linux/fs/xfs/xfs_reflink.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2016 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_defer.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_trace.h"
  19#include "xfs_icache.h"
  20#include "xfs_btree.h"
  21#include "xfs_refcount_btree.h"
  22#include "xfs_refcount.h"
  23#include "xfs_bmap_btree.h"
  24#include "xfs_trans_space.h"
  25#include "xfs_bit.h"
  26#include "xfs_alloc.h"
  27#include "xfs_quota.h"
  28#include "xfs_reflink.h"
  29#include "xfs_iomap.h"
  30#include "xfs_sb.h"
  31#include "xfs_ag_resv.h"
  32
  33/*
  34 * Copy on Write of Shared Blocks
  35 *
  36 * XFS must preserve "the usual" file semantics even when two files share
  37 * the same physical blocks.  This means that a write to one file must not
  38 * alter the blocks in a different file; the way that we'll do that is
  39 * through the use of a copy-on-write mechanism.  At a high level, that
  40 * means that when we want to write to a shared block, we allocate a new
  41 * block, write the data to the new block, and if that succeeds we map the
  42 * new block into the file.
  43 *
  44 * XFS provides a "delayed allocation" mechanism that defers the allocation
  45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
  46 * possible.  This reduces fragmentation by enabling the filesystem to ask
  47 * for bigger chunks less often, which is exactly what we want for CoW.
  48 *
  49 * The delalloc mechanism begins when the kernel wants to make a block
  50 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
  51 * create a delalloc mapping, which is a regular in-core extent, but without
  52 * a real startblock.  (For delalloc mappings, the startblock encodes both
  53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
  54 * many blocks might be required to put the mapping into the BMBT.)  delalloc
  55 * mappings are a reservation against the free space in the filesystem;
  56 * adjacent mappings can also be combined into fewer larger mappings.
  57 *
  58 * As an optimization, the CoW extent size hint (cowextsz) creates
  59 * outsized aligned delalloc reservations in the hope of landing out of
  60 * order nearby CoW writes in a single extent on disk, thereby reducing
  61 * fragmentation and improving future performance.
  62 *
  63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
  64 * C: ------DDDDDDD--------- (CoW fork)
  65 *
  66 * When dirty pages are being written out (typically in writepage), the
  67 * delalloc reservations are converted into unwritten mappings by
  68 * allocating blocks and replacing the delalloc mapping with real ones.
  69 * A delalloc mapping can be replaced by several unwritten ones if the
  70 * free space is fragmented.
  71 *
  72 * D: --RRRRRRSSSRRRRRRRR---
  73 * C: ------UUUUUUU---------
  74 *
  75 * We want to adapt the delalloc mechanism for copy-on-write, since the
  76 * write paths are similar.  The first two steps (creating the reservation
  77 * and allocating the blocks) are exactly the same as delalloc except that
  78 * the mappings must be stored in a separate CoW fork because we do not want
  79 * to disturb the mapping in the data fork until we're sure that the write
  80 * succeeded.  IO completion in this case is the process of removing the old
  81 * mapping from the data fork and moving the new mapping from the CoW fork to
  82 * the data fork.  This will be discussed shortly.
  83 *
  84 * For now, unaligned directio writes will be bounced back to the page cache.
  85 * Block-aligned directio writes will use the same mechanism as buffered
  86 * writes.
  87 *
  88 * Just prior to submitting the actual disk write requests, we convert
  89 * the extents representing the range of the file actually being written
  90 * (as opposed to extra pieces created for the cowextsize hint) to real
  91 * extents.  This will become important in the next step:
  92 *
  93 * D: --RRRRRRSSSRRRRRRRR---
  94 * C: ------UUrrUUU---------
  95 *
  96 * CoW remapping must be done after the data block write completes,
  97 * because we don't want to destroy the old data fork map until we're sure
  98 * the new block has been written.  Since the new mappings are kept in a
  99 * separate fork, we can simply iterate these mappings to find the ones
 100 * that cover the file blocks that we just CoW'd.  For each extent, simply
 101 * unmap the corresponding range in the data fork, map the new range into
 102 * the data fork, and remove the extent from the CoW fork.  Because of
 103 * the presence of the cowextsize hint, however, we must be careful
 104 * only to remap the blocks that we've actually written out --  we must
 105 * never remap delalloc reservations nor CoW staging blocks that have
 106 * yet to be written.  This corresponds exactly to the real extents in
 107 * the CoW fork:
 108 *
 109 * D: --RRRRRRrrSRRRRRRRR---
 110 * C: ------UU--UUU---------
 111 *
 112 * Since the remapping operation can be applied to an arbitrary file
 113 * range, we record the need for the remap step as a flag in the ioend
 114 * instead of declaring a new IO type.  This is required for direct io
 115 * because we only have ioend for the whole dio, and we have to be able to
 116 * remember the presence of unwritten blocks and CoW blocks with a single
 117 * ioend structure.  Better yet, the more ground we can cover with one
 118 * ioend, the better.
 119 */
 120
 121/*
 122 * Given an AG extent, find the lowest-numbered run of shared blocks
 123 * within that range and return the range in fbno/flen.  If
 124 * find_end_of_shared is true, return the longest contiguous extent of
 125 * shared blocks.  If there are no shared extents, fbno and flen will
 126 * be set to NULLAGBLOCK and 0, respectively.
 127 */
 128int
 129xfs_reflink_find_shared(
 130        struct xfs_mount        *mp,
 131        struct xfs_trans        *tp,
 132        xfs_agnumber_t          agno,
 133        xfs_agblock_t           agbno,
 134        xfs_extlen_t            aglen,
 135        xfs_agblock_t           *fbno,
 136        xfs_extlen_t            *flen,
 137        bool                    find_end_of_shared)
 138{
 139        struct xfs_buf          *agbp;
 140        struct xfs_btree_cur    *cur;
 141        int                     error;
 142
 143        error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
 144        if (error)
 145                return error;
 146
 147        cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
 148
 149        error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
 150                        find_end_of_shared);
 151
 152        xfs_btree_del_cursor(cur, error);
 153
 154        xfs_trans_brelse(tp, agbp);
 155        return error;
 156}
 157
 158/*
 159 * Trim the mapping to the next block where there's a change in the
 160 * shared/unshared status.  More specifically, this means that we
 161 * find the lowest-numbered extent of shared blocks that coincides with
 162 * the given block mapping.  If the shared extent overlaps the start of
 163 * the mapping, trim the mapping to the end of the shared extent.  If
 164 * the shared region intersects the mapping, trim the mapping to the
 165 * start of the shared extent.  If there are no shared regions that
 166 * overlap, just return the original extent.
