linux/include/crypto/hash.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Hash: Hash algorithms under the crypto API
   4 * 
   5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
   6 */
   7
   8#ifndef _CRYPTO_HASH_H
   9#define _CRYPTO_HASH_H
  10
  11#include <linux/crypto.h>
  12#include <linux/string.h>
  13
  14struct crypto_ahash;
  15
  16/**
  17 * DOC: Message Digest Algorithm Definitions
  18 *
  19 * These data structures define modular message digest algorithm
  20 * implementations, managed via crypto_register_ahash(),
  21 * crypto_register_shash(), crypto_unregister_ahash() and
  22 * crypto_unregister_shash().
  23 */
  24
  25/**
  26 * struct hash_alg_common - define properties of message digest
  27 * @digestsize: Size of the result of the transformation. A buffer of this size
  28 *              must be available to the @final and @finup calls, so they can
  29 *              store the resulting hash into it. For various predefined sizes,
  30 *              search include/crypto/ using
  31 *              git grep _DIGEST_SIZE include/crypto.
  32 * @statesize: Size of the block for partial state of the transformation. A
  33 *             buffer of this size must be passed to the @export function as it
  34 *             will save the partial state of the transformation into it. On the
  35 *             other side, the @import function will load the state from a
  36 *             buffer of this size as well.
  37 * @base: Start of data structure of cipher algorithm. The common data
  38 *        structure of crypto_alg contains information common to all ciphers.
  39 *        The hash_alg_common data structure now adds the hash-specific
  40 *        information.
  41 */
  42struct hash_alg_common {
  43        unsigned int digestsize;
  44        unsigned int statesize;
  45
  46        struct crypto_alg base;
  47};
  48
  49struct ahash_request {
  50        struct crypto_async_request base;
  51
  52        unsigned int nbytes;
  53        struct scatterlist *src;
  54        u8 *result;
  55
  56        /* This field may only be used by the ahash API code. */
  57        void *priv;
  58
  59        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  60};
  61
  62#define AHASH_REQUEST_ON_STACK(name, ahash) \
  63        char __##name##_desc[sizeof(struct ahash_request) + \
  64                crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
  65        struct ahash_request *name = (void *)__##name##_desc
  66
  67/**
  68 * struct ahash_alg - asynchronous message digest definition
  69 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
  70 *        state of the HASH transformation at the beginning. This shall fill in
  71 *        the internal structures used during the entire duration of the whole
  72 *        transformation. No data processing happens at this point. Driver code
  73 *        implementation must not use req->result.
  74 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
  75 *         function actually pushes blocks of data from upper layers into the
  76 *         driver, which then passes those to the hardware as seen fit. This
  77 *         function must not finalize the HASH transformation by calculating the
  78 *         final message digest as this only adds more data into the
  79 *         transformation. This function shall not modify the transformation
  80 *         context, as this function may be called in parallel with the same
  81 *         transformation object. Data processing can happen synchronously
  82 *         [SHASH] or asynchronously [AHASH] at this point. Driver must not use
  83 *         req->result.
  84 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
  85 *         transformation and retrieves the resulting hash from the driver and
  86 *         pushes it back to upper layers. No data processing happens at this
  87 *         point unless hardware requires it to finish the transformation
  88 *         (then the data buffered by the device driver is processed).
  89 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
  90 *         combination of @update and @final calls issued in sequence. As some
  91 *         hardware cannot do @update and @final separately, this callback was
  92 *         added to allow such hardware to be used at least by IPsec. Data
  93 *         processing can happen synchronously [SHASH] or asynchronously [AHASH]
  94 *         at this point.
  95 * @digest: Combination of @init and @update and @final. This function
  96 *          effectively behaves as the entire chain of operations, @init,
  97 *          @update and @final issued in sequence. Just like @finup, this was
  98 *          added for hardware which cannot do even the @finup, but can only do
  99 *          the whole transformation in one run. Data processing can happen
 100 *          synchronously [SHASH] or asynchronously [AHASH] at this point.
