linux/include/asm-generic/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_GENERIC_PGTABLE_H
   3#define _ASM_GENERIC_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6
   7#ifndef __ASSEMBLY__
   8#ifdef CONFIG_MMU
   9
  10#include <linux/mm_types.h>
  11#include <linux/bug.h>
  12#include <linux/errno.h>
  13#include <asm-generic/pgtable_uffd.h>
  14
  15#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  16        defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  17#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  18#endif
  19
  20/*
  21 * On almost all architectures and configurations, 0 can be used as the
  22 * upper ceiling to free_pgtables(): on many architectures it has the same
  23 * effect as using TASK_SIZE.  However, there is one configuration which
  24 * must impose a more careful limit, to avoid freeing kernel pgtables.
  25 */
  26#ifndef USER_PGTABLES_CEILING
  27#define USER_PGTABLES_CEILING   0UL
  28#endif
  29
  30#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  31extern int ptep_set_access_flags(struct vm_area_struct *vma,
  32                                 unsigned long address, pte_t *ptep,
  33                                 pte_t entry, int dirty);
  34#endif
  35
  36#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  37#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  38extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  39                                 unsigned long address, pmd_t *pmdp,
  40                                 pmd_t entry, int dirty);
  41extern int pudp_set_access_flags(struct vm_area_struct *vma,
  42                                 unsigned long address, pud_t *pudp,
  43                                 pud_t entry, int dirty);
  44#else
  45static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  46                                        unsigned long address, pmd_t *pmdp,
  47                                        pmd_t entry, int dirty)
  48{
  49        BUILD_BUG();
  50        return 0;
  51}
  52static inline int pudp_set_access_flags(struct vm_area_struct *vma,
  53                                        unsigned long address, pud_t *pudp,
  54                                        pud_t entry, int dirty)
  55{
  56        BUILD_BUG();
  57        return 0;
  58}
  59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  60#endif
  61
  62#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  63static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  64                                            unsigned long address,
  65                                            pte_t *ptep)
  66{
  67        pte_t pte = *ptep;
  68        int r = 1;
  69        if (!pte_young(pte))
  70                r = 0;
  71        else
  72                set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
  73        return r;
  74}
  75#endif
  76
  77#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  78#ifdef CONFIG_TRANSPARENT_HUGEPAGE
  79static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  80                                            unsigned long address,
  81                                            pmd_t *pmdp)
  82{
  83        pmd_t pmd = *pmdp;
  84        int r = 1;
  85        if (!pmd_young(pmd))
  86                r = 0;
  87        else
  88                set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
  89        return r;
  90}
  91#else
  92static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  93                                            unsigned long address,
  94                                            pmd_t *pmdp)
  95{
  96        BUILD_BUG();
  97        return 0;
  98}
  99#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 100#endif
 101
 102#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 103int ptep_clear_flush_young(struct vm_area_struct *vma,
 104                           unsigned long address, pte_t *ptep);
 105#endif
 106
 107#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 108#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 109extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 110                                  unsigned long address, pmd_t *pmdp);
 111#else
 112/*
 113 * Despite relevant to THP only, this API is called from generic rmap code
 114 * under PageTransHuge(), hence needs a dummy implementation for !THP
 115 */
 116static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 117                                         unsigned long address, pmd_t *pmdp)
 118{
 119        BUILD_BUG();
 120        return 0;
 121}
 122#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 123#endif
 124
 125#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 126static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 127                                       unsigned long address,
 128                                       pte_t *ptep)
 129{
 130        pte_t pte = *ptep;
 131        pte_clear(mm, address, ptep);
 132        return pte;
 133}
 134#endif
 135
 136#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 138static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 139                                            unsigned long address,
 140                                            pmd_t *pmdp)
 141{
 142        pmd_t pmd = *pmdp;
 143        pmd_clear(pmdp);
 144        return pmd;
 145}
 146#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 147#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 148static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 149                                            unsigned long address,
 150                                            pud_t *pudp)
 151{
 152        pud_t pud = *pudp;
 153
 154        pud_clear(pudp);
 155        return pud;
 156}
 157#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 158#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 159
 160#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 161#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 162static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
 163                                            unsigned long address, pmd_t *pmdp,
 164                                            int full)
 165{
 166        return pmdp_huge_get_and_clear(mm, address, pmdp);
 167}
 168#endif
 169
 170#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 171static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 172                                            unsigned long address, pud_t *pudp,
 173                                            int full)
 174{
 175        return pudp_huge_get_and_clear(mm, address, pudp);
 176}
 177#endif
 178#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 179
 180#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 181static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 182                                            unsigned long address, pte_t *ptep,
 183                                            int full)
 184{
 185        pte_t pte;
 186        pte = ptep_get_and_clear(mm, address, ptep);
 187        return pte;
 188}
 189#endif
 190
 191/*
 192 * Some architectures may be able to avoid expensive synchronization
 193 * primitives when modifications are made to PTE's which are already
 194 * not present, or in the process of an address space destruction.
