linux/fs/ubifs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS initialization and VFS superblock operations. Some
  13 * initialization stuff which is rather large and complex is placed at
  14 * corresponding subsystems, but most of it is here.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/ctype.h>
  21#include <linux/kthread.h>
  22#include <linux/parser.h>
  23#include <linux/seq_file.h>
  24#include <linux/mount.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include "ubifs.h"
  28
  29/*
  30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  31 * allocating too much.
  32 */
  33#define UBIFS_KMALLOC_OK (128*1024)
  34
  35/* Slab cache for UBIFS inodes */
  36static struct kmem_cache *ubifs_inode_slab;
  37
  38/* UBIFS TNC shrinker description */
  39static struct shrinker ubifs_shrinker_info = {
  40        .scan_objects = ubifs_shrink_scan,
  41        .count_objects = ubifs_shrink_count,
  42        .seeks = DEFAULT_SEEKS,
  43};
  44
  45/**
  46 * validate_inode - validate inode.
  47 * @c: UBIFS file-system description object
  48 * @inode: the inode to validate
  49 *
  50 * This is a helper function for 'ubifs_iget()' which validates various fields
  51 * of a newly built inode to make sure they contain sane values and prevent
  52 * possible vulnerabilities. Returns zero if the inode is all right and
  53 * a non-zero error code if not.
  54 */
  55static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  56{
  57        int err;
  58        const struct ubifs_inode *ui = ubifs_inode(inode);
  59
  60        if (inode->i_size > c->max_inode_sz) {
  61                ubifs_err(c, "inode is too large (%lld)",
  62                          (long long)inode->i_size);
  63                return 1;
  64        }
  65
  66        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  67                ubifs_err(c, "unknown compression type %d", ui->compr_type);
  68                return 2;
  69        }
  70
  71        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  72                return 3;
  73
  74        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  75                return 4;
  76
  77        if (ui->xattr && !S_ISREG(inode->i_mode))
  78                return 5;
  79
  80        if (!ubifs_compr_present(c, ui->compr_type)) {
  81                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
  82                           inode->i_ino, ubifs_compr_name(c, ui->compr_type));
  83        }
  84
  85        err = dbg_check_dir(c, inode);
  86        return err;
  87}
  88
  89struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
  90{
  91        int err;
  92        union ubifs_key key;
  93        struct ubifs_ino_node *ino;
  94        struct ubifs_info *c = sb->s_fs_info;
  95        struct inode *inode;
  96        struct ubifs_inode *ui;
  97
  98        dbg_gen("inode %lu", inum);
  99
 100        inode = iget_locked(sb, inum);
 101        if (!inode)
 102                return ERR_PTR(-ENOMEM);
 103        if (!(inode->i_state & I_NEW))
 104                return inode;
 105        ui = ubifs_inode(inode);
 106
 107        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 108        if (!ino) {
 109                err = -ENOMEM;
 110                goto out;
 111        }
 112
 113        ino_key_init(c, &key, inode->i_ino);
 114
 115        err = ubifs_tnc_lookup(c, &key, ino);
 116        if (err)
 117                goto out_ino;
 118
 119        inode->i_flags |= S_NOCMTIME;
 120
 121        if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
 122                inode->i_flags |= S_NOATIME;
 123
 124        set_nlink(inode, le32_to_cpu(ino->nlink));
 125        i_uid_write(inode, le32_to_cpu(ino->uid));
 126        i_gid_write(inode, le32_to_cpu(ino->gid));
 127        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 128        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 129        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 130        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 131        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 132        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 133        inode->i_mode = le32_to_cpu(ino->mode);
 134        inode->i_size = le64_to_cpu(ino->size);
 135
 136        ui->data_len    = le32_to_cpu(ino->data_len);
 137        ui->flags       = le32_to_cpu(ino->flags);
 138        ui->compr_type  = le16_to_cpu(ino->compr_type);
 139        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 140        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 141        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 142        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 143        ui->synced_i_size = ui->ui_size = inode->i_size;
 144
 145        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 146
 147        err = validate_inode(c, inode);
 148        if (err)
 149                goto out_invalid;
 150
 151        switch (inode->i_mode & S_IFMT) {
 152        case S_IFREG:
 153                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 154                inode->i_op = &ubifs_file_inode_operations;
 155                inode->i_fop = &ubifs_file_operations;
 156                if (ui->xattr) {
 157                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 158                        if (!ui->data) {
 159                                err = -ENOMEM;
 160                                goto out_ino;
 161                        }
 162                        memcpy(ui->data, ino->data, ui->data_len);
 163                        ((char *)ui->data)[ui->data_len] = '\0';
 164                } else if (ui->data_len != 0) {
 165                        err = 10;
 166                        goto out_invalid;
 167                }
 168                break;
 169        case S_IFDIR:
 170                inode->i_op  = &ubifs_dir_inode_operations;
 171                inode->i_fop = &ubifs_dir_operations;
 172                if (ui->data_len != 0) {
 173                        err = 11;
 174                        goto out_invalid;
 175                }
 176                break;
 177        case S_IFLNK:
 178                inode->i_op = &ubifs_symlink_inode_operations;
 179                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 180                        err = 12;
 181                        goto out_invalid;
 182                }
 183                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 184                if (!ui->data) {
 185                        err = -ENOMEM;
 186                        goto out_ino;
 187                }
 188                memcpy(ui->data, ino->data, ui->data_len);
 189                ((char *)ui->data)[ui->data_len] = '\0';
 190                break;
 191        case S_IFBLK:
 192        case S_IFCHR:
 193        {
 194                dev_t rdev;
 195                union ubifs_dev_desc *dev;
 196
 197                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 198                if (!ui->data) {
 199                        err = -ENOMEM;
 200                        goto out_ino;
 201                }
 202
 203                dev = (union ubifs_dev_desc *)ino->data;
 204                if (ui->data_len == sizeof(dev->new))
 205                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 206                else if (ui->data_len == sizeof(dev->huge))
 207                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 208                else {
 209                        err = 13;
 210                        goto out_invalid;
 211                }
 212                memcpy(ui->data, ino->data, ui->data_len);
 213                inode->i_op = &ubifs_file_inode_operations;
 214                init_special_inode(inode, inode->i_mode, rdev);
 215                break;
 216        }
 217        case S_IFSOCK:
 218        case S_IFIFO:
 219                inode->i_op = &ubifs_file_inode_operations;
 220                init_special_inode(inode, inode->i_mode, 0);
 221                if (ui->data_len != 0) {
 222                        err = 14;
 223                        goto out_invalid;
 224                }
 225                break;
 226        default:
 227                err = 15;
 228                goto out_invalid;
 229        }
 230
 231        kfree(ino);
 232        ubifs_set_inode_flags(inode);
 233        unlock_new_inode(inode);
 234        return inode;
 235
 236out_invalid:
 237        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 238        ubifs_dump_node(c, ino);
 239        ubifs_dump_inode(c, inode);
 240        err = -EINVAL;
 241out_ino:
 242        kfree(ino);
 243out:
 244        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 245        iget_failed(inode);
 246        return ERR_PTR(err);
 247}
 248
 249static struct inode *ubifs_alloc_inode(struct super_block *sb)
 250{
 251        struct ubifs_inode *ui;
 252
 253        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 254        if (!ui)
 255                return NULL;
 256
 257        memset((void *)ui + sizeof(struct inode), 0,
 258               sizeof(struct ubifs_inode) - sizeof(struct inode));
 259        mutex_init(&ui->ui_mutex);
 260        spin_lock_init(&ui->ui_lock);
 261        return &ui->vfs_inode;
 262};
 263
 264static void ubifs_free_inode(struct inode *inode)
 265{
 266        struct ubifs_inode *ui = ubifs_inode(inode);
 267
 268        kfree(ui->data);
 269        fscrypt_free_inode(inode);
 270
 271        kmem_cache_free(ubifs_inode_slab, ui);
 272}
 273
 274/*
 275 * Note, Linux write-back code calls this without 'i_mutex'.
 276 */
 277static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 278{
 279        int err = 0;
 280        struct ubifs_info *c = inode->i_sb->s_fs_info;
 281        struct ubifs_inode *ui = ubifs_inode(inode);
 282
 283        ubifs_assert(c, !ui->xattr);
 284        if (is_bad_inode(inode))
 285                return 0;
 286
 287        mutex_lock(&ui->ui_mutex);
 288        /*
 289         * Due to races between write-back forced by budgeting
 290         * (see 'sync_some_inodes()') and background write-back, the inode may
 291         * have already been synchronized, do not do this again. This might
 292         * also happen if it was synchronized in an VFS operation, e.g.
 293         * 'ubifs_link()'.
 294         */
 295        if (!ui->dirty) {
 296                mutex_unlock(&ui->ui_mutex);
 297                return 0;
 298        }
 299
 300        /*
 301         * As an optimization, do not write orphan inodes to the media just
 302         * because this is not needed.