 101 * @setkey: Set optional key used by the hashing algorithm. Intended to push
 102 *          optional key used by the hashing algorithm from upper layers into
 103 *          the driver. This function can store the key in the transformation
 104 *          context or can outright program it into the hardware. In the former
 105 *          case, one must be careful to program the key into the hardware at
 106 *          appropriate time and one must be careful that .setkey() can be
 107 *          called multiple times during the existence of the transformation
 108 *          object. Not  all hashing algorithms do implement this function as it
 109 *          is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
 110 *          implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
 111 *          this function. This function must be called before any other of the
 112 *          @init, @update, @final, @finup, @digest is called. No data
 113 *          processing happens at this point.
 114 * @export: Export partial state of the transformation. This function dumps the
 115 *          entire state of the ongoing transformation into a provided block of
 116 *          data so it can be @import 'ed back later on. This is useful in case
 117 *          you want to save partial result of the transformation after
 118 *          processing certain amount of data and reload this partial result
 119 *          multiple times later on for multiple re-use. No data processing
 120 *          happens at this point. Driver must not use req->result.
 121 * @import: Import partial state of the transformation. This function loads the
 122 *          entire state of the ongoing transformation from a provided block of
 123 *          data so the transformation can continue from this point onward. No
 124 *          data processing happens at this point. Driver must not use
 125 *          req->result.
 126 * @halg: see struct hash_alg_common
 127 */
 128struct ahash_alg {
 129        int (*init)(struct ahash_request *req);
 130        int (*update)(struct ahash_request *req);
 131        int (*final)(struct ahash_request *req);
 132        int (*finup)(struct ahash_request *req);
 133        int (*digest)(struct ahash_request *req);
 134        int (*export)(struct ahash_request *req, void *out);
 135        int (*import)(struct ahash_request *req, const void *in);
 136        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 137                      unsigned int keylen);
 138
 139        struct hash_alg_common halg;
 140};
 141
 142struct shash_desc {
 143        struct crypto_shash *tfm;
 144        void *__ctx[] CRYPTO_MINALIGN_ATTR;
 145};
 146
 147#define HASH_MAX_DIGESTSIZE      64
 148
 149/*
 150 * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
 151 * containing a 'struct sha3_state'.
 152 */
 153#define HASH_MAX_DESCSIZE       (sizeof(struct shash_desc) + 360)
 154
 155#define HASH_MAX_STATESIZE      512
 156
 157#define SHASH_DESC_ON_STACK(shash, ctx)                           \
 158        char __##shash##_desc[sizeof(struct shash_desc) +         \
 159                HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
 160        struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
 161
 162/**
 163 * struct shash_alg - synchronous message digest definition
 164 * @init: see struct ahash_alg
 165 * @update: see struct ahash_alg
 166 * @final: see struct ahash_alg
 167 * @finup: see struct ahash_alg
 168 * @digest: see struct ahash_alg
 169 * @export: see struct ahash_alg
 170 * @import: see struct ahash_alg
 171 * @setkey: see struct ahash_alg
 172 * @init_tfm: Initialize the cryptographic transformation object.
 173 *            This function is called only once at the instantiation
 174 *            time, right after the transformation context was
 175 *            allocated. In case the cryptographic hardware has
 176 *            some special requirements which need to be handled
 177 *            by software, this function shall check for the precise
 178 *            requirement of the transformation and put any software
 179 *            fallbacks in place.
 180 * @exit_tfm: Deinitialize the cryptographic transformation object.
 181 *            This is a counterpart to @init_tfm, used to remove
 182 *            various changes set in @init_tfm.
