1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_RCULIST_H 3#define _LINUX_RCULIST_H 4 5#ifdef __KERNEL__ 6 7/* 8 * RCU-protected list version 9 */ 10#include <linux/list.h> 11#include <linux/rcupdate.h> 12 13/* 14 * Why is there no list_empty_rcu()? Because list_empty() serves this 15 * purpose. The list_empty() function fetches the RCU-protected pointer 16 * and compares it to the address of the list head, but neither dereferences 17 * this pointer itself nor provides this pointer to the caller. Therefore, 18 * it is not necessary to use rcu_dereference(), so that list_empty() can 19 * be used anywhere you would want to use a list_empty_rcu(). 20 */ 21 22/* 23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers 24 * @list: list to be initialized 25 * 26 * You should instead use INIT_LIST_HEAD() for normal initialization and 27 * cleanup tasks, when readers have no access to the list being initialized. 28 * However, if the list being initialized is visible to readers, you 29 * need to keep the compiler from being too mischievous. 30 */ 31static inline void INIT_LIST_HEAD_RCU(struct list_head *list) 32{ 33 WRITE_ONCE(list->next, list); 34 WRITE_ONCE(list->prev, list); 35} 36 37/* 38 * return the ->next pointer of a list_head in an rcu safe 39 * way, we must not access it directly 40 */ 41#define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) 42 43/** 44 * list_tail_rcu - returns the prev pointer of the head of the list 45 * @head: the head of the list 46 * 47 * Note: This should only be used with the list header, and even then 48 * only if list_del() and similar primitives are not also used on the 49 * list header. 50 */ 51#define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) 52 53/* 54 * Check during list traversal that we are within an RCU reader 55 */ 56 57#define check_arg_count_one(dummy) 58 59#ifdef CONFIG_PROVE_RCU_LIST 60#define __list_check_rcu(dummy, cond, extra...) \ 61 ({ \ 62 check_arg_count_one(extra); \ 63 RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ 64 "RCU-list traversed in non-reader section!"); \ 65 }) 66#else 67#define __list_check_rcu(dummy, cond, extra...) \ 68 ({ check_arg_count_one(extra); }) 69#endif 70 71/* 72 * Insert a new entry between two known consecutive entries. 73 * 74 * This is only for internal list manipulation where we know 75 * the prev/next entries already! 76 */ 77static inline void __list_add_rcu(struct list_head *new, 78 struct list_head *prev, struct list_head *next) 79{ 80 if (!__list_add_valid(new, prev, next)) 81 return; 82 83 new->next = next; 84 new->prev = prev; 85 rcu_assign_pointer(list_next_rcu(prev), new); 86 next->prev = new; 87} 88 89/** 90 * list_add_rcu - add a new entry to rcu-protected list 91 * @new: new entry to be added 92 * @head: list head to add it after 93 * 94 * Insert a new entry after the specified head. 95 * This is good for implementing stacks. 96 * 97 * The caller must take whatever precautions are necessary 98 * (such as holding appropriate locks) to avoid racing 99 * with another list-mutation primitive, such as list_add_rcu() 100 * or list_del_rcu(), running on this same list. 101 * However, it is perfectly legal to run concurrently with 102 * the _rcu list-traversal primitives, such as 103 * list_for_each_entry_rcu(). 104 */ 105static inline void list_add_rcu(struct list_head *new, struct list_head *head) 106{ 107 __list_add_rcu(new, head, head->next); 108} 109 110/** 111 * list_add_tail_rcu - add a new entry to rcu-protected list 112 * @new: new entry to be added 113 * @head: list head to add it before 114 * 115 * Insert a new entry before the specified head. 116 * This is useful for implementing queues. 117 * 118 * The caller must take whatever precautions are necessary 119 * (such as holding appropriate locks) to avoid racing 120 * with another list-mutation primitive, such as list_add_tail_rcu() 121 * or list_del_rcu(), running on this same list. 122 * However, it is perfectly legal to run concurrently with 123 * the _rcu list-traversal primitives, such as 124 * list_for_each_entry_rcu(). 125 */ 126static inline void list_add_tail_rcu(struct list_head *new, 127 struct list_head *head) 128{ 129 __list_add_rcu(new, head->prev, head); 130} 131 132/** 133 * list_del_rcu - deletes entry from list without re-initialization 134 * @entry: the element to delete from the list. 135 * 136 * Note: list_empty() on entry does not return true after this, 137 * the entry is in an undefined state. It is useful for RCU based 138 * lockfree traversal. 