 303         */
 304        dbg_gen("inode %lu, mode %#x, nlink %u",
 305                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 306        if (inode->i_nlink) {
 307                err = ubifs_jnl_write_inode(c, inode);
 308                if (err)
 309                        ubifs_err(c, "can't write inode %lu, error %d",
 310                                  inode->i_ino, err);
 311                else
 312                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 313        }
 314
 315        ui->dirty = 0;
 316        mutex_unlock(&ui->ui_mutex);
 317        ubifs_release_dirty_inode_budget(c, ui);
 318        return err;
 319}
 320
 321static int ubifs_drop_inode(struct inode *inode)
 322{
 323        int drop = generic_drop_inode(inode);
 324
 325        if (!drop)
 326                drop = fscrypt_drop_inode(inode);
 327
 328        return drop;
 329}
 330
 331static void ubifs_evict_inode(struct inode *inode)
 332{
 333        int err;
 334        struct ubifs_info *c = inode->i_sb->s_fs_info;
 335        struct ubifs_inode *ui = ubifs_inode(inode);
 336
 337        if (ui->xattr)
 338                /*
 339                 * Extended attribute inode deletions are fully handled in
 340                 * 'ubifs_removexattr()'. These inodes are special and have
 341                 * limited usage, so there is nothing to do here.
 342                 */
 343                goto out;
 344
 345        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 346        ubifs_assert(c, !atomic_read(&inode->i_count));
 347
 348        truncate_inode_pages_final(&inode->i_data);
 349
 350        if (inode->i_nlink)
 351                goto done;
 352
 353        if (is_bad_inode(inode))
 354                goto out;
 355
 356        ui->ui_size = inode->i_size = 0;
 357        err = ubifs_jnl_delete_inode(c, inode);
 358        if (err)
 359                /*
 360                 * Worst case we have a lost orphan inode wasting space, so a
 361                 * simple error message is OK here.
 362                 */
 363                ubifs_err(c, "can't delete inode %lu, error %d",
 364                          inode->i_ino, err);
 365
 366out:
 367        if (ui->dirty)
 368                ubifs_release_dirty_inode_budget(c, ui);
 369        else {
 370                /* We've deleted something - clean the "no space" flags */
 371                c->bi.nospace = c->bi.nospace_rp = 0;
 372                smp_wmb();
 373        }
 374done:
 375        clear_inode(inode);
 376        fscrypt_put_encryption_info(inode);
 377}
 378
 379static void ubifs_dirty_inode(struct inode *inode, int flags)
 380{
 381        struct ubifs_info *c = inode->i_sb->s_fs_info;
 382        struct ubifs_inode *ui = ubifs_inode(inode);
 383
 384        ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 385        if (!ui->dirty) {
 386                ui->dirty = 1;
 387                dbg_gen("inode %lu",  inode->i_ino);
 388        }
 389}
 390
 391static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 392{
 393        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 394        unsigned long long free;
 395        __le32 *uuid = (__le32 *)c->uuid;
 396
 397        free = ubifs_get_free_space(c);
 398        dbg_gen("free space %lld bytes (%lld blocks)",
 399                free, free >> UBIFS_BLOCK_SHIFT);
 400
 401        buf->f_type = UBIFS_SUPER_MAGIC;
 402        buf->f_bsize = UBIFS_BLOCK_SIZE;
 403        buf->f_blocks = c->block_cnt;
 404        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 405        if (free > c->report_rp_size)
 406                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 407        else
 408                buf->f_bavail = 0;
 409        buf->f_files = 0;
 410        buf->f_ffree = 0;
 411        buf->f_namelen = UBIFS_MAX_NLEN;
 412        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 413        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 414        ubifs_assert(c, buf->f_bfree <= c->block_cnt);
 415        return 0;
 416}
 417
 418static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 419{
 420        struct ubifs_info *c = root->d_sb->s_fs_info;
 421
 422        if (c->mount_opts.unmount_mode == 2)
 423                seq_puts(s, ",fast_unmount");
 424        else if (c->mount_opts.unmount_mode == 1)
 425                seq_puts(s, ",norm_unmount");
 426
 427        if (c->mount_opts.bulk_read == 2)
 428                seq_puts(s, ",bulk_read");
 429        else if (c->mount_opts.bulk_read == 1)
 430                seq_puts(s, ",no_bulk_read");
 431
 432        if (c->mount_opts.chk_data_crc == 2)
 433                seq_puts(s, ",chk_data_crc");
 434        else if (c->mount_opts.chk_data_crc == 1)
 435                seq_puts(s, ",no_chk_data_crc");
 436
 437        if (c->mount_opts.override_compr) {
 438                seq_printf(s, ",compr=%s",
 439                           ubifs_compr_name(c, c->mount_opts.compr_type));
 440        }
 441
 442        seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
 443        seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
 444
 445        return 0;
 446}
 447
 448static int ubifs_sync_fs(struct super_block *sb, int wait)
 449{
 450        int i, err;
 451        struct ubifs_info *c = sb->s_fs_info;
 452
 453        /*
 454         * Zero @wait is just an advisory thing to help the file system shove
 455         * lots of data into the queues, and there will be the second
 456         * '->sync_fs()' call, with non-zero @wait.
 457         */
 458        if (!wait)
 459                return 0;
 460
 461        /*
 462         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 463         * do this if it waits for an already running commit.
 464         */
 465        for (i = 0; i < c->jhead_cnt; i++) {
 466                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 467                if (err)
 468                        return err;
 469        }
 470
 471        /*
 472         * Strictly speaking, it is not necessary to commit the journal here,
 473         * synchronizing write-buffers would be enough. But committing makes
 474         * UBIFS free space predictions much more accurate, so we want to let
 475         * the user be able to get more accurate results of 'statfs()' after
 476         * they synchronize the file system.
 477         */
 478        err = ubifs_run_commit(c);
 479        if (err)
 480                return err;
 481
 482        return ubi_sync(c->vi.ubi_num);
 483}
 484
 485/**
 486 * init_constants_early - initialize UBIFS constants.
 487 * @c: UBIFS file-system description object
 488 *
 489 * This function initialize UBIFS constants which do not need the superblock to
 490 * be read. It also checks that the UBI volume satisfies basic UBIFS
 491 * requirements. Returns zero in case of success and a negative error code in
 492 * case of failure.
 493 */
 494static int init_constants_early(struct ubifs_info *c)
 495{
 496        if (c->vi.corrupted) {
 497                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 498                c->ro_media = 1;
 499        }
 500
 501        if (c->di.ro_mode) {
 502                ubifs_msg(c, "read-only UBI device");
 503                c->ro_media = 1;
 504        }
 505
 506        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 507                ubifs_msg(c, "static UBI volume - read-only mode");
 508                c->ro_media = 1;
 509        }
 510
 511        c->leb_cnt = c->vi.size;
 512        c->leb_size = c->vi.usable_leb_size;
 513        c->leb_start = c->di.leb_start;
 514        c->half_leb_size = c->leb_size / 2;
 515        c->min_io_size = c->di.min_io_size;
 516        c->min_io_shift = fls(c->min_io_size) - 1;
 517        c->max_write_size = c->di.max_write_size;
 518        c->max_write_shift = fls(c->max_write_size) - 1;
 519
 520        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 521                ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
 522                           c->leb_size, UBIFS_MIN_LEB_SZ);
 523                return -EINVAL;
 524        }
 525
 526        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 527                ubifs_errc(c, "too few LEBs (%d), min. is %d",
 528                           c->leb_cnt, UBIFS_MIN_LEB_CNT);
 529                return -EINVAL;
 530        }
 531
 532        if (!is_power_of_2(c->min_io_size)) {
 533                ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
 534                return -EINVAL;
 535        }
 536
 537        /*
 538         * Maximum write size has to be greater or equivalent to min. I/O
 539         * size, and be multiple of min. I/O size.
 540         */
 541        if (c->max_write_size < c->min_io_size ||
 542            c->max_write_size % c->min_io_size ||
 543            !is_power_of_2(c->max_write_size)) {
 544                ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
 545                           c->max_write_size, c->min_io_size);
 546                return -EINVAL;
 547        }
 548
 549        /*
 550         * UBIFS aligns all node to 8-byte boundary, so to make function in
 551         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 552         * less than 8.
 553         */
 554        if (c->min_io_size < 8) {
 555                c->min_io_size = 8;
 556                c->min_io_shift = 3;
 557                if (c->max_write_size < c->min_io_size) {
 558                        c->max_write_size = c->min_io_size;
 559                        c->max_write_shift = c->min_io_shift;
 560                }
 561        }
 562
 563        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 564        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 565
 566        /*
 567         * Initialize node length ranges which are mostly needed for node
 568         * length validation.
 569         */
 570        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 571        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 572        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 573        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 574        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 575        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 576        c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
 577        c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
 578                                UBIFS_MAX_HMAC_LEN;
 579        c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
 580        c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
 581
 582        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 583        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 584        c->ranges[UBIFS_ORPH_NODE].min_len =
 585                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 586        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 587        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 588        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 589        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 590        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 591        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 592        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 593        /*
 594         * Minimum indexing node size is amended later when superblock is
 595         * read and the key length is known.
 596         */
 597        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 598        /*
 599         * Maximum indexing node size is amended later when superblock is
 600         * read and the fanout is known.
 601         */
 602        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 603
 604        /*
 605         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 606         * about these values.
 607         */
 608        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 609        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 610
 611        /*
 612         * Calculate how many bytes would be wasted at the end of LEB if it was
 613         * fully filled with data nodes of maximum size. This is used in
 614         * calculations when reporting free space.