 195 */
 196#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 197static inline void pte_clear_not_present_full(struct mm_struct *mm,
 198                                              unsigned long address,
 199                                              pte_t *ptep,
 200                                              int full)
 201{
 202        pte_clear(mm, address, ptep);
 203}
 204#endif
 205
 206#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 207extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 208                              unsigned long address,
 209                              pte_t *ptep);
 210#endif
 211
 212#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 213extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 214                              unsigned long address,
 215                              pmd_t *pmdp);
 216extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 217                              unsigned long address,
 218                              pud_t *pudp);
 219#endif
 220
 221#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 222struct mm_struct;
 223static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 224{
 225        pte_t old_pte = *ptep;
 226        set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 227}
 228#endif
 229
 230#ifndef pte_savedwrite
 231#define pte_savedwrite pte_write
 232#endif
 233
 234#ifndef pte_mk_savedwrite
 235#define pte_mk_savedwrite pte_mkwrite
 236#endif
 237
 238#ifndef pte_clear_savedwrite
 239#define pte_clear_savedwrite pte_wrprotect
 240#endif
 241
 242#ifndef pmd_savedwrite
 243#define pmd_savedwrite pmd_write
 244#endif
 245
 246#ifndef pmd_mk_savedwrite
 247#define pmd_mk_savedwrite pmd_mkwrite
 248#endif
 249
 250#ifndef pmd_clear_savedwrite
 251#define pmd_clear_savedwrite pmd_wrprotect
 252#endif
 253
 254#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 255#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 256static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 257                                      unsigned long address, pmd_t *pmdp)
 258{
 259        pmd_t old_pmd = *pmdp;
 260        set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 261}
 262#else
 263static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 264                                      unsigned long address, pmd_t *pmdp)
 265{
 266        BUILD_BUG();
 267}
 268#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 269#endif
 270#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 271#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 272static inline void pudp_set_wrprotect(struct mm_struct *mm,
 273                                      unsigned long address, pud_t *pudp)
 274{
 275        pud_t old_pud = *pudp;
 276
 277        set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 278}
 279#else
 280static inline void pudp_set_wrprotect(struct mm_struct *mm,
 281                                      unsigned long address, pud_t *pudp)
 282{
 283        BUILD_BUG();
 284}
 285#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 286#endif
 287
 288#ifndef pmdp_collapse_flush
 289#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 290extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 291                                 unsigned long address, pmd_t *pmdp);
 292#else
 293static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 294                                        unsigned long address,
 295                                        pmd_t *pmdp)
 296{
 297        BUILD_BUG();
 298        return *pmdp;
 299}
 300#define pmdp_collapse_flush pmdp_collapse_flush
 301#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 302#endif
 303
 304#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 305extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 306                                       pgtable_t pgtable);
 307#endif
 308
 309#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 310extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 311#endif
 312
 313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 314/*
 315 * This is an implementation of pmdp_establish() that is only suitable for an
 316 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 317 * can't race with CPU which sets these bits and non-atomic aproach is fine.
 318 */
 319static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 320                unsigned long address, pmd_t *pmdp, pmd_t pmd)
 321{
 322        pmd_t old_pmd = *pmdp;
 323        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 324        return old_pmd;
 325}
 326#endif
 327
 328#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 329extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 330                            pmd_t *pmdp);
 331#endif
 332
 333#ifndef __HAVE_ARCH_PTE_SAME
 334static inline int pte_same(pte_t pte_a, pte_t pte_b)
 335{
 336        return pte_val(pte_a) == pte_val(pte_b);
 337}
 338#endif
 339
 340#ifndef __HAVE_ARCH_PTE_UNUSED
 341/*
 342 * Some architectures provide facilities to virtualization guests
 343 * so that they can flag allocated pages as unused. This allows the
 344 * host to transparently reclaim unused pages. This function returns
 345 * whether the pte's page is unused.
