linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <linux/mm_types.h>
  22#include <linux/page-flags.h>
  23#include <asm/page.h>
  24
  25/* Free memory management - zoned buddy allocator.  */
  26#ifndef CONFIG_FORCE_MAX_ZONEORDER
  27#define MAX_ORDER 11
  28#else
  29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  30#endif
  31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  32
  33/*
  34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  35 * costly to service.  That is between allocation orders which should
  36 * coalesce naturally under reasonable reclaim pressure and those which
  37 * will not.
  38 */
  39#define PAGE_ALLOC_COSTLY_ORDER 3
  40
  41enum migratetype {
  42        MIGRATE_UNMOVABLE,
  43        MIGRATE_MOVABLE,
  44        MIGRATE_RECLAIMABLE,
  45        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  46        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  47#ifdef CONFIG_CMA
  48        /*
  49         * MIGRATE_CMA migration type is designed to mimic the way
  50         * ZONE_MOVABLE works.  Only movable pages can be allocated
  51         * from MIGRATE_CMA pageblocks and page allocator never
  52         * implicitly change migration type of MIGRATE_CMA pageblock.
  53         *
  54         * The way to use it is to change migratetype of a range of
  55         * pageblocks to MIGRATE_CMA which can be done by
  56         * __free_pageblock_cma() function.  What is important though
  57         * is that a range of pageblocks must be aligned to
  58         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  59         * a single pageblock.
  60         */
  61        MIGRATE_CMA,
  62#endif
  63#ifdef CONFIG_MEMORY_ISOLATION
  64        MIGRATE_ISOLATE,        /* can't allocate from here */
  65#endif
  66        MIGRATE_TYPES
  67};
  68
  69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  70extern const char * const migratetype_names[MIGRATE_TYPES];
  71
  72#ifdef CONFIG_CMA
  73#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  74#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  75#else
  76#  define is_migrate_cma(migratetype) false
  77#  define is_migrate_cma_page(_page) false
  78#endif
  79
  80static inline bool is_migrate_movable(int mt)
  81{
  82        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  83}
  84
  85#define for_each_migratetype_order(order, type) \
  86        for (order = 0; order < MAX_ORDER; order++) \
  87                for (type = 0; type < MIGRATE_TYPES; type++)
  88
  89extern int page_group_by_mobility_disabled;
  90
  91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  93
  94#define get_pageblock_migratetype(page)                                 \
  95        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  96                        PB_migrate_end, MIGRATETYPE_MASK)
  97
  98struct free_area {
  99        struct list_head        free_list[MIGRATE_TYPES];
 100        unsigned long           nr_free;
 101};
 102
 103static inline struct page *get_page_from_free_area(struct free_area *area,
 104                                            int migratetype)
 105{
 106        return list_first_entry_or_null(&area->free_list[migratetype],
 107                                        struct page, lru);
 108}
 109
 110static inline bool free_area_empty(struct free_area *area, int migratetype)
 111{
 112        return list_empty(&area->free_list[migratetype]);
 113}
 114
 115struct pglist_data;
 116
 117/*
 118 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 119 * So add a wild amount of padding here to ensure that they fall into separate
 120 * cachelines.  There are very few zone structures in the machine, so space
 121 * consumption is not a concern here.
 122 */
 123#if defined(CONFIG_SMP)
 124struct zone_padding {
 125        char x[0];
 126} ____cacheline_internodealigned_in_smp;
 127#define ZONE_PADDING(name)      struct zone_padding name;
 128#else
 129#define ZONE_PADDING(name)
 130#endif
 131
 132#ifdef CONFIG_NUMA
 133enum numa_stat_item {
 134        NUMA_HIT,               /* allocated in intended node */
 135        NUMA_MISS,              /* allocated in non intended node */
 136        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 137        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 138        NUMA_LOCAL,             /* allocation from local node */
 139        NUMA_OTHER,             /* allocation from other node */
 140        NR_VM_NUMA_STAT_ITEMS
 141};
 142#else
 143#define NR_VM_NUMA_STAT_ITEMS 0
 144#endif
 145
 146enum zone_stat_item {
 147        /* First 128 byte cacheline (assuming 64 bit words) */
 148        NR_FREE_PAGES,
 149        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 150        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 151        NR_ZONE_ACTIVE_ANON,
 152        NR_ZONE_INACTIVE_FILE,
 153        NR_ZONE_ACTIVE_FILE,
 154        NR_ZONE_UNEVICTABLE,
 155        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 156        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 157        NR_PAGETABLE,           /* used for pagetables */
 158        NR_KERNEL_STACK_KB,     /* measured in KiB */
 159        /* Second 128 byte cacheline */
 160        NR_BOUNCE,
 161#if IS_ENABLED(CONFIG_ZSMALLOC)
 162        NR_ZSPAGES,             /* allocated in zsmalloc */
 163#endif
 164        NR_FREE_CMA_PAGES,
 165        NR_VM_ZONE_STAT_ITEMS };
 166
 167enum node_stat_item {
 168        NR_LRU_BASE,
 169        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 170        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 171        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 172        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 173        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 174        NR_SLAB_RECLAIMABLE,
 175        NR_SLAB_UNRECLAIMABLE,
 176        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 177        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 178        WORKINGSET_NODES,
 179        WORKINGSET_REFAULT,
 180        WORKINGSET_ACTIVATE,
 181        WORKINGSET_RESTORE,
 182        WORKINGSET_NODERECLAIM,
 183        NR_ANON_MAPPED, /* Mapped anonymous pages */
 184        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 185                           only modified from process context */
 186        NR_FILE_PAGES,
 187        NR_FILE_DIRTY,
 188        NR_WRITEBACK,
 189        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 190        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 191        NR_SHMEM_THPS,
