *inode = mapping->host;
2620        int needed_blocks, rsv_blocks = 0, ret = 0;
2621        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2622        bool done;
2623        struct blk_plug plug;
2624        bool give_up_on_write = false;
2625
2626        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2627                return -EIO;
2628
2629        percpu_down_read(&sbi->s_writepages_rwsem);
2630        trace_ext4_writepages(inode, wbc);
2631
2632        /*
2633         * No pages to write? This is mainly a kludge to avoid starting
2634         * a transaction for special inodes like journal inode on last iput()
2635         * because that could violate lock ordering on umount
2636         */
2637        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2638                goto out_writepages;
2639
2640        if (ext4_should_journal_data(inode)) {
2641                ret = generic_writepages(mapping, wbc);
2642                goto out_writepages;
2643        }
2644
2645        /*
2646         * If the filesystem has aborted, it is read-only, so return
2647         * right away instead of dumping stack traces later on that
2648         * will obscure the real source of the problem.  We test
2649         * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2650         * the latter could be true if the filesystem is mounted
2651         * read-only, and in that case, ext4_writepages should
2652         * *never* be called, so if that ever happens, we would want
2653         * the stack trace.
2654         */
2655        if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2656                     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2657                ret = -EROFS;
2658                goto out_writepages;
2659        }
2660
2661        /*
2662         * If we have inline data and arrive here, it means that
2663         * we will soon create the block for the 1st page, so
2664         * we'd better clear the inline data here.
2665         */
2666        if (ext4_has_inline_data(inode)) {
2667                /* Just inode will be modified... */
2668                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2669                if (IS_ERR(handle)) {
2670                        ret = PTR_ERR(handle);
2671                        goto out_writepages;
2672                }
2673                BUG_ON(ext4_test_inode_state(inode,
2674                                EXT4_STATE_MAY_INLINE_DATA));
2675                ext4_destroy_inline_data(handle, inode);
2676                ext4_journal_stop(handle);
2677        }
2678
2679        if (ext4_should_dioread_nolock(inode)) {
2680                /*
2681                 * We may need to convert up to one extent per block in
2682                 * the page and we may dirty the inode.
2683                 */
2684                rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2685                                                PAGE_SIZE >> inode->i_blkbits);
2686        }
2687
2688        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2689                range_whole = 1;
2690
2691        if (wbc->range_cyclic) {
2692                writeback_index = mapping->writeback_index;
2693                if (writeback_index)
2694                        cycled = 0;
2695                mpd.first_page = writeback_index;
2696                mpd.last_page = -1;
2697        } else {
2698                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2699                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2700        }
2701
2702        mpd.inode = inode;
2703        mpd.wbc = wbc;
2704        ext4_io_submit_init(&mpd.io_submit, wbc);
2705retry:
2706        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2707                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2708        done = false;
2709        blk_start_plug(&plug);
2710
2711        /*
2712         * First writeback pages that don't need mapping - we can avoid
2713         * starting a transaction unnecessarily and also avoid being blocked
2714         * in the block layer on device congestion while having transaction
2715         * started.
2716         */
2717        mpd.do_map = 0;
2718        mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2719        if (!mpd.io_submit.io_end) {
2720                ret = -ENOMEM;
2721                goto unplug;
2722        }
2723        ret = mpage_prepare_extent_to_map(&mpd);
2724        /* Unlock pages we didn't use */
2725        mpage_release_unused_pages(&mpd, false);
2726        /* Submit prepared bio */
2727        ext4_io_submit(&mpd.io_submit);
2728        ext4_put_io_end_defer(mpd.io_submit.io_end);
2729        mpd.io_submit.io_end = NULL;
2730        if (ret < 0)
2731                goto unplug;
2732
2733        while (!done && mpd.first_page <= mpd.last_page) {
2734                /* For each extent of pages we use new io_end */
2735                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2736                if (!mpd.io_submit.io_end) {
2737                        ret = -ENOMEM;
2738                        break;
2739                }
2740
2741                /*
2742                 * We have two constraints: We find one extent to map and we
2743                 * must always write out whole page (makes a difference when
2744                 * blocksize < pagesize) so that we don't block on IO when we
2745                 * try to write out the rest of the page. Journalled mode is
2746                 * not supported by delalloc.
2747                 */
2748                BUG_ON(ext4_should_journal_data(inode));
2749                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2750
2751                /* start a new transaction */
2752                handle = ext4_journal_start_with_reserve(inode,
2753                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2754                if (IS_ERR(handle)) {
2755                        ret = PTR_ERR(handle);
2756                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2757                               "%ld pages, ino %lu; err %d", __func__,
2758                                wbc->nr_to_write, inode->i_ino, ret);
2759                        /* Release allocated io_end */
2760                        ext4_put_io_end(mpd.io_submit.io_end);
2761                        mpd.io_submit.io_end = NULL;
2762                        break;
2763                }
2764                mpd.do_map = 1;
2765
2766                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2767                ret = mpage_prepare_extent_to_map(&mpd);
2768                if (!ret) {
2769                        if (mpd.map.m_len)
2770                                ret = mpage_map_and_submit_extent(handle, &mpd,
2771                                        &give_up_on_write);
2772                        else {
2773                                /*
2774                                 * We scanned the whole range (or exhausted
2775                                 * nr_to_write), submitted what was mapped and
2776                                 * didn't find anything needing mapping. We are
2777                                 * done.
2778                                 */
2779                                done = true;
2780                        }
2781                }
2782                /*
2783                 * Caution: If the handle is synchronous,
2784                 * ext4_journal_stop() can wait for transaction commit
2785                 * to finish which may depend on writeback of pages to
2786                 * complete or on page lock to be released.  In that
2787                 * case, we have to wait until after after we have
2788                 * submitted all the IO, released page locks we hold,
2789                 * and dropped io_end reference (for extent conversion
2790                 * to be able to complete) before stopping the handle.
2791                 */
2792                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2793                        ext4_journal_stop(handle);
2794                        handle = NULL;
2795                        mpd.do_map = 0;
2796                }
2797                /* Unlock pages we didn't use */
2798                mpage_release_unused_pages(&mpd, give_up_on_write);
2799                /* Submit prepared bio */
2800                ext4_io_submit(&mpd.io_submit);
2801
2802                /*
2803                 * Drop our io_end reference we got from init. We have
2804                 * to be careful and use deferred io_end finishing if
2805                 * we are still holding the transaction as we can
2806                 * release the last reference to io_end which may end
2807                 * up doing unwritten extent conversion.
2808                 */
2809                if (handle) {
2810                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2811                        ext4_journal_stop(handle);
2812                } else
2813                        ext4_put_io_end(mpd.io_submit.io_end);
2814                mpd.io_submit.io_end = NULL;
2815
2816                if (ret == -ENOSPC && sbi->s_journal) {
2817                        /*
2818                         * Commit the transaction which would
2819                         * free blocks released in the transaction
2820                         * and try again
2821                         */
2822                        jbd2_journal_force_commit_nested(sbi->s_journal);
2823                        ret = 0;
2824                        continue;
2825                }
2826                /* Fatal error - ENOMEM, EIO... */
2827                if (ret)
2828                        break;
2829        }
2830unplug:
2831        blk_finish_plug(&plug);
2832        if (!ret && !cycled && wbc->nr_to_write > 0) {
2833                cycled = 1;
2834                mpd.last_page = writeback_index - 1;
2835                mpd.first_page = 0;
2836                goto retry;
2837        }
2838
2839        /* Update index */
2840        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2841                /*
2842                 * Set the writeback_index so that range_cyclic
2843                 * mode will write it back later
2844                 */
2845                mapping->writeback_index = mpd.first_page;
2846
2847out_writepages:
2848        trace_ext4_writepages_result(inode, wbc, ret,
2849                                     nr_to_write - wbc->nr_to_write);
2850        percpu_up_read(&sbi->s_writepages_rwsem);
2851        return ret;
2852}
2853
2854static int ext4_dax_writepages(struct address_space *mapping,
2855                               struct writeback_control *wbc)
2856{
2857        int ret;
2858        long nr_to_write = wbc->nr_to_write;
2859        struct inode *inode = mapping->host;
2860        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2861
2862        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2863                return -EIO;
2864
2865        percpu_down_read(&sbi->s_writepages_rwsem);
2866        trace_ext4_writepages(inode, wbc);
2867
2868        ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2869        trace_ext4_writepages_result(inode, wbc, ret,
2870                                     nr_to_write - wbc->nr_to_write);
2871        percpu_up_read(&sbi->s_writepages_rwsem);
2872        return ret;
2873}
2874
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877        s64 free_clusters, dirty_clusters;
2878        struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880        /*
2881         * switch to non delalloc mode if we are running low
2882         * on free block. The free block accounting via percpu
2883         * counters can get slightly wrong with percpu_counter_batch getting
2884         * accumulated on each CPU without updating global counters
2885         * Delalloc need an accurate free block accounting. So switch
2886         * to non delalloc when we are near to error range.
2887         */
2888        free_clusters =
2889                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890        dirty_clusters =
2891                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892        /*
2893         * Start pushing delalloc when 1/2 of free blocks are dirty.
2894         */
2895        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898        if (2 * free_clusters < 3 * dirty_clusters ||
2899            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900                /*
2901                 * free block count is less than 150% of dirty blocks
2902                 * or free blocks is less than watermark
2903                 */
2904                return 1;
2905        }
2906        return 0;
2907}
2908
2909/* We always reserve for an inode update; the superblock could be there too */
2910static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2911{
2912        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2913                return 1;
2914
2915        if (pos + len <= 0x7fffffffULL)
2916                return 1;
2917
2918        /* We might need to update the superblock to set LARGE_FILE */
2919        return 2;
2920}
2921
2922static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2923                               loff_t pos, unsigned len, unsigned flags,
2924                               struct page **pagep, void **fsdata)
2925{
2926        int ret, retries = 0;
2927        struct page *page;
2928        pgoff_t index;
2929        struct inode *inode = mapping->host;
2930        handle_t *handle;
2931
2932        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2933                return -EIO;
2934
2935        index = pos >> PAGE_SHIFT;
2936
2937        if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2938            ext4_verity_in_progress(inode)) {
2939                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2940                return ext4_write_begin(file, mapping, pos,
2941                                        len, flags, pagep, fsdata);
2942        }
2943        *fsdata = (void *)0;
2944        trace_ext4_da_write_begin(inode, pos, len, flags);
2945
2946        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2947                ret = ext4_da_write_inline_data_begin(mapping, inode,
2948                                                      pos, len, flags,
2949                                                      pagep, fsdata);
2950                if (ret < 0)
2951                        return ret;
2952                if (ret == 1)
2953                        return 0;
2954        }
2955
2956        /*
2957         * grab_cache_page_write_begin() can take a long time if the
2958         * system is thrashing due to memory pressure, or if the page
2959         * is being written back.  So grab it first before we start
2960         * the transaction handle.  This also allows us to allocate
2961         * the page (if needed) without using GFP_NOFS.
2962         */
2963retry_grab:
2964        page = grab_cache_page_write_begin(mapping, index, flags);
2965        if (!page)
2966                return -ENOMEM;
2967        unlock_page(page);
2968
2969        /*
2970         * With delayed allocation, we don't log the i_disksize update
2971         * if there is delayed block allocation. But we still need
2972         * to journalling the i_disksize update if writes to the end
2973         * of file which has an already mapped buffer.
2974         */
2975retry_journal:
2976        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2977                                ext4_da_write_credits(inode, pos, len));
2978        if (IS_ERR(handle)) {
2979                put_page(page);
2980                return PTR_ERR(handle);
2981        }
2982
2983        lock_page(page);
2984        if (page->mapping != mapping) {
2985                /* The page got truncated from under us */
2986                unlock_page(page);
2987                put_page(page);
2988                ext4_journal_stop(handle);
2989                goto retry_grab;
2990        }
2991        /* In case writeback began while the page was unlocked */
2992        wait_for_stable_page(page);
2993
2994#ifdef CONFIG_FS_ENCRYPTION
2995        ret = ext4_block_write_begin(page, pos, len,
2996                                     ext4_da_get_block_prep);
2997#else
2998        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2999#endif
3000        if (ret < 0) {
3001                unlock_page(page);
3002                ext4_journal_stop(handle);
3003                /*
3004                 * block_write_begin may have instantiated a few blocks
3005                 * outside i_size.  Trim these off again. Don't need
3006                 * i_size_read because we hold i_mutex.
3007                 */
3008                if (pos + len > inode->i_size)
3009                        ext4_truncate_failed_write(inode);
3010
3011                if (ret == -ENOSPC &&
3012                    ext4_should_retry_alloc(inode->i_sb, &retries))
3013                        goto retry_journal;
3014
3015                put_page(page);
3016                return ret;
3017        }
3018
3019        *pagep = page;
3020        return ret;
3021}
3022
3023/*
3024 * Check if we should update i_disksize
3025 * when write to the end of file but not require block allocation
3026 */
3027static int ext4_da_should_update_i_disksize(struct page *page,
3028                                            unsigned long offset)
3029{
3030        struct buffer_head *bh;
3031        struct inode *inode = page->mapping->host;
3032        unsigned int idx;
3033        int i;
3034
3035        bh = page_buffers(page);
3036        idx = offset >> inode->i_blkbits;
3037
3038        for (i = 0; i < idx; i++)
3039                bh = bh->b_this_page;
3040
3041        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3042                return 0;
3043        return 1;
3044}
3045
3046static int ext4_da_write_end(struct file *file,
3047                             struct address_space *mapping,
3048                             loff_t pos, unsigned len, unsigned copied,
3049                             struct page *page, void *fsdata)
3050{
3051        struct inode *inode = mapping->host;
3052        int ret = 0, ret2;
3053        handle_t *handle = ext4_journal_current_handle();
3054        loff_t new_i_size;
3055        unsigned long start, end;
3056        int write_mode = (int)(unsigned long)fsdata;
3057
3058        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3059                return ext4_write_end(file, mapping, pos,
3060                                      len, copied, page, fsdata);
3061
3062        trace_ext4_da_write_end(inode, pos, len, copied);
3063        start = pos & (PAGE_SIZE - 1);
3064        end = start + copied - 1;
3065
3066        /*
3067         * generic_write_end() will run mark_inode_dirty() if i_size
3068         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3069         * into that.