 167 */
 168int
 169xfs_reflink_trim_around_shared(
 170        struct xfs_inode        *ip,
 171        struct xfs_bmbt_irec    *irec,
 172        bool                    *shared)
 173{
 174        xfs_agnumber_t          agno;
 175        xfs_agblock_t           agbno;
 176        xfs_extlen_t            aglen;
 177        xfs_agblock_t           fbno;
 178        xfs_extlen_t            flen;
 179        int                     error = 0;
 180
 181        /* Holes, unwritten, and delalloc extents cannot be shared */
 182        if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
 183                *shared = false;
 184                return 0;
 185        }
 186
 187        trace_xfs_reflink_trim_around_shared(ip, irec);
 188
 189        agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
 190        agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
 191        aglen = irec->br_blockcount;
 192
 193        error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
 194                        aglen, &fbno, &flen, true);
 195        if (error)
 196                return error;
 197
 198        *shared = false;
 199        if (fbno == NULLAGBLOCK) {
 200                /* No shared blocks at all. */
 201                return 0;
 202        } else if (fbno == agbno) {
 203                /*
 204                 * The start of this extent is shared.  Truncate the
 205                 * mapping at the end of the shared region so that a
 206                 * subsequent iteration starts at the start of the
 207                 * unshared region.
 208                 */
 209                irec->br_blockcount = flen;
 210                *shared = true;
 211                return 0;
 212        } else {
 213                /*
 214                 * There's a shared extent midway through this extent.
 215                 * Truncate the mapping at the start of the shared
 216                 * extent so that a subsequent iteration starts at the
 217                 * start of the shared region.
 218                 */
 219                irec->br_blockcount = fbno - agbno;
 220                return 0;
 221        }
 222}
 223
 224int
 225xfs_bmap_trim_cow(
 226        struct xfs_inode        *ip,
 227        struct xfs_bmbt_irec    *imap,
 228        bool                    *shared)
 229{
 230        /* We can't update any real extents in always COW mode. */
 231        if (xfs_is_always_cow_inode(ip) &&
 232            !isnullstartblock(imap->br_startblock)) {
 233                *shared = true;
 234                return 0;
 235        }
 236
 237        /* Trim the mapping to the nearest shared extent boundary. */
 238        return xfs_reflink_trim_around_shared(ip, imap, shared);
 239}
 240
 241static int
 242xfs_reflink_convert_cow_locked(
 243        struct xfs_inode        *ip,
 244        xfs_fileoff_t           offset_fsb,
 245        xfs_filblks_t           count_fsb)
 246{
 247        struct xfs_iext_cursor  icur;
 248        struct xfs_bmbt_irec    got;
 249        struct xfs_btree_cur    *dummy_cur = NULL;
 250        int                     dummy_logflags;
 251        int                     error = 0;
 252
 253        if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
 254                return 0;
 255
 256        do {
 257                if (got.br_startoff >= offset_fsb + count_fsb)
 258                        break;
 259                if (got.br_state == XFS_EXT_NORM)
 260                        continue;
 261                if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
 262                        return -EIO;
 263
 264                xfs_trim_extent(&got, offset_fsb, count_fsb);
 265                if (!got.br_blockcount)
 266                        continue;
 267
 268                got.br_state = XFS_EXT_NORM;
 269                error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
 270                                XFS_COW_FORK, &icur, &dummy_cur, &got,
 271                                &dummy_logflags);
 272                if (error)
 273                        return error;
 274        } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
 275
 276        return error;
 277}
 278
 279/* Convert all of the unwritten CoW extents in a file's range to real ones. */
 280int
 281xfs_reflink_convert_cow(
 282        struct xfs_inode        *ip,
 283        xfs_off_t               offset,
 284        xfs_off_t               count)
 285{
 286        struct xfs_mount        *mp = ip->i_mount;
 287        xfs_fileoff_t           offset_fsb = XFS_B_TO_FSBT(mp, offset);
 288        xfs_fileoff_t           end_fsb = XFS_B_TO_FSB(mp, offset + count);
 289        xfs_filblks_t           count_fsb = end_fsb - offset_fsb;
 290        int                     error;
 291
 292        ASSERT(count != 0);
 293
 294        xfs_ilock(ip, XFS_ILOCK_EXCL);
 295        error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 296        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 297        return error;
 298}
 299
 300/*
 301 * Find the extent that maps the given range in the COW fork. Even if the extent
 302 * is not shared we might have a preallocation for it in the COW fork. If so we
 303 * use it that rather than trigger a new allocation.
 304 */
 305static int
 306xfs_find_trim_cow_extent(
 307        struct xfs_inode        *ip,
 308        struct xfs_bmbt_irec    *imap,
 309        struct xfs_bmbt_irec    *cmap,
 310        bool                    *shared,
 311        bool                    *found)
 312{
 313        xfs_fileoff_t           offset_fsb = imap->br_startoff;
 314        xfs_filblks_t           count_fsb = imap->br_blockcount;
 315        struct xfs_iext_cursor  icur;
 316
 317        *found = false;
 318
 319        /*
 320         * If we don't find an overlapping extent, trim the range we need to
 321         * allocate to fit the hole we found.