 183 * @digestsize: see struct ahash_alg
 184 * @statesize: see struct ahash_alg
 185 * @descsize: Size of the operational state for the message digest. This state
 186 *            size is the memory size that needs to be allocated for
 187 *            shash_desc.__ctx
 188 * @base: internally used
 189 */
 190struct shash_alg {
 191        int (*init)(struct shash_desc *desc);
 192        int (*update)(struct shash_desc *desc, const u8 *data,
 193                      unsigned int len);
 194        int (*final)(struct shash_desc *desc, u8 *out);
 195        int (*finup)(struct shash_desc *desc, const u8 *data,
 196                     unsigned int len, u8 *out);
 197        int (*digest)(struct shash_desc *desc, const u8 *data,
 198                      unsigned int len, u8 *out);
 199        int (*export)(struct shash_desc *desc, void *out);
 200        int (*import)(struct shash_desc *desc, const void *in);
 201        int (*setkey)(struct crypto_shash *tfm, const u8 *key,
 202                      unsigned int keylen);
 203        int (*init_tfm)(struct crypto_shash *tfm);
 204        void (*exit_tfm)(struct crypto_shash *tfm);
 205
 206        unsigned int descsize;
 207
 208        /* These fields must match hash_alg_common. */
 209        unsigned int digestsize
 210                __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
 211        unsigned int statesize;
 212
 213        struct crypto_alg base;
 214};
 215
 216struct crypto_ahash {
 217        int (*init)(struct ahash_request *req);
 218        int (*update)(struct ahash_request *req);
 219        int (*final)(struct ahash_request *req);
 220        int (*finup)(struct ahash_request *req);
 221        int (*digest)(struct ahash_request *req);
 222        int (*export)(struct ahash_request *req, void *out);
 223        int (*import)(struct ahash_request *req, const void *in);
 224        int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
 225                      unsigned int keylen);
 226
 227        unsigned int reqsize;
 228        struct crypto_tfm base;
 229};
 230
 231struct crypto_shash {
 232        unsigned int descsize;
 233        struct crypto_tfm base;
 234};
 235
 236/**
 237 * DOC: Asynchronous Message Digest API
 238 *
 239 * The asynchronous message digest API is used with the ciphers of type
 240 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
 241 *
 242 * The asynchronous cipher operation discussion provided for the
 243 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
 244 */
 245
 246static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
 247{
 248        return container_of(tfm, struct crypto_ahash, base);
 249}
 250
 251/**
 252 * crypto_alloc_ahash() - allocate ahash cipher handle
 253 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 254 *            ahash cipher
 255 * @type: specifies the type of the cipher
 256 * @mask: specifies the mask for the cipher
 257 *
 258 * Allocate a cipher handle for an ahash. The returned struct
 259 * crypto_ahash is the cipher handle that is required for any subsequent
 260 * API invocation for that ahash.
 261 *
 262 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 263 *         of an error, PTR_ERR() returns the error code.
 264 */
 265struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
 266                                        u32 mask);
 267
 268static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
 269{
 270        return &tfm->base;
 271}
 272
 273/**
 274 * crypto_free_ahash() - zeroize and free the ahash handle
 275 * @tfm: cipher handle to be freed
 276 */
 277static inline void crypto_free_ahash(struct crypto_ahash *tfm)
 278{
 279        crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
 280}
 281
 282/**
 283 * crypto_has_ahash() - Search for the availability of an ahash.
 284 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 285 *            ahash
 286 * @type: specifies the type of the ahash
 287 * @mask: specifies the mask for the ahash
 288 *
 289 * Return: true when the ahash is known to the kernel crypto API; false
 290 *         otherwise
 291 */
 292int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
 293
 294static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
 295{
 296        return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
 297}
 298
 299static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
 300{
 301        return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
 302}
 303
 304static inline unsigned int crypto_ahash_alignmask(
 305        struct crypto_ahash *tfm)
 306{
 307        return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
 308}
 309
 310/**
 311 * crypto_ahash_blocksize() - obtain block size for cipher
 312 * @tfm: cipher handle
 313 *
 314 * The block size for the message digest cipher referenced with the cipher
 315 * handle is returned.
 316 *
 317 * Return: block size of cipher
 318 */
 319static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
 320{
 321        return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 322}
 323
 324static inline struct hash_alg_common *__crypto_hash_alg_common(
 325        struct crypto_alg *alg)
 326{
 327        return container_of(alg, struct hash_alg_common, base);
 328}
 329
 330static inline struct hash_alg_common *crypto_hash_alg_common(
 331        struct crypto_ahash *tfm)
 332{
 333        return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
 334}
 335
 336/**
 337 * crypto_ahash_digestsize() - obtain message digest size
 338 * @tfm: cipher handle
 339 *
 340 * The size for the message digest created by the message digest cipher
 341 * referenced with the cipher handle is returned.