3070         */
3071        new_i_size = pos + copied;
3072        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3073                if (ext4_has_inline_data(inode) ||
3074                    ext4_da_should_update_i_disksize(page, end)) {
3075                        ext4_update_i_disksize(inode, new_i_size);
3076                        /* We need to mark inode dirty even if
3077                         * new_i_size is less that inode->i_size
3078                         * bu greater than i_disksize.(hint delalloc)
3079                         */
3080                        ext4_mark_inode_dirty(handle, inode);
3081                }
3082        }
3083
3084        if (write_mode != CONVERT_INLINE_DATA &&
3085            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3086            ext4_has_inline_data(inode))
3087                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3088                                                     page);
3089        else
3090                ret2 = generic_write_end(file, mapping, pos, len, copied,
3091                                                        page, fsdata);
3092
3093        copied = ret2;
3094        if (ret2 < 0)
3095                ret = ret2;
3096        ret2 = ext4_journal_stop(handle);
3097        if (!ret)
3098                ret = ret2;
3099
3100        return ret ? ret : copied;
3101}
3102
3103/*
3104 * Force all delayed allocation blocks to be allocated for a given inode.
3105 */
3106int ext4_alloc_da_blocks(struct inode *inode)
3107{
3108        trace_ext4_alloc_da_blocks(inode);
3109
3110        if (!EXT4_I(inode)->i_reserved_data_blocks)
3111                return 0;
3112
3113        /*
3114         * We do something simple for now.  The filemap_flush() will
3115         * also start triggering a write of the data blocks, which is
3116         * not strictly speaking necessary (and for users of
3117         * laptop_mode, not even desirable).  However, to do otherwise
3118         * would require replicating code paths in:
3119         *
3120         * ext4_writepages() ->
3121         *    write_cache_pages() ---> (via passed in callback function)
3122         *        __mpage_da_writepage() -->
3123         *           mpage_add_bh_to_extent()
3124         *           mpage_da_map_blocks()
3125         *
3126         * The problem is that write_cache_pages(), located in
3127         * mm/page-writeback.c, marks pages clean in preparation for
3128         * doing I/O, which is not desirable if we're not planning on
3129         * doing I/O at all.
3130         *
3131         * We could call write_cache_pages(), and then redirty all of
3132         * the pages by calling redirty_page_for_writepage() but that
3133         * would be ugly in the extreme.  So instead we would need to
3134         * replicate parts of the code in the above functions,
3135         * simplifying them because we wouldn't actually intend to
3136         * write out the pages, but rather only collect contiguous
3137         * logical block extents, call the multi-block allocator, and
3138         * then update the buffer heads with the block allocations.
3139         *
3140         * For now, though, we'll cheat by calling filemap_flush(),
3141         * which will map the blocks, and start the I/O, but not
3142         * actually wait for the I/O to complete.
3143         */
3144        return filemap_flush(inode->i_mapping);
3145}
3146
3147/*
3148 * bmap() is special.  It gets used by applications such as lilo and by
3149 * the swapper to find the on-disk block of a specific piece of data.
3150 *
3151 * Naturally, this is dangerous if the block concerned is still in the
3152 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3153 * filesystem and enables swap, then they may get a nasty shock when the
3154 * data getting swapped to that swapfile suddenly gets overwritten by
3155 * the original zero's written out previously to the journal and
3156 * awaiting writeback in the kernel's buffer cache.
3157 *
3158 * So, if we see any bmap calls here on a modified, data-journaled file,
3159 * take extra steps to flush any blocks which might be in the cache.
3160 */
3161static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3162{
3163        struct inode *inode = mapping->host;
3164        journal_t *journal;
3165        int err;
3166
3167        /*
3168         * We can get here for an inline file via the FIBMAP ioctl
3169         */
3170        if (ext4_has_inline_data(inode))
3171                return 0;
3172
3173        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3174                        test_opt(inode->i_sb, DELALLOC)) {
3175                /*
3176                 * With delalloc we want to sync the file
3177                 * so that we can make sure we allocate
3178                 * blocks for file
3179                 */
3180                filemap_write_and_wait(mapping);
3181        }
3182
3183        if (EXT4_JOURNAL(inode) &&
3184            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3185                /*
3186                 * This is a REALLY heavyweight approach, but the use of
3187                 * bmap on dirty files is expected to be extremely rare:
3188                 * only if we run lilo or swapon on a freshly made file
3189                 * do we expect this to happen.
3190                 *
3191                 * (bmap requires CAP_SYS_RAWIO so this does not
3192                 * represent an unprivileged user DOS attack --- we'd be
3193                 * in trouble if mortal users could trigger this path at
3194                 * will.)
3195                 *
3196                 * NB. EXT4_STATE_JDATA is not set on files other than
3197                 * regular files.  If somebody wants to bmap a directory
3198                 * or symlink and gets confused because the buffer
3199                 * hasn't yet been flushed to disk, they deserve
3200                 * everything they get.
3201                 */
3202
3203                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3204                journal = EXT4_JOURNAL(inode);
3205                jbd2_journal_lock_updates(journal);
3206                err = jbd2_journal_flush(journal);
3207                jbd2_journal_unlock_updates(journal);
3208
3209                if (err)
3210                        return 0;
3211        }
3212
3213        return iomap_bmap(mapping, block, &ext4_iomap_ops);
3214}
3215
3216static int ext4_readpage(struct file *file, struct page *page)
3217{
3218        int ret = -EAGAIN;
3219        struct inode *inode = page->mapping->host;
3220
3221        trace_ext4_readpage(page);
3222
3223        if (ext4_has_inline_data(inode))
3224                ret = ext4_readpage_inline(inode, page);
3225
3226        if (ret == -EAGAIN)
3227                return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3228                                                false);
3229
3230        return ret;
3231}
3232
3233static int
3234ext4_readpages(struct file *file, struct address_space *mapping,
3235                struct list_head *pages, unsigned nr_pages)
3236{
3237        struct inode *inode = mapping->host;
3238
3239        /* If the file has inline data, no need to do readpages. */
3240        if (ext4_has_inline_data(inode))
3241                return 0;
3242
3243        return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3244}
3245
3246static void ext4_invalidatepage(struct page *page, unsigned int offset,
3247                                unsigned int length)
3248{
3249        trace_ext4_invalidatepage(page, offset, length);
3250
3251        /* No journalling happens on data buffers when this function is used */
3252        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3253
3254        block_invalidatepage(page, offset, length);
3255}
3256
3257static int __ext4_journalled_invalidatepage(struct page *page,
3258                                            unsigned int offset,
3259                                            unsigned int length)
3260{
3261        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262
3263        trace_ext4_journalled_invalidatepage(page, offset, length);
3264
3265        /*
3266         * If it's a full truncate we just forget about the pending dirtying
3267         */
3268        if (offset == 0 && length == PAGE_SIZE)
3269                ClearPageChecked(page);
3270
3271        return jbd2_journal_invalidatepage(journal, page, offset, length);
3272}
3273
3274/* Wrapper for aops... */
3275static void ext4_journalled_invalidatepage(struct page *page,
3276                                           unsigned int offset,
3277                                           unsigned int length)
3278{
3279        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3280}
3281
3282static int ext4_releasepage(struct page *page, gfp_t wait)
3283{
3284        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3285
3286        trace_ext4_releasepage(page);
3287
3288        /* Page has dirty journalled data -> cannot release */
3289        if (PageChecked(page))
3290                return 0;
3291        if (journal)
3292                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3293        else
3294                return try_to_free_buffers(page);
3295}
3296
3297static bool ext4_inode_datasync_dirty(struct inode *inode)
3298{
3299        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3300
3301        if (journal)
3302                return !jbd2_transaction_committed(journal,
3303                                        EXT4_I(inode)->i_datasync_tid);
3304        /* Any metadata buffers to write? */
3305        if (!list_empty(&inode->i_mapping->private_list))
3306                return true;
3307        return inode->i_state & I_DIRTY_DATASYNC;
3308}
3309
3310static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3311                           struct ext4_map_blocks *map, loff_t offset,
3312                           loff_t length)
3313{
3314        u8 blkbits = inode->i_blkbits;
3315
3316        /*
3317         * Writes that span EOF might trigger an I/O size update on completion,
3318         * so consider them to be dirty for the purpose of O_DSYNC, even if
3319         * there is no other metadata changes being made or are pending.
3320         */
3321        iomap->flags = 0;
3322        if (ext4_inode_datasync_dirty(inode) ||
3323            offset + length > i_size_read(inode))
3324                iomap->flags |= IOMAP_F_DIRTY;
3325
3326        if (map->m_flags & EXT4_MAP_NEW)
3327                iomap->flags |= IOMAP_F_NEW;
3328
3329        iomap->bdev = inode->i_sb->s_bdev;
3330        iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3331        iomap->offset = (u64) map->m_lblk << blkbits;
3332        iomap->length = (u64) map->m_len << blkbits;
3333
3334        if ((map->m_flags & EXT4_MAP_MAPPED) &&
3335            !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3336                iomap->flags |= IOMAP_F_MERGED;
3337
3338        /*
3339         * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340         * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341         * set. In order for any allocated unwritten extents to be converted
3342         * into written extents correctly within the ->end_io() handler, we
3343         * need to ensure that the iomap->type is set appropriately. Hence, the
3344         * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3345         * been set first.
3346         */
3347        if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3348                iomap->type = IOMAP_UNWRITTEN;
3349                iomap->addr = (u64) map->m_pblk << blkbits;
3350        } else if (map->m_flags & EXT4_MAP_MAPPED) {
3351                iomap->type = IOMAP_MAPPED;
3352                iomap->addr = (u64) map->m_pblk << blkbits;
3353        } else {
3354                iomap->type = IOMAP_HOLE;
3355                iomap->addr = IOMAP_NULL_ADDR;
3356        }
3357}
3358
3359static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3360                            unsigned int flags)
3361{
3362        handle_t *handle;
3363        u8 blkbits = inode->i_blkbits;
3364        int ret, dio_credits, m_flags = 0, retries = 0;
3365
3366        /*
3367         * Trim the mapping request to the maximum value that we can map at
3368         * once for direct I/O.
3369         */
3370        if (map->m_len > DIO_MAX_BLOCKS)
3371                map->m_len = DIO_MAX_BLOCKS;
3372        dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3373
3374retry:
3375        /*
3376         * Either we allocate blocks and then don't get an unwritten extent, so
3377         * in that case we have reserved enough credits. Or, the blocks are
3378         * already allocated and unwritten. In that case, the extent conversion
3379         * fits into the credits as well.
3380         */
3381        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3382        if (IS_ERR(handle))
3383                return PTR_ERR(handle);
3384
3385        /*
3386         * DAX and direct I/O are the only two operations that are currently
3387         * supported with IOMAP_WRITE.
3388         */
3389        WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3390        if (IS_DAX(inode))
3391                m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3392        /*
3393         * We use i_size instead of i_disksize here because delalloc writeback
3394         * can complete at any point during the I/O and subsequently push the
3395         * i_disksize out to i_size. This could be beyond where direct I/O is
3396         * happening and thus expose allocated blocks to direct I/O reads.
3397         */
3398        else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3399                m_flags = EXT4_GET_BLOCKS_CREATE;
3400        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3401                m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3402
3403        ret = ext4_map_blocks(handle, inode, map, m_flags);
3404
3405        /*
3406         * We cannot fill holes in indirect tree based inodes as that could
3407         * expose stale data in the case of a crash. Use the magic error code
3408         * to fallback to buffered I/O.
3409         */
3410        if (!m_flags && !ret)
3411                ret = -ENOTBLK;
3412
3413        ext4_journal_stop(handle);
3414        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3415                goto retry;
3416
3417        return ret;
3418}
3419
3420
3421static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3422                unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3423{
3424        int ret;
3425        struct ext4_map_blocks map;
3426        u8 blkbits = inode->i_blkbits;
3427
3428        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3429                return -EINVAL;
3430
3431        if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432                return -ERANGE;
3433
3434        /*
3435         * Calculate the first and last logical blocks respectively.
3436         */
3437        map.m_lblk = offset >> blkbits;
3438        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3439                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3440
3441        if (flags & IOMAP_WRITE)
3442                ret = ext4_iomap_alloc(inode, &map, flags);
3443        else
3444                ret = ext4_map_blocks(NULL, inode, &map, 0);
3445
3446        if (ret < 0)
3447                return ret;
3448
3449        ext4_set_iomap(inode, iomap, &map, offset, length);
3450
3451        return 0;
3452}
3453
3454static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3455                loff_t length, unsigned flags, struct iomap *iomap,
3456                struct iomap *srcmap)
3457{
3458        int ret;
3459
3460        /*
3461         * Even for writes we don't need to allocate blocks, so just pretend
3462         * we are reading to save overhead of starting a transaction.
3463         */
3464        flags &= ~IOMAP_WRITE;
3465        ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3466        WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3467        return ret;
3468}
3469
3470static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3471                          ssize_t written, unsigned flags, struct iomap *iomap)
3472{
3473        /*
3474         * Check to see whether an error occurred while writing out the data to
3475         * the allocated blocks. If so, return the magic error code so that we
3476         * fallback to buffered I/O and attempt to complete the remainder of
3477         * the I/O. Any blocks that may have been allocated in preparation for
3478         * the direct I/O will be reused during buffered I/O.