 192        NR_SHMEM_PMDMAPPED,
 193        NR_FILE_THPS,
 194        NR_FILE_PMDMAPPED,
 195        NR_ANON_THPS,
 196        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 197        NR_VMSCAN_WRITE,
 198        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 199        NR_DIRTIED,             /* page dirtyings since bootup */
 200        NR_WRITTEN,             /* page writings since bootup */
 201        NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
 202        NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
 203        NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
 204        NR_VM_NODE_STAT_ITEMS
 205};
 206
 207/*
 208 * We do arithmetic on the LRU lists in various places in the code,
 209 * so it is important to keep the active lists LRU_ACTIVE higher in
 210 * the array than the corresponding inactive lists, and to keep
 211 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 212 *
 213 * This has to be kept in sync with the statistics in zone_stat_item
 214 * above and the descriptions in vmstat_text in mm/vmstat.c
 215 */
 216#define LRU_BASE 0
 217#define LRU_ACTIVE 1
 218#define LRU_FILE 2
 219
 220enum lru_list {
 221        LRU_INACTIVE_ANON = LRU_BASE,
 222        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 223        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 224        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 225        LRU_UNEVICTABLE,
 226        NR_LRU_LISTS
 227};
 228
 229#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 230
 231#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 232
 233static inline bool is_file_lru(enum lru_list lru)
 234{
 235        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 236}
 237
 238static inline bool is_active_lru(enum lru_list lru)
 239{
 240        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 241}
 242
 243struct zone_reclaim_stat {
 244        /*
 245         * The pageout code in vmscan.c keeps track of how many of the
 246         * mem/swap backed and file backed pages are referenced.
 247         * The higher the rotated/scanned ratio, the more valuable
 248         * that cache is.
 249         *
 250         * The anon LRU stats live in [0], file LRU stats in [1]
 251         */
 252        unsigned long           recent_rotated[2];
 253        unsigned long           recent_scanned[2];
 254};
 255
 256enum lruvec_flags {
 257        LRUVEC_CONGESTED,               /* lruvec has many dirty pages
 258                                         * backed by a congested BDI
 259                                         */
 260};
 261
 262struct lruvec {
 263        struct list_head                lists[NR_LRU_LISTS];
 264        struct zone_reclaim_stat        reclaim_stat;
 265        /* Evictions & activations on the inactive file list */
 266        atomic_long_t                   inactive_age;
 267        /* Refaults at the time of last reclaim cycle */
 268        unsigned long                   refaults;
 269        /* Various lruvec state flags (enum lruvec_flags) */
 270        unsigned long                   flags;
 271#ifdef CONFIG_MEMCG
 272        struct pglist_data *pgdat;
 273#endif
 274};
 275
 276/* Isolate unmapped pages */
 277#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 278/* Isolate for asynchronous migration */
 279#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 280/* Isolate unevictable pages */
 281#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 282
 283/* LRU Isolation modes. */
 284typedef unsigned __bitwise isolate_mode_t;
 285
 286enum zone_watermarks {
 287        WMARK_MIN,
 288        WMARK_LOW,
 289        WMARK_HIGH,
 290        NR_WMARK
 291};
 292
 293#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 294#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 295#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 296#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 297
 298struct per_cpu_pages {
 299        int count;              /* number of pages in the list */
 300        int high;               /* high watermark, emptying needed */
 301        int batch;              /* chunk size for buddy add/remove */
 302
 303        /* Lists of pages, one per migrate type stored on the pcp-lists */
 304        struct list_head lists[MIGRATE_PCPTYPES];
 305};
 306
 307struct per_cpu_pageset {
 308        struct per_cpu_pages pcp;
 309#ifdef CONFIG_NUMA
 310        s8 expire;
 311        u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 312#endif
 313#ifdef CONFIG_SMP
 314        s8 stat_threshold;
 315        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 316#endif
 317};
 318
 319struct per_cpu_nodestat {
 320        s8 stat_threshold;
 321        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 322};
 323
 324#endif /* !__GENERATING_BOUNDS.H */
 325
 326enum zone_type {
 327        /*
 328         * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
 329         * to DMA to all of the addressable memory (ZONE_NORMAL).
 330         * On architectures where this area covers the whole 32 bit address
 331         * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
 332         * DMA addressing constraints. This distinction is important as a 32bit
 333         * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
 334         * platforms may need both zones as they support peripherals with
 335         * different DMA addressing limitations.
 336         *
 337         * Some examples:
 338         *
 339         *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
 340         *    rest of the lower 4G.
 341         *
 342         *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
 343         *    the specific device.
 344         *
 345         *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
 346         *    lower 4G.
 347         *
 348         *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
 349         *    depending on the specific device.
 350         *
 351         *  - s390 uses ZONE_DMA fixed to the lower 2G.
 352         *
 353         *  - ia64 and riscv only use ZONE_DMA32.
 354         *
 355         *  - parisc uses neither.
 356         */
 357#ifdef CONFIG_ZONE_DMA
 358        ZONE_DMA,
 359#endif
 360#ifdef CONFIG_ZONE_DMA32
 361        ZONE_DMA32,
 362#endif
 363        /*
 364         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 365         * performed on pages in ZONE_NORMAL if the DMA devices support
 366         * transfers to all addressable memory.