 615         */
 616        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 617
 618        /* Buffer size for bulk-reads */
 619        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 620        if (c->max_bu_buf_len > c->leb_size)
 621                c->max_bu_buf_len = c->leb_size;
 622
 623        /* Log is ready, preserve one LEB for commits. */
 624        c->min_log_bytes = c->leb_size;
 625
 626        return 0;
 627}
 628
 629/**
 630 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 631 * @c: UBIFS file-system description object
 632 * @lnum: LEB the write-buffer was synchronized to
 633 * @free: how many free bytes left in this LEB
 634 * @pad: how many bytes were padded
 635 *
 636 * This is a callback function which is called by the I/O unit when the
 637 * write-buffer is synchronized. We need this to correctly maintain space
 638 * accounting in bud logical eraseblocks. This function returns zero in case of
 639 * success and a negative error code in case of failure.
 640 *
 641 * This function actually belongs to the journal, but we keep it here because
 642 * we want to keep it static.
 643 */
 644static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 645{
 646        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 647}
 648
 649/*
 650 * init_constants_sb - initialize UBIFS constants.
 651 * @c: UBIFS file-system description object
 652 *
 653 * This is a helper function which initializes various UBIFS constants after
 654 * the superblock has been read. It also checks various UBIFS parameters and
 655 * makes sure they are all right. Returns zero in case of success and a
 656 * negative error code in case of failure.
 657 */
 658static int init_constants_sb(struct ubifs_info *c)
 659{
 660        int tmp, err;
 661        long long tmp64;
 662
 663        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 664        c->max_znode_sz = sizeof(struct ubifs_znode) +
 665                                c->fanout * sizeof(struct ubifs_zbranch);
 666
 667        tmp = ubifs_idx_node_sz(c, 1);
 668        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 669        c->min_idx_node_sz = ALIGN(tmp, 8);
 670
 671        tmp = ubifs_idx_node_sz(c, c->fanout);
 672        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 673        c->max_idx_node_sz = ALIGN(tmp, 8);
 674
 675        /* Make sure LEB size is large enough to fit full commit */
 676        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 677        tmp = ALIGN(tmp, c->min_io_size);
 678        if (tmp > c->leb_size) {
 679                ubifs_err(c, "too small LEB size %d, at least %d needed",
 680                          c->leb_size, tmp);
 681                return -EINVAL;
 682        }
 683
 684        /*
 685         * Make sure that the log is large enough to fit reference nodes for
 686         * all buds plus one reserved LEB.
 687         */
 688        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 689        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 690        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 691        tmp /= c->leb_size;
 692        tmp += 1;
 693        if (c->log_lebs < tmp) {
 694                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 695                          c->log_lebs, tmp);
 696                return -EINVAL;
 697        }
 698
 699        /*
 700         * When budgeting we assume worst-case scenarios when the pages are not
 701         * be compressed and direntries are of the maximum size.
 702         *
 703         * Note, data, which may be stored in inodes is budgeted separately, so
 704         * it is not included into 'c->bi.inode_budget'.
 705         */
 706        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 707        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 708        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 709
 710        /*
 711         * When the amount of flash space used by buds becomes
 712         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 713         * The writers are unblocked when the commit is finished. To avoid
 714         * writers to be blocked UBIFS initiates background commit in advance,
 715         * when number of bud bytes becomes above the limit defined below.
 716         */
 717        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 718
 719        /*
 720         * Ensure minimum journal size. All the bytes in the journal heads are
 721         * considered to be used, when calculating the current journal usage.
 722         * Consequently, if the journal is too small, UBIFS will treat it as
 723         * always full.
 724         */
 725        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 726        if (c->bg_bud_bytes < tmp64)
 727                c->bg_bud_bytes = tmp64;
 728        if (c->max_bud_bytes < tmp64 + c->leb_size)
 729                c->max_bud_bytes = tmp64 + c->leb_size;
 730
 731        err = ubifs_calc_lpt_geom(c);
 732        if (err)
 733                return err;
 734
 735        /* Initialize effective LEB size used in budgeting calculations */
 736        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 737        return 0;
 738}
 739
 740/*
 741 * init_constants_master - initialize UBIFS constants.
 742 * @c: UBIFS file-system description object
 743 *
 744 * This is a helper function which initializes various UBIFS constants after
 745 * the master node has been read. It also checks various UBIFS parameters and
 746 * makes sure they are all right.
 747 */
 748static void init_constants_master(struct ubifs_info *c)
 749{
 750        long long tmp64;
 751
 752        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 753        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 754
 755        /*
 756         * Calculate total amount of FS blocks. This number is not used
 757         * internally because it does not make much sense for UBIFS, but it is
 758         * necessary to report something for the 'statfs()' call.
 759         *
 760         * Subtract the LEB reserved for GC, the LEB which is reserved for
 761         * deletions, minimum LEBs for the index, and assume only one journal
 762         * head is available.
 763         */
 764        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 765        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 766        tmp64 = ubifs_reported_space(c, tmp64);
 767        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 768}
 769
 770/**
 771 * take_gc_lnum - reserve GC LEB.
 772 * @c: UBIFS file-system description object
 773 *
 774 * This function ensures that the LEB reserved for garbage collection is marked
 775 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 776 * space to zero, because lprops may contain out-of-date information if the
 777 * file-system was un-mounted before it has been committed. This function
 778 * returns zero in case of success and a negative error code in case of
 779 * failure.
 780 */
 781static int take_gc_lnum(struct ubifs_info *c)
 782{
 783        int err;
 784
 785        if (c->gc_lnum == -1) {
 786                ubifs_err(c, "no LEB for GC");
 787                return -EINVAL;
 788        }
 789
 790        /* And we have to tell lprops that this LEB is taken */
 791        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 792                                  LPROPS_TAKEN, 0, 0);
 793        return err;
 794}
 795
 796/**
 797 * alloc_wbufs - allocate write-buffers.
 798 * @c: UBIFS file-system description object
 799 *
 800 * This helper function allocates and initializes UBIFS write-buffers. Returns
 801 * zero in case of success and %-ENOMEM in case of failure.
 802 */
 803static int alloc_wbufs(struct ubifs_info *c)
 804{
 805        int i, err;
 806
 807        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 808                            GFP_KERNEL);
 809        if (!c->jheads)
 810                return -ENOMEM;
 811
 812        /* Initialize journal heads */
 813        for (i = 0; i < c->jhead_cnt; i++) {
 814                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 815                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 816                if (err)
 817                        return err;
 818
 819                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 820                c->jheads[i].wbuf.jhead = i;
 821                c->jheads[i].grouped = 1;
 822                c->jheads[i].log_hash = ubifs_hash_get_desc(c);
 823                if (IS_ERR(c->jheads[i].log_hash))
 824                        goto out;
 825        }
 826
 827        /*
 828         * Garbage Collector head does not need to be synchronized by timer.
 829         * Also GC head nodes are not grouped.
 830         */
 831        c->jheads[GCHD].wbuf.no_timer = 1;
 832        c->jheads[GCHD].grouped = 0;
 833
 834        return 0;
 835
 836out:
 837        while (i--)
 838                kfree(c->jheads[i].log_hash);
 839
 840        return err;
 841}
 842
 843/**
 844 * free_wbufs - free write-buffers.
 845 * @c: UBIFS file-system description object
 846 */
 847static void free_wbufs(struct ubifs_info *c)
 848{
 849        int i;
 850
 851        if (c->jheads) {
 852                for (i = 0; i < c->jhead_cnt; i++) {
 853                        kfree(c->jheads[i].wbuf.buf);
 854                        kfree(c->jheads[i].wbuf.inodes);
 855                        kfree(c->jheads[i].log_hash);
 856                }
 857                kfree(c->jheads);
 858                c->jheads = NULL;
 859        }
 860}
 861
 862/**
 863 * free_orphans - free orphans.
 864 * @c: UBIFS file-system description object
 865 */
 866static void free_orphans(struct ubifs_info *c)
 867{
 868        struct ubifs_orphan *orph;
 869
 870        while (c->orph_dnext) {
 871                orph = c->orph_dnext;
 872                c->orph_dnext = orph->dnext;
 873                list_del(&orph->list);
 874                kfree(orph);
 875        }
 876
 877        while (!list_empty(&c->orph_list)) {
 878                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 879                list_del(&orph->list);
 880                kfree(orph);
 881                ubifs_err(c, "orphan list not empty at unmount");
 882        }
 883
 884        vfree(c->orph_buf);
 885        c->orph_buf = NULL;
 886}
 887
 888/**
 889 * free_buds - free per-bud objects.
 890 * @c: UBIFS file-system description object
 891 */
 892static void free_buds(struct ubifs_info *c)
 893{
 894        struct ubifs_bud *bud, *n;
 895
 896        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
 897                kfree(bud);
 898}
 899
 900/**
 901 * check_volume_empty - check if the UBI volume is empty.
 902 * @c: UBIFS file-system description object
 903 *
 904 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 905 * mapped or not. The result of checking is stored in the @c->empty variable.
 906 * Returns zero in case of success and a negative error code in case of
 907 * failure.
 908 */
 909static int check_volume_empty(struct ubifs_info *c)
 910{
 911        int lnum, err;
 912
 913        c->empty = 1;
 914        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 915                err = ubifs_is_mapped(c, lnum);
 916                if (unlikely(err < 0))
 917                        return err;
 918                if (err == 1) {
 919                        c->empty = 0;
 920                        break;
 921                }
 922
 923                cond_resched();
 924        }
 925
 926        return 0;
 927}
 928
 929/*
 930 * UBIFS mount options.