3479         */
3480        if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3481                return -ENOTBLK;
3482
3483        return 0;
3484}
3485
3486const struct iomap_ops ext4_iomap_ops = {
3487        .iomap_begin            = ext4_iomap_begin,
3488        .iomap_end              = ext4_iomap_end,
3489};
3490
3491const struct iomap_ops ext4_iomap_overwrite_ops = {
3492        .iomap_begin            = ext4_iomap_overwrite_begin,
3493        .iomap_end              = ext4_iomap_end,
3494};
3495
3496static bool ext4_iomap_is_delalloc(struct inode *inode,
3497                                   struct ext4_map_blocks *map)
3498{
3499        struct extent_status es;
3500        ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3501
3502        ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3503                                  map->m_lblk, end, &es);
3504
3505        if (!es.es_len || es.es_lblk > end)
3506                return false;
3507
3508        if (es.es_lblk > map->m_lblk) {
3509                map->m_len = es.es_lblk - map->m_lblk;
3510                return false;
3511        }
3512
3513        offset = map->m_lblk - es.es_lblk;
3514        map->m_len = es.es_len - offset;
3515
3516        return true;
3517}
3518
3519static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3520                                   loff_t length, unsigned int flags,
3521                                   struct iomap *iomap, struct iomap *srcmap)
3522{
3523        int ret;
3524        bool delalloc = false;
3525        struct ext4_map_blocks map;
3526        u8 blkbits = inode->i_blkbits;
3527
3528        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3529                return -EINVAL;
3530
3531        if (ext4_has_inline_data(inode)) {
3532                ret = ext4_inline_data_iomap(inode, iomap);
3533                if (ret != -EAGAIN) {
3534                        if (ret == 0 && offset >= iomap->length)
3535                                ret = -ENOENT;
3536                        return ret;
3537                }
3538        }
3539
3540        /*
3541         * Calculate the first and last logical block respectively.
3542         */
3543        map.m_lblk = offset >> blkbits;
3544        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3545                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3546
3547        /*
3548         * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3549         * So handle it here itself instead of querying ext4_map_blocks().
3550         * Since ext4_map_blocks() will warn about it and will return
3551         * -EIO error.
3552         */
3553        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3554                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3555
3556                if (offset >= sbi->s_bitmap_maxbytes) {
3557                        map.m_flags = 0;
3558                        goto set_iomap;
3559                }
3560        }
3561
3562        ret = ext4_map_blocks(NULL, inode, &map, 0);
3563        if (ret < 0)
3564                return ret;
3565        if (ret == 0)
3566                delalloc = ext4_iomap_is_delalloc(inode, &map);
3567
3568set_iomap:
3569        ext4_set_iomap(inode, iomap, &map, offset, length);
3570        if (delalloc && iomap->type == IOMAP_HOLE)
3571                iomap->type = IOMAP_DELALLOC;
3572
3573        return 0;
3574}
3575
3576const struct iomap_ops ext4_iomap_report_ops = {
3577        .iomap_begin = ext4_iomap_begin_report,
3578};
3579
3580/*
3581 * Pages can be marked dirty completely asynchronously from ext4's journalling
3582 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3583 * much here because ->set_page_dirty is called under VFS locks.  The page is
3584 * not necessarily locked.
3585 *
3586 * We cannot just dirty the page and leave attached buffers clean, because the
3587 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3588 * or jbddirty because all the journalling code will explode.
3589 *
3590 * So what we do is to mark the page "pending dirty" and next time writepage
3591 * is called, propagate that into the buffers appropriately.
3592 */
3593static int ext4_journalled_set_page_dirty(struct page *page)
3594{
3595        SetPageChecked(page);
3596        return __set_page_dirty_nobuffers(page);
3597}
3598
3599static int ext4_set_page_dirty(struct page *page)
3600{
3601        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3602        WARN_ON_ONCE(!page_has_buffers(page));
3603        return __set_page_dirty_buffers(page);
3604}
3605
3606static const struct address_space_operations ext4_aops = {
3607        .readpage               = ext4_readpage,
3608        .readpages              = ext4_readpages,
3609        .writepage              = ext4_writepage,
3610        .writepages             = ext4_writepages,
3611        .write_begin            = ext4_write_begin,
3612        .write_end              = ext4_write_end,
3613        .set_page_dirty         = ext4_set_page_dirty,
3614        .bmap                   = ext4_bmap,
3615        .invalidatepage         = ext4_invalidatepage,
3616        .releasepage            = ext4_releasepage,
3617        .direct_IO              = noop_direct_IO,
3618        .migratepage            = buffer_migrate_page,
3619        .is_partially_uptodate  = block_is_partially_uptodate,
3620        .error_remove_page      = generic_error_remove_page,
3621};
3622
3623static const struct address_space_operations ext4_journalled_aops = {
3624        .readpage               = ext4_readpage,
3625        .readpages              = ext4_readpages,
3626        .writepage              = ext4_writepage,
3627        .writepages             = ext4_writepages,
3628        .write_begin            = ext4_write_begin,
3629        .write_end              = ext4_journalled_write_end,
3630        .set_page_dirty         = ext4_journalled_set_page_dirty,
3631        .bmap                   = ext4_bmap,
3632        .invalidatepage         = ext4_journalled_invalidatepage,
3633        .releasepage            = ext4_releasepage,
3634        .direct_IO              = noop_direct_IO,
3635        .is_partially_uptodate  = block_is_partially_uptodate,
3636        .error_remove_page      = generic_error_remove_page,
3637};
3638
3639static const struct address_space_operations ext4_da_aops = {
3640        .readpage               = ext4_readpage,
3641        .readpages              = ext4_readpages,
3642        .writepage              = ext4_writepage,
3643        .writepages             = ext4_writepages,
3644        .write_begin            = ext4_da_write_begin,
3645        .write_end              = ext4_da_write_end,
3646        .set_page_dirty         = ext4_set_page_dirty,
3647        .bmap                   = ext4_bmap,
3648        .invalidatepage         = ext4_invalidatepage,
3649        .releasepage            = ext4_releasepage,
3650        .direct_IO              = noop_direct_IO,
3651        .migratepage            = buffer_migrate_page,
3652        .is_partially_uptodate  = block_is_partially_uptodate,
3653        .error_remove_page      = generic_error_remove_page,
3654};
3655
3656static const struct address_space_operations ext4_dax_aops = {
3657        .writepages             = ext4_dax_writepages,
3658        .direct_IO              = noop_direct_IO,
3659        .set_page_dirty         = noop_set_page_dirty,
3660        .bmap                   = ext4_bmap,
3661        .invalidatepage         = noop_invalidatepage,
3662};
3663
3664void ext4_set_aops(struct inode *inode)
3665{
3666        switch (ext4_inode_journal_mode(inode)) {
3667        case EXT4_INODE_ORDERED_DATA_MODE:
3668        case EXT4_INODE_WRITEBACK_DATA_MODE:
3669                break;
3670        case EXT4_INODE_JOURNAL_DATA_MODE:
3671                inode->i_mapping->a_ops = &ext4_journalled_aops;
3672                return;
3673        default:
3674                BUG();
3675        }
3676        if (IS_DAX(inode))
3677                inode->i_mapping->a_ops = &ext4_dax_aops;
3678        else if (test_opt(inode->i_sb, DELALLOC))
3679                inode->i_mapping->a_ops = &ext4_da_aops;
3680        else
3681                inode->i_mapping->a_ops = &ext4_aops;
3682}
3683
3684static int __ext4_block_zero_page_range(handle_t *handle,
3685                struct address_space *mapping, loff_t from, loff_t length)
3686{
3687        ext4_fsblk_t index = from >> PAGE_SHIFT;
3688        unsigned offset = from & (PAGE_SIZE-1);
3689        unsigned blocksize, pos;
3690        ext4_lblk_t iblock;
3691        struct inode *inode = mapping->host;
3692        struct buffer_head *bh;
3693        struct page *page;
3694        int err = 0;
3695
3696        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3697                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3698        if (!page)
3699                return -ENOMEM;
3700
3701        blocksize = inode->i_sb->s_blocksize;
3702
3703        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704
3705        if (!page_has_buffers(page))
3706                create_empty_buffers(page, blocksize, 0);
3707
3708        /* Find the buffer that contains "offset" */
3709        bh = page_buffers(page);
3710        pos = blocksize;
3711        while (offset >= pos) {
3712                bh = bh->b_this_page;
3713                iblock++;
3714                pos += blocksize;
3715        }
3716        if (buffer_freed(bh)) {
3717                BUFFER_TRACE(bh, "freed: skip");
3718                goto unlock;
3719        }
3720        if (!buffer_mapped(bh)) {
3721                BUFFER_TRACE(bh, "unmapped");
3722                ext4_get_block(inode, iblock, bh, 0);
3723                /* unmapped? It's a hole - nothing to do */
3724                if (!buffer_mapped(bh)) {
3725                        BUFFER_TRACE(bh, "still unmapped");
3726                        goto unlock;
3727                }
3728        }
3729
3730        /* Ok, it's mapped. Make sure it's up-to-date */
3731        if (PageUptodate(page))
3732                set_buffer_uptodate(bh);
3733
3734        if (!buffer_uptodate(bh)) {
3735                err = -EIO;
3736                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3737                wait_on_buffer(bh);
3738                /* Uhhuh. Read error. Complain and punt. */
3739                if (!buffer_uptodate(bh))
3740                        goto unlock;
3741                if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3742                        /* We expect the key to be set. */
3743                        BUG_ON(!fscrypt_has_encryption_key(inode));
3744                        err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3745                                                               bh_offset(bh));
3746                        if (err) {
3747                                clear_buffer_uptodate(bh);
3748                                goto unlock;
3749                        }
3750                }
3751        }
3752        if (ext4_should_journal_data(inode)) {
3753                BUFFER_TRACE(bh, "get write access");
3754                err = ext4_journal_get_write_access(handle, bh);
3755                if (err)
3756                        goto unlock;
3757        }
3758        zero_user(page, offset, length);
3759        BUFFER_TRACE(bh, "zeroed end of block");
3760
3761        if (ext4_should_journal_data(inode)) {
3762                err = ext4_handle_dirty_metadata(handle, inode, bh);
3763        } else {
3764                err = 0;
3765                mark_buffer_dirty(bh);
3766                if (ext4_should_order_data(inode))
3767                        err = ext4_jbd2_inode_add_write(handle, inode, from,
3768                                        length);
3769        }
3770
3771unlock:
3772        unlock_page(page);
3773        put_page(page);
3774        return err;
3775}
3776
3777/*
3778 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3779 * starting from file offset 'from'.  The range to be zero'd must
3780 * be contained with in one block.  If the specified range exceeds
3781 * the end of the block it will be shortened to end of the block
3782 * that cooresponds to 'from'
3783 */
3784static int ext4_block_zero_page_range(handle_t *handle,
3785                struct address_space *mapping, loff_t from, loff_t length)
3786{
3787        struct inode *inode = mapping->host;
3788        unsigned offset = from & (PAGE_SIZE-1);
3789        unsigned blocksize = inode->i_sb->s_blocksize;
3790        unsigned max = blocksize - (offset & (blocksize - 1));
3791
3792        /*
3793         * correct length if it does not fall between
3794         * 'from' and the end of the block
3795         */
3796        if (length > max || length < 0)
3797                length = max;
3798
3799        if (IS_DAX(inode)) {
3800                return iomap_zero_range(inode, from, length, NULL,
3801                                        &ext4_iomap_ops);
3802        }
3803        return __ext4_block_zero_page_range(handle, mapping, from, length);
3804}
3805
3806/*
3807 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3808 * up to the end of the block which corresponds to `from'.
3809 * This required during truncate. We need to physically zero the tail end
3810 * of that block so it doesn't yield old data if the file is later grown.
3811 */
3812static int ext4_block_truncate_page(handle_t *handle,
3813                struct address_space *mapping, loff_t from)
3814{
3815        unsigned offset = from & (PAGE_SIZE-1);
3816        unsigned length;
3817        unsigned blocksize;
3818        struct inode *inode = mapping->host;
3819
3820        /* If we are processing an encrypted inode during orphan list handling */
3821        if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3822                return 0;
3823
3824        blocksize = inode->i_sb->s_blocksize;
3825        length = blocksize - (offset & (blocksize - 1));
3826
3827        return ext4_block_zero_page_range(handle, mapping, from, length);
3828}
3829
3830int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3831                             loff_t lstart, loff_t length)
3832{
3833        struct super_block *sb = inode->i_sb;
3834        struct address_space *mapping = inode->i_mapping;
3835        unsigned partial_start, partial_end;
3836        ext4_fsblk_t start, end;
3837        loff_t byte_end = (lstart + length - 1);
3838        int err = 0;
3839
3840        partial_start = lstart & (sb->s_blocksize - 1);
3841        partial_end = byte_end & (sb->s_blocksize - 1);
3842
3843        start = lstart >> sb->s_blocksize_bits;
3844        end = byte_end >> sb->s_blocksize_bits;
3845
3846        /* Handle partial zero within the single block */
3847        if (start == end &&
3848            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3849                err = ext4_block_zero_page_range(handle, mapping,
3850                                                 lstart, length);
3851                return err;
3852        }
3853        /* Handle partial zero out on the start of the range */
3854        if (partial_start) {
3855                err = ext4_block_zero_page_range(handle, mapping,
3856                                                 lstart, sb->s_blocksize);
3857                if (err)
3858                        return err;
3859        }
3860        /* Handle partial zero out on the end of the range */
3861        if (partial_end != sb->s_blocksize - 1)
3862                err = ext4_block_zero_page_range(handle, mapping,
3863                                                 byte_end - partial_end,
3864                                                 partial_end + 1);
3865        return err;
3866}
3867
3868int ext4_can_truncate(struct inode *inode)
3869{
3870        if (S_ISREG(inode->i_mode))
3871                return 1;
3872        if (S_ISDIR(inode->i_mode))
3873                return 1;
3874        if (S_ISLNK(inode->i_mode))
3875                return !ext4_inode_is_fast_symlink(inode);
3876        return 0;
3877}
3878
3879/*
3880 * We have to make sure i_disksize gets properly updated before we truncate
3881 * page cache due to hole punching or zero range. Otherwise i_disksize update
3882 * can get lost as it may have been postponed to submission of writeback but
3883 * that will never happen after we truncate page cache.