 322         */
 323        if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
 324                cmap->br_startoff = offset_fsb + count_fsb;
 325        if (cmap->br_startoff > offset_fsb) {
 326                xfs_trim_extent(imap, imap->br_startoff,
 327                                cmap->br_startoff - imap->br_startoff);
 328                return xfs_bmap_trim_cow(ip, imap, shared);
 329        }
 330
 331        *shared = true;
 332        if (isnullstartblock(cmap->br_startblock)) {
 333                xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
 334                return 0;
 335        }
 336
 337        /* real extent found - no need to allocate */
 338        xfs_trim_extent(cmap, offset_fsb, count_fsb);
 339        *found = true;
 340        return 0;
 341}
 342
 343/* Allocate all CoW reservations covering a range of blocks in a file. */
 344int
 345xfs_reflink_allocate_cow(
 346        struct xfs_inode        *ip,
 347        struct xfs_bmbt_irec    *imap,
 348        struct xfs_bmbt_irec    *cmap,
 349        bool                    *shared,
 350        uint                    *lockmode,
 351        bool                    convert_now)
 352{
 353        struct xfs_mount        *mp = ip->i_mount;
 354        xfs_fileoff_t           offset_fsb = imap->br_startoff;
 355        xfs_filblks_t           count_fsb = imap->br_blockcount;
 356        struct xfs_trans        *tp;
 357        int                     nimaps, error = 0;
 358        bool                    found;
 359        xfs_filblks_t           resaligned;
 360        xfs_extlen_t            resblks = 0;
 361
 362        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 363        if (!ip->i_cowfp) {
 364                ASSERT(!xfs_is_reflink_inode(ip));
 365                xfs_ifork_init_cow(ip);
 366        }
 367
 368        error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 369        if (error || !*shared)
 370                return error;
 371        if (found)
 372                goto convert;
 373
 374        resaligned = xfs_aligned_fsb_count(imap->br_startoff,
 375                imap->br_blockcount, xfs_get_cowextsz_hint(ip));
 376        resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
 377
 378        xfs_iunlock(ip, *lockmode);
 379        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
 380        *lockmode = XFS_ILOCK_EXCL;
 381        xfs_ilock(ip, *lockmode);
 382
 383        if (error)
 384                return error;
 385
 386        error = xfs_qm_dqattach_locked(ip, false);
 387        if (error)
 388                goto out_trans_cancel;
 389
 390        /*
 391         * Check for an overlapping extent again now that we dropped the ilock.
 392         */
 393        error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 394        if (error || !*shared)
 395                goto out_trans_cancel;
 396        if (found) {
 397                xfs_trans_cancel(tp);
 398                goto convert;
 399        }
 400
 401        error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
 402                        XFS_QMOPT_RES_REGBLKS);
 403        if (error)
 404                goto out_trans_cancel;
 405
 406        xfs_trans_ijoin(tp, ip, 0);
 407
 408        /* Allocate the entire reservation as unwritten blocks. */
 409        nimaps = 1;
 410        error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
 411                        XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
 412                        &nimaps);
 413        if (error)
 414                goto out_unreserve;
 415
 416        xfs_inode_set_cowblocks_tag(ip);
 417        error = xfs_trans_commit(tp);
 418        if (error)
 419                return error;
 420
 421        /*
 422         * Allocation succeeded but the requested range was not even partially
 423         * satisfied?  Bail out!
 424         */
 425        if (nimaps == 0)
 426                return -ENOSPC;
 427convert:
 428        xfs_trim_extent(cmap, offset_fsb, count_fsb);
 429        /*
 430         * COW fork extents are supposed to remain unwritten until we're ready
 431         * to initiate a disk write.  For direct I/O we are going to write the
 432         * data and need the conversion, but for buffered writes we're done.
 433         */
 434        if (!convert_now || cmap->br_state == XFS_EXT_NORM)
 435                return 0;
 436        trace_xfs_reflink_convert_cow(ip, cmap);
 437        return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 438
 439out_unreserve:
 440        xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
 441                        XFS_QMOPT_RES_REGBLKS);
 442out_trans_cancel:
 443        xfs_trans_cancel(tp);
 444        return error;
 445}
 446
 447/*
 448 * Cancel CoW reservations for some block range of an inode.
 449 *
 450 * If cancel_real is true this function cancels all COW fork extents for the
 451 * inode; if cancel_real is false, real extents are not cleared.
 452 *
 453 * Caller must have already joined the inode to the current transaction. The
 454 * inode will be joined to the transaction returned to the caller.
 455 */
 456int
 457xfs_reflink_cancel_cow_blocks(
 458        struct xfs_inode                *ip,
 459        struct xfs_trans                **tpp,
 460        xfs_fileoff_t                   offset_fsb,
 461        xfs_fileoff_t                   end_fsb,
 462        bool                            cancel_real)
 463{
 464        struct xfs_ifork                *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 465        struct xfs_bmbt_irec            got, del;
 466        struct xfs_iext_cursor          icur;
 467        int                             error = 0;
 468
 469        if (!xfs_inode_has_cow_data(ip))
 470                return 0;
 471        if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
 472                return 0;
 473
 474        /* Walk backwards until we're out of the I/O range... */
 475        while (got.br_startoff + got.br_blockcount > offset_fsb) {
 476                del = got;
 477                xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
 478
 479                /* Extent delete may have bumped ext forward */
 480                if (!del.br_blockcount) {
 481                        xfs_iext_prev(ifp, &icur);
 482                        goto next_extent;
 483                }
 484
 485                trace_xfs_reflink_cancel_cow(ip, &del);
 486
 487                if (isnullstartblock(del.br_startblock)) {
 488                        error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
 489                                        &icur, &got, &del);
 490                        if (error)
 491                                break;
 492                } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
 493                        ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
 494
 495                        /* Free the CoW orphan record. */
 496                        xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
 497                                        del.br_blockcount);
 498
 499                        xfs_bmap_add_free(*tpp, del.br_startblock,
 500                                          del.br_blockcount, NULL);
 501
 502                        /* Roll the transaction */
 503                        error = xfs_defer_finish(tpp);
 504                        if (error)
 505                                break;
 506
 507                        /* Remove the mapping from the CoW fork. */
 508                        xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 509
 510                        /* Remove the quota reservation */
 511                        error = xfs_trans_reserve_quota_nblks(NULL, ip,
 512                                        -(long)del.br_blockcount, 0,
 513                                        XFS_QMOPT_RES_REGBLKS);
 514                        if (error)
 515                                break;
 516                } else {
 517                        /* Didn't do anything, push cursor back. */
 518                        xfs_iext_prev(ifp, &icur);
 519                }
 520next_extent:
 521                if (!xfs_iext_get_extent(ifp, &icur, &got))
 522                        break;
 523        }
 524
 525        /* clear tag if cow fork is emptied */
 526        if (!ifp->if_bytes)
 527                xfs_inode_clear_cowblocks_tag(ip);
 528        return error;
 529}
 530
 531/*
 532 * Cancel CoW reservations for some byte range of an inode.
 533 *
 534 * If cancel_real is true this function cancels all COW fork extents for the
 535 * inode; if cancel_real is false, real extents are not cleared.