 931 *
 932 * Opt_fast_unmount: do not run a journal commit before un-mounting
 933 * Opt_norm_unmount: run a journal commit before un-mounting
 934 * Opt_bulk_read: enable bulk-reads
 935 * Opt_no_bulk_read: disable bulk-reads
 936 * Opt_chk_data_crc: check CRCs when reading data nodes
 937 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 938 * Opt_override_compr: override default compressor
 939 * Opt_assert: set ubifs_assert() action
 940 * Opt_auth_key: The key name used for authentication
 941 * Opt_auth_hash_name: The hash type used for authentication
 942 * Opt_err: just end of array marker
 943 */
 944enum {
 945        Opt_fast_unmount,
 946        Opt_norm_unmount,
 947        Opt_bulk_read,
 948        Opt_no_bulk_read,
 949        Opt_chk_data_crc,
 950        Opt_no_chk_data_crc,
 951        Opt_override_compr,
 952        Opt_assert,
 953        Opt_auth_key,
 954        Opt_auth_hash_name,
 955        Opt_ignore,
 956        Opt_err,
 957};
 958
 959static const match_table_t tokens = {
 960        {Opt_fast_unmount, "fast_unmount"},
 961        {Opt_norm_unmount, "norm_unmount"},
 962        {Opt_bulk_read, "bulk_read"},
 963        {Opt_no_bulk_read, "no_bulk_read"},
 964        {Opt_chk_data_crc, "chk_data_crc"},
 965        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 966        {Opt_override_compr, "compr=%s"},
 967        {Opt_auth_key, "auth_key=%s"},
 968        {Opt_auth_hash_name, "auth_hash_name=%s"},
 969        {Opt_ignore, "ubi=%s"},
 970        {Opt_ignore, "vol=%s"},
 971        {Opt_assert, "assert=%s"},
 972        {Opt_err, NULL},
 973};
 974
 975/**
 976 * parse_standard_option - parse a standard mount option.
 977 * @option: the option to parse
 978 *
 979 * Normally, standard mount options like "sync" are passed to file-systems as
 980 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 981 * be present in the options string. This function tries to deal with this
 982 * situation and parse standard options. Returns 0 if the option was not
 983 * recognized, and the corresponding integer flag if it was.
 984 *
 985 * UBIFS is only interested in the "sync" option, so do not check for anything
 986 * else.
 987 */
 988static int parse_standard_option(const char *option)
 989{
 990
 991        pr_notice("UBIFS: parse %s\n", option);
 992        if (!strcmp(option, "sync"))
 993                return SB_SYNCHRONOUS;
 994        return 0;
 995}
 996
 997/**
 998 * ubifs_parse_options - parse mount parameters.
 999 * @c: UBIFS file-system description object
1000 * @options: parameters to parse
1001 * @is_remount: non-zero if this is FS re-mount
1002 *
1003 * This function parses UBIFS mount options and returns zero in case success
1004 * and a negative error code in case of failure.
1005 */
1006static int ubifs_parse_options(struct ubifs_info *c, char *options,
1007                               int is_remount)
1008{
1009        char *p;
1010        substring_t args[MAX_OPT_ARGS];
1011
1012        if (!options)
1013                return 0;
1014
1015        while ((p = strsep(&options, ","))) {
1016                int token;
1017
1018                if (!*p)
1019                        continue;
1020
1021                token = match_token(p, tokens, args);
1022                switch (token) {
1023                /*
1024                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1025                 * We accept them in order to be backward-compatible. But this
1026                 * should be removed at some point.
1027                 */
1028                case Opt_fast_unmount:
1029                        c->mount_opts.unmount_mode = 2;
1030                        break;
1031                case Opt_norm_unmount:
1032                        c->mount_opts.unmount_mode = 1;
1033                        break;
1034                case Opt_bulk_read:
1035                        c->mount_opts.bulk_read = 2;
1036                        c->bulk_read = 1;
1037                        break;
1038                case Opt_no_bulk_read:
1039                        c->mount_opts.bulk_read = 1;
1040                        c->bulk_read = 0;
1041                        break;
1042                case Opt_chk_data_crc:
1043                        c->mount_opts.chk_data_crc = 2;
1044                        c->no_chk_data_crc = 0;
1045                        break;
1046                case Opt_no_chk_data_crc:
1047                        c->mount_opts.chk_data_crc = 1;
1048                        c->no_chk_data_crc = 1;
1049                        break;
1050                case Opt_override_compr:
1051                {
1052                        char *name = match_strdup(&args[0]);
1053
1054                        if (!name)
1055                                return -ENOMEM;
1056                        if (!strcmp(name, "none"))
1057                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1058                        else if (!strcmp(name, "lzo"))
1059                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1060                        else if (!strcmp(name, "zlib"))
1061                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1062                        else if (!strcmp(name, "zstd"))
1063                                c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1064                        else {
1065                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1066                                kfree(name);
1067                                return -EINVAL;
1068                        }
1069                        kfree(name);
1070                        c->mount_opts.override_compr = 1;
1071                        c->default_compr = c->mount_opts.compr_type;
1072                        break;
1073                }
1074                case Opt_assert:
1075                {
1076                        char *act = match_strdup(&args[0]);
1077
1078                        if (!act)
1079                                return -ENOMEM;
1080                        if (!strcmp(act, "report"))
1081                                c->assert_action = ASSACT_REPORT;
1082                        else if (!strcmp(act, "read-only"))
1083                                c->assert_action = ASSACT_RO;
1084                        else if (!strcmp(act, "panic"))
1085                                c->assert_action = ASSACT_PANIC;
1086                        else {
1087                                ubifs_err(c, "unknown assert action \"%s\"", act);
1088                                kfree(act);
1089                                return -EINVAL;
1090                        }
1091                        kfree(act);
1092                        break;
1093                }
1094                case Opt_auth_key:
1095                        c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL);
1096                        if (!c->auth_key_name)
1097                                return -ENOMEM;
1098                        break;
1099                case Opt_auth_hash_name:
1100                        c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL);
1101                        if (!c->auth_hash_name)
1102                                return -ENOMEM;
1103                        break;
1104                case Opt_ignore:
1105                        break;
1106                default:
1107                {
1108                        unsigned long flag;
1109                        struct super_block *sb = c->vfs_sb;
1110
1111                        flag = parse_standard_option(p);
1112                        if (!flag) {
1113                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1114                                          p);
1115                                return -EINVAL;
1116                        }
1117                        sb->s_flags |= flag;
1118                        break;
1119                }
1120                }
1121        }
1122
1123        return 0;
1124}
1125
1126/**
1127 * destroy_journal - destroy journal data structures.
1128 * @c: UBIFS file-system description object
1129 *
1130 * This function destroys journal data structures including those that may have
1131 * been created by recovery functions.
1132 */
1133static void destroy_journal(struct ubifs_info *c)
1134{
1135        while (!list_empty(&c->unclean_leb_list)) {
1136                struct ubifs_unclean_leb *ucleb;
1137
1138                ucleb = list_entry(c->unclean_leb_list.next,
1139                                   struct ubifs_unclean_leb, list);
1140                list_del(&ucleb->list);
1141                kfree(ucleb);
1142        }
1143        while (!list_empty(&c->old_buds)) {
1144                struct ubifs_bud *bud;
1145
1146                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1147                list_del(&bud->list);
1148                kfree(bud);
1149        }
1150        ubifs_destroy_idx_gc(c);
1151        ubifs_destroy_size_tree(c);
1152        ubifs_tnc_close(c);
1153        free_buds(c);
1154}
1155
1156/**
1157 * bu_init - initialize bulk-read information.
1158 * @c: UBIFS file-system description object
1159 */
1160static void bu_init(struct ubifs_info *c)
1161{
1162        ubifs_assert(c, c->bulk_read == 1);
1163
1164        if (c->bu.buf)
1165                return; /* Already initialized */
1166
1167again:
1168        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1169        if (!c->bu.buf) {
1170                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1171                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1172                        goto again;
1173                }
1174
1175                /* Just disable bulk-read */
1176                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1177                           c->max_bu_buf_len);
1178                c->mount_opts.bulk_read = 1;
1179                c->bulk_read = 0;
1180                return;
1181        }
1182}
1183
1184/**
1185 * check_free_space - check if there is enough free space to mount.
1186 * @c: UBIFS file-system description object
1187 *
1188 * This function makes sure UBIFS has enough free space to be mounted in
1189 * read/write mode. UBIFS must always have some free space to allow deletions.
1190 */
1191static int check_free_space(struct ubifs_info *c)
1192{
1193        ubifs_assert(c, c->dark_wm > 0);
1194        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1195                ubifs_err(c, "insufficient free space to mount in R/W mode");
1196                ubifs_dump_budg(c, &c->bi);
1197                ubifs_dump_lprops(c);
1198                return -ENOSPC;
1199        }
1200        return 0;
1201}
1202
1203/**
1204 * mount_ubifs - mount UBIFS file-system.
1205 * @c: UBIFS file-system description object
1206 *
1207 * This function mounts UBIFS file system. Returns zero in case of success and
1208 * a negative error code in case of failure.