 342 *
 343 *
 344 * Return: message digest size of cipher
 345 */
 346static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
 347{
 348        return crypto_hash_alg_common(tfm)->digestsize;
 349}
 350
 351/**
 352 * crypto_ahash_statesize() - obtain size of the ahash state
 353 * @tfm: cipher handle
 354 *
 355 * Return the size of the ahash state. With the crypto_ahash_export()
 356 * function, the caller can export the state into a buffer whose size is
 357 * defined with this function.
 358 *
 359 * Return: size of the ahash state
 360 */
 361static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
 362{
 363        return crypto_hash_alg_common(tfm)->statesize;
 364}
 365
 366static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
 367{
 368        return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
 369}
 370
 371static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
 372{
 373        crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
 374}
 375
 376static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
 377{
 378        crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
 379}
 380
 381/**
 382 * crypto_ahash_reqtfm() - obtain cipher handle from request
 383 * @req: asynchronous request handle that contains the reference to the ahash
 384 *       cipher handle
 385 *
 386 * Return the ahash cipher handle that is registered with the asynchronous
 387 * request handle ahash_request.
 388 *
 389 * Return: ahash cipher handle
 390 */
 391static inline struct crypto_ahash *crypto_ahash_reqtfm(
 392        struct ahash_request *req)
 393{
 394        return __crypto_ahash_cast(req->base.tfm);
 395}
 396
 397/**
 398 * crypto_ahash_reqsize() - obtain size of the request data structure
 399 * @tfm: cipher handle
 400 *
 401 * Return: size of the request data
 402 */
 403static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
 404{
 405        return tfm->reqsize;
 406}
 407
 408static inline void *ahash_request_ctx(struct ahash_request *req)
 409{
 410        return req->__ctx;
 411}
 412
 413/**
 414 * crypto_ahash_setkey - set key for cipher handle
 415 * @tfm: cipher handle
 416 * @key: buffer holding the key
 417 * @keylen: length of the key in bytes
 418 *
 419 * The caller provided key is set for the ahash cipher. The cipher
 420 * handle must point to a keyed hash in order for this function to succeed.
 421 *
 422 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 423 */
 424int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
 425                        unsigned int keylen);
 426
 427/**
 428 * crypto_ahash_finup() - update and finalize message digest
 429 * @req: reference to the ahash_request handle that holds all information
 430 *       needed to perform the cipher operation
 431 *
 432 * This function is a "short-hand" for the function calls of
 433 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 434 * meaning as discussed for those separate functions.
 435 *
 436 * Return: see crypto_ahash_final()
 437 */
 438int crypto_ahash_finup(struct ahash_request *req);
 439
 440/**
 441 * crypto_ahash_final() - calculate message digest
 442 * @req: reference to the ahash_request handle that holds all information
 443 *       needed to perform the cipher operation
 444 *
 445 * Finalize the message digest operation and create the message digest
 446 * based on all data added to the cipher handle. The message digest is placed
 447 * into the output buffer registered with the ahash_request handle.
 448 *
 449 * Return:
 450 * 0            if the message digest was successfully calculated;
 451 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
 452 * -EBUSY       if queue is full and request should be resubmitted later;
 453 * other < 0    if an error occurred
 454 */
 455int crypto_ahash_final(struct ahash_request *req);
 456
 457/**
 458 * crypto_ahash_digest() - calculate message digest for a buffer
 459 * @req: reference to the ahash_request handle that holds all information
 460 *       needed to perform the cipher operation
 461 *
 462 * This function is a "short-hand" for the function calls of crypto_ahash_init,
 463 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
 464 * meaning as discussed for those separate three functions.