 536 */
 537int
 538xfs_reflink_cancel_cow_range(
 539        struct xfs_inode        *ip,
 540        xfs_off_t               offset,
 541        xfs_off_t               count,
 542        bool                    cancel_real)
 543{
 544        struct xfs_trans        *tp;
 545        xfs_fileoff_t           offset_fsb;
 546        xfs_fileoff_t           end_fsb;
 547        int                     error;
 548
 549        trace_xfs_reflink_cancel_cow_range(ip, offset, count);
 550        ASSERT(ip->i_cowfp);
 551
 552        offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 553        if (count == NULLFILEOFF)
 554                end_fsb = NULLFILEOFF;
 555        else
 556                end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 557
 558        /* Start a rolling transaction to remove the mappings */
 559        error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
 560                        0, 0, 0, &tp);
 561        if (error)
 562                goto out;
 563
 564        xfs_ilock(ip, XFS_ILOCK_EXCL);
 565        xfs_trans_ijoin(tp, ip, 0);
 566
 567        /* Scrape out the old CoW reservations */
 568        error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
 569                        cancel_real);
 570        if (error)
 571                goto out_cancel;
 572
 573        error = xfs_trans_commit(tp);
 574
 575        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 576        return error;
 577
 578out_cancel:
 579        xfs_trans_cancel(tp);
 580        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 581out:
 582        trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
 583        return error;
 584}
 585
 586/*
 587 * Remap part of the CoW fork into the data fork.
 588 *
 589 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
 590 * into the data fork; this function will remap what it can (at the end of the
 591 * range) and update @end_fsb appropriately.  Each remap gets its own
 592 * transaction because we can end up merging and splitting bmbt blocks for
 593 * every remap operation and we'd like to keep the block reservation
 594 * requirements as low as possible.
 595 */
 596STATIC int
 597xfs_reflink_end_cow_extent(
 598        struct xfs_inode        *ip,
 599        xfs_fileoff_t           offset_fsb,
 600        xfs_fileoff_t           *end_fsb)
 601{
 602        struct xfs_bmbt_irec    got, del;
 603        struct xfs_iext_cursor  icur;
 604        struct xfs_mount        *mp = ip->i_mount;
 605        struct xfs_trans        *tp;
 606        struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 607        xfs_filblks_t           rlen;
 608        unsigned int            resblks;
 609        int                     error;
 610
 611        /* No COW extents?  That's easy! */
 612        if (ifp->if_bytes == 0) {
 613                *end_fsb = offset_fsb;
 614                return 0;
 615        }
 616
 617        resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
 618        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
 619                        XFS_TRANS_RESERVE, &tp);
 620        if (error)
 621                return error;
 622
 623        /*
 624         * Lock the inode.  We have to ijoin without automatic unlock because
 625         * the lead transaction is the refcountbt record deletion; the data
 626         * fork update follows as a deferred log item.
 627         */
 628        xfs_ilock(ip, XFS_ILOCK_EXCL);
 629        xfs_trans_ijoin(tp, ip, 0);
 630
 631        /*
 632         * In case of racing, overlapping AIO writes no COW extents might be
 633         * left by the time I/O completes for the loser of the race.  In that
 634         * case we are done.
 635         */
 636        if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
 637            got.br_startoff + got.br_blockcount <= offset_fsb) {
 638                *end_fsb = offset_fsb;
 639                goto out_cancel;
 640        }
 641
 642        /*
 643         * Structure copy @got into @del, then trim @del to the range that we
 644         * were asked to remap.  We preserve @got for the eventual CoW fork
 645         * deletion; from now on @del represents the mapping that we're
 646         * actually remapping.
 647         */
 648        del = got;
 649        xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
 650
 651        ASSERT(del.br_blockcount > 0);
 652
 653        /*
 654         * Only remap real extents that contain data.  With AIO, speculative
 655         * preallocations can leak into the range we are called upon, and we
 656         * need to skip them.
 657         */
 658        if (!xfs_bmap_is_real_extent(&got)) {
 659                *end_fsb = del.br_startoff;
 660                goto out_cancel;
 661        }
 662
 663        /* Unmap the old blocks in the data fork. */
 664        rlen = del.br_blockcount;
 665        error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
 666        if (error)
 667                goto out_cancel;
 668
 669        /* Trim the extent to whatever got unmapped. */
 670        xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
 671        trace_xfs_reflink_cow_remap(ip, &del);
 672
 673        /* Free the CoW orphan record. */
 674        xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
 675
 676        /* Map the new blocks into the data fork. */
 677        xfs_bmap_map_extent(tp, ip, &del);
 678
 679        /* Charge this new data fork mapping to the on-disk quota. */
 680        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
 681                        (long)del.br_blockcount);
 682
 683        /* Remove the mapping from the CoW fork. */
 684        xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 685
 686        error = xfs_trans_commit(tp);
 687        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 688        if (error)
 689                return error;
 690
 691        /* Update the caller about how much progress we made. */
 692        *end_fsb = del.br_startoff;
 693        return 0;
 694
 695out_cancel:
 696        xfs_trans_cancel(tp);
 697        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 698        return error;
 699}
 700
 701/*
 702 * Remap parts of a file's data fork after a successful CoW.
 703 */
 704int
 705xfs_reflink_end_cow(
 706        struct xfs_inode                *ip,
 707        xfs_off_t                       offset,
 708        xfs_off_t                       count)
 709{
 710        xfs_fileoff_t                   offset_fsb;
 711        xfs_fileoff_t                   end_fsb;
 712        int                             error = 0;
 713
 714        trace_xfs_reflink_end_cow(ip, offset, count);
 715
 716        offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 717        end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 718
 719        /*
 720         * Walk backwards until we're out of the I/O range.  The loop function
 721         * repeatedly cycles the ILOCK to allocate one transaction per remapped
 722         * extent.
 723         *
 724         * If we're being called by writeback then the the pages will still
 725         * have PageWriteback set, which prevents races with reflink remapping
 726         * and truncate.  Reflink remapping prevents races with writeback by
 727         * taking the iolock and mmaplock before flushing the pages and
 728         * remapping, which means there won't be any further writeback or page
 729         * cache dirtying until the reflink completes.
 730         *
 731         * We should never have two threads issuing writeback for the same file
 732         * region.  There are also have post-eof checks in the writeback
 733         * preparation code so that we don't bother writing out pages that are
 734         * about to be truncated.
 735         *
 736         * If we're being called as part of directio write completion, the dio
 737         * count is still elevated, which reflink and truncate will wait for.