 346 */
 347static inline int pte_unused(pte_t pte)
 348{
 349        return 0;
 350}
 351#endif
 352
 353#ifndef pte_access_permitted
 354#define pte_access_permitted(pte, write) \
 355        (pte_present(pte) && (!(write) || pte_write(pte)))
 356#endif
 357
 358#ifndef pmd_access_permitted
 359#define pmd_access_permitted(pmd, write) \
 360        (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 361#endif
 362
 363#ifndef pud_access_permitted
 364#define pud_access_permitted(pud, write) \
 365        (pud_present(pud) && (!(write) || pud_write(pud)))
 366#endif
 367
 368#ifndef p4d_access_permitted
 369#define p4d_access_permitted(p4d, write) \
 370        (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 371#endif
 372
 373#ifndef pgd_access_permitted
 374#define pgd_access_permitted(pgd, write) \
 375        (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 376#endif
 377
 378#ifndef __HAVE_ARCH_PMD_SAME
 379static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 380{
 381        return pmd_val(pmd_a) == pmd_val(pmd_b);
 382}
 383
 384static inline int pud_same(pud_t pud_a, pud_t pud_b)
 385{
 386        return pud_val(pud_a) == pud_val(pud_b);
 387}
 388#endif
 389
 390#ifndef __HAVE_ARCH_P4D_SAME
 391static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 392{
 393        return p4d_val(p4d_a) == p4d_val(p4d_b);
 394}
 395#endif
 396
 397#ifndef __HAVE_ARCH_PGD_SAME
 398static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 399{
 400        return pgd_val(pgd_a) == pgd_val(pgd_b);
 401}
 402#endif
 403
 404/*
 405 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 406 * TLB flush will be required as a result of the "set". For example, use
 407 * in scenarios where it is known ahead of time that the routine is
 408 * setting non-present entries, or re-setting an existing entry to the
 409 * same value. Otherwise, use the typical "set" helpers and flush the
 410 * TLB.
 411 */
 412#define set_pte_safe(ptep, pte) \
 413({ \
 414        WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 415        set_pte(ptep, pte); \
 416})
 417
 418#define set_pmd_safe(pmdp, pmd) \
 419({ \
 420        WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 421        set_pmd(pmdp, pmd); \
 422})
 423
 424#define set_pud_safe(pudp, pud) \
 425({ \
 426        WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 427        set_pud(pudp, pud); \
 428})
 429
 430#define set_p4d_safe(p4dp, p4d) \
 431({ \
 432        WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 433        set_p4d(p4dp, p4d); \
 434})
 435
 436#define set_pgd_safe(pgdp, pgd) \
 437({ \
 438        WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 439        set_pgd(pgdp, pgd); \
 440})
 441
 442#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 443/*
 444 * Some architectures support metadata associated with a page. When a
 445 * page is being swapped out, this metadata must be saved so it can be
 446 * restored when the page is swapped back in. SPARC M7 and newer
 447 * processors support an ADI (Application Data Integrity) tag for the
 448 * page as metadata for the page. arch_do_swap_page() can restore this
 449 * metadata when a page is swapped back in.
 450 */
 451static inline void arch_do_swap_page(struct mm_struct *mm,
 452                                     struct vm_area_struct *vma,
 453                                     unsigned long addr,
 454                                     pte_t pte, pte_t oldpte)
 455{
 456
 457}
 458#endif
 459
 460#ifndef __HAVE_ARCH_UNMAP_ONE
 461/*
 462 * Some architectures support metadata associated with a page. When a
 463 * page is being swapped out, this metadata must be saved so it can be
 464 * restored when the page is swapped back in. SPARC M7 and newer
 465 * processors support an ADI (Application Data Integrity) tag for the
 466 * page as metadata for the page. arch_unmap_one() can save this
 467 * metadata on a swap-out of a page.