 465 *
 466 * Return: see crypto_ahash_final()
 467 */
 468int crypto_ahash_digest(struct ahash_request *req);
 469
 470/**
 471 * crypto_ahash_export() - extract current message digest state
 472 * @req: reference to the ahash_request handle whose state is exported
 473 * @out: output buffer of sufficient size that can hold the hash state
 474 *
 475 * This function exports the hash state of the ahash_request handle into the
 476 * caller-allocated output buffer out which must have sufficient size (e.g. by
 477 * calling crypto_ahash_statesize()).
 478 *
 479 * Return: 0 if the export was successful; < 0 if an error occurred
 480 */
 481static inline int crypto_ahash_export(struct ahash_request *req, void *out)
 482{
 483        return crypto_ahash_reqtfm(req)->export(req, out);
 484}
 485
 486/**
 487 * crypto_ahash_import() - import message digest state
 488 * @req: reference to ahash_request handle the state is imported into
 489 * @in: buffer holding the state
 490 *
 491 * This function imports the hash state into the ahash_request handle from the
 492 * input buffer. That buffer should have been generated with the
 493 * crypto_ahash_export function.
 494 *
 495 * Return: 0 if the import was successful; < 0 if an error occurred
 496 */
 497static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
 498{
 499        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 500
 501        if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 502                return -ENOKEY;
 503
 504        return tfm->import(req, in);
 505}
 506
 507/**
 508 * crypto_ahash_init() - (re)initialize message digest handle
 509 * @req: ahash_request handle that already is initialized with all necessary
 510 *       data using the ahash_request_* API functions
 511 *
 512 * The call (re-)initializes the message digest referenced by the ahash_request
 513 * handle. Any potentially existing state created by previous operations is
 514 * discarded.
 515 *
 516 * Return: see crypto_ahash_final()
 517 */
 518static inline int crypto_ahash_init(struct ahash_request *req)
 519{
 520        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 521
 522        if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 523                return -ENOKEY;
 524
 525        return tfm->init(req);
 526}
 527
 528/**
 529 * crypto_ahash_update() - add data to message digest for processing
 530 * @req: ahash_request handle that was previously initialized with the
 531 *       crypto_ahash_init call.
 532 *
 533 * Updates the message digest state of the &ahash_request handle. The input data
 534 * is pointed to by the scatter/gather list registered in the &ahash_request
 535 * handle
 536 *
 537 * Return: see crypto_ahash_final()
 538 */
 539static inline int crypto_ahash_update(struct ahash_request *req)
 540{
 541        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 542        struct crypto_alg *alg = tfm->base.__crt_alg;
 543        unsigned int nbytes = req->nbytes;
 544        int ret;
 545
 546        crypto_stats_get(alg);
 547        ret = crypto_ahash_reqtfm(req)->update(req);
 548        crypto_stats_ahash_update(nbytes, ret, alg);
 549        return ret;
 550}
 551
 552/**
 553 * DOC: Asynchronous Hash Request Handle
 554 *
 555 * The &ahash_request data structure contains all pointers to data
 556 * required for the asynchronous cipher operation. This includes the cipher
 557 * handle (which can be used by multiple &ahash_request instances), pointer
 558 * to plaintext and the message digest output buffer, asynchronous callback
 559 * function, etc. It acts as a handle to the ahash_request_* API calls in a
 560 * similar way as ahash handle to the crypto_ahash_* API calls.
 561 */
 562
 563/**
 564 * ahash_request_set_tfm() - update cipher handle reference in request
 565 * @req: request handle to be modified
 566 * @tfm: cipher handle that shall be added to the request handle
 567 *
 568 * Allow the caller to replace the existing ahash handle in the request
 569 * data structure with a different one.
 570 */
 571static inline void ahash_request_set_tfm(struct ahash_request *req,
 572                                         struct crypto_ahash *tfm)
 573{
 574        req->base.tfm = crypto_ahash_tfm(tfm);
 575}
 576
 577/**
 578 * ahash_request_alloc() - allocate request data structure
 579 * @tfm: cipher handle to be registered with the request
 580 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 581 *
 582 * Allocate the request data structure that must be used with the ahash
 583 * message digest API calls. During
 584 * the allocation, the provided ahash handle
 585 * is registered in the request data structure.