 738         * Reflink remapping takes the iolock and mmaplock and waits for
 739         * pending dio to finish, which should prevent any directio until the
 740         * remap completes.  Multiple concurrent directio writes to the same
 741         * region are handled by end_cow processing only occurring for the
 742         * threads which succeed; the outcome of multiple overlapping direct
 743         * writes is not well defined anyway.
 744         *
 745         * It's possible that a buffered write and a direct write could collide
 746         * here (the buffered write stumbles in after the dio flushes and
 747         * invalidates the page cache and immediately queues writeback), but we
 748         * have never supported this 100%.  If either disk write succeeds the
 749         * blocks will be remapped.
 750         */
 751        while (end_fsb > offset_fsb && !error)
 752                error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
 753
 754        if (error)
 755                trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
 756        return error;
 757}
 758
 759/*
 760 * Free leftover CoW reservations that didn't get cleaned out.
 761 */
 762int
 763xfs_reflink_recover_cow(
 764        struct xfs_mount        *mp)
 765{
 766        xfs_agnumber_t          agno;
 767        int                     error = 0;
 768
 769        if (!xfs_sb_version_hasreflink(&mp->m_sb))
 770                return 0;
 771
 772        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 773                error = xfs_refcount_recover_cow_leftovers(mp, agno);
 774                if (error)
 775                        break;
 776        }
 777
 778        return error;
 779}
 780
 781/*
 782 * Reflinking (Block) Ranges of Two Files Together
 783 *
 784 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 785 * optimization to avoid unnecessary refcount btree lookups in the write path.
 786 *
 787 * Now we can iteratively remap the range of extents (and holes) in src to the
 788 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 789 * logical blocks in dest and src touched by the reflink operation.
 790 *
 791 * While the length of drange is greater than zero,
 792 *    - Read src's bmbt at the start of srange ("imap")
 793 *    - If imap doesn't exist, make imap appear to start at the end of srange
 794 *      with zero length.
 795 *    - If imap starts before srange, advance imap to start at srange.
 796 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 797 *    - Punch (imap start - srange start + imap len) blocks from dest at
 798 *      offset (drange start).
 799 *    - If imap points to a real range of pblks,
 800 *         > Increase the refcount of the imap's pblks
 801 *         > Map imap's pblks into dest at the offset
 802 *           (drange start + imap start - srange start)
 803 *    - Advance drange and srange by (imap start - srange start + imap len)
 804 *
 805 * Finally, if the reflink made dest longer, update both the in-core and
 806 * on-disk file sizes.
 807 *
 808 * ASCII Art Demonstration:
 809 *
 810 * Let's say we want to reflink this source file:
 811 *
 812 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 813 *   <-------------------->
 814 *
 815 * into this destination file:
 816 *
 817 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 818 *        <-------------------->
 819 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 820 * Observe that the range has different logical offsets in either file.
 821 *
 822 * Consider that the first extent in the source file doesn't line up with our
 823 * reflink range.  Unmapping  and remapping are separate operations, so we can
 824 * unmap more blocks from the destination file than we remap.
 825 *
 826 * ----SSSSSSS-SSSSS----SSSSSS
 827 *   <------->
 828 * --DDDDD---------DDDDD--DDD
 829 *        <------->
 830 *
 831 * Now remap the source extent into the destination file:
 832 *
 833 * ----SSSSSSS-SSSSS----SSSSSS
 834 *   <------->
 835 * --DDDDD--SSSSSSSDDDDD--DDD
 836 *        <------->
 837 *
 838 * Do likewise with the second hole and extent in our range.  Holes in the
 839 * unmap range don't affect our operation.
 840 *
 841 * ----SSSSSSS-SSSSS----SSSSSS
 842 *            <---->
 843 * --DDDDD--SSSSSSS-SSSSS-DDD
 844 *                 <---->
 845 *
 846 * Finally, unmap and remap part of the third extent.  This will increase the
 847 * size of the destination file.
 848 *
 849 * ----SSSSSSS-SSSSS----SSSSSS
 850 *                  <----->
 851 * --DDDDD--SSSSSSS-SSSSS----SSS
 852 *                       <----->
 853 *
 854 * Once we update the destination file's i_size, we're done.
 855 */
 856
 857/*
 858 * Ensure the reflink bit is set in both inodes.
 859 */
 860STATIC int
 861xfs_reflink_set_inode_flag(
 862        struct xfs_inode        *src,
 863        struct xfs_inode        *dest)
 864{
 865        struct xfs_mount        *mp = src->i_mount;
 866        int                     error;
 867        struct xfs_trans        *tp;
 868
 869        if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
 870                return 0;
 871
 872        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 873        if (error)
 874                goto out_error;
 875
 876        /* Lock both files against IO */
 877        if (src->i_ino == dest->i_ino)
 878                xfs_ilock(src, XFS_ILOCK_EXCL);
 879        else
 880                xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
 881
 882        if (!xfs_is_reflink_inode(src)) {
 883                trace_xfs_reflink_set_inode_flag(src);
 884                xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
 885                src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
 886                xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
 887                xfs_ifork_init_cow(src);
 888        } else
 889                xfs_iunlock(src, XFS_ILOCK_EXCL);
 890
 891        if (src->i_ino == dest->i_ino)
 892                goto commit_flags;
 893
 894        if (!xfs_is_reflink_inode(dest)) {
 895                trace_xfs_reflink_set_inode_flag(dest);
 896                xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 897                dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
 898                xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 899                xfs_ifork_init_cow(dest);
 900        } else
 901                xfs_iunlock(dest, XFS_ILOCK_EXCL);
 902
 903commit_flags:
 904        error = xfs_trans_commit(tp);
 905        if (error)
 906                goto out_error;
 907        return error;
 908
 909out_error:
 910        trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
 911        return error;
 912}
 913
 914/*
 915 * Update destination inode size & cowextsize hint, if necessary.
