linux/include/linux/rculist.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_RCULIST_H
   3#define _LINUX_RCULIST_H
   4
   5#ifdef __KERNEL__
   6
   7/*
   8 * RCU-protected list version
   9 */
  10#include <linux/list.h>
  11#include <linux/rcupdate.h>
  12
  13/*
  14 * Why is there no list_empty_rcu()?  Because list_empty() serves this
  15 * purpose.  The list_empty() function fetches the RCU-protected pointer
  16 * and compares it to the address of the list head, but neither dereferences
  17 * this pointer itself nor provides this pointer to the caller.  Therefore,
  18 * it is not necessary to use rcu_dereference(), so that list_empty() can
  19 * be used anywhere you would want to use a list_empty_rcu().
  20 */
  21
  22/*
  23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  24 * @list: list to be initialized
  25 *
  26 * You should instead use INIT_LIST_HEAD() for normal initialization and
  27 * cleanup tasks, when readers have no access to the list being initialized.
  28 * However, if the list being initialized is visible to readers, you
  29 * need to keep the compiler from being too mischievous.
  30 */
  31static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  32{
  33        WRITE_ONCE(list->next, list);
  34        WRITE_ONCE(list->prev, list);
  35}
  36
  37/*
  38 * return the ->next pointer of a list_head in an rcu safe
  39 * way, we must not access it directly
  40 */
  41#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  42
  43/**
  44 * list_tail_rcu - returns the prev pointer of the head of the list
  45 * @head: the head of the list
  46 *
  47 * Note: This should only be used with the list header, and even then
  48 * only if list_del() and similar primitives are not also used on the
  49 * list header.
  50 */
  51#define list_tail_rcu(head)     (*((struct list_head __rcu **)(&(head)->prev)))
  52
  53/*
  54 * Check during list traversal that we are within an RCU reader
  55 */
  56
  57#define check_arg_count_one(dummy)
  58
  59#ifdef CONFIG_PROVE_RCU_LIST
  60#define __list_check_rcu(dummy, cond, extra...)                         \
  61        ({                                                              \
  62        check_arg_count_one(extra);                                     \
  63        RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(),          \
  64                         "RCU-list traversed in non-reader section!");  \
  65        })
  66#else
  67#define __list_check_rcu(dummy, cond, extra...)                         \
  68        ({ check_arg_count_one(extra); })
  69#endif
  70
  71/*
  72 * Insert a new entry between two known consecutive entries.
  73 *
  74 * This is only for internal list manipulation where we know
  75 * the prev/next entries already!
  76 */
  77static inline void __list_add_rcu(struct list_head *new,
  78                struct list_head *prev, struct list_head *next)
  79{
  80        if (!__list_add_valid(new, prev, next))
  81                return;
  82
  83        new->next = next;
  84        new->prev = prev;
  85        rcu_assign_pointer(list_next_rcu(prev), new);
  86        next->prev = new;
  87}
  88
  89/**
  90 * list_add_rcu - add a new entry to rcu-protected list
  91 * @new: new entry to be added
  92 * @head: list head to add it after
  93 *
  94 * Insert a new entry after the specified head.
  95 * This is good for implementing stacks.
  96 *
  97 * The caller must take whatever precautions are necessary
  98 * (such as holding appropriate locks) to avoid racing
  99 * with another list-mutation primitive, such as list_add_rcu()
 100 * or list_del_rcu(), running on this same list.
 101 * However, it is perfectly legal to run concurrently with
 102 * the _rcu list-traversal primitives, such as
 103 * list_for_each_entry_rcu().
 104 */
 105static inline void list_add_rcu(struct list_head *new, struct list_head *head)
 106{
 107        __list_add_rcu(new, head, head->next);
 108}
 109
 110/**
 111 * list_add_tail_rcu - add a new entry to rcu-protected list
 112 * @new: new entry to be added
 113 * @head: list head to add it before
 114 *
 115 * Insert a new entry before the specified head.
 116 * This is useful for implementing queues.
 117 *
 118 * The caller must take whatever precautions are necessary
 119 * (such as holding appropriate locks) to avoid racing
 120 * with another list-mutation primitive, such as list_add_tail_rcu()
 121 * or list_del_rcu(), running on this same list.
 122 * However, it is perfectly legal to run concurrently with
 123 * the _rcu list-traversal primitives, such as
 124 * list_for_each_entry_rcu().