1209 */
1210static int mount_ubifs(struct ubifs_info *c)
1211{
1212        int err;
1213        long long x, y;
1214        size_t sz;
1215
1216        c->ro_mount = !!sb_rdonly(c->vfs_sb);
1217        /* Suppress error messages while probing if SB_SILENT is set */
1218        c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1219
1220        err = init_constants_early(c);
1221        if (err)
1222                return err;
1223
1224        err = ubifs_debugging_init(c);
1225        if (err)
1226                return err;
1227
1228        err = check_volume_empty(c);
1229        if (err)
1230                goto out_free;
1231
1232        if (c->empty && (c->ro_mount || c->ro_media)) {
1233                /*
1234                 * This UBI volume is empty, and read-only, or the file system
1235                 * is mounted read-only - we cannot format it.
1236                 */
1237                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1238                          c->ro_media ? "UBI volume" : "mount");
1239                err = -EROFS;
1240                goto out_free;
1241        }
1242
1243        if (c->ro_media && !c->ro_mount) {
1244                ubifs_err(c, "cannot mount read-write - read-only media");
1245                err = -EROFS;
1246                goto out_free;
1247        }
1248
1249        /*
1250         * The requirement for the buffer is that it should fit indexing B-tree
1251         * height amount of integers. We assume the height if the TNC tree will
1252         * never exceed 64.
1253         */
1254        err = -ENOMEM;
1255        c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1256                                         GFP_KERNEL);
1257        if (!c->bottom_up_buf)
1258                goto out_free;
1259
1260        c->sbuf = vmalloc(c->leb_size);
1261        if (!c->sbuf)
1262                goto out_free;
1263
1264        if (!c->ro_mount) {
1265                c->ileb_buf = vmalloc(c->leb_size);
1266                if (!c->ileb_buf)
1267                        goto out_free;
1268        }
1269
1270        if (c->bulk_read == 1)
1271                bu_init(c);
1272
1273        if (!c->ro_mount) {
1274                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1275                                               UBIFS_CIPHER_BLOCK_SIZE,
1276                                               GFP_KERNEL);
1277                if (!c->write_reserve_buf)
1278                        goto out_free;
1279        }
1280
1281        c->mounting = 1;
1282
1283        if (c->auth_key_name) {
1284                if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1285                        err = ubifs_init_authentication(c);
1286                        if (err)
1287                                goto out_free;
1288                } else {
1289                        ubifs_err(c, "auth_key_name, but UBIFS is built without"
1290                                  " authentication support");
1291                        err = -EINVAL;
1292                        goto out_free;
1293                }
1294        }
1295
1296        err = ubifs_read_superblock(c);
1297        if (err)
1298                goto out_free;
1299
1300        c->probing = 0;
1301
1302        /*
1303         * Make sure the compressor which is set as default in the superblock
1304         * or overridden by mount options is actually compiled in.
1305         */
1306        if (!ubifs_compr_present(c, c->default_compr)) {
1307                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1308                          ubifs_compr_name(c, c->default_compr));
1309                err = -ENOTSUPP;
1310                goto out_free;
1311        }
1312
1313        err = init_constants_sb(c);
1314        if (err)
1315                goto out_free;
1316
1317        sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1318        c->cbuf = kmalloc(sz, GFP_NOFS);
1319        if (!c->cbuf) {
1320                err = -ENOMEM;
1321                goto out_free;
1322        }
1323
1324        err = alloc_wbufs(c);
1325        if (err)
1326                goto out_cbuf;
1327
1328        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1329        if (!c->ro_mount) {
1330                /* Create background thread */
1331                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1332                if (IS_ERR(c->bgt)) {
1333                        err = PTR_ERR(c->bgt);
1334                        c->bgt = NULL;
1335                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1336                                  c->bgt_name, err);
1337                        goto out_wbufs;
1338                }
1339                wake_up_process(c->bgt);
1340        }
1341
1342        err = ubifs_read_master(c);
1343        if (err)
1344                goto out_master;
1345
1346        init_constants_master(c);
1347
1348        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1349                ubifs_msg(c, "recovery needed");
1350                c->need_recovery = 1;
1351        }
1352
1353        if (c->need_recovery && !c->ro_mount) {
1354                err = ubifs_recover_inl_heads(c, c->sbuf);
1355                if (err)
1356                        goto out_master;
1357        }
1358
1359        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1360        if (err)
1361                goto out_master;
1362
1363        if (!c->ro_mount && c->space_fixup) {
1364                err = ubifs_fixup_free_space(c);
1365                if (err)
1366                        goto out_lpt;
1367        }
1368
1369        if (!c->ro_mount && !c->need_recovery) {
1370                /*
1371                 * Set the "dirty" flag so that if we reboot uncleanly we
1372                 * will notice this immediately on the next mount.
1373                 */
1374                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1375                err = ubifs_write_master(c);
1376                if (err)
1377                        goto out_lpt;
1378        }
1379
1380        /*
1381         * Handle offline signed images: Now that the master node is
1382         * written and its validation no longer depends on the hash
1383         * in the superblock, we can update the offline signed
1384         * superblock with a HMAC version,
1385         */
1386        if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1387                err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1388                if (err)
1389                        goto out_lpt;
1390                c->superblock_need_write = 1;
1391        }
1392
1393        if (!c->ro_mount && c->superblock_need_write) {
1394                err = ubifs_write_sb_node(c, c->sup_node);
1395                if (err)
1396                        goto out_lpt;
1397                c->superblock_need_write = 0;
1398        }
1399
1400        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1401        if (err)
1402                goto out_lpt;
1403
1404        err = ubifs_replay_journal(c);
1405        if (err)
1406                goto out_journal;
1407
1408        /* Calculate 'min_idx_lebs' after journal replay */
1409        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1410
1411        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1412        if (err)
1413                goto out_orphans;
1414
1415        if (!c->ro_mount) {
1416                int lnum;
1417
1418                err = check_free_space(c);
1419                if (err)
1420                        goto out_orphans;
1421
1422                /* Check for enough log space */
1423                lnum = c->lhead_lnum + 1;
1424                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1425                        lnum = UBIFS_LOG_LNUM;
1426                if (lnum == c->ltail_lnum) {
1427                        err = ubifs_consolidate_log(c);
1428                        if (err)
1429                                goto out_orphans;
1430                }
1431
1432                if (c->need_recovery) {
1433                        if (!ubifs_authenticated(c)) {
1434                                err = ubifs_recover_size(c, true);
1435                                if (err)
1436                                        goto out_orphans;
1437                        }
1438
1439                        err = ubifs_rcvry_gc_commit(c);
1440                        if (err)
1441                                goto out_orphans;
1442
1443                        if (ubifs_authenticated(c)) {
1444                                err = ubifs_recover_size(c, false);
1445                                if (err)
1446                                        goto out_orphans;
1447                        }
1448                } else {
1449                        err = take_gc_lnum(c);
1450                        if (err)
1451                                goto out_orphans;
1452
1453                        /*
1454                         * GC LEB may contain garbage if there was an unclean
1455                         * reboot, and it should be un-mapped.
1456                         */
1457                        err = ubifs_leb_unmap(c, c->gc_lnum);
1458                        if (err)
1459                                goto out_orphans;
1460                }
1461
1462                err = dbg_check_lprops(c);
1463                if (err)
1464                        goto out_orphans;
1465        } else if (c->need_recovery) {
1466                err = ubifs_recover_size(c, false);
1467                if (err)
1468                        goto out_orphans;
1469        } else {
1470                /*
1471                 * Even if we mount read-only, we have to set space in GC LEB
1472                 * to proper value because this affects UBIFS free space
1473                 * reporting. We do not want to have a situation when
1474                 * re-mounting from R/O to R/W changes amount of free space.
1475                 */
1476                err = take_gc_lnum(c);
1477                if (err)
1478                        goto out_orphans;
1479        }
1480
1481        spin_lock(&ubifs_infos_lock);
1482        list_add_tail(&c->infos_list, &ubifs_infos);
1483        spin_unlock(&ubifs_infos_lock);
1484
1485        if (c->need_recovery) {
1486                if (c->ro_mount)
1487                        ubifs_msg(c, "recovery deferred");
1488                else {
1489                        c->need_recovery = 0;
1490                        ubifs_msg(c, "recovery completed");
1491                        /*
1492                         * GC LEB has to be empty and taken at this point. But
1493                         * the journal head LEBs may also be accounted as
1494                         * "empty taken" if they are empty.