 916 */
 917int
 918xfs_reflink_update_dest(
 919        struct xfs_inode        *dest,
 920        xfs_off_t               newlen,
 921        xfs_extlen_t            cowextsize,
 922        unsigned int            remap_flags)
 923{
 924        struct xfs_mount        *mp = dest->i_mount;
 925        struct xfs_trans        *tp;
 926        int                     error;
 927
 928        if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
 929                return 0;
 930
 931        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 932        if (error)
 933                goto out_error;
 934
 935        xfs_ilock(dest, XFS_ILOCK_EXCL);
 936        xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 937
 938        if (newlen > i_size_read(VFS_I(dest))) {
 939                trace_xfs_reflink_update_inode_size(dest, newlen);
 940                i_size_write(VFS_I(dest), newlen);
 941                dest->i_d.di_size = newlen;
 942        }
 943
 944        if (cowextsize) {
 945                dest->i_d.di_cowextsize = cowextsize;
 946                dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 947        }
 948
 949        xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 950
 951        error = xfs_trans_commit(tp);
 952        if (error)
 953                goto out_error;
 954        return error;
 955
 956out_error:
 957        trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
 958        return error;
 959}
 960
 961/*
 962 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 963 * btree already reserved all the space it needs, but the rmap btree can grow
 964 * infinitely, so we won't allow more reflinks when the AG is down to the
 965 * btree reserves.
 966 */
 967static int
 968xfs_reflink_ag_has_free_space(
 969        struct xfs_mount        *mp,
 970        xfs_agnumber_t          agno)
 971{
 972        struct xfs_perag        *pag;
 973        int                     error = 0;
 974
 975        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 976                return 0;
 977
 978        pag = xfs_perag_get(mp, agno);
 979        if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
 980            xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
 981                error = -ENOSPC;
 982        xfs_perag_put(pag);
 983        return error;
 984}
 985
 986/*
 987 * Unmap a range of blocks from a file, then map other blocks into the hole.
 988 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
 989 * The extent irec is mapped into dest at irec->br_startoff.
 990 */
 991STATIC int
 992xfs_reflink_remap_extent(
 993        struct xfs_inode        *ip,
 994        struct xfs_bmbt_irec    *irec,
 995        xfs_fileoff_t           destoff,
 996        xfs_off_t               new_isize)
 997{
 998        struct xfs_mount        *mp = ip->i_mount;
 999        bool                    real_extent = xfs_bmap_is_real_extent(irec);
1000        struct xfs_trans        *tp;
1001        unsigned int            resblks;
1002        struct xfs_bmbt_irec    uirec;
1003        xfs_filblks_t           rlen;
1004        xfs_filblks_t           unmap_len;
1005        xfs_off_t               newlen;
1006        int                     error;
1007
1008        unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1009        trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1010
1011        /* No reflinking if we're low on space */
1012        if (real_extent) {
1013                error = xfs_reflink_ag_has_free_space(mp,
1014                                XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1015                if (error)
1016                        goto out;
1017        }
1018
1019        /* Start a rolling transaction to switch the mappings */
1020        resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1021        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1022        if (error)
1023                goto out;
1024
1025        xfs_ilock(ip, XFS_ILOCK_EXCL);
1026        xfs_trans_ijoin(tp, ip, 0);
1027
1028        /* If we're not just clearing space, then do we have enough quota? */
1029        if (real_extent) {
1030                error = xfs_trans_reserve_quota_nblks(tp, ip,
1031                                irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1032                if (error)
1033                        goto out_cancel;
1034        }
1035
1036        trace_xfs_reflink_remap(ip, irec->br_startoff,
1037                                irec->br_blockcount, irec->br_startblock);
1038
1039        /* Unmap the old blocks in the data fork. */
1040        rlen = unmap_len;
1041        while (rlen) {
1042                ASSERT(tp->t_firstblock == NULLFSBLOCK);
1043                error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1044                if (error)
1045                        goto out_cancel;
1046
1047                /*
1048                 * Trim the extent to whatever got unmapped.
1049                 * Remember, bunmapi works backwards.
1050                 */
1051                uirec.br_startblock = irec->br_startblock + rlen;
1052                uirec.br_startoff = irec->br_startoff + rlen;
1053                uirec.br_blockcount = unmap_len - rlen;
1054                uirec.br_state = irec->br_state;
1055                unmap_len = rlen;
1056
1057                /* If this isn't a real mapping, we're done. */
1058                if (!real_extent || uirec.br_blockcount == 0)
1059                        goto next_extent;
1060
1061                trace_xfs_reflink_remap(ip, uirec.br_startoff,
1062                                uirec.br_blockcount, uirec.br_startblock);
1063
1064                /* Update the refcount tree */
1065                xfs_refcount_increase_extent(tp, &uirec);
1066
1067                /* Map the new blocks into the data fork. */
1068                xfs_bmap_map_extent(tp, ip, &uirec);
1069
1070                /* Update quota accounting. */
1071                xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1072                                uirec.br_blockcount);
1073
1074                /* Update dest isize if needed. */
1075                newlen = XFS_FSB_TO_B(mp,
1076                                uirec.br_startoff + uirec.br_blockcount);
1077                newlen = min_t(xfs_off_t, newlen, new_isize);
1078                if (newlen > i_size_read(VFS_I(ip))) {
1079                        trace_xfs_reflink_update_inode_size(ip, newlen);
1080                        i_size_write(VFS_I(ip), newlen);
1081                        ip->i_d.di_size = newlen;
1082                        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1083                }
1084
1085next_extent:
1086                /* Process all the deferred stuff. */
1087                error = xfs_defer_finish(&tp);
1088                if (error)
1089                        goto out_cancel;
1090        }
1091
1092        error = xfs_trans_commit(tp);
1093        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1094        if (error)
1095                goto out;
1096        return 0;
1097
1098out_cancel:
1099        xfs_trans_cancel(tp);
1100        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1101out:
1102        trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1103        return error;
1104}
1105
1106/*
1107 * Iteratively remap one file's extents (and holes) to another's.