 468 */
 469static inline int arch_unmap_one(struct mm_struct *mm,
 470                                  struct vm_area_struct *vma,
 471                                  unsigned long addr,
 472                                  pte_t orig_pte)
 473{
 474        return 0;
 475}
 476#endif
 477
 478#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 479#define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
 480#endif
 481
 482#ifndef __HAVE_ARCH_MOVE_PTE
 483#define move_pte(pte, prot, old_addr, new_addr) (pte)
 484#endif
 485
 486#ifndef pte_accessible
 487# define pte_accessible(mm, pte)        ((void)(pte), 1)
 488#endif
 489
 490#ifndef flush_tlb_fix_spurious_fault
 491#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 492#endif
 493
 494#ifndef pgprot_noncached
 495#define pgprot_noncached(prot)  (prot)
 496#endif
 497
 498#ifndef pgprot_writecombine
 499#define pgprot_writecombine pgprot_noncached
 500#endif
 501
 502#ifndef pgprot_writethrough
 503#define pgprot_writethrough pgprot_noncached
 504#endif
 505
 506#ifndef pgprot_device
 507#define pgprot_device pgprot_noncached
 508#endif
 509
 510#ifndef pgprot_modify
 511#define pgprot_modify pgprot_modify
 512static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 513{
 514        if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 515                newprot = pgprot_noncached(newprot);
 516        if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 517                newprot = pgprot_writecombine(newprot);
 518        if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 519                newprot = pgprot_device(newprot);
 520        return newprot;
 521}
 522#endif
 523
 524/*
 525 * When walking page tables, get the address of the next boundary,
 526 * or the end address of the range if that comes earlier.  Although no
 527 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 528 */
 529
 530#define pgd_addr_end(addr, end)                                         \
 531({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
 532        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 533})
 534
 535#ifndef p4d_addr_end
 536#define p4d_addr_end(addr, end)                                         \
 537({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;      \
 538        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 539})
 540#endif
 541
 542#ifndef pud_addr_end
 543#define pud_addr_end(addr, end)                                         \
 544({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;      \
 545        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 546})
 547#endif
 548
 549#ifndef pmd_addr_end
 550#define pmd_addr_end(addr, end)                                         \
 551({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;      \
 552        (__boundary - 1 < (end) - 1)? __boundary: (end);                \
 553})
 554#endif
 555
 556/*
 557 * When walking page tables, we usually want to skip any p?d_none entries;
 558 * and any p?d_bad entries - reporting the error before resetting to none.
 559 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 560 */
 561void pgd_clear_bad(pgd_t *);
 562
 563#ifndef __PAGETABLE_P4D_FOLDED
 564void p4d_clear_bad(p4d_t *);
 565#else
 566#define p4d_clear_bad(p4d)        do { } while (0)
 567#endif
 568
 569#ifndef __PAGETABLE_PUD_FOLDED
 570void pud_clear_bad(pud_t *);
 571#else
 572#define pud_clear_bad(p4d)        do { } while (0)
 573#endif
 574
 575void pmd_clear_bad(pmd_t *);
 576
 577static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 578{
 579        if (pgd_none(*pgd))
 580                return 1;
 581        if (unlikely(pgd_bad(*pgd))) {
 582                pgd_clear_bad(pgd);
 583                return 1;
 584        }
 585        return 0;
 586}
 587
 588static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 589{
 590        if (p4d_none(*p4d))
 591                return 1;
 592        if (unlikely(p4d_bad(*p4d))) {
 593                p4d_clear_bad(p4d);
 594                return 1;
 595        }
 596        return 0;
 597}
 598
 599static inline int pud_none_or_clear_bad(pud_t *pud)
 600{
 601        if (pud_none(*pud))
 602                return 1;
 603        if (unlikely(pud_bad(*pud))) {
 604                pud_clear_bad(pud);
 605                return 1;
 606        }
 607        return 0;
 608}
 609
 610static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 611{
 612        if (pmd_none(*pmd))
 613                return 1;
 614        if (unlikely(pmd_bad(*pmd))) {
 615                pmd_clear_bad(pmd);
 616                return 1;
 617        }
 618        return 0;
 619}
 620
 621static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 622                                             unsigned long addr,
 623                                             pte_t *ptep)
 624{
 625        /*
 626         * Get the current pte state, but zero it out to make it
 627         * non-present, preventing the hardware from asynchronously
 628         * updating it.
 629         */
 630        return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 631}
 632
 633static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 634                                             unsigned long addr,
 635                                             pte_t *ptep, pte_t pte)
 636{
 637        /*
 638         * The pte is non-present, so there's no hardware state to
 639         * preserve.
 640         */
 641        set_pte_at(vma->vm_mm, addr, ptep, pte);
 642}
 643
 644#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 645/*
 646 * Start a pte protection read-modify-write transaction, which
 647 * protects against asynchronous hardware modifications to the pte.