 586 *
 587 * Return: allocated request handle in case of success, or NULL if out of memory
 588 */
 589static inline struct ahash_request *ahash_request_alloc(
 590        struct crypto_ahash *tfm, gfp_t gfp)
 591{
 592        struct ahash_request *req;
 593
 594        req = kmalloc(sizeof(struct ahash_request) +
 595                      crypto_ahash_reqsize(tfm), gfp);
 596
 597        if (likely(req))
 598                ahash_request_set_tfm(req, tfm);
 599
 600        return req;
 601}
 602
 603/**
 604 * ahash_request_free() - zeroize and free the request data structure
 605 * @req: request data structure cipher handle to be freed
 606 */
 607static inline void ahash_request_free(struct ahash_request *req)
 608{
 609        kzfree(req);
 610}
 611
 612static inline void ahash_request_zero(struct ahash_request *req)
 613{
 614        memzero_explicit(req, sizeof(*req) +
 615                              crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
 616}
 617
 618static inline struct ahash_request *ahash_request_cast(
 619        struct crypto_async_request *req)
 620{
 621        return container_of(req, struct ahash_request, base);
 622}
 623
 624/**
 625 * ahash_request_set_callback() - set asynchronous callback function
 626 * @req: request handle
 627 * @flags: specify zero or an ORing of the flags
 628 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 629 *         increase the wait queue beyond the initial maximum size;
 630 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 631 * @compl: callback function pointer to be registered with the request handle
 632 * @data: The data pointer refers to memory that is not used by the kernel
 633 *        crypto API, but provided to the callback function for it to use. Here,
 634 *        the caller can provide a reference to memory the callback function can
 635 *        operate on. As the callback function is invoked asynchronously to the
 636 *        related functionality, it may need to access data structures of the
 637 *        related functionality which can be referenced using this pointer. The
 638 *        callback function can access the memory via the "data" field in the
 639 *        &crypto_async_request data structure provided to the callback function.
 640 *
 641 * This function allows setting the callback function that is triggered once
 642 * the cipher operation completes.
 643 *
 644 * The callback function is registered with the &ahash_request handle and
 645 * must comply with the following template::
 646 *
 647 *      void callback_function(struct crypto_async_request *req, int error)
 648 */
 649static inline void ahash_request_set_callback(struct ahash_request *req,
 650                                              u32 flags,
 651                                              crypto_completion_t compl,
 652                                              void *data)
 653{
 654        req->base.complete = compl;
 655        req->base.data = data;
 656        req->base.flags = flags;
 657}
 658
 659/**
 660 * ahash_request_set_crypt() - set data buffers
 661 * @req: ahash_request handle to be updated
 662 * @src: source scatter/gather list
 663 * @result: buffer that is filled with the message digest -- the caller must
 664 *          ensure that the buffer has sufficient space by, for example, calling
 665 *          crypto_ahash_digestsize()
 666 * @nbytes: number of bytes to process from the source scatter/gather list
 667 *
 668 * By using this call, the caller references the source scatter/gather list.
 669 * The source scatter/gather list points to the data the message digest is to
 670 * be calculated for.
 671 */
 672static inline void ahash_request_set_crypt(struct ahash_request *req,
 673                                           struct scatterlist *src, u8 *result,
 674                                           unsigned int nbytes)
 675{
 676        req->src = src;
 677        req->nbytes = nbytes;
 678        req->result = result;
 679}
 680
 681/**
 682 * DOC: Synchronous Message Digest API
 683 *
 684 * The synchronous message digest API is used with the ciphers of type
 685 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
 686 *
 687 * The message digest API is able to maintain state information for the
 688 * caller.
 689 *
 690 * The synchronous message digest API can store user-related context in in its
 691 * shash_desc request data structure.
 692 */
 693
 694/**
 695 * crypto_alloc_shash() - allocate message digest handle
 696 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 697 *            message digest cipher
 698 * @type: specifies the type of the cipher
 699 * @mask: specifies the mask for the cipher
 700 *
 701 * Allocate a cipher handle for a message digest. The returned &struct
 702 * crypto_shash is the cipher handle that is required for any subsequent
 703 * API invocation for that message digest.