 125 */
 126static inline void list_add_tail_rcu(struct list_head *new,
 127                                        struct list_head *head)
 128{
 129        __list_add_rcu(new, head->prev, head);
 130}
 131
 132/**
 133 * list_del_rcu - deletes entry from list without re-initialization
 134 * @entry: the element to delete from the list.
 135 *
 136 * Note: list_empty() on entry does not return true after this,
 137 * the entry is in an undefined state. It is useful for RCU based
 138 * lockfree traversal.
 139 *
 140 * In particular, it means that we can not poison the forward
 141 * pointers that may still be used for walking the list.
 142 *
 143 * The caller must take whatever precautions are necessary
 144 * (such as holding appropriate locks) to avoid racing
 145 * with another list-mutation primitive, such as list_del_rcu()
 146 * or list_add_rcu(), running on this same list.
 147 * However, it is perfectly legal to run concurrently with
 148 * the _rcu list-traversal primitives, such as
 149 * list_for_each_entry_rcu().
 150 *
 151 * Note that the caller is not permitted to immediately free
 152 * the newly deleted entry.  Instead, either synchronize_rcu()
 153 * or call_rcu() must be used to defer freeing until an RCU
 154 * grace period has elapsed.
 155 */
 156static inline void list_del_rcu(struct list_head *entry)
 157{
 158        __list_del_entry(entry);
 159        entry->prev = LIST_POISON2;
 160}
 161
 162/**
 163 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 164 * @n: the element to delete from the hash list.
 165 *
 166 * Note: list_unhashed() on the node return true after this. It is
 167 * useful for RCU based read lockfree traversal if the writer side
 168 * must know if the list entry is still hashed or already unhashed.
 169 *
 170 * In particular, it means that we can not poison the forward pointers
 171 * that may still be used for walking the hash list and we can only
 172 * zero the pprev pointer so list_unhashed() will return true after
 173 * this.
 174 *
 175 * The caller must take whatever precautions are necessary (such as
 176 * holding appropriate locks) to avoid racing with another
 177 * list-mutation primitive, such as hlist_add_head_rcu() or
 178 * hlist_del_rcu(), running on this same list.  However, it is
 179 * perfectly legal to run concurrently with the _rcu list-traversal
 180 * primitives, such as hlist_for_each_entry_rcu().
 181 */
 182static inline void hlist_del_init_rcu(struct hlist_node *n)
 183{
 184        if (!hlist_unhashed(n)) {
 185                __hlist_del(n);
 186                WRITE_ONCE(n->pprev, NULL);
 187        }
 188}
 189
 190/**
 191 * list_replace_rcu - replace old entry by new one
 192 * @old : the element to be replaced
 193 * @new : the new element to insert
 194 *
 195 * The @old entry will be replaced with the @new entry atomically.
 196 * Note: @old should not be empty.
 197 */
 198static inline void list_replace_rcu(struct list_head *old,
 199                                struct list_head *new)
 200{
 201        new->next = old->next;
 202        new->prev = old->prev;
 203        rcu_assign_pointer(list_next_rcu(new->prev), new);
 204        new->next->prev = new;
 205        old->prev = LIST_POISON2;
 206}
 207
 208/**
 209 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
 210 * @list:       the RCU-protected list to splice
 211 * @prev:       points to the last element of the existing list
 212 * @next:       points to the first element of the existing list
 213 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 214 *
 215 * The list pointed to by @prev and @next can be RCU-read traversed
 216 * concurrently with this function.
 217 *
 218 * Note that this function blocks.
 219 *
 220 * Important note: the caller must take whatever action is necessary to prevent
 221 * any other updates to the existing list.  In principle, it is possible to
 222 * modify the list as soon as sync() begins execution. If this sort of thing
 223 * becomes necessary, an alternative version based on call_rcu() could be
 224 * created.  But only if -really- needed -- there is no shortage of RCU API
 225 * members.
 226 */
 227static inline void __list_splice_init_rcu(struct list_head *list,
 228                                          struct list_head *prev,
 229                                          struct list_head *next,
 230                                          void (*sync)(void))
 231{
 232        struct list_head *first = list->next;
 233        struct list_head *last = list->prev;
 234
 235        /*
 236         * "first" and "last" tracking list, so initialize it.  RCU readers
 237         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 238         * instead of INIT_LIST_HEAD().
 239         */
 240
 241        INIT_LIST_HEAD_RCU(list);
 242
 243        /*
 244         * At this point, the list body still points to the source list.
 245         * Wait for any readers to finish using the list before splicing
 246         * the list body into the new list.  Any new readers will see
 247         * an empty list.