 648 * The intention is not to prevent the hardware from making pte
 649 * updates, but to prevent any updates it may make from being lost.
 650 *
 651 * This does not protect against other software modifications of the
 652 * pte; the appropriate pte lock must be held over the transation.
 653 *
 654 * Note that this interface is intended to be batchable, meaning that
 655 * ptep_modify_prot_commit may not actually update the pte, but merely
 656 * queue the update to be done at some later time.  The update must be
 657 * actually committed before the pte lock is released, however.
 658 */
 659static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 660                                           unsigned long addr,
 661                                           pte_t *ptep)
 662{
 663        return __ptep_modify_prot_start(vma, addr, ptep);
 664}
 665
 666/*
 667 * Commit an update to a pte, leaving any hardware-controlled bits in
 668 * the PTE unmodified.
 669 */
 670static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 671                                           unsigned long addr,
 672                                           pte_t *ptep, pte_t old_pte, pte_t pte)
 673{
 674        __ptep_modify_prot_commit(vma, addr, ptep, pte);
 675}
 676#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 677#endif /* CONFIG_MMU */
 678
 679/*
 680 * No-op macros that just return the current protection value. Defined here
 681 * because these macros can be used used even if CONFIG_MMU is not defined.
 682 */
 683#ifndef pgprot_encrypted
 684#define pgprot_encrypted(prot)  (prot)
 685#endif
 686
 687#ifndef pgprot_decrypted
 688#define pgprot_decrypted(prot)  (prot)
 689#endif
 690
 691/*
 692 * A facility to provide lazy MMU batching.  This allows PTE updates and
 693 * page invalidations to be delayed until a call to leave lazy MMU mode
 694 * is issued.  Some architectures may benefit from doing this, and it is
 695 * beneficial for both shadow and direct mode hypervisors, which may batch
 696 * the PTE updates which happen during this window.  Note that using this
 697 * interface requires that read hazards be removed from the code.  A read
 698 * hazard could result in the direct mode hypervisor case, since the actual
 699 * write to the page tables may not yet have taken place, so reads though
 700 * a raw PTE pointer after it has been modified are not guaranteed to be
 701 * up to date.  This mode can only be entered and left under the protection of
 702 * the page table locks for all page tables which may be modified.  In the UP
 703 * case, this is required so that preemption is disabled, and in the SMP case,
 704 * it must synchronize the delayed page table writes properly on other CPUs.
 705 */
 706#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 707#define arch_enter_lazy_mmu_mode()      do {} while (0)
 708#define arch_leave_lazy_mmu_mode()      do {} while (0)
 709#define arch_flush_lazy_mmu_mode()      do {} while (0)
 710#endif
 711
 712/*
 713 * A facility to provide batching of the reload of page tables and
 714 * other process state with the actual context switch code for
 715 * paravirtualized guests.  By convention, only one of the batched
 716 * update (lazy) modes (CPU, MMU) should be active at any given time,
 717 * entry should never be nested, and entry and exits should always be
 718 * paired.  This is for sanity of maintaining and reasoning about the
 719 * kernel code.  In this case, the exit (end of the context switch) is
 720 * in architecture-specific code, and so doesn't need a generic
 721 * definition.
 722 */
 723#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 724#define arch_start_context_switch(prev) do {} while (0)
 725#endif
 726
 727#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 728#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 729static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 730{
 731        return pmd;
 732}
 733
 734static inline int pmd_swp_soft_dirty(pmd_t pmd)
 735{
 736        return 0;
 737}
 738
 739static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 740{
 741        return pmd;
 742}
 743#endif
 744#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 745static inline int pte_soft_dirty(pte_t pte)
 746{
 747        return 0;
 748}
 749
 750static inline int pmd_soft_dirty(pmd_t pmd)
 751{
 752        return 0;
 753}
 754
 755static inline pte_t pte_mksoft_dirty(pte_t pte)
 756{
 757        return pte;
 758}
 759
 760static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 761{
 762        return pmd;
 763}
 764
 765static inline pte_t pte_clear_soft_dirty(pte_t pte)
 766{
 767        return pte;
 768}
 769
 770static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 771{
 772        return pmd;
 773}
 774
 775static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 776{
 777        return pte;
 778}
 779
 780static inline int pte_swp_soft_dirty(pte_t pte)
 781{
 782        return 0;
 783}
 784
 785static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 786{
 787        return pte;
 788}
 789
 790static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 791{
 792        return pmd;
 793}
 794
 795static inline int pmd_swp_soft_dirty(pmd_t pmd)
 796{
 797        return 0;
 798}
 799
 800static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 801{
 802        return pmd;
 803}
 804#endif
 805
 806#ifndef __HAVE_PFNMAP_TRACKING
 807/*
 808 * Interfaces that can be used by architecture code to keep track of
 809 * memory type of pfn mappings specified by the remap_pfn_range,
 810 * vmf_insert_pfn.