 367         */
 368        ZONE_NORMAL,
 369#ifdef CONFIG_HIGHMEM
 370        /*
 371         * A memory area that is only addressable by the kernel through
 372         * mapping portions into its own address space. This is for example
 373         * used by i386 to allow the kernel to address the memory beyond
 374         * 900MB. The kernel will set up special mappings (page
 375         * table entries on i386) for each page that the kernel needs to
 376         * access.
 377         */
 378        ZONE_HIGHMEM,
 379#endif
 380        ZONE_MOVABLE,
 381#ifdef CONFIG_ZONE_DEVICE
 382        ZONE_DEVICE,
 383#endif
 384        __MAX_NR_ZONES
 385
 386};
 387
 388#ifndef __GENERATING_BOUNDS_H
 389
 390struct zone {
 391        /* Read-mostly fields */
 392
 393        /* zone watermarks, access with *_wmark_pages(zone) macros */
 394        unsigned long _watermark[NR_WMARK];
 395        unsigned long watermark_boost;
 396
 397        unsigned long nr_reserved_highatomic;
 398
 399        /*
 400         * We don't know if the memory that we're going to allocate will be
 401         * freeable or/and it will be released eventually, so to avoid totally
 402         * wasting several GB of ram we must reserve some of the lower zone
 403         * memory (otherwise we risk to run OOM on the lower zones despite
 404         * there being tons of freeable ram on the higher zones).  This array is
 405         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 406         * changes.
 407         */
 408        long lowmem_reserve[MAX_NR_ZONES];
 409
 410#ifdef CONFIG_NUMA
 411        int node;
 412#endif
 413        struct pglist_data      *zone_pgdat;
 414        struct per_cpu_pageset __percpu *pageset;
 415
 416#ifndef CONFIG_SPARSEMEM
 417        /*
 418         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 419         * In SPARSEMEM, this map is stored in struct mem_section
 420         */
 421        unsigned long           *pageblock_flags;
 422#endif /* CONFIG_SPARSEMEM */
 423
 424        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 425        unsigned long           zone_start_pfn;
 426
 427        /*
 428         * spanned_pages is the total pages spanned by the zone, including
 429         * holes, which is calculated as:
 430         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 431         *
 432         * present_pages is physical pages existing within the zone, which
 433         * is calculated as:
 434         *      present_pages = spanned_pages - absent_pages(pages in holes);
 435         *
 436         * managed_pages is present pages managed by the buddy system, which
 437         * is calculated as (reserved_pages includes pages allocated by the
 438         * bootmem allocator):
 439         *      managed_pages = present_pages - reserved_pages;
 440         *
 441         * So present_pages may be used by memory hotplug or memory power
 442         * management logic to figure out unmanaged pages by checking
 443         * (present_pages - managed_pages). And managed_pages should be used
 444         * by page allocator and vm scanner to calculate all kinds of watermarks
 445         * and thresholds.
 446         *
 447         * Locking rules:
 448         *
 449         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 450         * It is a seqlock because it has to be read outside of zone->lock,
 451         * and it is done in the main allocator path.  But, it is written
 452         * quite infrequently.
 453         *
 454         * The span_seq lock is declared along with zone->lock because it is
 455         * frequently read in proximity to zone->lock.  It's good to
 456         * give them a chance of being in the same cacheline.
 457         *
 458         * Write access to present_pages at runtime should be protected by
 459         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 460         * present_pages should get_online_mems() to get a stable value.
 461         */
 462        atomic_long_t           managed_pages;
 463        unsigned long           spanned_pages;
 464        unsigned long           present_pages;
 465
 466        const char              *name;
 467
 468#ifdef CONFIG_MEMORY_ISOLATION
 469        /*
 470         * Number of isolated pageblock. It is used to solve incorrect
 471         * freepage counting problem due to racy retrieving migratetype
 472         * of pageblock. Protected by zone->lock.
 473         */
 474        unsigned long           nr_isolate_pageblock;
 475#endif
 476
 477#ifdef CONFIG_MEMORY_HOTPLUG
 478        /* see spanned/present_pages for more description */
 479        seqlock_t               span_seqlock;
 480#endif
 481
 482        int initialized;
 483
 484        /* Write-intensive fields used from the page allocator */
 485        ZONE_PADDING(_pad1_)
 486
 487        /* free areas of different sizes */
 488        struct free_area        free_area[MAX_ORDER];
 489
 490        /* zone flags, see below */
 491        unsigned long           flags;
 492
 493        /* Primarily protects free_area */
 494        spinlock_t              lock;
 495
 496        /* Write-intensive fields used by compaction and vmstats. */
 497        ZONE_PADDING(_pad2_)
 498
 499        /*
 500         * When free pages are below this point, additional steps are taken
 501         * when reading the number of free pages to avoid per-cpu counter
 502         * drift allowing watermarks to be breached
 503         */
 504        unsigned long percpu_drift_mark;
 505
 506#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 507        /* pfn where compaction free scanner should start */
 508        unsigned long           compact_cached_free_pfn;
 509        /* pfn where async and sync compaction migration scanner should start */
 510        unsigned long           compact_cached_migrate_pfn[2];
 511        unsigned long           compact_init_migrate_pfn;
 512        unsigned long           compact_init_free_pfn;
 513#endif
 514
 515#ifdef CONFIG_COMPACTION
 516        /*
 517         * On compaction failure, 1<<compact_defer_shift compactions
 518         * are skipped before trying again. The number attempted since
 519         * last failure is tracked with compact_considered.