3884 */
3885int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3886                                      loff_t len)
3887{
3888        handle_t *handle;
3889        loff_t size = i_size_read(inode);
3890
3891        WARN_ON(!inode_is_locked(inode));
3892        if (offset > size || offset + len < size)
3893                return 0;
3894
3895        if (EXT4_I(inode)->i_disksize >= size)
3896                return 0;
3897
3898        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899        if (IS_ERR(handle))
3900                return PTR_ERR(handle);
3901        ext4_update_i_disksize(inode, size);
3902        ext4_mark_inode_dirty(handle, inode);
3903        ext4_journal_stop(handle);
3904
3905        return 0;
3906}
3907
3908static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909{
3910        up_write(&ei->i_mmap_sem);
3911        schedule();
3912        down_write(&ei->i_mmap_sem);
3913}
3914
3915int ext4_break_layouts(struct inode *inode)
3916{
3917        struct ext4_inode_info *ei = EXT4_I(inode);
3918        struct page *page;
3919        int error;
3920
3921        if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922                return -EINVAL;
3923
3924        do {
3925                page = dax_layout_busy_page(inode->i_mapping);
3926                if (!page)
3927                        return 0;
3928
3929                error = ___wait_var_event(&page->_refcount,
3930                                atomic_read(&page->_refcount) == 1,
3931                                TASK_INTERRUPTIBLE, 0, 0,
3932                                ext4_wait_dax_page(ei));
3933        } while (error == 0);
3934
3935        return error;
3936}
3937
3938/*
3939 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940 * associated with the given offset and length
3941 *
3942 * @inode:  File inode
3943 * @offset: The offset where the hole will begin
3944 * @len:    The length of the hole
3945 *
3946 * Returns: 0 on success or negative on failure
3947 */
3948
3949int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950{
3951        struct super_block *sb = inode->i_sb;
3952        ext4_lblk_t first_block, stop_block;
3953        struct address_space *mapping = inode->i_mapping;
3954        loff_t first_block_offset, last_block_offset;
3955        handle_t *handle;
3956        unsigned int credits;
3957        int ret = 0;
3958
3959        trace_ext4_punch_hole(inode, offset, length, 0);
3960
3961        ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962        if (ext4_has_inline_data(inode)) {
3963                down_write(&EXT4_I(inode)->i_mmap_sem);
3964                ret = ext4_convert_inline_data(inode);
3965                up_write(&EXT4_I(inode)->i_mmap_sem);
3966                if (ret)
3967                        return ret;
3968        }
3969
3970        /*
3971         * Write out all dirty pages to avoid race conditions
3972         * Then release them.
3973         */
3974        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975                ret = filemap_write_and_wait_range(mapping, offset,
3976                                                   offset + length - 1);
3977                if (ret)
3978                        return ret;
3979        }
3980
3981        inode_lock(inode);
3982
3983        /* No need to punch hole beyond i_size */
3984        if (offset >= inode->i_size)
3985                goto out_mutex;
3986
3987        /*
3988         * If the hole extends beyond i_size, set the hole
3989         * to end after the page that contains i_size
3990         */
3991        if (offset + length > inode->i_size) {
3992                length = inode->i_size +
3993                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994                   offset;
3995        }
3996
3997        if (offset & (sb->s_blocksize - 1) ||
3998            (offset + length) & (sb->s_blocksize - 1)) {
3999                /*
4000                 * Attach jinode to inode for jbd2 if we do any zeroing of
4001                 * partial block
4002                 */
4003                ret = ext4_inode_attach_jinode(inode);
4004                if (ret < 0)
4005                        goto out_mutex;
4006
4007        }
4008
4009        /* Wait all existing dio workers, newcomers will block on i_mutex */
4010        inode_dio_wait(inode);
4011
4012        /*
4013         * Prevent page faults from reinstantiating pages we have released from
4014         * page cache.
4015         */
4016        down_write(&EXT4_I(inode)->i_mmap_sem);
4017
4018        ret = ext4_break_layouts(inode);
4019        if (ret)
4020                goto out_dio;
4021
4022        first_block_offset = round_up(offset, sb->s_blocksize);
4023        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024
4025        /* Now release the pages and zero block aligned part of pages*/
4026        if (last_block_offset > first_block_offset) {
4027                ret = ext4_update_disksize_before_punch(inode, offset, length);
4028                if (ret)
4029                        goto out_dio;
4030                truncate_pagecache_range(inode, first_block_offset,
4031                                         last_block_offset);
4032        }
4033
4034        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035                credits = ext4_writepage_trans_blocks(inode);
4036        else
4037                credits = ext4_blocks_for_truncate(inode);
4038        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039        if (IS_ERR(handle)) {
4040                ret = PTR_ERR(handle);
4041                ext4_std_error(sb, ret);
4042                goto out_dio;
4043        }
4044
4045        ret = ext4_zero_partial_blocks(handle, inode, offset,
4046                                       length);
4047        if (ret)
4048                goto out_stop;
4049
4050        first_block = (offset + sb->s_blocksize - 1) >>
4051                EXT4_BLOCK_SIZE_BITS(sb);
4052        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053
4054        /* If there are blocks to remove, do it */
4055        if (stop_block > first_block) {
4056
4057                down_write(&EXT4_I(inode)->i_data_sem);
4058                ext4_discard_preallocations(inode);
4059
4060                ret = ext4_es_remove_extent(inode, first_block,
4061                                            stop_block - first_block);
4062                if (ret) {
4063                        up_write(&EXT4_I(inode)->i_data_sem);
4064                        goto out_stop;
4065                }
4066
4067                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068                        ret = ext4_ext_remove_space(inode, first_block,
4069                                                    stop_block - 1);
4070                else
4071                        ret = ext4_ind_remove_space(handle, inode, first_block,
4072                                                    stop_block);
4073
4074                up_write(&EXT4_I(inode)->i_data_sem);
4075        }
4076        if (IS_SYNC(inode))
4077                ext4_handle_sync(handle);
4078
4079        inode->i_mtime = inode->i_ctime = current_time(inode);
4080        ext4_mark_inode_dirty(handle, inode);
4081        if (ret >= 0)
4082                ext4_update_inode_fsync_trans(handle, inode, 1);
4083out_stop:
4084        ext4_journal_stop(handle);
4085out_dio:
4086        up_write(&EXT4_I(inode)->i_mmap_sem);
4087out_mutex:
4088        inode_unlock(inode);
4089        return ret;
4090}
4091
4092int ext4_inode_attach_jinode(struct inode *inode)
4093{
4094        struct ext4_inode_info *ei = EXT4_I(inode);
4095        struct jbd2_inode *jinode;
4096
4097        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4098                return 0;
4099
4100        jinode = jbd2_alloc_inode(GFP_KERNEL);
4101        spin_lock(&inode->i_lock);
4102        if (!ei->jinode) {
4103                if (!jinode) {
4104                        spin_unlock(&inode->i_lock);
4105                        return -ENOMEM;
4106                }
4107                ei->jinode = jinode;
4108                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4109                jinode = NULL;
4110        }
4111        spin_unlock(&inode->i_lock);
4112        if (unlikely(jinode != NULL))
4113                jbd2_free_inode(jinode);
4114        return 0;
4115}
4116
4117/*
4118 * ext4_truncate()
4119 *
4120 * We block out ext4_get_block() block instantiations across the entire
4121 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4122 * simultaneously on behalf of the same inode.
4123 *
4124 * As we work through the truncate and commit bits of it to the journal there
4125 * is one core, guiding principle: the file's tree must always be consistent on
4126 * disk.  We must be able to restart the truncate after a crash.
4127 *
4128 * The file's tree may be transiently inconsistent in memory (although it
4129 * probably isn't), but whenever we close off and commit a journal transaction,
4130 * the contents of (the filesystem + the journal) must be consistent and
4131 * restartable.  It's pretty simple, really: bottom up, right to left (although
4132 * left-to-right works OK too).
4133 *
4134 * Note that at recovery time, journal replay occurs *before* the restart of
4135 * truncate against the orphan inode list.
4136 *
4137 * The committed inode has the new, desired i_size (which is the same as
4138 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4139 * that this inode's truncate did not complete and it will again call
4140 * ext4_truncate() to have another go.  So there will be instantiated blocks
4141 * to the right of the truncation point in a crashed ext4 filesystem.  But
4142 * that's fine - as long as they are linked from the inode, the post-crash
4143 * ext4_truncate() run will find them and release them.
4144 */
4145int ext4_truncate(struct inode *inode)
4146{
4147        struct ext4_inode_info *ei = EXT4_I(inode);
4148        unsigned int credits;
4149        int err = 0;
4150        handle_t *handle;
4151        struct address_space *mapping = inode->i_mapping;
4152
4153        /*
4154         * There is a possibility that we're either freeing the inode
4155         * or it's a completely new inode. In those cases we might not
4156         * have i_mutex locked because it's not necessary.
4157         */
4158        if (!(inode->i_state & (I_NEW|I_FREEING)))
4159                WARN_ON(!inode_is_locked(inode));
4160        trace_ext4_truncate_enter(inode);
4161
4162        if (!ext4_can_truncate(inode))
4163                return 0;
4164
4165        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4166                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4167
4168        if (ext4_has_inline_data(inode)) {
4169                int has_inline = 1;
4170
4171                err = ext4_inline_data_truncate(inode, &has_inline);
4172                if (err)
4173                        return err;
4174                if (has_inline)
4175                        return 0;
4176        }
4177
4178        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180                if (ext4_inode_attach_jinode(inode) < 0)
4181                        return 0;
4182        }
4183
4184        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185                credits = ext4_writepage_trans_blocks(inode);
4186        else
4187                credits = ext4_blocks_for_truncate(inode);
4188
4189        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190        if (IS_ERR(handle))
4191                return PTR_ERR(handle);
4192
4193        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4194                ext4_block_truncate_page(handle, mapping, inode->i_size);
4195
4196        /*
4197         * We add the inode to the orphan list, so that if this
4198         * truncate spans multiple transactions, and we crash, we will
4199         * resume the truncate when the filesystem recovers.  It also
4200         * marks the inode dirty, to catch the new size.
4201         *
4202         * Implication: the file must always be in a sane, consistent
4203         * truncatable state while each transaction commits.
4204         */
4205        err = ext4_orphan_add(handle, inode);
4206        if (err)
4207                goto out_stop;
4208
4209        down_write(&EXT4_I(inode)->i_data_sem);
4210
4211        ext4_discard_preallocations(inode);
4212
4213        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4214                err = ext4_ext_truncate(handle, inode);
4215        else
4216                ext4_ind_truncate(handle, inode);
4217
4218        up_write(&ei->i_data_sem);
4219        if (err)
4220                goto out_stop;
4221
4222        if (IS_SYNC(inode))
4223                ext4_handle_sync(handle);
4224
4225out_stop:
4226        /*
4227         * If this was a simple ftruncate() and the file will remain alive,
4228         * then we need to clear up the orphan record which we created above.
4229         * However, if this was a real unlink then we were called by
4230         * ext4_evict_inode(), and we allow that function to clean up the
4231         * orphan info for us.
4232         */
4233        if (inode->i_nlink)
4234                ext4_orphan_del(handle, inode);
4235
4236        inode->i_mtime = inode->i_ctime = current_time(inode);
4237        ext4_mark_inode_dirty(handle, inode);
4238        ext4_journal_stop(handle);
4239
4240        trace_ext4_truncate_exit(inode);
4241        return err;
4242}
4243
4244/*
4245 * ext4_get_inode_loc returns with an extra refcount against the inode's
4246 * underlying buffer_head on success. If 'in_mem' is true, we have all
4247 * data in memory that is needed to recreate the on-disk version of this
4248 * inode.
4249 */
4250static int __ext4_get_inode_loc(struct inode *inode,
4251                                struct ext4_iloc *iloc, int in_mem)
4252{
4253        struct ext4_group_desc  *gdp;
4254        struct buffer_head      *bh;
4255        struct super_block      *sb = inode->i_sb;
4256        ext4_fsblk_t            block;
4257        struct blk_plug         plug;
4258        int                     inodes_per_block, inode_offset;
4259
4260        iloc->bh = NULL;
4261        if (inode->i_ino < EXT4_ROOT_INO ||
4262            inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4263                return -EFSCORRUPTED;
4264
4265        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4266        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4267        if (!gdp)
4268                return -EIO;
4269
4270        /*
4271         * Figure out the offset within the block group inode table
4272         */
4273        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4274        inode_offset = ((inode->i_ino - 1) %
4275                        EXT4_INODES_PER_GROUP(sb));
4276        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4277        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4278
4279        bh = sb_getblk(sb, block);
4280        if (unlikely(!bh))
4281                return -ENOMEM;
4282        if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4283                goto simulate_eio;
4284        if (!buffer_uptodate(bh)) {
4285                lock_buffer(bh);
4286
4287                /*
4288                 * If the buffer has the write error flag, we have failed
4289                 * to write out another inode in the same block.  In this
4290                 * case, we don't have to read the block because we may
4291                 * read the old inode data successfully.
4292                 */
4293                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4294                        set_buffer_uptodate(bh);
4295
4296                if (buffer_uptodate(bh)) {
4297                        /* someone brought it uptodate while we waited */
4298                        unlock_buffer(bh);
4299                        goto has_buffer;
4300                }
4301
4302                /*
4303                 * If we have all information of the inode in memory and this
4304                 * is the only valid inode in the block, we need not read the
4305                 * block.
4306                 */
4307                if (in_mem) {
4308                        struct buffer_head *bitmap_bh;
4309                        int i, start;
4310
4311                        start = inode_offset & ~(inodes_per_block - 1);
4312
4313                        /* Is the inode bitmap in cache? */
4314                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4315                        if (unlikely(!bitmap_bh))
4316                                goto make_io;
4317
4318                        /*
4319                         * If the inode bitmap isn't in cache then the
4320                         * optimisation may end up performing two reads instead
4321                         * of one, so skip it.