 704 *
 705 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 706 *         of an error, PTR_ERR() returns the error code.
 707 */
 708struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
 709                                        u32 mask);
 710
 711static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
 712{
 713        return &tfm->base;
 714}
 715
 716/**
 717 * crypto_free_shash() - zeroize and free the message digest handle
 718 * @tfm: cipher handle to be freed
 719 */
 720static inline void crypto_free_shash(struct crypto_shash *tfm)
 721{
 722        crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
 723}
 724
 725static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
 726{
 727        return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
 728}
 729
 730static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
 731{
 732        return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
 733}
 734
 735static inline unsigned int crypto_shash_alignmask(
 736        struct crypto_shash *tfm)
 737{
 738        return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
 739}
 740
 741/**
 742 * crypto_shash_blocksize() - obtain block size for cipher
 743 * @tfm: cipher handle
 744 *
 745 * The block size for the message digest cipher referenced with the cipher
 746 * handle is returned.
 747 *
 748 * Return: block size of cipher
 749 */
 750static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
 751{
 752        return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
 753}
 754
 755static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
 756{
 757        return container_of(alg, struct shash_alg, base);
 758}
 759
 760static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
 761{
 762        return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
 763}
 764
 765/**
 766 * crypto_shash_digestsize() - obtain message digest size
 767 * @tfm: cipher handle
 768 *
 769 * The size for the message digest created by the message digest cipher
 770 * referenced with the cipher handle is returned.
 771 *
 772 * Return: digest size of cipher
 773 */
 774static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
 775{
 776        return crypto_shash_alg(tfm)->digestsize;
 777}
 778
 779static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
 780{
 781        return crypto_shash_alg(tfm)->statesize;
 782}
 783
 784static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
 785{
 786        return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
 787}
 788
 789static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
 790{
 791        crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
 792}
 793
 794static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
 795{
 796        crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
 797}
 798
 799/**
 800 * crypto_shash_descsize() - obtain the operational state size
 801 * @tfm: cipher handle
 802 *
 803 * The size of the operational state the cipher needs during operation is
 804 * returned for the hash referenced with the cipher handle. This size is
 805 * required to calculate the memory requirements to allow the caller allocating
 806 * sufficient memory for operational state.
 807 *
 808 * The operational state is defined with struct shash_desc where the size of
 809 * that data structure is to be calculated as
 810 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
 811 *
 812 * Return: size of the operational state
 813 */
 814static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
 815{
 816        return tfm->descsize;
 817}
 818
 819static inline void *shash_desc_ctx(struct shash_desc *desc)
 820{
 821        return desc->__ctx;
 822}
 823
 824/**
 825 * crypto_shash_setkey() - set key for message digest
 826 * @tfm: cipher handle
 827 * @key: buffer holding the key
 828 * @keylen: length of the key in bytes
 829 *
 830 * The caller provided key is set for the keyed message digest cipher. The
 831 * cipher handle must point to a keyed message digest cipher in order for this
 832 * function to succeed.
 833 *
 834 * Context: Any context.
 835 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 836 */
 837int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
 838                        unsigned int keylen);
 839
 840/**
 841 * crypto_shash_digest() - calculate message digest for buffer
 842 * @desc: see crypto_shash_final()
 843 * @data: see crypto_shash_update()
 844 * @len: see crypto_shash_update()
 845 * @out: see crypto_shash_final()
 846 *
 847 * This function is a "short-hand" for the function calls of crypto_shash_init,
 848 * crypto_shash_update and crypto_shash_final. The parameters have the same
 849 * meaning as discussed for those separate three functions.
 850 *
 851 * Context: Any context.
 852 * Return: 0 if the message digest creation was successful; < 0 if an error
 853 *         occurred
 854 */
 855int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
 856                        unsigned int len, u8 *out);
 857
 858/**
 859 * crypto_shash_export() - extract operational state for message digest
 860 * @desc: reference to the operational state handle whose state is exported
 861 * @out: output buffer of sufficient size that can hold the hash state
 862 *
 863 * This function exports the hash state of the operational state handle into the
 864 * caller-allocated output buffer out which must have sufficient size (e.g. by
 865 * calling crypto_shash_descsize).