 520         */
 521        unsigned int            compact_considered;
 522        unsigned int            compact_defer_shift;
 523        int                     compact_order_failed;
 524#endif
 525
 526#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 527        /* Set to true when the PG_migrate_skip bits should be cleared */
 528        bool                    compact_blockskip_flush;
 529#endif
 530
 531        bool                    contiguous;
 532
 533        ZONE_PADDING(_pad3_)
 534        /* Zone statistics */
 535        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 536        atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 537} ____cacheline_internodealigned_in_smp;
 538
 539enum pgdat_flags {
 540        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 541                                         * many dirty file pages at the tail
 542                                         * of the LRU.
 543                                         */
 544        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 545                                         * many pages under writeback
 546                                         */
 547        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 548};
 549
 550enum zone_flags {
 551        ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
 552                                         * Cleared when kswapd is woken.
 553                                         */
 554};
 555
 556static inline unsigned long zone_managed_pages(struct zone *zone)
 557{
 558        return (unsigned long)atomic_long_read(&zone->managed_pages);
 559}
 560
 561static inline unsigned long zone_end_pfn(const struct zone *zone)
 562{
 563        return zone->zone_start_pfn + zone->spanned_pages;
 564}
 565
 566static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 567{
 568        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 569}
 570
 571static inline bool zone_is_initialized(struct zone *zone)
 572{
 573        return zone->initialized;
 574}
 575
 576static inline bool zone_is_empty(struct zone *zone)
 577{
 578        return zone->spanned_pages == 0;
 579}
 580
 581/*
 582 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 583 * intersection with the given zone
 584 */
 585static inline bool zone_intersects(struct zone *zone,
 586                unsigned long start_pfn, unsigned long nr_pages)
 587{
 588        if (zone_is_empty(zone))
 589                return false;
 590        if (start_pfn >= zone_end_pfn(zone) ||
 591            start_pfn + nr_pages <= zone->zone_start_pfn)
 592                return false;
 593
 594        return true;
 595}
 596
 597/*
 598 * The "priority" of VM scanning is how much of the queues we will scan in one
 599 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 600 * queues ("queue_length >> 12") during an aging round.
 601 */
 602#define DEF_PRIORITY 12
 603
 604/* Maximum number of zones on a zonelist */
 605#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 606
 607enum {
 608        ZONELIST_FALLBACK,      /* zonelist with fallback */
 609#ifdef CONFIG_NUMA
 610        /*
 611         * The NUMA zonelists are doubled because we need zonelists that
 612         * restrict the allocations to a single node for __GFP_THISNODE.
 613         */
 614        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 615#endif
 616        MAX_ZONELISTS
 617};
 618
 619/*
 620 * This struct contains information about a zone in a zonelist. It is stored
 621 * here to avoid dereferences into large structures and lookups of tables
 622 */
 623struct zoneref {
 624        struct zone *zone;      /* Pointer to actual zone */
 625        int zone_idx;           /* zone_idx(zoneref->zone) */
 626};
 627
 628/*
 629 * One allocation request operates on a zonelist. A zonelist
 630 * is a list of zones, the first one is the 'goal' of the
 631 * allocation, the other zones are fallback zones, in decreasing
 632 * priority.
 633 *
 634 * To speed the reading of the zonelist, the zonerefs contain the zone index
 635 * of the entry being read. Helper functions to access information given
 636 * a struct zoneref are
 637 *
 638 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 639 * zonelist_zone_idx()  - Return the index of the zone for an entry
 640 * zonelist_node_idx()  - Return the index of the node for an entry
 641 */
 642struct zonelist {
 643        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 644};
 645
 646#ifndef CONFIG_DISCONTIGMEM
 647/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 648extern struct page *mem_map;
 649#endif
 650
 651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 652struct deferred_split {
 653        spinlock_t split_queue_lock;
 654        struct list_head split_queue;
 655        unsigned long split_queue_len;
 656};
 657#endif
 658
 659/*
 660 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 661 * it's memory layout. On UMA machines there is a single pglist_data which
 662 * describes the whole memory.
 663 *
 664 * Memory statistics and page replacement data structures are maintained on a
 665 * per-zone basis.
 666 */
 667typedef struct pglist_data {
 668        struct zone node_zones[MAX_NR_ZONES];
 669        struct zonelist node_zonelists[MAX_ZONELISTS];
 670        int nr_zones;
 671#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 672        struct page *node_mem_map;
 673#ifdef CONFIG_PAGE_EXTENSION
 674        struct page_ext *node_page_ext;
 675#endif
 676#endif
 677#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 678        /*
 679         * Must be held any time you expect node_start_pfn,
 680         * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 681         *
 682         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 683         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 684         * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 685         *
 686         * Nests above zone->lock and zone->span_seqlock
 687         */
 688        spinlock_t node_size_lock;
 689#endif
 690        unsigned long node_start_pfn;
 691        unsigned long node_present_pages; /* total number of physical pages */
 692        unsigned long node_spanned_pages; /* total size of physical page
 693                                             range, including holes */
 694        int node_id;
 695        wait_queue_head_t kswapd_wait;
 696        wait_queue_head_t pfmemalloc_wait;
 697        struct task_struct *kswapd;     /* Protected by
 698                                           mem_hotplug_begin/end() */
 699        int kswapd_order;
 700        enum zone_type kswapd_classzone_idx;
 701
 702        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 703
 704#ifdef CONFIG_COMPACTION
 705        int kcompactd_max_order;
 706        enum zone_type kcompactd_classzone_idx;
 707        wait_queue_head_t kcompactd_wait;
 708        struct task_struct *kcompactd;
 709#endif
 710        /*
 711         * This is a per-node reserve of pages that are not available
 712         * to userspace allocations.