 811 */
 812
 813/*
 814 * track_pfn_remap is called when a _new_ pfn mapping is being established
 815 * by remap_pfn_range() for physical range indicated by pfn and size.
 816 */
 817static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 818                                  unsigned long pfn, unsigned long addr,
 819                                  unsigned long size)
 820{
 821        return 0;
 822}
 823
 824/*
 825 * track_pfn_insert is called when a _new_ single pfn is established
 826 * by vmf_insert_pfn().
 827 */
 828static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 829                                    pfn_t pfn)
 830{
 831}
 832
 833/*
 834 * track_pfn_copy is called when vma that is covering the pfnmap gets
 835 * copied through copy_page_range().
 836 */
 837static inline int track_pfn_copy(struct vm_area_struct *vma)
 838{
 839        return 0;
 840}
 841
 842/*
 843 * untrack_pfn is called while unmapping a pfnmap for a region.
 844 * untrack can be called for a specific region indicated by pfn and size or
 845 * can be for the entire vma (in which case pfn, size are zero).
 846 */
 847static inline void untrack_pfn(struct vm_area_struct *vma,
 848                               unsigned long pfn, unsigned long size)
 849{
 850}
 851
 852/*
 853 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 854 */
 855static inline void untrack_pfn_moved(struct vm_area_struct *vma)
 856{
 857}
 858#else
 859extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 860                           unsigned long pfn, unsigned long addr,
 861                           unsigned long size);
 862extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 863                             pfn_t pfn);
 864extern int track_pfn_copy(struct vm_area_struct *vma);
 865extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 866                        unsigned long size);
 867extern void untrack_pfn_moved(struct vm_area_struct *vma);
 868#endif
 869
 870#ifdef __HAVE_COLOR_ZERO_PAGE
 871static inline int is_zero_pfn(unsigned long pfn)
 872{
 873        extern unsigned long zero_pfn;
 874        unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 875        return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 876}
 877
 878#define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
 879
 880#else
 881static inline int is_zero_pfn(unsigned long pfn)
 882{
 883        extern unsigned long zero_pfn;
 884        return pfn == zero_pfn;
 885}
 886
 887static inline unsigned long my_zero_pfn(unsigned long addr)
 888{
 889        extern unsigned long zero_pfn;
 890        return zero_pfn;
 891}
 892#endif
 893
 894#ifdef CONFIG_MMU
 895
 896#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 897static inline int pmd_trans_huge(pmd_t pmd)
 898{
 899        return 0;
 900}
 901#ifndef pmd_write
 902static inline int pmd_write(pmd_t pmd)
 903{
 904        BUG();
 905        return 0;
 906}
 907#endif /* pmd_write */
 908#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 909
 910#ifndef pud_write
 911static inline int pud_write(pud_t pud)
 912{
 913        BUG();
 914        return 0;
 915}
 916#endif /* pud_write */
 917
 918#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 919static inline int pmd_devmap(pmd_t pmd)
 920{
 921        return 0;
 922}
 923static inline int pud_devmap(pud_t pud)
 924{
 925        return 0;
 926}
 927static inline int pgd_devmap(pgd_t pgd)
 928{
 929        return 0;
 930}
 931#endif
 932
 933#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
 934        (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
 935         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
 936static inline int pud_trans_huge(pud_t pud)
 937{
 938        return 0;
 939}
 940#endif
 941
 942/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
 943static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
 944{
 945        pud_t pudval = READ_ONCE(*pud);
 946
 947        if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
 948                return 1;
 949        if (unlikely(pud_bad(pudval))) {
 950                pud_clear_bad(pud);
 951                return 1;
 952        }
 953        return 0;
 954}
 955
 956/* See pmd_trans_unstable for discussion. */
 957static inline int pud_trans_unstable(pud_t *pud)
 958{
 959#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
 960        defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 961        return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
 962#else
 963        return 0;
 964#endif
 965}
 966
 967#ifndef pmd_read_atomic
 968static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 969{
 970        /*
 971         * Depend on compiler for an atomic pmd read. NOTE: this is
 972         * only going to work, if the pmdval_t isn't larger than
 973         * an unsigned long.