 248         */
 249
 250        sync();
 251
 252        /*
 253         * Readers are finished with the source list, so perform splice.
 254         * The order is important if the new list is global and accessible
 255         * to concurrent RCU readers.  Note that RCU readers are not
 256         * permitted to traverse the prev pointers without excluding
 257         * this function.
 258         */
 259
 260        last->next = next;
 261        rcu_assign_pointer(list_next_rcu(prev), first);
 262        first->prev = prev;
 263        next->prev = last;
 264}
 265
 266/**
 267 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
 268 *                        designed for stacks.
 269 * @list:       the RCU-protected list to splice
 270 * @head:       the place in the existing list to splice the first list into
 271 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 272 */
 273static inline void list_splice_init_rcu(struct list_head *list,
 274                                        struct list_head *head,
 275                                        void (*sync)(void))
 276{
 277        if (!list_empty(list))
 278                __list_splice_init_rcu(list, head, head->next, sync);
 279}
 280
 281/**
 282 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
 283 *                             list, designed for queues.
 284 * @list:       the RCU-protected list to splice
 285 * @head:       the place in the existing list to splice the first list into
 286 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 287 */
 288static inline void list_splice_tail_init_rcu(struct list_head *list,
 289                                             struct list_head *head,
 290                                             void (*sync)(void))
 291{
 292        if (!list_empty(list))
 293                __list_splice_init_rcu(list, head->prev, head, sync);
 294}
 295
 296/**
 297 * list_entry_rcu - get the struct for this entry
 298 * @ptr:        the &struct list_head pointer.
 299 * @type:       the type of the struct this is embedded in.
 300 * @member:     the name of the list_head within the struct.
 301 *
 302 * This primitive may safely run concurrently with the _rcu list-mutation
 303 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 304 */
 305#define list_entry_rcu(ptr, type, member) \
 306        container_of(READ_ONCE(ptr), type, member)
 307
 308/*
 309 * Where are list_empty_rcu() and list_first_entry_rcu()?
 310 *
 311 * Implementing those functions following their counterparts list_empty() and
 312 * list_first_entry() is not advisable because they lead to subtle race
 313 * conditions as the following snippet shows:
 314 *
 315 * if (!list_empty_rcu(mylist)) {
 316 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 317 *      do_something(bar);
 318 * }
 319 *
 320 * The list may not be empty when list_empty_rcu checks it, but it may be when
 321 * list_first_entry_rcu rereads the ->next pointer.
 322 *
 323 * Rereading the ->next pointer is not a problem for list_empty() and
 324 * list_first_entry() because they would be protected by a lock that blocks
 325 * writers.
 326 *
 327 * See list_first_or_null_rcu for an alternative.
 328 */
 329
 330/**
 331 * list_first_or_null_rcu - get the first element from a list
 332 * @ptr:        the list head to take the element from.
 333 * @type:       the type of the struct this is embedded in.
 334 * @member:     the name of the list_head within the struct.
 335 *
 336 * Note that if the list is empty, it returns NULL.
 337 *
 338 * This primitive may safely run concurrently with the _rcu list-mutation
 339 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 340 */
 341#define list_first_or_null_rcu(ptr, type, member) \
 342({ \
 343        struct list_head *__ptr = (ptr); \
 344        struct list_head *__next = READ_ONCE(__ptr->next); \
 345        likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
 346})
 347
 348/**
 349 * list_next_or_null_rcu - get the first element from a list
 350 * @head:       the head for the list.
 351 * @ptr:        the list head to take the next element from.
 352 * @type:       the type of the struct this is embedded in.
 353 * @member:     the name of the list_head within the struct.
 354 *
 355 * Note that if the ptr is at the end of the list, NULL is returned.
 356 *
 357 * This primitive may safely run concurrently with the _rcu list-mutation
 358 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 359 */
 360#define list_next_or_null_rcu(head, ptr, type, member) \
 361({ \
 362        struct list_head *__head = (head); \
 363        struct list_head *__ptr = (ptr); \
 364        struct list_head *__next = READ_ONCE(__ptr->next); \
 365        likely(__next != __head) ? list_entry_rcu(__next, type, \
 366                                                  member) : NULL; \
 367})
 368
 369/**
 370 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 371 * @pos:        the type * to use as a loop cursor.
 372 * @head:       the head for your list.
 373 * @member:     the name of the list_head within the struct.
 374 * @cond...:    optional lockdep expression if called from non-RCU protection.