139 * 140 * In particular, it means that we can not poison the forward 141 * pointers that may still be used for walking the list. 142 * 143 * The caller must take whatever precautions are necessary 144 * (such as holding appropriate locks) to avoid racing 145 * with another list-mutation primitive, such as list_del_rcu() 146 * or list_add_rcu(), running on this same list. 147 * However, it is perfectly legal to run concurrently with 148 * the _rcu list-traversal primitives, such as 149 * list_for_each_entry_rcu(). 150 * 151 * Note that the caller is not permitted to immediately free 152 * the newly deleted entry. Instead, either synchronize_rcu() 153 * or call_rcu() must be used to defer freeing until an RCU 154 * grace period has elapsed. 155 */ 156static inline void list_del_rcu(struct list_head *entry) 157{ 158 __list_del_entry(entry); 159 entry->prev = LIST_POISON2; 160} 161 162/** 163 * hlist_del_init_rcu - deletes entry from hash list with re-initialization 164 * @n: the element to delete from the hash list. 165 * 166 * Note: list_unhashed() on the node return true after this. It is 167 * useful for RCU based read lockfree traversal if the writer side 168 * must know if the list entry is still hashed or already unhashed. 169 * 170 * In particular, it means that we can not poison the forward pointers 171 * that may still be used for walking the hash list and we can only 172 * zero the pprev pointer so list_unhashed() will return true after 173 * this. 174 * 175 * The caller must take whatever precautions are necessary (such as 176 * holding appropriate locks) to avoid racing with another 177 * list-mutation primitive, such as hlist_add_head_rcu() or 178 * hlist_del_rcu(), running on this same list. However, it is 179 * perfectly legal to run concurrently with the _rcu list-traversal 180 * primitives, such as hlist_for_each_entry_rcu(). 181 */ 182static inline void hlist_del_init_rcu(struct hlist_node *n) 183{ 184 if (!hlist_unhashed(n)) { 185 __hlist_del(n); 186 WRITE_ONCE(n->pprev, NULL); 187 } 188} 189 190/** 191 * list_replace_rcu - replace old entry by new one 192 * @old : the element to be replaced 193 * @new : the new element to insert 194 * 195 * The @old entry will be replaced with the @new entry atomically. 196 * Note: @old should not be empty. 197 */ 198static inline void list_replace_rcu(struct list_head *old, 199 struct list_head *new) 200{ 201 new->next = old->next; 202 new->prev = old->prev; 203 rcu_assign_pointer(list_next_rcu(new->prev), new); 204 new->next->prev = new; 205 old->prev = LIST_POISON2; 206} 207 208/** 209 * __list_splice_init_rcu - join an RCU-protected list into an existing list. 210 * @list: the RCU-protected list to splice 211 * @prev: points to the last element of the existing list 212 * @next: points to the first element of the existing list 213 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 214 * 215 * The list pointed to by @prev and @next can be RCU-read traversed 216 * concurrently with this function. 217 * 218 * Note that this function blocks. 219 * 220 * Important note: the caller must take whatever action is necessary to prevent 221 * any other updates to the existing list. In principle, it is possible to 222 * modify the list as soon as sync() begins execution. If this sort of thing 223 * becomes necessary, an alternative version based on call_rcu() could be 224 * created. But only if -really- needed -- there is no shortage of RCU API 225 * members. 226 */ 227static inline void __list_splice_init_rcu(struct list_head *list, 228 struct list_head *prev, 229 struct list_head *next, 230 void (*sync)(void)) 231{ 232 struct list_head *first = list->next; 233 struct list_head *last = list->prev; 234 235 /* 236 * "first" and "last" tracking list, so initialize it. RCU readers 237 * have access to this list, so we must use INIT_LIST_HEAD_RCU() 238 * instead of INIT_LIST_HEAD(). 239 */ 240 241 INIT_LIST_HEAD_RCU(list); 242 243 /* 244 * At this point, the list body still points to the source list. 245 * Wait for any readers to finish using the list before splicing 246 * the list body into the new list. Any new readers will see 247 * an empty list. 248 */ 249 250 sync(); 251 252 /* 253 * Readers are finished with the source list, so perform splice. 254 * The order is important if the new list is global and accessible 255 * to concurrent RCU readers. Note that RCU readers are not 256 * permitted to traverse the prev pointers without excluding 257 * this function. 258 */ 259 260 last->next = next; 261 rcu_assign_pointer(list_next_rcu(prev), first); 262 first->prev = prev; 263 next->prev = last; 264} 265 266/** 267 * list_splice_init_rcu - splice an RCU-protected list into an existing list, 268 * designed for stacks. 