1108 */
1109int
1110xfs_reflink_remap_blocks(
1111        struct xfs_inode        *src,
1112        loff_t                  pos_in,
1113        struct xfs_inode        *dest,
1114        loff_t                  pos_out,
1115        loff_t                  remap_len,
1116        loff_t                  *remapped)
1117{
1118        struct xfs_bmbt_irec    imap;
1119        xfs_fileoff_t           srcoff;
1120        xfs_fileoff_t           destoff;
1121        xfs_filblks_t           len;
1122        xfs_filblks_t           range_len;
1123        xfs_filblks_t           remapped_len = 0;
1124        xfs_off_t               new_isize = pos_out + remap_len;
1125        int                     nimaps;
1126        int                     error = 0;
1127
1128        destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1129        srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1130        len = XFS_B_TO_FSB(src->i_mount, remap_len);
1131
1132        /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1133        while (len) {
1134                uint            lock_mode;
1135
1136                trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1137                                dest, destoff);
1138
1139                /* Read extent from the source file */
1140                nimaps = 1;
1141                lock_mode = xfs_ilock_data_map_shared(src);
1142                error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1143                xfs_iunlock(src, lock_mode);
1144                if (error)
1145                        break;
1146                ASSERT(nimaps == 1);
1147
1148                trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1149                                &imap);
1150
1151                /* Translate imap into the destination file. */
1152                range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1153                imap.br_startoff += destoff - srcoff;
1154
1155                /* Clear dest from destoff to the end of imap and map it in. */
1156                error = xfs_reflink_remap_extent(dest, &imap, destoff,
1157                                new_isize);
1158                if (error)
1159                        break;
1160
1161                if (fatal_signal_pending(current)) {
1162                        error = -EINTR;
1163                        break;
1164                }
1165
1166                /* Advance drange/srange */
1167                srcoff += range_len;
1168                destoff += range_len;
1169                len -= range_len;
1170                remapped_len += range_len;
1171        }
1172
1173        if (error)
1174                trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1175        *remapped = min_t(loff_t, remap_len,
1176                          XFS_FSB_TO_B(src->i_mount, remapped_len));
1177        return error;
1178}
1179
1180/*
1181 * Grab the exclusive iolock for a data copy from src to dest, making sure to
1182 * abide vfs locking order (lowest pointer value goes first) and breaking the
1183 * layout leases before proceeding.  The loop is needed because we cannot call
1184 * the blocking break_layout() with the iolocks held, and therefore have to
1185 * back out both locks.
1186 */
1187static int
1188xfs_iolock_two_inodes_and_break_layout(
1189        struct inode            *src,
1190        struct inode            *dest)
1191{
1192        int                     error;
1193
1194        if (src > dest)
1195                swap(src, dest);
1196
1197retry:
1198        /* Wait to break both inodes' layouts before we start locking. */
1199        error = break_layout(src, true);
1200        if (error)
1201                return error;
1202        if (src != dest) {
1203                error = break_layout(dest, true);
1204                if (error)
1205                        return error;
1206        }
1207
1208        /* Lock one inode and make sure nobody got in and leased it. */
1209        inode_lock(src);
1210        error = break_layout(src, false);
1211        if (error) {
1212                inode_unlock(src);
1213                if (error == -EWOULDBLOCK)
1214                        goto retry;
1215                return error;
1216        }
1217
1218        if (src == dest)
1219                return 0;
1220
1221        /* Lock the other inode and make sure nobody got in and leased it. */
1222        inode_lock_nested(dest, I_MUTEX_NONDIR2);
1223        error = break_layout(dest, false);
1224        if (error) {
1225                inode_unlock(src);
1226                inode_unlock(dest);
1227                if (error == -EWOULDBLOCK)
1228                        goto retry;
1229                return error;
1230        }
1231
1232        return 0;
1233}
1234
1235/* Unlock both inodes after they've been prepped for a range clone. */
1236void
1237xfs_reflink_remap_unlock(
1238        struct file             *file_in,
1239        struct file             *file_out)
1240{
1241        struct inode            *inode_in = file_inode(file_in);
1242        struct xfs_inode        *src = XFS_I(inode_in);
1243        struct inode            *inode_out = file_inode(file_out);
1244        struct xfs_inode        *dest = XFS_I(inode_out);
1245        bool                    same_inode = (inode_in == inode_out);
1246
1247        xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1248        if (!same_inode)
1249                xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1250        inode_unlock(inode_out);
1251        if (!same_inode)
1252                inode_unlock(inode_in);
1253}
1254
1255/*
1256 * If we're reflinking to a point past the destination file's EOF, we must
1257 * zero any speculative post-EOF preallocations that sit between the old EOF
1258 * and the destination file offset.
1259 */
1260static int
1261xfs_reflink_zero_posteof(
1262        struct xfs_inode        *ip,
1263        loff_t                  pos)
1264{
1265        loff_t                  isize = i_size_read(VFS_I(ip));
1266
1267        if (pos <= isize)
1268                return 0;
1269
1270        trace_xfs_zero_eof(ip, isize, pos - isize);
1271        return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1272                        &xfs_buffered_write_iomap_ops);
1273}
1274
1275/*
1276 * Prepare two files for range cloning.  Upon a successful return both inodes
1277 * will have the iolock and mmaplock held, the page cache of the out file will
1278 * be truncated, and any leases on the out file will have been broken.  This
1279 * function borrows heavily from xfs_file_aio_write_checks.
1280 *
1281 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1282 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1283 * EOF block in the source dedupe range because it's not a complete block match,
1284 * hence can introduce a corruption into the file that has it's block replaced.
1285 *
1286 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1287 * "block aligned" for the purposes of cloning entire files.  However, if the
1288 * source file range includes the EOF block and it lands within the existing EOF
1289 * of the destination file, then we can expose stale data from beyond the source
1290 * file EOF in the destination file.
1291 *
1292 * XFS doesn't support partial block sharing, so in both cases we have check
1293 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1294 * down to the previous whole block and ignore the partial EOF block. While this
1295 * means we can't dedupe the last block of a file, this is an acceptible
1296 * tradeoff for simplicity on implementation.
1297 *
1298 * For cloning, we want to share the partial EOF block if it is also the new EOF
1299 * block of the destination file. If the partial EOF block lies inside the
1300 * existing destination EOF, then we have to abort the clone to avoid exposing
1301 * stale data in the destination file. Hence we reject these clone attempts with
1302 * -EINVAL in this case.
1303 */
1304int
1305xfs_reflink_remap_prep(
1306        struct file             *file_in,
1307        loff_t                  pos_in,
1308        struct file             *file_out,
1309        loff_t                  pos_out,
1310        loff_t                  *len,
1311        unsigned int            remap_flags)
1312{
1313        struct inode            *inode_in = file_inode(file_in);
1314        struct xfs_inode        *src = XFS_I(inode_in);
1315        struct inode            *inode_out = file_inode(file_out);
1316        struct xfs_inode        *dest = XFS_I(inode_out);
1317        bool                    same_inode = (inode_in == inode_out);
1318        ssize_t                 ret;
1319
1320        /* Lock both files against IO */
1321        ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1322        if (ret)
1323                return ret;
1324        if (same_inode)
1325                xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1326        else
1327                xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
1328                                XFS_MMAPLOCK_EXCL);
1329
1330        /* Check file eligibility and prepare for block sharing. */
1331        ret = -EINVAL;
1332        /* Don't reflink realtime inodes */
1333        if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1334                goto out_unlock;
1335
1336        /* Don't share DAX file data for now. */
1337        if (IS_DAX(inode_in) || IS_DAX(inode_out))
1338                goto out_unlock;
1339
1340        ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1341                        len, remap_flags);
1342        if (ret < 0 || *len == 0)
1343                goto out_unlock;
1344
1345        /* Attach dquots to dest inode before changing block map */
1346        ret = xfs_qm_dqattach(dest);
1347        if (ret)
1348                goto out_unlock;
1349
1350        /*
1351         * Zero existing post-eof speculative preallocations in the destination
1352         * file.