4322                         */
4323                        if (!buffer_uptodate(bitmap_bh)) {
4324                                brelse(bitmap_bh);
4325                                goto make_io;
4326                        }
4327                        for (i = start; i < start + inodes_per_block; i++) {
4328                                if (i == inode_offset)
4329                                        continue;
4330                                if (ext4_test_bit(i, bitmap_bh->b_data))
4331                                        break;
4332                        }
4333                        brelse(bitmap_bh);
4334                        if (i == start + inodes_per_block) {
4335                                /* all other inodes are free, so skip I/O */
4336                                memset(bh->b_data, 0, bh->b_size);
4337                                set_buffer_uptodate(bh);
4338                                unlock_buffer(bh);
4339                                goto has_buffer;
4340                        }
4341                }
4342
4343make_io:
4344                /*
4345                 * If we need to do any I/O, try to pre-readahead extra
4346                 * blocks from the inode table.
4347                 */
4348                blk_start_plug(&plug);
4349                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4350                        ext4_fsblk_t b, end, table;
4351                        unsigned num;
4352                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4353
4354                        table = ext4_inode_table(sb, gdp);
4355                        /* s_inode_readahead_blks is always a power of 2 */
4356                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4357                        if (table > b)
4358                                b = table;
4359                        end = b + ra_blks;
4360                        num = EXT4_INODES_PER_GROUP(sb);
4361                        if (ext4_has_group_desc_csum(sb))
4362                                num -= ext4_itable_unused_count(sb, gdp);
4363                        table += num / inodes_per_block;
4364                        if (end > table)
4365                                end = table;
4366                        while (b <= end)
4367                                sb_breadahead_unmovable(sb, b++);
4368                }
4369
4370                /*
4371                 * There are other valid inodes in the buffer, this inode
4372                 * has in-inode xattrs, or we don't have this inode in memory.
4373                 * Read the block from disk.
4374                 */
4375                trace_ext4_load_inode(inode);
4376                get_bh(bh);
4377                bh->b_end_io = end_buffer_read_sync;
4378                submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4379                blk_finish_plug(&plug);
4380                wait_on_buffer(bh);
4381                if (!buffer_uptodate(bh)) {
4382                simulate_eio:
4383                        ext4_error_inode_block(inode, block, EIO,
4384                                               "unable to read itable block");
4385                        brelse(bh);
4386                        return -EIO;
4387                }
4388        }
4389has_buffer:
4390        iloc->bh = bh;
4391        return 0;
4392}
4393
4394int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4395{
4396        /* We have all inode data except xattrs in memory here. */
4397        return __ext4_get_inode_loc(inode, iloc,
4398                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4399}
4400
4401static bool ext4_should_use_dax(struct inode *inode)
4402{
4403        if (!test_opt(inode->i_sb, DAX))
4404                return false;
4405        if (!S_ISREG(inode->i_mode))
4406                return false;
4407        if (ext4_should_journal_data(inode))
4408                return false;
4409        if (ext4_has_inline_data(inode))
4410                return false;
4411        if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4412                return false;
4413        if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4414                return false;
4415        return true;
4416}
4417
4418void ext4_set_inode_flags(struct inode *inode)
4419{
4420        unsigned int flags = EXT4_I(inode)->i_flags;
4421        unsigned int new_fl = 0;
4422
4423        if (flags & EXT4_SYNC_FL)
4424                new_fl |= S_SYNC;
4425        if (flags & EXT4_APPEND_FL)
4426                new_fl |= S_APPEND;
4427        if (flags & EXT4_IMMUTABLE_FL)
4428                new_fl |= S_IMMUTABLE;
4429        if (flags & EXT4_NOATIME_FL)
4430                new_fl |= S_NOATIME;
4431        if (flags & EXT4_DIRSYNC_FL)
4432                new_fl |= S_DIRSYNC;
4433        if (ext4_should_use_dax(inode))
4434                new_fl |= S_DAX;
4435        if (flags & EXT4_ENCRYPT_FL)
4436                new_fl |= S_ENCRYPTED;
4437        if (flags & EXT4_CASEFOLD_FL)
4438                new_fl |= S_CASEFOLD;
4439        if (flags & EXT4_VERITY_FL)
4440                new_fl |= S_VERITY;
4441        inode_set_flags(inode, new_fl,
4442                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4443                        S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4444}
4445
4446static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4447                                  struct ext4_inode_info *ei)
4448{
4449        blkcnt_t i_blocks ;
4450        struct inode *inode = &(ei->vfs_inode);
4451        struct super_block *sb = inode->i_sb;
4452
4453        if (ext4_has_feature_huge_file(sb)) {
4454                /* we are using combined 48 bit field */
4455                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4456                                        le32_to_cpu(raw_inode->i_blocks_lo);
4457                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4458                        /* i_blocks represent file system block size */
4459                        return i_blocks  << (inode->i_blkbits - 9);
4460                } else {
4461                        return i_blocks;
4462                }
4463        } else {
4464                return le32_to_cpu(raw_inode->i_blocks_lo);
4465        }
4466}
4467
4468static inline int ext4_iget_extra_inode(struct inode *inode,
4469                                         struct ext4_inode *raw_inode,
4470                                         struct ext4_inode_info *ei)
4471{
4472        __le32 *magic = (void *)raw_inode +
4473                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4474
4475        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4476            EXT4_INODE_SIZE(inode->i_sb) &&
4477            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4478                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4479                return ext4_find_inline_data_nolock(inode);
4480        } else
4481                EXT4_I(inode)->i_inline_off = 0;
4482        return 0;
4483}
4484
4485int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4486{
4487        if (!ext4_has_feature_project(inode->i_sb))
4488                return -EOPNOTSUPP;
4489        *projid = EXT4_I(inode)->i_projid;
4490        return 0;
4491}
4492
4493/*
4494 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4495 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4496 * set.
4497 */
4498static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4499{
4500        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4501                inode_set_iversion_raw(inode, val);
4502        else
4503                inode_set_iversion_queried(inode, val);
4504}
4505static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4506{
4507        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4508                return inode_peek_iversion_raw(inode);
4509        else
4510                return inode_peek_iversion(inode);
4511}
4512
4513struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4514                          ext4_iget_flags flags, const char *function,
4515                          unsigned int line)
4516{
4517        struct ext4_iloc iloc;
4518        struct ext4_inode *raw_inode;
4519        struct ext4_inode_info *ei;
4520        struct inode *inode;
4521        journal_t *journal = EXT4_SB(sb)->s_journal;
4522        long ret;
4523        loff_t size;
4524        int block;
4525        uid_t i_uid;
4526        gid_t i_gid;
4527        projid_t i_projid;
4528
4529        if ((!(flags & EXT4_IGET_SPECIAL) &&
4530             (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4531            (ino < EXT4_ROOT_INO) ||
4532            (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4533                if (flags & EXT4_IGET_HANDLE)
4534                        return ERR_PTR(-ESTALE);
4535                __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4536                             "inode #%lu: comm %s: iget: illegal inode #",
4537                             ino, current->comm);
4538                return ERR_PTR(-EFSCORRUPTED);
4539        }
4540
4541        inode = iget_locked(sb, ino);
4542        if (!inode)
4543                return ERR_PTR(-ENOMEM);
4544        if (!(inode->i_state & I_NEW))
4545                return inode;
4546
4547        ei = EXT4_I(inode);
4548        iloc.bh = NULL;
4549
4550        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4551        if (ret < 0)
4552                goto bad_inode;
4553        raw_inode = ext4_raw_inode(&iloc);
4554
4555        if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4556                ext4_error_inode(inode, function, line, 0,
4557                                 "iget: root inode unallocated");
4558                ret = -EFSCORRUPTED;
4559                goto bad_inode;
4560        }
4561
4562        if ((flags & EXT4_IGET_HANDLE) &&
4563            (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4564                ret = -ESTALE;
4565                goto bad_inode;
4566        }
4567
4568        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4569                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4570                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4571                        EXT4_INODE_SIZE(inode->i_sb) ||
4572                    (ei->i_extra_isize & 3)) {
4573                        ext4_error_inode(inode, function, line, 0,
4574                                         "iget: bad extra_isize %u "
4575                                         "(inode size %u)",
4576                                         ei->i_extra_isize,
4577                                         EXT4_INODE_SIZE(inode->i_sb));
4578                        ret = -EFSCORRUPTED;
4579                        goto bad_inode;
4580                }
4581        } else
4582                ei->i_extra_isize = 0;
4583
4584        /* Precompute checksum seed for inode metadata */
4585        if (ext4_has_metadata_csum(sb)) {
4586                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4587                __u32 csum;
4588                __le32 inum = cpu_to_le32(inode->i_ino);
4589                __le32 gen = raw_inode->i_generation;
4590                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4591                                   sizeof(inum));
4592                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4593                                              sizeof(gen));
4594        }
4595
4596        if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4597            ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4598                ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4599                                     "iget: checksum invalid");
4600                ret = -EFSBADCRC;
4601                goto bad_inode;
4602        }
4603
4604        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4605        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4606        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4607        if (ext4_has_feature_project(sb) &&
4608            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4609            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4610                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4611        else
4612                i_projid = EXT4_DEF_PROJID;
4613
4614        if (!(test_opt(inode->i_sb, NO_UID32))) {
4615                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4616                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4617        }
4618        i_uid_write(inode, i_uid);
4619        i_gid_write(inode, i_gid);
4620        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4621        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4622
4623        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4624        ei->i_inline_off = 0;
4625        ei->i_dir_start_lookup = 0;
4626        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4627        /* We now have enough fields to check if the inode was active or not.
4628         * This is needed because nfsd might try to access dead inodes
4629         * the test is that same one that e2fsck uses
4630         * NeilBrown 1999oct15
4631         */
4632        if (inode->i_nlink == 0) {
4633                if ((inode->i_mode == 0 ||
4634                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4635                    ino != EXT4_BOOT_LOADER_INO) {
4636                        /* this inode is deleted */
4637                        ret = -ESTALE;
4638                        goto bad_inode;
4639                }
4640                /* The only unlinked inodes we let through here have
4641                 * valid i_mode and are being read by the orphan
4642                 * recovery code: that's fine, we're about to complete
4643                 * the process of deleting those.
4644                 * OR it is the EXT4_BOOT_LOADER_INO which is
4645                 * not initialized on a new filesystem. */
4646        }
4647        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4648        ext4_set_inode_flags(inode);
4649        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4650        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4651        if (ext4_has_feature_64bit(sb))
4652                ei->i_file_acl |=
4653                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4654        inode->i_size = ext4_isize(sb, raw_inode);
4655        if ((size = i_size_read(inode)) < 0) {
4656                ext4_error_inode(inode, function, line, 0,
4657                                 "iget: bad i_size value: %lld", size);
4658                ret = -EFSCORRUPTED;
4659                goto bad_inode;
4660        }
4661        /*
4662         * If dir_index is not enabled but there's dir with INDEX flag set,
4663         * we'd normally treat htree data as empty space. But with metadata
4664         * checksumming that corrupts checksums so forbid that.
4665         */
4666        if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4667            ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4668                ext4_error_inode(inode, function, line, 0,
4669                         "iget: Dir with htree data on filesystem without dir_index feature.");
4670                ret = -EFSCORRUPTED;
4671                goto bad_inode;
4672        }
4673        ei->i_disksize = inode->i_size;
4674#ifdef CONFIG_QUOTA
4675        ei->i_reserved_quota = 0;
4676#endif
4677        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4678        ei->i_block_group = iloc.block_group;
4679        ei->i_last_alloc_group = ~0;
4680        /*
4681         * NOTE! The in-memory inode i_data array is in little-endian order
4682         * even on big-endian machines: we do NOT byteswap the block numbers!
4683         */
4684        for (block = 0; block < EXT4_N_BLOCKS; block++)
4685                ei->i_data[block] = raw_inode->i_block[block];
4686        INIT_LIST_HEAD(&ei->i_orphan);
4687
4688        /*
4689         * Set transaction id's of transactions that have to be committed
4690         * to finish f[data]sync. We set them to currently running transaction
4691         * as we cannot be sure that the inode or some of its metadata isn't
4692         * part of the transaction - the inode could have been reclaimed and
4693         * now it is reread from disk.