 713         */
 714        unsigned long           totalreserve_pages;
 715
 716#ifdef CONFIG_NUMA
 717        /*
 718         * node reclaim becomes active if more unmapped pages exist.
 719         */
 720        unsigned long           min_unmapped_pages;
 721        unsigned long           min_slab_pages;
 722#endif /* CONFIG_NUMA */
 723
 724        /* Write-intensive fields used by page reclaim */
 725        ZONE_PADDING(_pad1_)
 726        spinlock_t              lru_lock;
 727
 728#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 729        /*
 730         * If memory initialisation on large machines is deferred then this
 731         * is the first PFN that needs to be initialised.
 732         */
 733        unsigned long first_deferred_pfn;
 734#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 735
 736#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 737        struct deferred_split deferred_split_queue;
 738#endif
 739
 740        /* Fields commonly accessed by the page reclaim scanner */
 741
 742        /*
 743         * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
 744         *
 745         * Use mem_cgroup_lruvec() to look up lruvecs.
 746         */
 747        struct lruvec           __lruvec;
 748
 749        unsigned long           flags;
 750
 751        ZONE_PADDING(_pad2_)
 752
 753        /* Per-node vmstats */
 754        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 755        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 756} pg_data_t;
 757
 758#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 759#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 760#ifdef CONFIG_FLAT_NODE_MEM_MAP
 761#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 762#else
 763#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 764#endif
 765#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 766
 767#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 768#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 769
 770static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 771{
 772        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 773}
 774
 775static inline bool pgdat_is_empty(pg_data_t *pgdat)
 776{
 777        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 778}
 779
 780#include <linux/memory_hotplug.h>
 781
 782void build_all_zonelists(pg_data_t *pgdat);
 783void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 784                   enum zone_type classzone_idx);
 785bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 786                         int classzone_idx, unsigned int alloc_flags,
 787                         long free_pages);
 788bool zone_watermark_ok(struct zone *z, unsigned int order,
 789                unsigned long mark, int classzone_idx,
 790                unsigned int alloc_flags);
 791bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 792                unsigned long mark, int classzone_idx);
 793enum memmap_context {
 794        MEMMAP_EARLY,
 795        MEMMAP_HOTPLUG,
 796};
 797extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 798                                     unsigned long size);
 799
 800extern void lruvec_init(struct lruvec *lruvec);
 801
 802static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 803{
 804#ifdef CONFIG_MEMCG
 805        return lruvec->pgdat;
 806#else
 807        return container_of(lruvec, struct pglist_data, __lruvec);
 808#endif
 809}
 810
 811extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 812
 813#ifdef CONFIG_HAVE_MEMORY_PRESENT
 814void memory_present(int nid, unsigned long start, unsigned long end);
 815#else
 816static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 817#endif
 818
 819#if defined(CONFIG_SPARSEMEM)
 820void memblocks_present(void);
 821#else
 822static inline void memblocks_present(void) {}
 823#endif
 824
 825#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 826int local_memory_node(int node_id);
 827#else
 828static inline int local_memory_node(int node_id) { return node_id; };
 829#endif
 830
 831/*
 832 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 833 */
 834#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 835
 836/*
 837 * Returns true if a zone has pages managed by the buddy allocator.
 838 * All the reclaim decisions have to use this function rather than
 839 * populated_zone(). If the whole zone is reserved then we can easily
 840 * end up with populated_zone() && !managed_zone().