1353         */
1354        ret = xfs_reflink_zero_posteof(dest, pos_out);
1355        if (ret)
1356                goto out_unlock;
1357
1358        /* Set flags and remap blocks. */
1359        ret = xfs_reflink_set_inode_flag(src, dest);
1360        if (ret)
1361                goto out_unlock;
1362
1363        /*
1364         * If pos_out > EOF, we may have dirtied blocks between EOF and
1365         * pos_out. In that case, we need to extend the flush and unmap to cover
1366         * from EOF to the end of the copy length.
1367         */
1368        if (pos_out > XFS_ISIZE(dest)) {
1369                loff_t  flen = *len + (pos_out - XFS_ISIZE(dest));
1370                ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1371        } else {
1372                ret = xfs_flush_unmap_range(dest, pos_out, *len);
1373        }
1374        if (ret)
1375                goto out_unlock;
1376
1377        return 1;
1378out_unlock:
1379        xfs_reflink_remap_unlock(file_in, file_out);
1380        return ret;
1381}
1382
1383/* Does this inode need the reflink flag? */
1384int
1385xfs_reflink_inode_has_shared_extents(
1386        struct xfs_trans                *tp,
1387        struct xfs_inode                *ip,
1388        bool                            *has_shared)
1389{
1390        struct xfs_bmbt_irec            got;
1391        struct xfs_mount                *mp = ip->i_mount;
1392        struct xfs_ifork                *ifp;
1393        xfs_agnumber_t                  agno;
1394        xfs_agblock_t                   agbno;
1395        xfs_extlen_t                    aglen;
1396        xfs_agblock_t                   rbno;
1397        xfs_extlen_t                    rlen;
1398        struct xfs_iext_cursor          icur;
1399        bool                            found;
1400        int                             error;
1401
1402        ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1403        if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1404                error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1405                if (error)
1406                        return error;
1407        }
1408
1409        *has_shared = false;
1410        found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1411        while (found) {
1412                if (isnullstartblock(got.br_startblock) ||
1413                    got.br_state != XFS_EXT_NORM)
1414                        goto next;
1415                agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1416                agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1417                aglen = got.br_blockcount;
1418
1419                error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1420                                &rbno, &rlen, false);
1421                if (error)
1422                        return error;
1423                /* Is there still a shared block here? */
1424                if (rbno != NULLAGBLOCK) {
1425                        *has_shared = true;
1426                        return 0;
1427                }
1428next:
1429                found = xfs_iext_next_extent(ifp, &icur, &got);
1430        }
1431
1432        return 0;
1433}
1434
1435/*
1436 * Clear the inode reflink flag if there are no shared extents.
1437 *
1438 * The caller is responsible for joining the inode to the transaction passed in.
1439 * The inode will be joined to the transaction that is returned to the caller.
1440 */
1441int
1442xfs_reflink_clear_inode_flag(
1443        struct xfs_inode        *ip,
1444        struct xfs_trans        **tpp)
1445{
1446        bool                    needs_flag;
1447        int                     error = 0;
1448
1449        ASSERT(xfs_is_reflink_inode(ip));
1450
1451        error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1452        if (error || needs_flag)
1453                return error;
1454
1455        /*
1456         * We didn't find any shared blocks so turn off the reflink flag.
1457         * First, get rid of any leftover CoW mappings.
1458         */
1459        error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1460                        true);
1461        if (error)
1462                return error;
1463
1464        /* Clear the inode flag. */
1465        trace_xfs_reflink_unset_inode_flag(ip);
1466        ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1467        xfs_inode_clear_cowblocks_tag(ip);
1468        xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1469
1470        return error;
1471}
1472
1473/*
1474 * Clear the inode reflink flag if there are no shared extents and the size
1475 * hasn't changed.
1476 */
1477STATIC int
1478xfs_reflink_try_clear_inode_flag(
1479        struct xfs_inode        *ip)
1480{
1481        struct xfs_mount        *mp = ip->i_mount;
1482        struct xfs_trans        *tp;
1483        int                     error = 0;
1484
1485        /* Start a rolling transaction to remove the mappings */
1486        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1487        if (error)
1488                return error;
1489
1490        xfs_ilock(ip, XFS_ILOCK_EXCL);
1491        xfs_trans_ijoin(tp, ip, 0);
1492
1493        error = xfs_reflink_clear_inode_flag(ip, &tp);
1494        if (error)
1495                goto cancel;
1496
1497        error = xfs_trans_commit(tp);
1498        if (error)
1499                goto out;
1500
1501        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1502        return 0;
1503cancel:
1504        xfs_trans_cancel(tp);
1505out:
1506        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1507        return error;
1508}
1509
1510/*
1511 * Pre-COW all shared blocks within a given byte range of a file and turn off
1512 * the reflink flag if we unshare all of the file's blocks.
1513 */
1514int
1515xfs_reflink_unshare(
1516        struct xfs_inode        *ip,
1517        xfs_off_t               offset,
1518        xfs_off_t               len)
1519{
1520        struct inode            *inode = VFS_I(ip);
1521        int                     error;
1522
1523        if (!xfs_is_reflink_inode(ip))
1524                return 0;
1525
1526        trace_xfs_reflink_unshare(ip, offset, len);
1527
1528        inode_dio_wait(inode);
1529
1530        error = iomap_file_unshare(inode, offset, len,
1531                        &xfs_buffered_write_iomap_ops);
1532        if (error)
1533                goto out;
1534        error = filemap_write_and_wait(inode->i_mapping);
1535        if (error)
1536                goto out;
1537
1538        /* Turn off the reflink flag if possible. */
1539        error = xfs_reflink_try_clear_inode_flag(ip);
1540        if (error)
1541                goto out;
1542        return 0;
1543
1544out:
1545        trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1546        return error;
1547}
1548