4694         */
4695        if (journal) {
4696                transaction_t *transaction;
4697                tid_t tid;
4698
4699                read_lock(&journal->j_state_lock);
4700                if (journal->j_running_transaction)
4701                        transaction = journal->j_running_transaction;
4702                else
4703                        transaction = journal->j_committing_transaction;
4704                if (transaction)
4705                        tid = transaction->t_tid;
4706                else
4707                        tid = journal->j_commit_sequence;
4708                read_unlock(&journal->j_state_lock);
4709                ei->i_sync_tid = tid;
4710                ei->i_datasync_tid = tid;
4711        }
4712
4713        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714                if (ei->i_extra_isize == 0) {
4715                        /* The extra space is currently unused. Use it. */
4716                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4717                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4718                                            EXT4_GOOD_OLD_INODE_SIZE;
4719                } else {
4720                        ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4721                        if (ret)
4722                                goto bad_inode;
4723                }
4724        }
4725
4726        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4727        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4728        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4729        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4730
4731        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4732                u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4733
4734                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4735                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4736                                ivers |=
4737                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4738                }
4739                ext4_inode_set_iversion_queried(inode, ivers);
4740        }
4741
4742        ret = 0;
4743        if (ei->i_file_acl &&
4744            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4745                ext4_error_inode(inode, function, line, 0,
4746                                 "iget: bad extended attribute block %llu",
4747                                 ei->i_file_acl);
4748                ret = -EFSCORRUPTED;
4749                goto bad_inode;
4750        } else if (!ext4_has_inline_data(inode)) {
4751                /* validate the block references in the inode */
4752                if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4753                   (S_ISLNK(inode->i_mode) &&
4754                    !ext4_inode_is_fast_symlink(inode))) {
4755                        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4756                                ret = ext4_ext_check_inode(inode);
4757                        else
4758                                ret = ext4_ind_check_inode(inode);
4759                }
4760        }
4761        if (ret)
4762                goto bad_inode;
4763
4764        if (S_ISREG(inode->i_mode)) {
4765                inode->i_op = &ext4_file_inode_operations;
4766                inode->i_fop = &ext4_file_operations;
4767                ext4_set_aops(inode);
4768        } else if (S_ISDIR(inode->i_mode)) {
4769                inode->i_op = &ext4_dir_inode_operations;
4770                inode->i_fop = &ext4_dir_operations;
4771        } else if (S_ISLNK(inode->i_mode)) {
4772                /* VFS does not allow setting these so must be corruption */
4773                if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4774                        ext4_error_inode(inode, function, line, 0,
4775                                         "iget: immutable or append flags "
4776                                         "not allowed on symlinks");
4777                        ret = -EFSCORRUPTED;
4778                        goto bad_inode;
4779                }
4780                if (IS_ENCRYPTED(inode)) {
4781                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4782                        ext4_set_aops(inode);
4783                } else if (ext4_inode_is_fast_symlink(inode)) {
4784                        inode->i_link = (char *)ei->i_data;
4785                        inode->i_op = &ext4_fast_symlink_inode_operations;
4786                        nd_terminate_link(ei->i_data, inode->i_size,
4787                                sizeof(ei->i_data) - 1);
4788                } else {
4789                        inode->i_op = &ext4_symlink_inode_operations;
4790                        ext4_set_aops(inode);
4791                }
4792                inode_nohighmem(inode);
4793        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4794              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4795                inode->i_op = &ext4_special_inode_operations;
4796                if (raw_inode->i_block[0])
4797                        init_special_inode(inode, inode->i_mode,
4798                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4799                else
4800                        init_special_inode(inode, inode->i_mode,
4801                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4802        } else if (ino == EXT4_BOOT_LOADER_INO) {
4803                make_bad_inode(inode);
4804        } else {
4805                ret = -EFSCORRUPTED;
4806                ext4_error_inode(inode, function, line, 0,
4807                                 "iget: bogus i_mode (%o)", inode->i_mode);
4808                goto bad_inode;
4809        }
4810        if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4811                ext4_error_inode(inode, function, line, 0,
4812                                 "casefold flag without casefold feature");
4813        brelse(iloc.bh);
4814
4815        unlock_new_inode(inode);
4816        return inode;
4817
4818bad_inode:
4819        brelse(iloc.bh);
4820        iget_failed(inode);
4821        return ERR_PTR(ret);
4822}
4823
4824static int ext4_inode_blocks_set(handle_t *handle,
4825                                struct ext4_inode *raw_inode,
4826                                struct ext4_inode_info *ei)
4827{
4828        struct inode *inode = &(ei->vfs_inode);
4829        u64 i_blocks = READ_ONCE(inode->i_blocks);
4830        struct super_block *sb = inode->i_sb;
4831
4832        if (i_blocks <= ~0U) {
4833                /*
4834                 * i_blocks can be represented in a 32 bit variable
4835                 * as multiple of 512 bytes
4836                 */
4837                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4838                raw_inode->i_blocks_high = 0;
4839                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4840                return 0;
4841        }
4842        if (!ext4_has_feature_huge_file(sb))
4843                return -EFBIG;
4844
4845        if (i_blocks <= 0xffffffffffffULL) {
4846                /*
4847                 * i_blocks can be represented in a 48 bit variable
4848                 * as multiple of 512 bytes
4849                 */
4850                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4851                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4852                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4853        } else {
4854                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4855                /* i_block is stored in file system block size */
4856                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4857                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4858                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4859        }
4860        return 0;
4861}
4862
4863struct other_inode {
4864        unsigned long           orig_ino;
4865        struct ext4_inode       *raw_inode;
4866};
4867
4868static int other_inode_match(struct inode * inode, unsigned long ino,
4869                             void *data)
4870{
4871        struct other_inode *oi = (struct other_inode *) data;
4872
4873        if ((inode->i_ino != ino) ||
4874            (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4875                               I_DIRTY_INODE)) ||
4876            ((inode->i_state & I_DIRTY_TIME) == 0))
4877                return 0;
4878        spin_lock(&inode->i_lock);
4879        if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4880                                I_DIRTY_INODE)) == 0) &&
4881            (inode->i_state & I_DIRTY_TIME)) {
4882                struct ext4_inode_info  *ei = EXT4_I(inode);
4883
4884                inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4885                spin_unlock(&inode->i_lock);
4886
4887                spin_lock(&ei->i_raw_lock);
4888                EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4889                EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4890                EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4891                ext4_inode_csum_set(inode, oi->raw_inode, ei);
4892                spin_unlock(&ei->i_raw_lock);
4893                trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4894                return -1;
4895        }
4896        spin_unlock(&inode->i_lock);
4897        return -1;
4898}
4899
4900/*
4901 * Opportunistically update the other time fields for other inodes in
4902 * the same inode table block.
4903 */
4904static void ext4_update_other_inodes_time(struct super_block *sb,
4905                                          unsigned long orig_ino, char *buf)
4906{
4907        struct other_inode oi;
4908        unsigned long ino;
4909        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4910        int inode_size = EXT4_INODE_SIZE(sb);
4911
4912        oi.orig_ino = orig_ino;
4913        /*
4914         * Calculate the first inode in the inode table block.  Inode
4915         * numbers are one-based.  That is, the first inode in a block
4916         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4917         */
4918        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4919        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4920                if (ino == orig_ino)
4921                        continue;
4922                oi.raw_inode = (struct ext4_inode *) buf;
4923                (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4924        }
4925}
4926
4927/*
4928 * Post the struct inode info into an on-disk inode location in the
4929 * buffer-cache.  This gobbles the caller's reference to the
4930 * buffer_head in the inode location struct.
4931 *
4932 * The caller must have write access to iloc->bh.
4933 */
4934static int ext4_do_update_inode(handle_t *handle,
4935                                struct inode *inode,
4936                                struct ext4_iloc *iloc)
4937{
4938        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4939        struct ext4_inode_info *ei = EXT4_I(inode);
4940        struct buffer_head *bh = iloc->bh;
4941        struct super_block *sb = inode->i_sb;
4942        int err = 0, rc, block;
4943        int need_datasync = 0, set_large_file = 0;
4944        uid_t i_uid;
4945        gid_t i_gid;
4946        projid_t i_projid;
4947
4948        spin_lock(&ei->i_raw_lock);
4949
4950        /* For fields not tracked in the in-memory inode,
4951         * initialise them to zero for new inodes. */
4952        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4953                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4954
4955        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4956        i_uid = i_uid_read(inode);
4957        i_gid = i_gid_read(inode);
4958        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4959        if (!(test_opt(inode->i_sb, NO_UID32))) {
4960                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4961                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4962/*
4963 * Fix up interoperability with old kernels. Otherwise, old inodes get
4964 * re-used with the upper 16 bits of the uid/gid intact
4965 */
4966                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4967                        raw_inode->i_uid_high = 0;
4968                        raw_inode->i_gid_high = 0;
4969                } else {
4970                        raw_inode->i_uid_high =
4971                                cpu_to_le16(high_16_bits(i_uid));
4972                        raw_inode->i_gid_high =
4973                                cpu_to_le16(high_16_bits(i_gid));
4974                }
4975        } else {
4976                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4977                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4978                raw_inode->i_uid_high = 0;
4979                raw_inode->i_gid_high = 0;
4980        }
4981        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4982
4983        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4984        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4985        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4986        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4987
4988        err = ext4_inode_blocks_set(handle, raw_inode, ei);
4989        if (err) {
4990                spin_unlock(&ei->i_raw_lock);
4991                goto out_brelse;
4992        }
4993        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4994        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4995        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4996                raw_inode->i_file_acl_high =
4997                        cpu_to_le16(ei->i_file_acl >> 32);
4998        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4999        if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5000                ext4_isize_set(raw_inode, ei->i_disksize);
5001                need_datasync = 1;
5002        }
5003        if (ei->i_disksize > 0x7fffffffULL) {
5004                if (!ext4_has_feature_large_file(sb) ||
5005                                EXT4_SB(sb)->s_es->s_rev_level ==
5006                    cpu_to_le32(EXT4_GOOD_OLD_REV))
5007                        set_large_file = 1;
5008        }
5009        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5010        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5011                if (old_valid_dev(inode->i_rdev)) {
5012                        raw_inode->i_block[0] =
5013                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5014                        raw_inode->i_block[1] = 0;
5015                } else {
5016                        raw_inode->i_block[0] = 0;
5017                        raw_inode->i_block[1] =
5018                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5019                        raw_inode->i_block[2] = 0;
5020                }
5021        } else if (!ext4_has_inline_data(inode)) {
5022                for (block = 0; block < EXT4_N_BLOCKS; block++)
5023                        raw_inode->i_block[block] = ei->i_data[block];
5024        }
5025
5026        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5027                u64 ivers = ext4_inode_peek_iversion(inode);
5028
5029                raw_inode->i_disk_version = cpu_to_le32(ivers);
5030                if (ei->i_extra_isize) {
5031                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5032                                raw_inode->i_version_hi =
5033                                        cpu_to_le32(ivers >> 32);
5034                        raw_inode->i_extra_isize =
5035                                cpu_to_le16(ei->i_extra_isize);
5036                }
5037        }
5038
5039        BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5040               i_projid != EXT4_DEF_PROJID);
5041
5042        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5043            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5044                raw_inode->i_projid = cpu_to_le32(i_projid);
5045
5046        ext4_inode_csum_set(inode, raw_inode, ei);
5047        spin_unlock(&ei->i_raw_lock);
5048        if (inode->i_sb->s_flags & SB_LAZYTIME)
5049                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5050                                              bh->b_data);
5051
5052        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5053        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5054        if (!err)
5055                err = rc;
5056        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5057        if (set_large_file) {
5058                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5059                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5060                if (err)
5061                        goto out_brelse;
5062                ext4_set_feature_large_file(sb);
5063                ext4_handle_sync(handle);
5064                err = ext4_handle_dirty_super(handle, sb);
5065        }
5066        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5067out_brelse:
5068        brelse(bh);
5069        ext4_std_error(inode->i_sb, err);
5070        return err;
5071}
5072
5073/*
5074 * ext4_write_inode()
5075 *
5076 * We are called from a few places:
5077 *
5078 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5079 *   Here, there will be no transaction running. We wait for any running
5080 *   transaction to commit.
5081 *
5082 * - Within flush work (sys_sync(), kupdate and such).
5083 *   We wait on commit, if told to.
5084 *
5085 * - Within iput_final() -> write_inode_now()
5086 *   We wait on commit, if told to.
5087 *
5088 * In all cases it is actually safe for us to return without doing anything,
5089 * because the inode has been copied into a raw inode buffer in
5090 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5091 * writeback.
5092 *
5093 * Note that we are absolutely dependent upon all inode dirtiers doing the
5094 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5095 * which we are interested.
5096 *
5097 * It would be a bug for them to not do this.  The code:
5098 *
5099 *      mark_inode_dirty(inode)
5100 *      stuff();
5101 *      inode->i_size = expr;
5102 *
5103 * is in error because write_inode() could occur while `stuff()' is running,
5104 * and the new i_size will be lost.  Plus the inode will no longer be on the
5105 * superblock's dirty inode list.
5106 */
5107int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5108{
5109        int err;
5110
5111        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5112            sb_rdonly(inode->i_sb))
5113                return 0;
5114
5115        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5116                return -EIO;
5117
5118        if (EXT4_SB(inode->i_sb)->s_journal) {
5119                if (ext4_journal_current_handle()) {
5120                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5121                        dump_stack();
5122                        return -EIO;
5123                }
5124
5125                /*
5126                 * No need to force transaction in WB_SYNC_NONE mode. Also
5127                 * ext4_sync_fs() will force the commit after everything is
5128                 * written.
5129                 */
5130                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5131                        return 0;
5132
5133                err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5134                                                EXT4_I(inode)->i_sync_tid);
5135        } else {
5136                struct ext4_iloc iloc;
5137
5138                err = __ext4_get_inode_loc(inode, &iloc, 0);
5139                if (err)
5140                        return err;
5141                /*
5142                 * sync(2) will flush the whole buffer cache. No need to do
5143                 * it here separately for each inode.
5144                 */
5145                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5146                        sync_dirty_buffer(iloc.bh);
5147                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5148                        ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5149                                               "IO error syncing inode");
5150                        err = -EIO;
5151                }
5152                brelse(iloc.bh);
5153        }
5154        return err;
5155}
5156
5157/*
5158 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5159 * buffers that are attached to a page stradding i_size and are undergoing
5160 * commit. In that case we have to wait for commit to finish and try again.
5161 */
5162static void ext4_wait_for_tail_page_commit(struct inode *inode)
5163{
5164        struct page *page;
5165        unsigned offset;
5166        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5167        tid_t commit_tid = 0;
5168        int ret;
5169
5170        offset = inode->i_size & (PAGE_SIZE - 1);
5171        /*
5172         * If the page is fully truncated, we don't need to wait for any commit
5173         * (and we even should not as __ext4_journalled_invalidatepage() may
5174         * strip all buffers from the page but keep the page dirty which can then
5175         * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5176         * buffers). Also we don't need to wait for any commit if all buffers in
5177         * the page remain valid. This is most beneficial for the common case of
5178         * blocksize == PAGESIZE.