 841 */
 842static inline bool managed_zone(struct zone *zone)
 843{
 844        return zone_managed_pages(zone);
 845}
 846
 847/* Returns true if a zone has memory */
 848static inline bool populated_zone(struct zone *zone)
 849{
 850        return zone->present_pages;
 851}
 852
 853#ifdef CONFIG_NUMA
 854static inline int zone_to_nid(struct zone *zone)
 855{
 856        return zone->node;
 857}
 858
 859static inline void zone_set_nid(struct zone *zone, int nid)
 860{
 861        zone->node = nid;
 862}
 863#else
 864static inline int zone_to_nid(struct zone *zone)
 865{
 866        return 0;
 867}
 868
 869static inline void zone_set_nid(struct zone *zone, int nid) {}
 870#endif
 871
 872extern int movable_zone;
 873
 874#ifdef CONFIG_HIGHMEM
 875static inline int zone_movable_is_highmem(void)
 876{
 877#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 878        return movable_zone == ZONE_HIGHMEM;
 879#else
 880        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 881#endif
 882}
 883#endif
 884
 885static inline int is_highmem_idx(enum zone_type idx)
 886{
 887#ifdef CONFIG_HIGHMEM
 888        return (idx == ZONE_HIGHMEM ||
 889                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 890#else
 891        return 0;
 892#endif
 893}
 894
 895/**
 896 * is_highmem - helper function to quickly check if a struct zone is a
 897 *              highmem zone or not.  This is an attempt to keep references
 898 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 899 * @zone - pointer to struct zone variable
 900 */
 901static inline int is_highmem(struct zone *zone)
 902{
 903#ifdef CONFIG_HIGHMEM
 904        return is_highmem_idx(zone_idx(zone));
 905#else
 906        return 0;
 907#endif
 908}
 909
 910/* These two functions are used to setup the per zone pages min values */
 911struct ctl_table;
 912int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 913                                        void __user *, size_t *, loff_t *);
 914int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
 915                                        void __user *, size_t *, loff_t *);
 916int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 917                                        void __user *, size_t *, loff_t *);
 918extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 919int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 920                                        void __user *, size_t *, loff_t *);
 921int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 922                                        void __user *, size_t *, loff_t *);
 923int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 924                        void __user *, size_t *, loff_t *);
 925int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 926                        void __user *, size_t *, loff_t *);
 927
 928extern int numa_zonelist_order_handler(struct ctl_table *, int,
 929                        void __user *, size_t *, loff_t *);
 930extern char numa_zonelist_order[];
 931#define NUMA_ZONELIST_ORDER_LEN 16
 932
 933#ifndef CONFIG_NEED_MULTIPLE_NODES
 934
 935extern struct pglist_data contig_page_data;
 936#define NODE_DATA(nid)          (&contig_page_data)
 937#define NODE_MEM_MAP(nid)       mem_map
 938
 939#else /* CONFIG_NEED_MULTIPLE_NODES */
 940
 941#include <asm/mmzone.h>
 942
 943#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 944
 945extern struct pglist_data *first_online_pgdat(void);
 946extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 947extern struct zone *next_zone(struct zone *zone);
 948
 949/**
 950 * for_each_online_pgdat - helper macro to iterate over all online nodes
 951 * @pgdat - pointer to a pg_data_t variable
 952 */
 953#define for_each_online_pgdat(pgdat)                    \
 954        for (pgdat = first_online_pgdat();              \
 955             pgdat;                                     \
 956             pgdat = next_online_pgdat(pgdat))
 957/**
 958 * for_each_zone - helper macro to iterate over all memory zones
 959 * @zone - pointer to struct zone variable
 960 *
 961 * The user only needs to declare the zone variable, for_each_zone
 962 * fills it in.
 963 */
 964#define for_each_zone(zone)                             \
 965        for (zone = (first_online_pgdat())->node_zones; \
 966             zone;                                      \
 967             zone = next_zone(zone))
 968
 969#define for_each_populated_zone(zone)                   \
 970        for (zone = (first_online_pgdat())->node_zones; \
 971             zone;                                      \
 972             zone = next_zone(zone))                    \
 973                if (!populated_zone(zone))              \
 974                        ; /* do nothing */              \
 975                else
 976
 977static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 978{
 979        return zoneref->zone;
 980}
 981
 982static inline int zonelist_zone_idx(struct zoneref *zoneref)
 983{
 984        return zoneref->zone_idx;
 985}
 986
 987static inline int zonelist_node_idx(struct zoneref *zoneref)
 988{
 989        return zone_to_nid(zoneref->zone);
 990}
 991
 992struct zoneref *__next_zones_zonelist(struct zoneref *z,
 993                                        enum zone_type highest_zoneidx,
 994                                        nodemask_t *nodes);
 995
 996/**
 997 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 998 * @z - The cursor used as a starting point for the search
 999 * @highest_zoneidx - The zone index of the highest zone to return
1000 * @nodes - An optional nodemask to filter the zonelist with
1001 *
1002 * This function returns the next zone at or below a given zone index that is
1003 * within the allowed nodemask using a cursor as the starting point for the
1004 * search. The zoneref returned is a cursor that represents the current zone
1005 * being examined. It should be advanced by one before calling
1006 * next_zones_zonelist again.
1007 */
1008static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1009                                        enum zone_type highest_zoneidx,
1010                                        nodemask_t *nodes)
1011{
1012        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1013                return z;
1014        return __next_zones_zonelist(z, highest_zoneidx, nodes);
1015}
1016
1017/**
1018 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1019 * @zonelist - The zonelist to search for a suitable zone
1020 * @highest_zoneidx - The zone index of the highest zone to return
1021 * @nodes - An optional nodemask to filter the zonelist with
1022 * @return - Zoneref pointer for the first suitable zone found (see below)
1023 *
1024 * This function returns the first zone at or below a given zone index that is
1025 * within the allowed nodemask. The zoneref returned is a cursor that can be
1026 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1027 * one before calling.
1028 *
1029 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1030 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1031 * update due to cpuset modification.
1032 */
1033static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1034                                        enum zone_type highest_zoneidx,
1035                                        nodemask_t *nodes)
1036{
1037        return next_zones_zonelist(zonelist->_zonerefs,
1038                                                        highest_zoneidx, nodes);
1039}
1040
1041/**
1042 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1043 * @zone - The current zone in the iterator
1044 * @z - The current pointer within zonelist->_zonerefs being iterated
1045 * @zlist - The zonelist being iterated
1046 * @highidx - The zone index of the highest zone to return
1047 * @nodemask - Nodemask allowed by the allocator
1048 *
1049 * This iterator iterates though all zones at or below a given zone index and
1050 * within a given nodemask
1051 */
1052#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1053        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1054                zone;                                                   \
1055                z = next_zones_zonelist(++z, highidx, nodemask),        \
1056                        zone = zonelist_zone(z))
1057
1058#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1059        for (zone = z->zone;    \
1060                zone;                                                   \
1061                z = next_zones_zonelist(++z, highidx, nodemask),        \
1062                        zone = zonelist_zone(z))
1063
1064
1065/**
1066 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1067 * @zone - The current zone in the iterator
1068 * @z - The current pointer within zonelist->zones being iterated
1069 * @zlist - The zonelist being iterated
1070 * @highidx - The zone index of the highest zone to return
1071 *
1072 * This iterator iterates though all zones at or below a given zone index.