1495                         */
1496                        ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1497                }
1498        } else
1499                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1500
1501        err = dbg_check_filesystem(c);
1502        if (err)
1503                goto out_infos;
1504
1505        dbg_debugfs_init_fs(c);
1506
1507        c->mounting = 0;
1508
1509        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1510                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1511                  c->ro_mount ? ", R/O mode" : "");
1512        x = (long long)c->main_lebs * c->leb_size;
1513        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1514        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1515                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1516                  c->max_write_size);
1517        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1518                  x, x >> 20, c->main_lebs,
1519                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1520        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1521                  c->report_rp_size, c->report_rp_size >> 10);
1522        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1523                  c->fmt_version, c->ro_compat_version,
1524                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1525                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1526
1527        dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1528        dbg_gen("data journal heads:  %d",
1529                c->jhead_cnt - NONDATA_JHEADS_CNT);
1530        dbg_gen("log LEBs:            %d (%d - %d)",
1531                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1532        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1533                c->lpt_lebs, c->lpt_first, c->lpt_last);
1534        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1535                c->orph_lebs, c->orph_first, c->orph_last);
1536        dbg_gen("main area LEBs:      %d (%d - %d)",
1537                c->main_lebs, c->main_first, c->leb_cnt - 1);
1538        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1539        dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1540                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1541                c->bi.old_idx_sz >> 20);
1542        dbg_gen("key hash type:       %d", c->key_hash_type);
1543        dbg_gen("tree fanout:         %d", c->fanout);
1544        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1545        dbg_gen("max. znode size      %d", c->max_znode_sz);
1546        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1547        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1548                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1549        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1550                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1551        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1552                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1553        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1554                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1555                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1556        dbg_gen("dead watermark:      %d", c->dead_wm);
1557        dbg_gen("dark watermark:      %d", c->dark_wm);
1558        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1559        x = (long long)c->main_lebs * c->dark_wm;
1560        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1561                x, x >> 10, x >> 20);
1562        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1563                c->max_bud_bytes, c->max_bud_bytes >> 10,
1564                c->max_bud_bytes >> 20);
1565        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1566                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1567                c->bg_bud_bytes >> 20);
1568        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1569                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1570        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1571        dbg_gen("commit number:       %llu", c->cmt_no);
1572        dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1573        dbg_gen("max orphans:           %d", c->max_orphans);
1574
1575        return 0;
1576
1577out_infos:
1578        spin_lock(&ubifs_infos_lock);
1579        list_del(&c->infos_list);
1580        spin_unlock(&ubifs_infos_lock);
1581out_orphans:
1582        free_orphans(c);
1583out_journal:
1584        destroy_journal(c);
1585out_lpt:
1586        ubifs_lpt_free(c, 0);
1587out_master:
1588        kfree(c->mst_node);
1589        kfree(c->rcvrd_mst_node);
1590        if (c->bgt)
1591                kthread_stop(c->bgt);
1592out_wbufs:
1593        free_wbufs(c);
1594out_cbuf:
1595        kfree(c->cbuf);
1596out_free:
1597        kfree(c->write_reserve_buf);
1598        kfree(c->bu.buf);
1599        vfree(c->ileb_buf);
1600        vfree(c->sbuf);
1601        kfree(c->bottom_up_buf);
1602        kfree(c->sup_node);
1603        ubifs_debugging_exit(c);
1604        return err;
1605}
1606
1607/**
1608 * ubifs_umount - un-mount UBIFS file-system.
1609 * @c: UBIFS file-system description object
1610 *
1611 * Note, this function is called to free allocated resourced when un-mounting,
1612 * as well as free resources when an error occurred while we were half way
1613 * through mounting (error path cleanup function). So it has to make sure the
1614 * resource was actually allocated before freeing it.
1615 */
1616static void ubifs_umount(struct ubifs_info *c)
1617{
1618        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1619                c->vi.vol_id);
1620
1621        dbg_debugfs_exit_fs(c);
1622        spin_lock(&ubifs_infos_lock);
1623        list_del(&c->infos_list);
1624        spin_unlock(&ubifs_infos_lock);
1625
1626        if (c->bgt)
1627                kthread_stop(c->bgt);
1628
1629        destroy_journal(c);
1630        free_wbufs(c);
1631        free_orphans(c);
1632        ubifs_lpt_free(c, 0);
1633        ubifs_exit_authentication(c);
1634
1635        kfree(c->auth_key_name);
1636        kfree(c->auth_hash_name);
1637        kfree(c->cbuf);
1638        kfree(c->rcvrd_mst_node);
1639        kfree(c->mst_node);
1640        kfree(c->write_reserve_buf);
1641        kfree(c->bu.buf);
1642        vfree(c->ileb_buf);
1643        vfree(c->sbuf);
1644        kfree(c->bottom_up_buf);
1645        kfree(c->sup_node);
1646        ubifs_debugging_exit(c);
1647}
1648
1649/**
1650 * ubifs_remount_rw - re-mount in read-write mode.
1651 * @c: UBIFS file-system description object
1652 *
1653 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1654 * mode. This function allocates the needed resources and re-mounts UBIFS in
1655 * read-write mode.
1656 */
1657static int ubifs_remount_rw(struct ubifs_info *c)
1658{
1659        int err, lnum;
1660
1661        if (c->rw_incompat) {
1662                ubifs_err(c, "the file-system is not R/W-compatible");
1663                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1664                          c->fmt_version, c->ro_compat_version,
1665                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1666                return -EROFS;
1667        }
1668
1669        mutex_lock(&c->umount_mutex);
1670        dbg_save_space_info(c);
1671        c->remounting_rw = 1;
1672        c->ro_mount = 0;
1673
1674        if (c->space_fixup) {
1675                err = ubifs_fixup_free_space(c);
1676                if (err)
1677                        goto out;
1678        }
1679
1680        err = check_free_space(c);
1681        if (err)
1682                goto out;
1683
1684        if (c->need_recovery) {
1685                ubifs_msg(c, "completing deferred recovery");
1686                err = ubifs_write_rcvrd_mst_node(c);
1687                if (err)
1688                        goto out;
1689                if (!ubifs_authenticated(c)) {
1690                        err = ubifs_recover_size(c, true);
1691                        if (err)
1692                                goto out;
1693                }
1694                err = ubifs_clean_lebs(c, c->sbuf);
1695                if (err)
1696                        goto out;
1697                err = ubifs_recover_inl_heads(c, c->sbuf);
1698                if (err)
1699                        goto out;
1700        } else {
1701                /* A readonly mount is not allowed to have orphans */
1702                ubifs_assert(c, c->tot_orphans == 0);
1703                err = ubifs_clear_orphans(c);
1704                if (err)
1705                        goto out;
1706        }
1707
1708        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1709                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1710                err = ubifs_write_master(c);
1711                if (err)
1712                        goto out;
1713        }
1714
1715        if (c->superblock_need_write) {
1716                struct ubifs_sb_node *sup = c->sup_node;
1717
1718                err = ubifs_write_sb_node(c, sup);
1719                if (err)
1720                        goto out;
1721
1722                c->superblock_need_write = 0;
1723        }
1724
1725        c->ileb_buf = vmalloc(c->leb_size);
1726        if (!c->ileb_buf) {
1727                err = -ENOMEM;
1728                goto out;
1729        }
1730
1731        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1732                                       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1733        if (!c->write_reserve_buf) {
1734                err = -ENOMEM;
1735                goto out;
1736        }
1737
1738        err = ubifs_lpt_init(c, 0, 1);
1739        if (err)
1740                goto out;
1741
1742        /* Create background thread */
1743        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1744        if (IS_ERR(c->bgt)) {
1745                err = PTR_ERR(c->bgt);
1746                c->bgt = NULL;
1747                ubifs_err(c, "cannot spawn \"%s\", error %d",
1748                          c->bgt_name, err);
1749                goto out;
1750        }
1751        wake_up_process(c->bgt);
1752
1753        c->orph_buf = vmalloc(c->leb_size);
1754        if (!c->orph_buf) {
1755                err = -ENOMEM;
1756                goto out;
1757        }
1758
1759        /* Check for enough log space */
1760        lnum = c->lhead_lnum + 1;
1761        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1762                lnum = UBIFS_LOG_LNUM;
1763        if (lnum == c->ltail_lnum) {
1764                err = ubifs_consolidate_log(c);
1765                if (err)
1766                        goto out;
1767        }
1768
1769        if (c->need_recovery) {
1770                err = ubifs_rcvry_gc_commit(c);
1771                if (err)
1772                        goto out;
1773
1774                if (ubifs_authenticated(c)) {
1775                        err = ubifs_recover_size(c, false);
1776                        if (err)
1777                                goto out;
1778                }
1779        } else {
1780                err = ubifs_leb_unmap(c, c->gc_lnum);
1781        }
1782        if (err)
1783                goto out;
1784
1785        dbg_gen("re-mounted read-write");
1786        c->remounting_rw = 0;
1787
1788        if (c->need_recovery) {
1789                c->need_recovery = 0;
1790                ubifs_msg(c, "deferred recovery completed");
1791        } else {
1792                /*
1793                 * Do not run the debugging space check if the were doing
1794                 * recovery, because when we saved the information we had the
1795                 * file-system in a state where the TNC and lprops has been
1796                 * modified in memory, but all the I/O operations (including a
1797                 * commit) were deferred. So the file-system was in
1798                 * "non-committed" state. Now the file-system is in committed
1799                 * state, and of course the amount of free space will change
1800                 * because, for example, the old index size was imprecise.
1801                 */
1802                err = dbg_check_space_info(c);
1803        }
1804
1805        mutex_unlock(&c->umount_mutex);
1806        return err;
1807
1808out:
1809        c->ro_mount = 1;
1810        vfree(c->orph_buf);
1811        c->orph_buf = NULL;
1812        if (c->bgt) {
1813                kthread_stop(c->bgt);
1814                c->bgt = NULL;
1815        }
1816        free_wbufs(c);
1817        kfree(c->write_reserve_buf);
1818        c->write_reserve_buf = NULL;
1819        vfree(c->ileb_buf);
1820        c->ileb_buf = NULL;
1821        ubifs_lpt_free(c, 1);
1822        c->remounting_rw = 0;
1823        mutex_unlock(&c->umount_mutex);
1824        return err;
1825}
1826
1827/**
1828 * ubifs_remount_ro - re-mount in read-only mode.