5179         */
5180        if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5181                return;
5182        while (1) {
5183                page = find_lock_page(inode->i_mapping,
5184                                      inode->i_size >> PAGE_SHIFT);
5185                if (!page)
5186                        return;
5187                ret = __ext4_journalled_invalidatepage(page, offset,
5188                                                PAGE_SIZE - offset);
5189                unlock_page(page);
5190                put_page(page);
5191                if (ret != -EBUSY)
5192                        return;
5193                commit_tid = 0;
5194                read_lock(&journal->j_state_lock);
5195                if (journal->j_committing_transaction)
5196                        commit_tid = journal->j_committing_transaction->t_tid;
5197                read_unlock(&journal->j_state_lock);
5198                if (commit_tid)
5199                        jbd2_log_wait_commit(journal, commit_tid);
5200        }
5201}
5202
5203/*
5204 * ext4_setattr()
5205 *
5206 * Called from notify_change.
5207 *
5208 * We want to trap VFS attempts to truncate the file as soon as
5209 * possible.  In particular, we want to make sure that when the VFS
5210 * shrinks i_size, we put the inode on the orphan list and modify
5211 * i_disksize immediately, so that during the subsequent flushing of
5212 * dirty pages and freeing of disk blocks, we can guarantee that any
5213 * commit will leave the blocks being flushed in an unused state on
5214 * disk.  (On recovery, the inode will get truncated and the blocks will
5215 * be freed, so we have a strong guarantee that no future commit will
5216 * leave these blocks visible to the user.)
5217 *
5218 * Another thing we have to assure is that if we are in ordered mode
5219 * and inode is still attached to the committing transaction, we must
5220 * we start writeout of all the dirty pages which are being truncated.
5221 * This way we are sure that all the data written in the previous
5222 * transaction are already on disk (truncate waits for pages under
5223 * writeback).
5224 *
5225 * Called with inode->i_mutex down.
5226 */
5227int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5228{
5229        struct inode *inode = d_inode(dentry);
5230        int error, rc = 0;
5231        int orphan = 0;
5232        const unsigned int ia_valid = attr->ia_valid;
5233
5234        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5235                return -EIO;
5236
5237        if (unlikely(IS_IMMUTABLE(inode)))
5238                return -EPERM;
5239
5240        if (unlikely(IS_APPEND(inode) &&
5241                     (ia_valid & (ATTR_MODE | ATTR_UID |
5242                                  ATTR_GID | ATTR_TIMES_SET))))
5243                return -EPERM;
5244
5245        error = setattr_prepare(dentry, attr);
5246        if (error)
5247                return error;
5248
5249        error = fscrypt_prepare_setattr(dentry, attr);
5250        if (error)
5251                return error;
5252
5253        error = fsverity_prepare_setattr(dentry, attr);
5254        if (error)
5255                return error;
5256
5257        if (is_quota_modification(inode, attr)) {
5258                error = dquot_initialize(inode);
5259                if (error)
5260                        return error;
5261        }
5262        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5263            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5264                handle_t *handle;
5265
5266                /* (user+group)*(old+new) structure, inode write (sb,
5267                 * inode block, ? - but truncate inode update has it) */
5268                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5269                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5270                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5271                if (IS_ERR(handle)) {
5272                        error = PTR_ERR(handle);
5273                        goto err_out;
5274                }
5275
5276                /* dquot_transfer() calls back ext4_get_inode_usage() which
5277                 * counts xattr inode references.
5278                 */
5279                down_read(&EXT4_I(inode)->xattr_sem);
5280                error = dquot_transfer(inode, attr);
5281                up_read(&EXT4_I(inode)->xattr_sem);
5282
5283                if (error) {
5284                        ext4_journal_stop(handle);
5285                        return error;
5286                }
5287                /* Update corresponding info in inode so that everything is in
5288                 * one transaction */
5289                if (attr->ia_valid & ATTR_UID)
5290                        inode->i_uid = attr->ia_uid;
5291                if (attr->ia_valid & ATTR_GID)
5292                        inode->i_gid = attr->ia_gid;
5293                error = ext4_mark_inode_dirty(handle, inode);
5294                ext4_journal_stop(handle);
5295        }
5296
5297        if (attr->ia_valid & ATTR_SIZE) {
5298                handle_t *handle;
5299                loff_t oldsize = inode->i_size;
5300                int shrink = (attr->ia_size < inode->i_size);
5301
5302                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5303                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5304
5305                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
5306                                return -EFBIG;
5307                }
5308                if (!S_ISREG(inode->i_mode))
5309                        return -EINVAL;
5310
5311                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5312                        inode_inc_iversion(inode);
5313
5314                if (shrink) {
5315                        if (ext4_should_order_data(inode)) {
5316                                error = ext4_begin_ordered_truncate(inode,
5317                                                            attr->ia_size);
5318                                if (error)
5319                                        goto err_out;
5320                        }
5321                        /*
5322                         * Blocks are going to be removed from the inode. Wait
5323                         * for dio in flight.
5324                         */
5325                        inode_dio_wait(inode);
5326                }
5327
5328                down_write(&EXT4_I(inode)->i_mmap_sem);
5329
5330                rc = ext4_break_layouts(inode);
5331                if (rc) {
5332                        up_write(&EXT4_I(inode)->i_mmap_sem);
5333                        return rc;
5334                }
5335
5336                if (attr->ia_size != inode->i_size) {
5337                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5338                        if (IS_ERR(handle)) {
5339                                error = PTR_ERR(handle);
5340                                goto out_mmap_sem;
5341                        }
5342                        if (ext4_handle_valid(handle) && shrink) {
5343                                error = ext4_orphan_add(handle, inode);
5344                                orphan = 1;
5345                        }
5346                        /*
5347                         * Update c/mtime on truncate up, ext4_truncate() will
5348                         * update c/mtime in shrink case below
5349                         */
5350                        if (!shrink) {
5351                                inode->i_mtime = current_time(inode);
5352                                inode->i_ctime = inode->i_mtime;
5353                        }
5354                        down_write(&EXT4_I(inode)->i_data_sem);
5355                        EXT4_I(inode)->i_disksize = attr->ia_size;
5356                        rc = ext4_mark_inode_dirty(handle, inode);
5357                        if (!error)
5358                                error = rc;
5359                        /*
5360                         * We have to update i_size under i_data_sem together
5361                         * with i_disksize to avoid races with writeback code
5362                         * running ext4_wb_update_i_disksize().
5363                         */
5364                        if (!error)
5365                                i_size_write(inode, attr->ia_size);
5366                        up_write(&EXT4_I(inode)->i_data_sem);
5367                        ext4_journal_stop(handle);
5368                        if (error)
5369                                goto out_mmap_sem;
5370                        if (!shrink) {
5371                                pagecache_isize_extended(inode, oldsize,
5372                                                         inode->i_size);
5373                        } else if (ext4_should_journal_data(inode)) {
5374                                ext4_wait_for_tail_page_commit(inode);
5375                        }
5376                }
5377
5378                /*
5379                 * Truncate pagecache after we've waited for commit
5380                 * in data=journal mode to make pages freeable.
5381                 */
5382                truncate_pagecache(inode, inode->i_size);
5383                /*
5384                 * Call ext4_truncate() even if i_size didn't change to
5385                 * truncate possible preallocated blocks.
5386                 */
5387                if (attr->ia_size <= oldsize) {
5388                        rc = ext4_truncate(inode);
5389                        if (rc)
5390                                error = rc;
5391                }
5392out_mmap_sem:
5393                up_write(&EXT4_I(inode)->i_mmap_sem);
5394        }
5395
5396        if (!error) {
5397                setattr_copy(inode, attr);
5398                mark_inode_dirty(inode);
5399        }
5400
5401        /*
5402         * If the call to ext4_truncate failed to get a transaction handle at
5403         * all, we need to clean up the in-core orphan list manually.
5404         */
5405        if (orphan && inode->i_nlink)
5406                ext4_orphan_del(NULL, inode);
5407
5408        if (!error && (ia_valid & ATTR_MODE))
5409                rc = posix_acl_chmod(inode, inode->i_mode);
5410
5411err_out:
5412        ext4_std_error(inode->i_sb, error);
5413        if (!error)
5414                error = rc;
5415        return error;
5416}
5417
5418int ext4_getattr(const struct path *path, struct kstat *stat,
5419                 u32 request_mask, unsigned int query_flags)
5420{
5421        struct inode *inode = d_inode(path->dentry);
5422        struct ext4_inode *raw_inode;
5423        struct ext4_inode_info *ei = EXT4_I(inode);
5424        unsigned int flags;
5425
5426        if ((request_mask & STATX_BTIME) &&
5427            EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5428                stat->result_mask |= STATX_BTIME;
5429                stat->btime.tv_sec = ei->i_crtime.tv_sec;
5430                stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5431        }
5432
5433        flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5434        if (flags & EXT4_APPEND_FL)
5435                stat->attributes |= STATX_ATTR_APPEND;
5436        if (flags & EXT4_COMPR_FL)
5437                stat->attributes |= STATX_ATTR_COMPRESSED;
5438        if (flags & EXT4_ENCRYPT_FL)
5439                stat->attributes |= STATX_ATTR_ENCRYPTED;
5440        if (flags & EXT4_IMMUTABLE_FL)
5441                stat->attributes |= STATX_ATTR_IMMUTABLE;
5442        if (flags & EXT4_NODUMP_FL)
5443                stat->attributes |= STATX_ATTR_NODUMP;
5444        if (flags & EXT4_VERITY_FL)
5445                stat->attributes |= STATX_ATTR_VERITY;
5446
5447        stat->attributes_mask |= (STATX_ATTR_APPEND |
5448                                  STATX_ATTR_COMPRESSED |
5449                                  STATX_ATTR_ENCRYPTED |
5450                                  STATX_ATTR_IMMUTABLE |
5451                                  STATX_ATTR_NODUMP |
5452                                  STATX_ATTR_VERITY);
5453
5454        generic_fillattr(inode, stat);
5455        return 0;
5456}
5457
5458int ext4_file_getattr(const struct path *path, struct kstat *stat,
5459                      u32 request_mask, unsigned int query_flags)
5460{
5461        struct inode *inode = d_inode(path->dentry);
5462        u64 delalloc_blocks;
5463
5464        ext4_getattr(path, stat, request_mask, query_flags);
5465
5466        /*
5467         * If there is inline data in the inode, the inode will normally not
5468         * have data blocks allocated (it may have an external xattr block).
5469         * Report at least one sector for such files, so tools like tar, rsync,
5470         * others don't incorrectly think the file is completely sparse.
5471         */
5472        if (unlikely(ext4_has_inline_data(inode)))
5473                stat->blocks += (stat->size + 511) >> 9;
5474
5475        /*
5476         * We can't update i_blocks if the block allocation is delayed
5477         * otherwise in the case of system crash before the real block
5478         * allocation is done, we will have i_blocks inconsistent with
5479         * on-disk file blocks.
5480         * We always keep i_blocks updated together with real
5481         * allocation. But to not confuse with user, stat
5482         * will return the blocks that include the delayed allocation
5483         * blocks for this file.
5484         */
5485        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5486                                   EXT4_I(inode)->i_reserved_data_blocks);
5487        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5488        return 0;
5489}
5490
5491static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5492                                   int pextents)
5493{
5494        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5495                return ext4_ind_trans_blocks(inode, lblocks);
5496        return ext4_ext_index_trans_blocks(inode, pextents);
5497}
5498
5499/*
5500 * Account for index blocks, block groups bitmaps and block group
5501 * descriptor blocks if modify datablocks and index blocks
5502 * worse case, the indexs blocks spread over different block groups
5503 *
5504 * If datablocks are discontiguous, they are possible to spread over
5505 * different block groups too. If they are contiguous, with flexbg,
5506 * they could still across block group boundary.
5507 *
5508 * Also account for superblock, inode, quota and xattr blocks
5509 */
5510static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5511                                  int pextents)
5512{
5513        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5514        int gdpblocks;
5515        int idxblocks;
5516        int ret = 0;
5517
5518        /*
5519         * How many index blocks need to touch to map @lblocks logical blocks
5520         * to @pextents physical extents?
5521         */
5522        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5523
5524        ret = idxblocks;
5525
5526        /*
5527         * Now let's see how many group bitmaps and group descriptors need
5528         * to account
5529         */
5530        groups = idxblocks + pextents;
5531        gdpblocks = groups;
5532        if (groups > ngroups)
5533                groups = ngroups;
5534        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5535                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5536
5537        /* bitmaps and block group descriptor blocks */
5538        ret += groups + gdpblocks;
5539
5540        /* Blocks for super block, inode, quota and xattr blocks */
5541        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5542
5543        return ret;
5544}
5545
5546/*
5547 * Calculate the total number of credits to reserve to fit
5548 * the modification of a single pages into a single transaction,
5549 * which may include multiple chunks of block allocations.
5550 *
5551 * This could be called via ext4_write_begin()
5552 *
5553 * We need to consider the worse case, when
5554 * one new block per extent.
5555 */
5556int ext4_writepage_trans_blocks(struct inode *inode)
5557{
5558        int bpp = ext4_journal_blocks_per_page(inode);
5559        int ret;
5560
5561        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5562
5563        /* Account for data blocks for journalled mode */
5564        if (ext4_should_journal_data(inode))
5565                ret += bpp;
5566        return ret;
5567}
5568
5569/*
5570 * Calculate the journal credits for a chunk of data modification.
5571 *
5572 * This is called from DIO, fallocate or whoever calling
5573 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5574 *
5575 * journal buffers for data blocks are not included here, as DIO
5576 * and fallocate do no need to journal data buffers.
5577 */
5578int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5579{
5580        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5581}
5582
5583/*
5584 * The caller must have previously called ext4_reserve_inode_write().
5585 * Give this, we know that the caller already has write access to iloc->bh.