1073 */
1074#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1075        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1076
1077#ifdef CONFIG_SPARSEMEM
1078#include <asm/sparsemem.h>
1079#endif
1080
1081#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1082        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1083static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1084{
1085        BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1086        return 0;
1087}
1088#endif
1089
1090#ifdef CONFIG_FLATMEM
1091#define pfn_to_nid(pfn)         (0)
1092#endif
1093
1094#ifdef CONFIG_SPARSEMEM
1095
1096/*
1097 * SECTION_SHIFT                #bits space required to store a section #
1098 *
1099 * PA_SECTION_SHIFT             physical address to/from section number
1100 * PFN_SECTION_SHIFT            pfn to/from section number
1101 */
1102#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1103#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1104
1105#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1106
1107#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1108#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1109
1110#define SECTION_BLOCKFLAGS_BITS \
1111        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1112
1113#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1114#error Allocator MAX_ORDER exceeds SECTION_SIZE
1115#endif
1116
1117static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1118{
1119        return pfn >> PFN_SECTION_SHIFT;
1120}
1121static inline unsigned long section_nr_to_pfn(unsigned long sec)
1122{
1123        return sec << PFN_SECTION_SHIFT;
1124}
1125
1126#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1127#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1128
1129#define SUBSECTION_SHIFT 21
1130#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1131
1132#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1133#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1134#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1135
1136#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1137#error Subsection size exceeds section size
1138#else
1139#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1140#endif
1141
1142#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1143#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1144
1145struct mem_section_usage {
1146#ifdef CONFIG_SPARSEMEM_VMEMMAP
1147        DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1148#endif
1149        /* See declaration of similar field in struct zone */
1150        unsigned long pageblock_flags[0];
1151};
1152
1153void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1154
1155struct page;
1156struct page_ext;
1157struct mem_section {
1158        /*
1159         * This is, logically, a pointer to an array of struct
1160         * pages.  However, it is stored with some other magic.
1161         * (see sparse.c::sparse_init_one_section())
1162         *
1163         * Additionally during early boot we encode node id of
1164         * the location of the section here to guide allocation.
1165         * (see sparse.c::memory_present())
1166         *
1167         * Making it a UL at least makes someone do a cast
1168         * before using it wrong.
1169         */
1170        unsigned long section_mem_map;
1171
1172        struct mem_section_usage *usage;
1173#ifdef CONFIG_PAGE_EXTENSION
1174        /*
1175         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1176         * section. (see page_ext.h about this.)
1177         */
1178        struct page_ext *page_ext;
1179        unsigned long pad;
1180#endif
1181        /*
1182         * WARNING: mem_section must be a power-of-2 in size for the
1183         * calculation and use of SECTION_ROOT_MASK to make sense.
1184         */
1185};
1186
1187#ifdef CONFIG_SPARSEMEM_EXTREME
1188#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1189#else
1190#define SECTIONS_PER_ROOT       1
1191#endif
1192
1193#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1194#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1195#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1196
1197#ifdef CONFIG_SPARSEMEM_EXTREME
1198extern struct mem_section **mem_section;
1199#else
1200extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1201#endif
1202
1203static inline unsigned long *section_to_usemap(struct mem_section *ms)
1204{
1205        return ms->usage->pageblock_flags;
1206}
1207
1208static inline struct mem_section *__nr_to_section(unsigned long nr)
1209{
1210#ifdef CONFIG_SPARSEMEM_EXTREME
1211        if (!mem_section)
1212                return NULL;
1213#endif
1214        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1215                return NULL;
1216        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1217}
1218extern unsigned long __section_nr(struct mem_section *ms);
1219extern size_t mem_section_usage_size(void);
1220
1221/*
1222 * We use the lower bits of the mem_map pointer to store
1223 * a little bit of information.  The pointer is calculated
1224 * as mem_map - section_nr_to_pfn(pnum).  The result is
1225 * aligned to the minimum alignment of the two values:
1226 *   1. All mem_map arrays are page-aligned.
1227 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1228 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1229 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1230 *      worst combination is powerpc with 256k pages,
1231 *      which results in PFN_SECTION_SHIFT equal 6.
1232 * To sum it up, at least 6 bits are available.