1829 * @c: UBIFS file-system description object
1830 *
1831 * We assume VFS has stopped writing. Possibly the background thread could be
1832 * running a commit, however kthread_stop will wait in that case.
1833 */
1834static void ubifs_remount_ro(struct ubifs_info *c)
1835{
1836        int i, err;
1837
1838        ubifs_assert(c, !c->need_recovery);
1839        ubifs_assert(c, !c->ro_mount);
1840
1841        mutex_lock(&c->umount_mutex);
1842        if (c->bgt) {
1843                kthread_stop(c->bgt);
1844                c->bgt = NULL;
1845        }
1846
1847        dbg_save_space_info(c);
1848
1849        for (i = 0; i < c->jhead_cnt; i++) {
1850                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1851                if (err)
1852                        ubifs_ro_mode(c, err);
1853        }
1854
1855        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1856        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1857        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1858        err = ubifs_write_master(c);
1859        if (err)
1860                ubifs_ro_mode(c, err);
1861
1862        vfree(c->orph_buf);
1863        c->orph_buf = NULL;
1864        kfree(c->write_reserve_buf);
1865        c->write_reserve_buf = NULL;
1866        vfree(c->ileb_buf);
1867        c->ileb_buf = NULL;
1868        ubifs_lpt_free(c, 1);
1869        c->ro_mount = 1;
1870        err = dbg_check_space_info(c);
1871        if (err)
1872                ubifs_ro_mode(c, err);
1873        mutex_unlock(&c->umount_mutex);
1874}
1875
1876static void ubifs_put_super(struct super_block *sb)
1877{
1878        int i;
1879        struct ubifs_info *c = sb->s_fs_info;
1880
1881        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1882
1883        /*
1884         * The following asserts are only valid if there has not been a failure
1885         * of the media. For example, there will be dirty inodes if we failed
1886         * to write them back because of I/O errors.
1887         */
1888        if (!c->ro_error) {
1889                ubifs_assert(c, c->bi.idx_growth == 0);
1890                ubifs_assert(c, c->bi.dd_growth == 0);
1891                ubifs_assert(c, c->bi.data_growth == 0);
1892        }
1893
1894        /*
1895         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1896         * and file system un-mount. Namely, it prevents the shrinker from
1897         * picking this superblock for shrinking - it will be just skipped if
1898         * the mutex is locked.
1899         */
1900        mutex_lock(&c->umount_mutex);
1901        if (!c->ro_mount) {
1902                /*
1903                 * First of all kill the background thread to make sure it does
1904                 * not interfere with un-mounting and freeing resources.
1905                 */
1906                if (c->bgt) {
1907                        kthread_stop(c->bgt);
1908                        c->bgt = NULL;
1909                }
1910
1911                /*
1912                 * On fatal errors c->ro_error is set to 1, in which case we do
1913                 * not write the master node.
1914                 */
1915                if (!c->ro_error) {
1916                        int err;
1917
1918                        /* Synchronize write-buffers */
1919                        for (i = 0; i < c->jhead_cnt; i++) {
1920                                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1921                                if (err)
1922                                        ubifs_ro_mode(c, err);
1923                        }
1924
1925                        /*
1926                         * We are being cleanly unmounted which means the
1927                         * orphans were killed - indicate this in the master
1928                         * node. Also save the reserved GC LEB number.
1929                         */
1930                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1931                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1932                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1933                        err = ubifs_write_master(c);
1934                        if (err)
1935                                /*
1936                                 * Recovery will attempt to fix the master area
1937                                 * next mount, so we just print a message and
1938                                 * continue to unmount normally.
1939                                 */
1940                                ubifs_err(c, "failed to write master node, error %d",
1941                                          err);
1942                } else {
1943                        for (i = 0; i < c->jhead_cnt; i++)
1944                                /* Make sure write-buffer timers are canceled */
1945                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1946                }
1947        }
1948
1949        ubifs_umount(c);
1950        ubi_close_volume(c->ubi);
1951        mutex_unlock(&c->umount_mutex);
1952}
1953
1954static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1955{
1956        int err;
1957        struct ubifs_info *c = sb->s_fs_info;
1958
1959        sync_filesystem(sb);
1960        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1961
1962        err = ubifs_parse_options(c, data, 1);
1963        if (err) {
1964                ubifs_err(c, "invalid or unknown remount parameter");
1965                return err;
1966        }
1967
1968        if (c->ro_mount && !(*flags & SB_RDONLY)) {
1969                if (c->ro_error) {
1970                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1971                        return -EROFS;
1972                }
1973                if (c->ro_media) {
1974                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1975                        return -EROFS;
1976                }
1977                err = ubifs_remount_rw(c);
1978                if (err)
1979                        return err;
1980        } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
1981                if (c->ro_error) {
1982                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1983                        return -EROFS;
1984                }
1985                ubifs_remount_ro(c);
1986        }
1987
1988        if (c->bulk_read == 1)
1989                bu_init(c);
1990        else {
1991                dbg_gen("disable bulk-read");
1992                mutex_lock(&c->bu_mutex);
1993                kfree(c->bu.buf);
1994                c->bu.buf = NULL;
1995                mutex_unlock(&c->bu_mutex);
1996        }
1997
1998        if (!c->need_recovery)
1999                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2000
2001        return 0;
2002}
2003
2004const struct super_operations ubifs_super_operations = {
2005        .alloc_inode   = ubifs_alloc_inode,
2006        .free_inode    = ubifs_free_inode,
2007        .put_super     = ubifs_put_super,
2008        .write_inode   = ubifs_write_inode,
2009        .drop_inode    = ubifs_drop_inode,
2010        .evict_inode   = ubifs_evict_inode,
2011        .statfs        = ubifs_statfs,
2012        .dirty_inode   = ubifs_dirty_inode,
2013        .remount_fs    = ubifs_remount_fs,
2014        .show_options  = ubifs_show_options,
2015        .sync_fs       = ubifs_sync_fs,
2016};
2017
2018/**
2019 * open_ubi - parse UBI device name string and open the UBI device.
2020 * @name: UBI volume name
2021 * @mode: UBI volume open mode
2022 *
2023 * The primary method of mounting UBIFS is by specifying the UBI volume
2024 * character device node path. However, UBIFS may also be mounted withoug any
2025 * character device node using one of the following methods:
2026 *
2027 * o ubiX_Y    - mount UBI device number X, volume Y;
2028 * o ubiY      - mount UBI device number 0, volume Y;
2029 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2030 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2031 *
2032 * Alternative '!' separator may be used instead of ':' (because some shells
2033 * like busybox may interpret ':' as an NFS host name separator). This function
2034 * returns UBI volume description object in case of success and a negative
2035 * error code in case of failure.
2036 */
2037static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2038{
2039        struct ubi_volume_desc *ubi;
2040        int dev, vol;
2041        char *endptr;
2042
2043        if (!name || !*name)
2044                return ERR_PTR(-EINVAL);
2045
2046        /* First, try to open using the device node path method */
2047        ubi = ubi_open_volume_path(name, mode);
2048        if (!IS_ERR(ubi))
2049                return ubi;
2050
2051        /* Try the "nodev" method */
2052        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2053                return ERR_PTR(-EINVAL);
2054
2055        /* ubi:NAME method */
2056        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2057                return ubi_open_volume_nm(0, name + 4, mode);
2058
2059        if (!isdigit(name[3]))
2060                return ERR_PTR(-EINVAL);
2061
2062        dev = simple_strtoul(name + 3, &endptr, 0);
2063
2064        /* ubiY method */
2065        if (*endptr == '\0')
2066                return ubi_open_volume(0, dev, mode);
2067
2068        /* ubiX_Y method */
2069        if (*endptr == '_' && isdigit(endptr[1])) {
2070                vol = simple_strtoul(endptr + 1, &endptr, 0);
2071                if (*endptr != '\0')
2072                        return ERR_PTR(-EINVAL);
2073                return ubi_open_volume(dev, vol, mode);
2074        }
2075
2076        /* ubiX:NAME method */
2077        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2078                return ubi_open_volume_nm(dev, ++endptr, mode);
2079
2080        return ERR_PTR(-EINVAL);
2081}
2082
2083static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2084{
2085        struct ubifs_info *c;
2086
2087        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2088        if (c) {
2089                spin_lock_init(&c->cnt_lock);
2090                spin_lock_init(&c->cs_lock);
2091                spin_lock_init(&c->buds_lock);
2092                spin_lock_init(&c->space_lock);
2093                spin_lock_init(&c->orphan_lock);
2094                init_rwsem(&c->commit_sem);
2095                mutex_init(&c->lp_mutex);
2096                mutex_init(&c->tnc_mutex);
2097                mutex_init(&c->log_mutex);
2098                mutex_init(&c->umount_mutex);
2099                mutex_init(&c->bu_mutex);
2100                mutex_init(&c->write_reserve_mutex);
2101                init_waitqueue_head(&c->cmt_wq);
2102                c->buds = RB_ROOT;
2103                c->old_idx = RB_ROOT;
2104                c->size_tree = RB_ROOT;
2105                c->orph_tree = RB_ROOT;
2106                INIT_LIST_HEAD(&c->infos_list);
2107                INIT_LIST_HEAD(&c->idx_gc);
2108                INIT_LIST_HEAD(&c->replay_list);
2109                INIT_LIST_HEAD(&c->replay_buds);
2110                INIT_LIST_HEAD(&c->uncat_list);
2111                INIT_LIST_HEAD(&c->empty_list);
2112                INIT_LIST_HEAD(&c->freeable_list);
2113                INIT_LIST_HEAD(&c->frdi_idx_list);
2114                INIT_LIST_HEAD(&c->unclean_leb_list);
2115                INIT_LIST_HEAD(&c->old_buds);
2116                INIT_LIST_HEAD(&c->orph_list);
2117                INIT_LIST_HEAD(&c->orph_new);
2118                c->no_chk_data_crc = 1;
2119                c->assert_action = ASSACT_RO;
2120
2121                c->highest_inum = UBIFS_FIRST_INO;
2122                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2123
2124                ubi_get_volume_info(ubi, &c->vi);
2125                ubi_get_device_info(c->vi.ubi_num, &c->di);
2126        }
2127        return c;
2128}
2129
2130static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2131{
2132        struct ubifs_info *c = sb->s_fs_info;
2133        struct inode *root;
2134        int err;
2135
2136        c->vfs_sb = sb;
2137        /* Re-open the UBI device in read-write mode */
2138        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2139        if (IS_ERR(c->ubi)) {
2140                err = PTR_ERR(c->ubi);
2141                goto out;
2142        }
2143
2144        err = ubifs_parse_options(c, data, 0);
2145        if (err)
2146                goto out_close;
2147
2148        /*
2149         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2150         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2151         * which means the user would have to wait not just for their own I/O
2152         * but the read-ahead I/O as well i.e. completely pointless.