269 * @list: the RCU-protected list to splice 270 * @head: the place in the existing list to splice the first list into 271 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 272 */ 273static inline void list_splice_init_rcu(struct list_head *list, 274 struct list_head *head, 275 void (*sync)(void)) 276{ 277 if (!list_empty(list)) 278 __list_splice_init_rcu(list, head, head->next, sync); 279} 280 281/** 282 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing 283 * list, designed for queues. 284 * @list: the RCU-protected list to splice 285 * @head: the place in the existing list to splice the first list into 286 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 287 */ 288static inline void list_splice_tail_init_rcu(struct list_head *list, 289 struct list_head *head, 290 void (*sync)(void)) 291{ 292 if (!list_empty(list)) 293 __list_splice_init_rcu(list, head->prev, head, sync); 294} 295 296/** 297 * list_entry_rcu - get the struct for this entry 298 * @ptr: the &struct list_head pointer. 299 * @type: the type of the struct this is embedded in. 300 * @member: the name of the list_head within the struct. 301 * 302 * This primitive may safely run concurrently with the _rcu list-mutation 303 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 304 */ 305#define list_entry_rcu(ptr, type, member) \ 306 container_of(READ_ONCE(ptr), type, member) 307 308/* 309 * Where are list_empty_rcu() and list_first_entry_rcu()? 310 * 311 * Implementing those functions following their counterparts list_empty() and 312 * list_first_entry() is not advisable because they lead to subtle race 313 * conditions as the following snippet shows: 314 * 315 * if (!list_empty_rcu(mylist)) { 316 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); 317 * do_something(bar); 318 * } 319 * 320 * The list may not be empty when list_empty_rcu checks it, but it may be when 321 * list_first_entry_rcu rereads the ->next pointer. 322 * 323 * Rereading the ->next pointer is not a problem for list_empty() and 324 * list_first_entry() because they would be protected by a lock that blocks 325 * writers. 326 * 327 * See list_first_or_null_rcu for an alternative. 328 */ 329 330/** 331 * list_first_or_null_rcu - get the first element from a list 332 * @ptr: the list head to take the element from. 333 * @type: the type of the struct this is embedded in. 334 * @member: the name of the list_head within the struct. 335 * 336 * Note that if the list is empty, it returns NULL. 337 * 338 * This primitive may safely run concurrently with the _rcu list-mutation 339 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 340 */ 341#define list_first_or_null_rcu(ptr, type, member) \ 342({ \ 343 struct list_head *__ptr = (ptr); \ 344 struct list_head *__next = READ_ONCE(__ptr->next); \ 345 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ 346}) 347 348/** 349 * list_next_or_null_rcu - get the first element from a list 350 * @head: the head for the list. 351 * @ptr: the list head to take the next element from. 352 * @type: the type of the struct this is embedded in. 353 * @member: the name of the list_head within the struct. 354 * 355 * Note that if the ptr is at the end of the list, NULL is returned. 356 * 357 * This primitive may safely run concurrently with the _rcu list-mutation 358 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 359 */ 360#define list_next_or_null_rcu(head, ptr, type, member) \ 361({ \ 362 struct list_head *__head = (head); \ 363 struct list_head *__ptr = (ptr); \ 364 struct list_head *__next = READ_ONCE(__ptr->next); \ 365 likely(__next != __head) ? list_entry_rcu(__next, type, \ 366 member) : NULL; \ 367}) 368 369/** 370 * list_for_each_entry_rcu - iterate over rcu list of given type 371 * @pos: the type * to use as a loop cursor. 372 * @head: the head for your list. 373 * @member: the name of the list_head within the struct. 374 * @cond...: optional lockdep expression if called from non-RCU protection. 375 * 376 * This list-traversal primitive may safely run concurrently with 377 * the _rcu list-mutation primitives such as list_add_rcu() 378 * as long as the traversal is guarded by rcu_read_lock(). 379 */ 380#define list_for_each_entry_rcu(pos, head, member, cond...) \ 381 for (__list_check_rcu(dummy, ## cond, 0), \ 382 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 383 &pos->member != (head); \ 384 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 385 386/** 387 * list_entry_lockless - get the struct for this entry 388 * @ptr: the &struct list_head pointer. 