 866 *
 867 * Context: Any context.
 868 * Return: 0 if the export creation was successful; < 0 if an error occurred
 869 */
 870static inline int crypto_shash_export(struct shash_desc *desc, void *out)
 871{
 872        return crypto_shash_alg(desc->tfm)->export(desc, out);
 873}
 874
 875/**
 876 * crypto_shash_import() - import operational state
 877 * @desc: reference to the operational state handle the state imported into
 878 * @in: buffer holding the state
 879 *
 880 * This function imports the hash state into the operational state handle from
 881 * the input buffer. That buffer should have been generated with the
 882 * crypto_ahash_export function.
 883 *
 884 * Context: Any context.
 885 * Return: 0 if the import was successful; < 0 if an error occurred
 886 */
 887static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
 888{
 889        struct crypto_shash *tfm = desc->tfm;
 890
 891        if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 892                return -ENOKEY;
 893
 894        return crypto_shash_alg(tfm)->import(desc, in);
 895}
 896
 897/**
 898 * crypto_shash_init() - (re)initialize message digest
 899 * @desc: operational state handle that is already filled
 900 *
 901 * The call (re-)initializes the message digest referenced by the
 902 * operational state handle. Any potentially existing state created by
 903 * previous operations is discarded.
 904 *
 905 * Context: Any context.
 906 * Return: 0 if the message digest initialization was successful; < 0 if an
 907 *         error occurred
 908 */
 909static inline int crypto_shash_init(struct shash_desc *desc)
 910{
 911        struct crypto_shash *tfm = desc->tfm;
 912
 913        if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
 914                return -ENOKEY;
 915
 916        return crypto_shash_alg(tfm)->init(desc);
 917}
 918
 919/**
 920 * crypto_shash_update() - add data to message digest for processing
 921 * @desc: operational state handle that is already initialized
 922 * @data: input data to be added to the message digest
 923 * @len: length of the input data
 924 *
 925 * Updates the message digest state of the operational state handle.
 926 *
 927 * Context: Any context.
 928 * Return: 0 if the message digest update was successful; < 0 if an error
 929 *         occurred
 930 */
 931int crypto_shash_update(struct shash_desc *desc, const u8 *data,
 932                        unsigned int len);
 933
 934/**
 935 * crypto_shash_final() - calculate message digest
 936 * @desc: operational state handle that is already filled with data
 937 * @out: output buffer filled with the message digest
 938 *
 939 * Finalize the message digest operation and create the message digest
 940 * based on all data added to the cipher handle. The message digest is placed
 941 * into the output buffer. The caller must ensure that the output buffer is
 942 * large enough by using crypto_shash_digestsize.
 943 *
 944 * Context: Any context.
 945 * Return: 0 if the message digest creation was successful; < 0 if an error
 946 *         occurred
 947 */
 948int crypto_shash_final(struct shash_desc *desc, u8 *out);
 949
 950/**
 951 * crypto_shash_finup() - calculate message digest of buffer
 952 * @desc: see crypto_shash_final()
 953 * @data: see crypto_shash_update()
 954 * @len: see crypto_shash_update()
 955 * @out: see crypto_shash_final()
 956 *
 957 * This function is a "short-hand" for the function calls of
 958 * crypto_shash_update and crypto_shash_final. The parameters have the same
 959 * meaning as discussed for those separate functions.
 960 *
 961 * Context: Any context.
 962 * Return: 0 if the message digest creation was successful; < 0 if an error
 963 *         occurred
 964 */
 965int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
 966                       unsigned int len, u8 *out);
 967
 968static inline void shash_desc_zero(struct shash_desc *desc)
 969{
 970        memzero_explicit(desc,
 971                         sizeof(*desc) + crypto_shash_descsize(desc->tfm));
 972}
 973
 974#endif  /* _CRYPTO_HASH_H */
 975