 974         */
 975        return *pmdp;
 976}
 977#endif
 978
 979#ifndef arch_needs_pgtable_deposit
 980#define arch_needs_pgtable_deposit() (false)
 981#endif
 982/*
 983 * This function is meant to be used by sites walking pagetables with
 984 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
 985 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 986 * into a null pmd and the transhuge page fault can convert a null pmd
 987 * into an hugepmd or into a regular pmd (if the hugepage allocation
 988 * fails). While holding the mmap_sem in read mode the pmd becomes
 989 * stable and stops changing under us only if it's not null and not a
 990 * transhuge pmd. When those races occurs and this function makes a
 991 * difference vs the standard pmd_none_or_clear_bad, the result is
 992 * undefined so behaving like if the pmd was none is safe (because it
 993 * can return none anyway). The compiler level barrier() is critically
 994 * important to compute the two checks atomically on the same pmdval.
 995 *
 996 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 997 * care of reading the pmd atomically to avoid SMP race conditions
 998 * against pmd_populate() when the mmap_sem is hold for reading by the
 999 * caller (a special atomic read not done by "gcc" as in the generic
1000 * version above, is also needed when THP is disabled because the page
1001 * fault can populate the pmd from under us).
1002 */
1003static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1004{
1005        pmd_t pmdval = pmd_read_atomic(pmd);
1006        /*
1007         * The barrier will stabilize the pmdval in a register or on
1008         * the stack so that it will stop changing under the code.
1009         *
1010         * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1011         * pmd_read_atomic is allowed to return a not atomic pmdval
1012         * (for example pointing to an hugepage that has never been
1013         * mapped in the pmd). The below checks will only care about
1014         * the low part of the pmd with 32bit PAE x86 anyway, with the
1015         * exception of pmd_none(). So the important thing is that if
1016         * the low part of the pmd is found null, the high part will
1017         * be also null or the pmd_none() check below would be
1018         * confused.
1019         */
1020#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1021        barrier();
1022#endif
1023        /*
1024         * !pmd_present() checks for pmd migration entries
1025         *
1026         * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1027         * But using that requires moving current function and pmd_trans_unstable()
1028         * to linux/swapops.h to resovle dependency, which is too much code move.
1029         *
1030         * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1031         * because !pmd_present() pages can only be under migration not swapped
1032         * out.
1033         *
1034         * pmd_none() is preseved for future condition checks on pmd migration
1035         * entries and not confusing with this function name, although it is
1036         * redundant with !pmd_present().
1037         */
1038        if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1039                (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1040                return 1;
1041        if (unlikely(pmd_bad(pmdval))) {
1042                pmd_clear_bad(pmd);
1043                return 1;
1044        }
1045        return 0;
1046}
1047
1048/*
1049 * This is a noop if Transparent Hugepage Support is not built into
1050 * the kernel. Otherwise it is equivalent to
1051 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1052 * places that already verified the pmd is not none and they want to
1053 * walk ptes while holding the mmap sem in read mode (write mode don't
1054 * need this). If THP is not enabled, the pmd can't go away under the
1055 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1056 * run a pmd_trans_unstable before walking the ptes after
1057 * split_huge_pmd returns (because it may have run when the pmd become
1058 * null, but then a page fault can map in a THP and not a regular page).
1059 */
1060static inline int pmd_trans_unstable(pmd_t *pmd)
1061{
1062#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1063        return pmd_none_or_trans_huge_or_clear_bad(pmd);
1064#else
1065        return 0;
1066#endif
1067}
1068
1069#ifndef CONFIG_NUMA_BALANCING
1070/*
1071 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1072 * the only case the kernel cares is for NUMA balancing and is only ever set
1073 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1074 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1075 * is the responsibility of the caller to distinguish between PROT_NONE
1076 * protections and NUMA hinting fault protections.