2153         *
2154         * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2155         * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2156         * writeback happening.
2157         */
2158        err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2159                                   c->vi.vol_id);
2160        if (err)
2161                goto out_close;
2162
2163        sb->s_fs_info = c;
2164        sb->s_magic = UBIFS_SUPER_MAGIC;
2165        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2166        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2167        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2168        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2169                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2170        sb->s_op = &ubifs_super_operations;
2171#ifdef CONFIG_UBIFS_FS_XATTR
2172        sb->s_xattr = ubifs_xattr_handlers;
2173#endif
2174        fscrypt_set_ops(sb, &ubifs_crypt_operations);
2175
2176        mutex_lock(&c->umount_mutex);
2177        err = mount_ubifs(c);
2178        if (err) {
2179                ubifs_assert(c, err < 0);
2180                goto out_unlock;
2181        }
2182
2183        /* Read the root inode */
2184        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2185        if (IS_ERR(root)) {
2186                err = PTR_ERR(root);
2187                goto out_umount;
2188        }
2189
2190        sb->s_root = d_make_root(root);
2191        if (!sb->s_root) {
2192                err = -ENOMEM;
2193                goto out_umount;
2194        }
2195
2196        mutex_unlock(&c->umount_mutex);
2197        return 0;
2198
2199out_umount:
2200        ubifs_umount(c);
2201out_unlock:
2202        mutex_unlock(&c->umount_mutex);
2203out_close:
2204        ubi_close_volume(c->ubi);
2205out:
2206        return err;
2207}
2208
2209static int sb_test(struct super_block *sb, void *data)
2210{
2211        struct ubifs_info *c1 = data;
2212        struct ubifs_info *c = sb->s_fs_info;
2213
2214        return c->vi.cdev == c1->vi.cdev;
2215}
2216
2217static int sb_set(struct super_block *sb, void *data)
2218{
2219        sb->s_fs_info = data;
2220        return set_anon_super(sb, NULL);
2221}
2222
2223static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2224                        const char *name, void *data)
2225{
2226        struct ubi_volume_desc *ubi;
2227        struct ubifs_info *c;
2228        struct super_block *sb;
2229        int err;
2230
2231        dbg_gen("name %s, flags %#x", name, flags);
2232
2233        /*
2234         * Get UBI device number and volume ID. Mount it read-only so far
2235         * because this might be a new mount point, and UBI allows only one
2236         * read-write user at a time.
2237         */
2238        ubi = open_ubi(name, UBI_READONLY);
2239        if (IS_ERR(ubi)) {
2240                if (!(flags & SB_SILENT))
2241                        pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2242                               current->pid, name, (int)PTR_ERR(ubi));
2243                return ERR_CAST(ubi);
2244        }
2245
2246        c = alloc_ubifs_info(ubi);
2247        if (!c) {
2248                err = -ENOMEM;
2249                goto out_close;
2250        }
2251
2252        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2253
2254        sb = sget(fs_type, sb_test, sb_set, flags, c);
2255        if (IS_ERR(sb)) {
2256                err = PTR_ERR(sb);
2257                kfree(c);
2258                goto out_close;
2259        }
2260
2261        if (sb->s_root) {
2262                struct ubifs_info *c1 = sb->s_fs_info;
2263                kfree(c);
2264                /* A new mount point for already mounted UBIFS */
2265                dbg_gen("this ubi volume is already mounted");
2266                if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2267                        err = -EBUSY;
2268                        goto out_deact;
2269                }
2270        } else {
2271                err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2272                if (err)
2273                        goto out_deact;
2274                /* We do not support atime */
2275                sb->s_flags |= SB_ACTIVE;
2276                if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2277                        ubifs_msg(c, "full atime support is enabled.");
2278                else
2279                        sb->s_flags |= SB_NOATIME;
2280        }
2281
2282        /* 'fill_super()' opens ubi again so we must close it here */
2283        ubi_close_volume(ubi);
2284
2285        return dget(sb->s_root);
2286
2287out_deact:
2288        deactivate_locked_super(sb);
2289out_close:
2290        ubi_close_volume(ubi);
2291        return ERR_PTR(err);
2292}
2293
2294static void kill_ubifs_super(struct super_block *s)
2295{
2296        struct ubifs_info *c = s->s_fs_info;
2297        kill_anon_super(s);
2298        kfree(c);
2299}
2300
2301static struct file_system_type ubifs_fs_type = {
2302        .name    = "ubifs",
2303        .owner   = THIS_MODULE,
2304        .mount   = ubifs_mount,
2305        .kill_sb = kill_ubifs_super,
2306};
2307MODULE_ALIAS_FS("ubifs");
2308
2309/*
2310 * Inode slab cache constructor.
2311 */
2312static void inode_slab_ctor(void *obj)
2313{
2314        struct ubifs_inode *ui = obj;
2315        inode_init_once(&ui->vfs_inode);
2316}
2317
2318static int __init ubifs_init(void)
2319{
2320        int err;
2321
2322        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2323
2324        /* Make sure node sizes are 8-byte aligned */
2325        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2326        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2327        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2328        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2329        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2330        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2331        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2332        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2333        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2334        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2335        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2336
2337        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2338        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2339        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2340        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2341        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2342        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2343
2344        /* Check min. node size */
2345        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2346        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2347        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2348        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2349
2350        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2351        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2352        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2353        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2354
2355        /* Defined node sizes */
2356        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2357        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2358        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2359        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2360
2361        /*
2362         * We use 2 bit wide bit-fields to store compression type, which should
2363         * be amended if more compressors are added. The bit-fields are:
2364         * @compr_type in 'struct ubifs_inode', @default_compr in
2365         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2366         */
2367        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2368
2369        /*
2370         * We require that PAGE_SIZE is greater-than-or-equal-to
2371         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2372         */
2373        if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2374                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2375                       current->pid, (unsigned int)PAGE_SIZE);
2376                return -EINVAL;
2377        }
2378
2379        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2380                                sizeof(struct ubifs_inode), 0,
2381                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2382                                SLAB_ACCOUNT, &inode_slab_ctor);
2383        if (!ubifs_inode_slab)
2384                return -ENOMEM;
2385
2386        err = register_shrinker(&ubifs_shrinker_info);
2387        if (err)
2388                goto out_slab;
2389
2390        err = ubifs_compressors_init();
2391        if (err)
2392                goto out_shrinker;
2393
2394        dbg_debugfs_init();
2395
2396        err = register_filesystem(&ubifs_fs_type);
2397        if (err) {
2398                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2399                       current->pid, err);
2400                goto out_dbg;
2401        }
2402        return 0;
2403
2404out_dbg:
2405        dbg_debugfs_exit();
2406        ubifs_compressors_exit();
2407out_shrinker:
2408        unregister_shrinker(&ubifs_shrinker_info);
2409out_slab:
2410        kmem_cache_destroy(ubifs_inode_slab);
2411        return err;
2412}
2413/* late_initcall to let compressors initialize first */
2414late_initcall(ubifs_init);
2415
2416static void __exit ubifs_exit(void)
2417{
2418        WARN_ON(!list_empty(&ubifs_infos));
2419        WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2420
2421        dbg_debugfs_exit();
2422        ubifs_compressors_exit();
2423        unregister_shrinker(&ubifs_shrinker_info);
2424
2425        /*
2426         * Make sure all delayed rcu free inodes are flushed before we
2427         * destroy cache.
2428         */
2429        rcu_barrier();
2430        kmem_cache_destroy(ubifs_inode_slab);
2431        unregister_filesystem(&ubifs_fs_type);
2432}
2433module_exit(ubifs_exit);
2434
2435MODULE_LICENSE("GPL");
2436MODULE_VERSION(__stringify(UBIFS_VERSION));
2437MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2438MODULE_DESCRIPTION("UBIFS - UBI File System");
2439