389 * @type: the type of the struct this is embedded in. 390 * @member: the name of the list_head within the struct. 391 * 392 * This primitive may safely run concurrently with the _rcu 393 * list-mutation primitives such as list_add_rcu(), but requires some 394 * implicit RCU read-side guarding. One example is running within a special 395 * exception-time environment where preemption is disabled and where lockdep 396 * cannot be invoked. Another example is when items are added to the list, 397 * but never deleted. 398 */ 399#define list_entry_lockless(ptr, type, member) \ 400 container_of((typeof(ptr))READ_ONCE(ptr), type, member) 401 402/** 403 * list_for_each_entry_lockless - iterate over rcu list of given type 404 * @pos: the type * to use as a loop cursor. 405 * @head: the head for your list. 406 * @member: the name of the list_struct within the struct. 407 * 408 * This primitive may safely run concurrently with the _rcu 409 * list-mutation primitives such as list_add_rcu(), but requires some 410 * implicit RCU read-side guarding. One example is running within a special 411 * exception-time environment where preemption is disabled and where lockdep 412 * cannot be invoked. Another example is when items are added to the list, 413 * but never deleted. 414 */ 415#define list_for_each_entry_lockless(pos, head, member) \ 416 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ 417 &pos->member != (head); \ 418 pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) 419 420/** 421 * list_for_each_entry_continue_rcu - continue iteration over list of given type 422 * @pos: the type * to use as a loop cursor. 423 * @head: the head for your list. 424 * @member: the name of the list_head within the struct. 425 * 426 * Continue to iterate over list of given type, continuing after 427 * the current position which must have been in the list when the RCU read 428 * lock was taken. 429 * This would typically require either that you obtained the node from a 430 * previous walk of the list in the same RCU read-side critical section, or 431 * that you held some sort of non-RCU reference (such as a reference count) 432 * to keep the node alive *and* in the list. 433 * 434 * This iterator is similar to list_for_each_entry_from_rcu() except 435 * this starts after the given position and that one starts at the given 436 * position. 437 */ 438#define list_for_each_entry_continue_rcu(pos, head, member) \ 439 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ 440 &pos->member != (head); \ 441 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 442 443/** 444 * list_for_each_entry_from_rcu - iterate over a list from current point 445 * @pos: the type * to use as a loop cursor. 446 * @head: the head for your list. 447 * @member: the name of the list_node within the struct. 448 * 449 * Iterate over the tail of a list starting from a given position, 450 * which must have been in the list when the RCU read lock was taken. 451 * This would typically require either that you obtained the node from a 452 * previous walk of the list in the same RCU read-side critical section, or 453 * that you held some sort of non-RCU reference (such as a reference count) 454 * to keep the node alive *and* in the list. 455 * 456 * This iterator is similar to list_for_each_entry_continue_rcu() except 457 * this starts from the given position and that one starts from the position 458 * after the given position. 459 */ 460#define list_for_each_entry_from_rcu(pos, head, member) \ 461 for (; &(pos)->member != (head); \ 462 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) 463 464/** 465 * hlist_del_rcu - deletes entry from hash list without re-initialization 466 * @n: the element to delete from the hash list. 467 * 468 * Note: list_unhashed() on entry does not return true after this, 469 * the entry is in an undefined state. It is useful for RCU based 470 * lockfree traversal. 471 * 472 * In particular, it means that we can not poison the forward 473 * pointers that may still be used for walking the hash list. 474 * 475 * The caller must take whatever precautions are necessary 476 * (such as holding appropriate locks) to avoid racing 477 * with another list-mutation primitive, such as hlist_add_head_rcu() 478 * or hlist_del_rcu(), running on this same list. 479 * However, it is perfectly legal to run concurrently with 480 * the _rcu list-traversal primitives, such as 481 * hlist_for_each_entry(). 