5586 */
5587int ext4_mark_iloc_dirty(handle_t *handle,
5588                         struct inode *inode, struct ext4_iloc *iloc)
5589{
5590        int err = 0;
5591
5592        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5593                put_bh(iloc->bh);
5594                return -EIO;
5595        }
5596        if (IS_I_VERSION(inode))
5597                inode_inc_iversion(inode);
5598
5599        /* the do_update_inode consumes one bh->b_count */
5600        get_bh(iloc->bh);
5601
5602        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5603        err = ext4_do_update_inode(handle, inode, iloc);
5604        put_bh(iloc->bh);
5605        return err;
5606}
5607
5608/*
5609 * On success, We end up with an outstanding reference count against
5610 * iloc->bh.  This _must_ be cleaned up later.
5611 */
5612
5613int
5614ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5615                         struct ext4_iloc *iloc)
5616{
5617        int err;
5618
5619        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5620                return -EIO;
5621
5622        err = ext4_get_inode_loc(inode, iloc);
5623        if (!err) {
5624                BUFFER_TRACE(iloc->bh, "get_write_access");
5625                err = ext4_journal_get_write_access(handle, iloc->bh);
5626                if (err) {
5627                        brelse(iloc->bh);
5628                        iloc->bh = NULL;
5629                }
5630        }
5631        ext4_std_error(inode->i_sb, err);
5632        return err;
5633}
5634
5635static int __ext4_expand_extra_isize(struct inode *inode,
5636                                     unsigned int new_extra_isize,
5637                                     struct ext4_iloc *iloc,
5638                                     handle_t *handle, int *no_expand)
5639{
5640        struct ext4_inode *raw_inode;
5641        struct ext4_xattr_ibody_header *header;
5642        unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5643        struct ext4_inode_info *ei = EXT4_I(inode);
5644        int error;
5645
5646        /* this was checked at iget time, but double check for good measure */
5647        if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5648            (ei->i_extra_isize & 3)) {
5649                EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5650                                 ei->i_extra_isize,
5651                                 EXT4_INODE_SIZE(inode->i_sb));
5652                return -EFSCORRUPTED;
5653        }
5654        if ((new_extra_isize < ei->i_extra_isize) ||
5655            (new_extra_isize < 4) ||
5656            (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5657                return -EINVAL; /* Should never happen */
5658
5659        raw_inode = ext4_raw_inode(iloc);
5660
5661        header = IHDR(inode, raw_inode);
5662
5663        /* No extended attributes present */
5664        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5665            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5666                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5667                       EXT4_I(inode)->i_extra_isize, 0,
5668                       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5669                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5670                return 0;
5671        }
5672
5673        /* try to expand with EAs present */
5674        error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5675                                           raw_inode, handle);
5676        if (error) {
5677                /*
5678                 * Inode size expansion failed; don't try again
5679                 */
5680                *no_expand = 1;
5681        }
5682
5683        return error;
5684}
5685
5686/*
5687 * Expand an inode by new_extra_isize bytes.
5688 * Returns 0 on success or negative error number on failure.
5689 */
5690static int ext4_try_to_expand_extra_isize(struct inode *inode,
5691                                          unsigned int new_extra_isize,
5692                                          struct ext4_iloc iloc,
5693                                          handle_t *handle)
5694{
5695        int no_expand;
5696        int error;
5697
5698        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5699                return -EOVERFLOW;
5700
5701        /*
5702         * In nojournal mode, we can immediately attempt to expand
5703         * the inode.  When journaled, we first need to obtain extra
5704         * buffer credits since we may write into the EA block
5705         * with this same handle. If journal_extend fails, then it will
5706         * only result in a minor loss of functionality for that inode.
5707         * If this is felt to be critical, then e2fsck should be run to
5708         * force a large enough s_min_extra_isize.
5709         */
5710        if (ext4_journal_extend(handle,
5711                                EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5712                return -ENOSPC;
5713
5714        if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5715                return -EBUSY;
5716
5717        error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5718                                          handle, &no_expand);
5719        ext4_write_unlock_xattr(inode, &no_expand);
5720
5721        return error;
5722}
5723
5724int ext4_expand_extra_isize(struct inode *inode,
5725                            unsigned int new_extra_isize,
5726                            struct ext4_iloc *iloc)
5727{
5728        handle_t *handle;
5729        int no_expand;
5730        int error, rc;
5731
5732        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5733                brelse(iloc->bh);
5734                return -EOVERFLOW;
5735        }
5736
5737        handle = ext4_journal_start(inode, EXT4_HT_INODE,
5738                                    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5739        if (IS_ERR(handle)) {
5740                error = PTR_ERR(handle);
5741                brelse(iloc->bh);
5742                return error;
5743        }
5744
5745        ext4_write_lock_xattr(inode, &no_expand);
5746
5747        BUFFER_TRACE(iloc->bh, "get_write_access");
5748        error = ext4_journal_get_write_access(handle, iloc->bh);
5749        if (error) {
5750                brelse(iloc->bh);
5751                goto out_unlock;
5752        }
5753
5754        error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5755                                          handle, &no_expand);
5756
5757        rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5758        if (!error)
5759                error = rc;
5760
5761out_unlock:
5762        ext4_write_unlock_xattr(inode, &no_expand);
5763        ext4_journal_stop(handle);
5764        return error;
5765}
5766
5767/*
5768 * What we do here is to mark the in-core inode as clean with respect to inode
5769 * dirtiness (it may still be data-dirty).
5770 * This means that the in-core inode may be reaped by prune_icache
5771 * without having to perform any I/O.  This is a very good thing,
5772 * because *any* task may call prune_icache - even ones which
5773 * have a transaction open against a different journal.
5774 *
5775 * Is this cheating?  Not really.  Sure, we haven't written the
5776 * inode out, but prune_icache isn't a user-visible syncing function.
5777 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5778 * we start and wait on commits.
5779 */
5780int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5781{
5782        struct ext4_iloc iloc;
5783        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5784        int err;
5785
5786        might_sleep();
5787        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5788        err = ext4_reserve_inode_write(handle, inode, &iloc);
5789        if (err)
5790                return err;
5791
5792        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5793                ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5794                                               iloc, handle);
5795
5796        return ext4_mark_iloc_dirty(handle, inode, &iloc);
5797}
5798
5799/*
5800 * ext4_dirty_inode() is called from __mark_inode_dirty()
5801 *
5802 * We're really interested in the case where a file is being extended.
5803 * i_size has been changed by generic_commit_write() and we thus need
5804 * to include the updated inode in the current transaction.
5805 *
5806 * Also, dquot_alloc_block() will always dirty the inode when blocks
5807 * are allocated to the file.
5808 *
5809 * If the inode is marked synchronous, we don't honour that here - doing
5810 * so would cause a commit on atime updates, which we don't bother doing.
5811 * We handle synchronous inodes at the highest possible level.
5812 *
5813 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5814 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5815 * to copy into the on-disk inode structure are the timestamp files.
5816 */
5817void ext4_dirty_inode(struct inode *inode, int flags)
5818{
5819        handle_t *handle;
5820
5821        if (flags == I_DIRTY_TIME)
5822                return;
5823        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5824        if (IS_ERR(handle))
5825                goto out;
5826
5827        ext4_mark_inode_dirty(handle, inode);
5828
5829        ext4_journal_stop(handle);
5830out:
5831        return;
5832}
5833
5834int ext4_change_inode_journal_flag(struct inode *inode, int val)
5835{
5836        journal_t *journal;
5837        handle_t *handle;
5838        int err;
5839        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5840
5841        /*
5842         * We have to be very careful here: changing a data block's
5843         * journaling status dynamically is dangerous.  If we write a
5844         * data block to the journal, change the status and then delete
5845         * that block, we risk forgetting to revoke the old log record
5846         * from the journal and so a subsequent replay can corrupt data.
5847         * So, first we make sure that the journal is empty and that
5848         * nobody is changing anything.
5849         */
5850
5851        journal = EXT4_JOURNAL(inode);
5852        if (!journal)
5853                return 0;
5854        if (is_journal_aborted(journal))
5855                return -EROFS;
5856
5857        /* Wait for all existing dio workers */
5858        inode_dio_wait(inode);
5859
5860        /*
5861         * Before flushing the journal and switching inode's aops, we have
5862         * to flush all dirty data the inode has. There can be outstanding
5863         * delayed allocations, there can be unwritten extents created by
5864         * fallocate or buffered writes in dioread_nolock mode covered by
5865         * dirty data which can be converted only after flushing the dirty
5866         * data (and journalled aops don't know how to handle these cases).
5867         */
5868        if (val) {
5869                down_write(&EXT4_I(inode)->i_mmap_sem);
5870                err = filemap_write_and_wait(inode->i_mapping);
5871                if (err < 0) {
5872                        up_write(&EXT4_I(inode)->i_mmap_sem);
5873                        return err;
5874                }
5875        }
5876
5877        percpu_down_write(&sbi->s_writepages_rwsem);
5878        jbd2_journal_lock_updates(journal);
5879
5880        /*
5881         * OK, there are no updates running now, and all cached data is
5882         * synced to disk.  We are now in a completely consistent state
5883         * which doesn't have anything in the journal, and we know that
5884         * no filesystem updates are running, so it is safe to modify
5885         * the inode's in-core data-journaling state flag now.
5886         */
5887
5888        if (val)
5889                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5890        else {
5891                err = jbd2_journal_flush(journal);
5892                if (err < 0) {
5893                        jbd2_journal_unlock_updates(journal);
5894                        percpu_up_write(&sbi->s_writepages_rwsem);
5895                        return err;
5896                }
5897                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5898        }
5899        ext4_set_aops(inode);
5900
5901        jbd2_journal_unlock_updates(journal);
5902        percpu_up_write(&sbi->s_writepages_rwsem);
5903
5904        if (val)
5905                up_write(&EXT4_I(inode)->i_mmap_sem);
5906
5907        /* Finally we can mark the inode as dirty. */
5908
5909        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5910        if (IS_ERR(handle))
5911                return PTR_ERR(handle);
5912
5913        err = ext4_mark_inode_dirty(handle, inode);
5914        ext4_handle_sync(handle);
5915        ext4_journal_stop(handle);
5916        ext4_std_error(inode->i_sb, err);
5917
5918        return err;
5919}
5920
5921static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5922{
5923        return !buffer_mapped(bh);
5924}
5925
5926vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5927{
5928        struct vm_area_struct *vma = vmf->vma;
5929        struct page *page = vmf->page;
5930        loff_t size;
5931        unsigned long len;
5932        int err;
5933        vm_fault_t ret;
5934        struct file *file = vma->vm_file;
5935        struct inode *inode = file_inode(file);
5936        struct address_space *mapping = inode->i_mapping;
5937        handle_t *handle;
5938        get_block_t *get_block;
5939        int retries = 0;
5940
5941        if (unlikely(IS_IMMUTABLE(inode)))
5942                return VM_FAULT_SIGBUS;
5943
5944        sb_start_pagefault(inode->i_sb);
5945        file_update_time(vma->vm_file);
5946
5947        down_read(&EXT4_I(inode)->i_mmap_sem);
5948
5949        err = ext4_convert_inline_data(inode);
5950        if (err)
5951                goto out_ret;
5952
5953        /* Delalloc case is easy... */
5954        if (test_opt(inode->i_sb, DELALLOC) &&
5955            !ext4_should_journal_data(inode) &&
5956            !ext4_nonda_switch(inode->i_sb)) {
5957                do {
5958                        err = block_page_mkwrite(vma, vmf,
5959                                                   ext4_da_get_block_prep);
5960                } while (err == -ENOSPC &&
5961                       ext4_should_retry_alloc(inode->i_sb, &retries));
5962                goto out_ret;
5963        }
5964
5965        lock_page(page);
5966        size = i_size_read(inode);
5967        /* Page got truncated from under us? */
5968        if (page->mapping != mapping || page_offset(page) > size) {
5969                unlock_page(page);
5970                ret = VM_FAULT_NOPAGE;
5971                goto out;
5972        }
5973
5974        if (page->index == size >> PAGE_SHIFT)
5975                len = size & ~PAGE_MASK;
5976        else
5977                len = PAGE_SIZE;
5978        /*
5979         * Return if we have all the buffers mapped. This avoids the need to do
5980         * journal_start/journal_stop which can block and take a long time
5981         */
5982        if (page_has_buffers(page)) {
5983                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5984                                            0, len, NULL,
5985                                            ext4_bh_unmapped)) {
5986                        /* Wait so that we don't change page under IO */
5987                        wait_for_stable_page(page);
5988                        ret = VM_FAULT_LOCKED;
5989                        goto out;
5990                }
5991        }
5992        unlock_page(page);
5993        /* OK, we need to fill the hole... */
5994        if (ext4_should_dioread_nolock(inode))
5995                get_block = ext4_get_block_unwritten;
5996        else
5997                get_block = ext4_get_block;
5998retry_alloc:
5999        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6000                                    ext4_writepage_trans_blocks(inode));
6001        if (IS_ERR(handle)) {
6002                ret = VM_FAULT_SIGBUS;
6003                goto out;
6004        }
6005        err = block_page_mkwrite(vma, vmf, get_block);
6006        if (!err && ext4_should_journal_data(inode)) {
6007                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6008                          PAGE_SIZE, NULL, do_journal_get_write_access)) {
6009                        unlock_page(page);
6010                        ret = VM_FAULT_SIGBUS;
6011                        ext4_journal_stop(handle);
6012                        goto out;
6013                }
6014                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6015        }
6016        ext4_journal_stop(handle);
6017        if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6018                goto retry_alloc;
6019out_ret:
6020        ret = block_page_mkwrite_return(err);
6021out:
6022        up_read(&EXT4_I(inode)->i_mmap_sem);
6023        sb_end_pagefault(inode->i_sb);
6024        return ret;
6025}
6026
6027vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6028{
6029        struct inode *inode = file_inode(vmf->vma->vm_file);
6030        vm_fault_t ret;
6031
6032        down_read(&EXT4_I(inode)->i_mmap_sem);
6033        ret = filemap_fault(vmf);
6034        up_read(&EXT4_I(inode)->i_mmap_sem);
6035
6036        return ret;
6037}
6038