1233 */
1234#define SECTION_MARKED_PRESENT  (1UL<<0)
1235#define SECTION_HAS_MEM_MAP     (1UL<<1)
1236#define SECTION_IS_ONLINE       (1UL<<2)
1237#define SECTION_IS_EARLY        (1UL<<3)
1238#define SECTION_MAP_LAST_BIT    (1UL<<4)
1239#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1240#define SECTION_NID_SHIFT       3
1241
1242static inline struct page *__section_mem_map_addr(struct mem_section *section)
1243{
1244        unsigned long map = section->section_mem_map;
1245        map &= SECTION_MAP_MASK;
1246        return (struct page *)map;
1247}
1248
1249static inline int present_section(struct mem_section *section)
1250{
1251        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1252}
1253
1254static inline int present_section_nr(unsigned long nr)
1255{
1256        return present_section(__nr_to_section(nr));
1257}
1258
1259static inline int valid_section(struct mem_section *section)
1260{
1261        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1262}
1263
1264static inline int early_section(struct mem_section *section)
1265{
1266        return (section && (section->section_mem_map & SECTION_IS_EARLY));
1267}
1268
1269static inline int valid_section_nr(unsigned long nr)
1270{
1271        return valid_section(__nr_to_section(nr));
1272}
1273
1274static inline int online_section(struct mem_section *section)
1275{
1276        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1277}
1278
1279static inline int online_section_nr(unsigned long nr)
1280{
1281        return online_section(__nr_to_section(nr));
1282}
1283
1284#ifdef CONFIG_MEMORY_HOTPLUG
1285void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1286#ifdef CONFIG_MEMORY_HOTREMOVE
1287void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1288#endif
1289#endif
1290
1291static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1292{
1293        return __nr_to_section(pfn_to_section_nr(pfn));
1294}
1295
1296extern unsigned long __highest_present_section_nr;
1297
1298static inline int subsection_map_index(unsigned long pfn)
1299{
1300        return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1301}
1302
1303#ifdef CONFIG_SPARSEMEM_VMEMMAP
1304static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1305{
1306        int idx = subsection_map_index(pfn);
1307
1308        return test_bit(idx, ms->usage->subsection_map);
1309}
1310#else
1311static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1312{
1313        return 1;
1314}
1315#endif
1316
1317#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1318static inline int pfn_valid(unsigned long pfn)
1319{
1320        struct mem_section *ms;
1321
1322        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1323                return 0;
1324        ms = __nr_to_section(pfn_to_section_nr(pfn));
1325        if (!valid_section(ms))
1326                return 0;
1327        /*
1328         * Traditionally early sections always returned pfn_valid() for
1329         * the entire section-sized span.
1330         */
1331        return early_section(ms) || pfn_section_valid(ms, pfn);
1332}
1333#endif
1334
1335static inline int pfn_in_present_section(unsigned long pfn)
1336{
1337        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1338                return 0;
1339        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1340}
1341
1342static inline unsigned long next_present_section_nr(unsigned long section_nr)
1343{
1344        while (++section_nr <= __highest_present_section_nr) {
1345                if (present_section_nr(section_nr))
1346                        return section_nr;
1347        }
1348
1349        return -1;
1350}
1351
1352/*
1353 * These are _only_ used during initialisation, therefore they
1354 * can use __initdata ...  They could have names to indicate
1355 * this restriction.
1356 */
1357#ifdef CONFIG_NUMA
1358#define pfn_to_nid(pfn)                                                 \
1359({                                                                      \
1360        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1361        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1362})
1363#else
1364#define pfn_to_nid(pfn)         (0)
1365#endif
1366
1367#define early_pfn_valid(pfn)    pfn_valid(pfn)
1368void sparse_init(void);
1369#else
1370#define sparse_init()   do {} while (0)
1371#define sparse_index_init(_sec, _nid)  do {} while (0)
1372#define pfn_in_present_section pfn_valid
1373#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1374#endif /* CONFIG_SPARSEMEM */
1375
1376/*
1377 * During memory init memblocks map pfns to nids. The search is expensive and
1378 * this caches recent lookups. The implementation of __early_pfn_to_nid
1379 * may treat start/end as pfns or sections.
1380 */
1381struct mminit_pfnnid_cache {
1382        unsigned long last_start;
1383        unsigned long last_end;
1384        int last_nid;
1385};
1386
1387#ifndef early_pfn_valid
1388#define early_pfn_valid(pfn)    (1)
1389#endif
1390
1391void memory_present(int nid, unsigned long start, unsigned long end);
1392
1393/*
1394 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1395 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1396 * pfn_valid_within() should be used in this case; we optimise this away
1397 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1398 */
1399#ifdef CONFIG_HOLES_IN_ZONE
1400#define pfn_valid_within(pfn) pfn_valid(pfn)
1401#else
1402#define pfn_valid_within(pfn) (1)
1403#endif
1404
1405#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1406/*
1407 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1408 * associated with it or not. This means that a struct page exists for this
1409 * pfn. The caller cannot assume the page is fully initialized in general.
1410 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1411 * will ensure the struct page is fully online and initialized. Special pages
1412 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1413 *
1414 * In FLATMEM, it is expected that holes always have valid memmap as long as
1415 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1416 * that a valid section has a memmap for the entire section.
1417 *
1418 * However, an ARM, and maybe other embedded architectures in the future
1419 * free memmap backing holes to save memory on the assumption the memmap is
1420 * never used. The page_zone linkages are then broken even though pfn_valid()
1421 * returns true. A walker of the full memmap must then do this additional
1422 * check to ensure the memmap they are looking at is sane by making sure
1423 * the zone and PFN linkages are still valid. This is expensive, but walkers
1424 * of the full memmap are extremely rare.
1425 */
1426bool memmap_valid_within(unsigned long pfn,
1427                                        struct page *page, struct zone *zone);
1428#else
1429static inline bool memmap_valid_within(unsigned long pfn,
1430                                        struct page *page, struct zone *zone)
1431{
1432        return true;
1433}
1434#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1435
1436#endif /* !__GENERATING_BOUNDS.H */
1437#endif /* !__ASSEMBLY__ */
1438#endif /* _LINUX_MMZONE_H */
1439