1077 */
1078static inline int pte_protnone(pte_t pte)
1079{
1080        return 0;
1081}
1082
1083static inline int pmd_protnone(pmd_t pmd)
1084{
1085        return 0;
1086}
1087#endif /* CONFIG_NUMA_BALANCING */
1088
1089#endif /* CONFIG_MMU */
1090
1091#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1092
1093#ifndef __PAGETABLE_P4D_FOLDED
1094int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1095int p4d_clear_huge(p4d_t *p4d);
1096#else
1097static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1098{
1099        return 0;
1100}
1101static inline int p4d_clear_huge(p4d_t *p4d)
1102{
1103        return 0;
1104}
1105#endif /* !__PAGETABLE_P4D_FOLDED */
1106
1107int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1108int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1109int pud_clear_huge(pud_t *pud);
1110int pmd_clear_huge(pmd_t *pmd);
1111int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1112int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1113int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1114#else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1115static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1116{
1117        return 0;
1118}
1119static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1120{
1121        return 0;
1122}
1123static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1124{
1125        return 0;
1126}
1127static inline int p4d_clear_huge(p4d_t *p4d)
1128{
1129        return 0;
1130}
1131static inline int pud_clear_huge(pud_t *pud)
1132{
1133        return 0;
1134}
1135static inline int pmd_clear_huge(pmd_t *pmd)
1136{
1137        return 0;
1138}
1139static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1140{
1141        return 0;
1142}
1143static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1144{
1145        return 0;
1146}
1147static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1148{
1149        return 0;
1150}
1151#endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1152
1153#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1154#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1155/*
1156 * ARCHes with special requirements for evicting THP backing TLB entries can
1157 * implement this. Otherwise also, it can help optimize normal TLB flush in
1158 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1159 * entire TLB TLB if flush span is greater than a threshold, which will
1160 * likely be true for a single huge page. Thus a single thp flush will
1161 * invalidate the entire TLB which is not desitable.
1162 * e.g. see arch/arc: flush_pmd_tlb_range
1163 */
1164#define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1165#define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
1166#else
1167#define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
1168#define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
1169#endif
1170#endif
1171
1172struct file;
1173int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1174                        unsigned long size, pgprot_t *vma_prot);
1175
1176#ifndef CONFIG_X86_ESPFIX64
1177static inline void init_espfix_bsp(void) { }
1178#endif
1179
1180extern void __init pgtable_cache_init(void);
1181
1182#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1183static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1184{
1185        return true;
1186}
1187
1188static inline bool arch_has_pfn_modify_check(void)
1189{
1190        return false;
1191}
1192#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1193
1194/*
1195 * Architecture PAGE_KERNEL_* fallbacks
1196 *
1197 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1198 * because they really don't support them, or the port needs to be updated to
1199 * reflect the required functionality. Below are a set of relatively safe
1200 * fallbacks, as best effort, which we can count on in lieu of the architectures
1201 * not defining them on their own yet.
1202 */
1203
1204#ifndef PAGE_KERNEL_RO
1205# define PAGE_KERNEL_RO PAGE_KERNEL
1206#endif
1207
1208#ifndef PAGE_KERNEL_EXEC
1209# define PAGE_KERNEL_EXEC PAGE_KERNEL
1210#endif
1211
1212#endif /* !__ASSEMBLY__ */
1213
1214#ifndef io_remap_pfn_range
1215#define io_remap_pfn_range remap_pfn_range
1216#endif
1217
1218#ifndef has_transparent_hugepage
1219#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1220#define has_transparent_hugepage() 1
1221#else
1222#define has_transparent_hugepage() 0
1223#endif
1224#endif
1225
1226/*
1227 * On some architectures it depends on the mm if the p4d/pud or pmd
1228 * layer of the page table hierarchy is folded or not.
1229 */
1230#ifndef mm_p4d_folded
1231#define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
1232#endif
1233
1234#ifndef mm_pud_folded
1235#define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
1236#endif
1237
1238#ifndef mm_pmd_folded
1239#define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
1240#endif
1241
1242/*
1243 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1244 * This differs from p?d_huge() by the fact that they are always available (if
1245 * the architecture supports large pages at the appropriate level) even
1246 * if CONFIG_HUGETLB_PAGE is not defined.
1247 * Only meaningful when called on a valid entry.
1248 */
1249#ifndef pgd_leaf
1250#define pgd_leaf(x)     0
1251#endif
1252#ifndef p4d_leaf
1253#define p4d_leaf(x)     0
1254#endif
1255#ifndef pud_leaf
1256#define pud_leaf(x)     0
1257#endif
1258#ifndef pmd_leaf
1259#define pmd_leaf(x)     0
1260#endif
1261
1262#endif /* _ASM_GENERIC_PGTABLE_H */
1263