482 */ 483static inline void hlist_del_rcu(struct hlist_node *n) 484{ 485 __hlist_del(n); 486 WRITE_ONCE(n->pprev, LIST_POISON2); 487} 488 489/** 490 * hlist_replace_rcu - replace old entry by new one 491 * @old : the element to be replaced 492 * @new : the new element to insert 493 * 494 * The @old entry will be replaced with the @new entry atomically. 495 */ 496static inline void hlist_replace_rcu(struct hlist_node *old, 497 struct hlist_node *new) 498{ 499 struct hlist_node *next = old->next; 500 501 new->next = next; 502 WRITE_ONCE(new->pprev, old->pprev); 503 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); 504 if (next) 505 WRITE_ONCE(new->next->pprev, &new->next); 506 WRITE_ONCE(old->pprev, LIST_POISON2); 507} 508 509/* 510 * return the first or the next element in an RCU protected hlist 511 */ 512#define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) 513#define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) 514#define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) 515 516/** 517 * hlist_add_head_rcu 518 * @n: the element to add to the hash list. 519 * @h: the list to add to. 520 * 521 * Description: 522 * Adds the specified element to the specified hlist, 523 * while permitting racing traversals. 524 * 525 * The caller must take whatever precautions are necessary 526 * (such as holding appropriate locks) to avoid racing 527 * with another list-mutation primitive, such as hlist_add_head_rcu() 528 * or hlist_del_rcu(), running on this same list. 529 * However, it is perfectly legal to run concurrently with 530 * the _rcu list-traversal primitives, such as 531 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 532 * problems on Alpha CPUs. Regardless of the type of CPU, the 533 * list-traversal primitive must be guarded by rcu_read_lock(). 534 */ 535static inline void hlist_add_head_rcu(struct hlist_node *n, 536 struct hlist_head *h) 537{ 538 struct hlist_node *first = h->first; 539 540 n->next = first; 541 WRITE_ONCE(n->pprev, &h->first); 542 rcu_assign_pointer(hlist_first_rcu(h), n); 543 if (first) 544 WRITE_ONCE(first->pprev, &n->next); 545} 546 547/** 548 * hlist_add_tail_rcu 549 * @n: the element to add to the hash list. 550 * @h: the list to add to. 551 * 552 * Description: 553 * Adds the specified element to the specified hlist, 554 * while permitting racing traversals. 555 * 556 * The caller must take whatever precautions are necessary 557 * (such as holding appropriate locks) to avoid racing 558 * with another list-mutation primitive, such as hlist_add_head_rcu() 559 * or hlist_del_rcu(), running on this same list. 560 * However, it is perfectly legal to run concurrently with 561 * the _rcu list-traversal primitives, such as 562 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 563 * problems on Alpha CPUs. Regardless of the type of CPU, the 564 * list-traversal primitive must be guarded by rcu_read_lock(). 565 */ 566static inline void hlist_add_tail_rcu(struct hlist_node *n, 567 struct hlist_head *h) 568{ 569 struct hlist_node *i, *last = NULL; 570 571 /* Note: write side code, so rcu accessors are not needed. */ 572 for (i = h->first; i; i = i->next) 573 last = i; 574 575 if (last) { 576 n->next = last->next; 577 WRITE_ONCE(n->pprev, &last->next); 578 rcu_assign_pointer(hlist_next_rcu(last), n); 579 } else { 580 hlist_add_head_rcu(n, h); 581 } 582} 583 584/** 585 * hlist_add_before_rcu 586 * @n: the new element to add to the hash list. 587 * @next: the existing element to add the new element before. 588 * 589 * Description: 590 * Adds the specified element to the specified hlist 591 * before the specified node while permitting racing traversals. 592 * 593 * The caller must take whatever precautions are necessary 594 * (such as holding appropriate locks) to avoid racing 595 * with another list-mutation primitive, such as hlist_add_head_rcu() 596 * or hlist_del_rcu(), running on this same list. 597 * However, it is perfectly legal to run concurrently with 598 * the _rcu list-traversal primitives, such as 599 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 600 * problems on Alpha CPUs. 601 */ 602static inline void hlist_add_before_rcu(struct hlist_node *n, 603 struct hlist_node *next) 604{ 605 WRITE_ONCE(n->pprev, next->pprev); 606 n->next = next; 607 rcu_assign_pointer(hlist_pprev_rcu(n), n); 608 WRITE_ONCE(next->pprev, &n->next); 609} 610 611/** 612 * hlist_add_behind_rcu 613 * @n: the new element to add to the hash list. 614 * @prev: the existing element to add the new element after. 615 * 616 * Description: 617 * Adds the specified element to the specified hlist 618 * after the specified node while permitting racing traversals. 619 * 620 * The caller must take whatever precautions are necessary 621 * (such as holding appropriate locks) to avoid racing 622 * with another list-mutation primitive, such as hlist_add_head_rcu() 623 * or hlist_del_rcu(), running on this same list. 624 * However, it is perfectly legal to run concurrently with 625 * the _rcu list-traversal primitives, such as 626 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 627 * problems on Alpha CPUs. 628 */ 629static inline void hlist_add_behind_rcu(struct hlist_node *n, 630 struct hlist_node *prev) 631{ 632 n->next = prev->next; 633 WRITE_ONCE(n->pprev, &prev->next); 634 rcu_assign_pointer(hlist_next_rcu(prev), n); 635 if (n->next) 636 WRITE_ONCE(n->next->pprev, &n->next); 637} 638 639#define __hlist_for_each_rcu(pos, head) \ 640 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 641 pos; \ 642 pos = rcu_dereference(hlist_next_rcu(pos))) 643 644/** 645 * hlist_for_each_entry_rcu - iterate over rcu list of given type 646 * @pos: the type * to use as a loop cursor. 647 * @head: the head for your list. 648 * @member: the name of the hlist_node within the struct. 649 * @cond...: optional lockdep expression if called from non-RCU protection. 650 * 651 * This list-traversal primitive may safely run concurrently with 652 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 653 * as long as the traversal is guarded by rcu_read_lock(). 654 */ 655#define hlist_for_each_entry_rcu(pos, head, member, cond...) \ 656 for (__list_check_rcu(dummy, ## cond, 0), \ 657 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 658 typeof(*(pos)), member); \ 659 pos; \ 660 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 661 &(pos)->member)), typeof(*(pos)), member)) 662 663/** 664 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) 665 * @pos: the type * to use as a loop cursor. 666 * @head: the head for your list. 667 * @member: the name of the hlist_node within the struct. 668 * 669 * This list-traversal primitive may safely run concurrently with 670 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 671 * as long as the traversal is guarded by rcu_read_lock(). 672 * 673 * This is the same as hlist_for_each_entry_rcu() except that it does 674 * not do any RCU debugging or tracing. 675 */ 676#define hlist_for_each_entry_rcu_notrace(pos, head, member) \ 677 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ 678 typeof(*(pos)), member); \ 679 pos; \ 680 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ 681 &(pos)->member)), typeof(*(pos)), member)) 682 683/** 684 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type 685 * @pos: the type * to use as a loop cursor. 686 * @head: the head for your list. 687 * @member: the name of the hlist_node within the struct. 688 * 689 * This list-traversal primitive may safely run concurrently with 690 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 691 * as long as the traversal is guarded by rcu_read_lock(). 692 */ 693#define hlist_for_each_entry_rcu_bh(pos, head, member) \ 694 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ 695 typeof(*(pos)), member); \ 696 pos; \ 697 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ 698 &(pos)->member)), typeof(*(pos)), member)) 699 700/** 701 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point 702 * @pos: the type * to use as a loop cursor. 703 * @member: the name of the hlist_node within the struct. 704 */ 705#define hlist_for_each_entry_continue_rcu(pos, member) \ 706 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 707 &(pos)->member)), typeof(*(pos)), member); \ 708 pos; \ 709 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 710 &(pos)->member)), typeof(*(pos)), member)) 711 712/** 713 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point 714 * @pos: the type * to use as a loop cursor. 715 * @member: the name of the hlist_node within the struct. 716 */ 717#define hlist_for_each_entry_continue_rcu_bh(pos, member) \ 718 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 719 &(pos)->member)), typeof(*(pos)), member); \ 720 pos; \ 721 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 722 &(pos)->member)), typeof(*(pos)), member)) 723 724/** 725 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point 726 * @pos: the type * to use as a loop cursor. 727 * @member: the name of the hlist_node within the struct. 728 */ 729#define hlist_for_each_entry_from_rcu(pos, member) \ 730 for (; pos; \ 731 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 732 &(pos)->member)), typeof(*(pos)), member)) 733 734#endif /* __KERNEL__ */ 735#endif 736