 375 *
 376 * This list-traversal primitive may safely run concurrently with
 377 * the _rcu list-mutation primitives such as list_add_rcu()
 378 * as long as the traversal is guarded by rcu_read_lock().
 379 */
 380#define list_for_each_entry_rcu(pos, head, member, cond...)             \
 381        for (__list_check_rcu(dummy, ## cond, 0),                       \
 382             pos = list_entry_rcu((head)->next, typeof(*pos), member);  \
 383                &pos->member != (head);                                 \
 384                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 385
 386/**
 387 * list_entry_lockless - get the struct for this entry
 388 * @ptr:        the &struct list_head pointer.
 389 * @type:       the type of the struct this is embedded in.
 390 * @member:     the name of the list_head within the struct.
 391 *
 392 * This primitive may safely run concurrently with the _rcu
 393 * list-mutation primitives such as list_add_rcu(), but requires some
 394 * implicit RCU read-side guarding.  One example is running within a special
 395 * exception-time environment where preemption is disabled and where lockdep
 396 * cannot be invoked.  Another example is when items are added to the list,
 397 * but never deleted.
 398 */
 399#define list_entry_lockless(ptr, type, member) \
 400        container_of((typeof(ptr))READ_ONCE(ptr), type, member)
 401
 402/**
 403 * list_for_each_entry_lockless - iterate over rcu list of given type
 404 * @pos:        the type * to use as a loop cursor.
 405 * @head:       the head for your list.
 406 * @member:     the name of the list_struct within the struct.
 407 *
 408 * This primitive may safely run concurrently with the _rcu
 409 * list-mutation primitives such as list_add_rcu(), but requires some
 410 * implicit RCU read-side guarding.  One example is running within a special
 411 * exception-time environment where preemption is disabled and where lockdep
 412 * cannot be invoked.  Another example is when items are added to the list,
 413 * but never deleted.
 414 */
 415#define list_for_each_entry_lockless(pos, head, member) \
 416        for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
 417             &pos->member != (head); \
 418             pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
 419
 420/**
 421 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 422 * @pos:        the type * to use as a loop cursor.
 423 * @head:       the head for your list.
 424 * @member:     the name of the list_head within the struct.
 425 *
 426 * Continue to iterate over list of given type, continuing after
 427 * the current position which must have been in the list when the RCU read
 428 * lock was taken.
 429 * This would typically require either that you obtained the node from a
 430 * previous walk of the list in the same RCU read-side critical section, or
 431 * that you held some sort of non-RCU reference (such as a reference count)
 432 * to keep the node alive *and* in the list.
 433 *
 434 * This iterator is similar to list_for_each_entry_from_rcu() except
 435 * this starts after the given position and that one starts at the given
 436 * position.
 437 */
 438#define list_for_each_entry_continue_rcu(pos, head, member)             \
 439        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 440             &pos->member != (head);    \
 441             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 442
 443/**
 444 * list_for_each_entry_from_rcu - iterate over a list from current point
 445 * @pos:        the type * to use as a loop cursor.
 446 * @head:       the head for your list.
 447 * @member:     the name of the list_node within the struct.
 448 *
 449 * Iterate over the tail of a list starting from a given position,
 450 * which must have been in the list when the RCU read lock was taken.
 451 * This would typically require either that you obtained the node from a
 452 * previous walk of the list in the same RCU read-side critical section, or
 453 * that you held some sort of non-RCU reference (such as a reference count)
 454 * to keep the node alive *and* in the list.
 455 *
 456 * This iterator is similar to list_for_each_entry_continue_rcu() except
 457 * this starts from the given position and that one starts from the position
 458 * after the given position.
 459 */
 460#define list_for_each_entry_from_rcu(pos, head, member)                 \
 461        for (; &(pos)->member != (head);                                        \
 462                pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
 463
 464/**
 465 * hlist_del_rcu - deletes entry from hash list without re-initialization
 466 * @n: the element to delete from the hash list.
 467 *
 468 * Note: list_unhashed() on entry does not return true after this,
 469 * the entry is in an undefined state. It is useful for RCU based
 470 * lockfree traversal.
 471 *
 472 * In particular, it means that we can not poison the forward
 473 * pointers that may still be used for walking the hash list.
 474 *
 475 * The caller must take whatever precautions are necessary
 476 * (such as holding appropriate locks) to avoid racing
 477 * with another list-mutation primitive, such as hlist_add_head_rcu()
 478 * or hlist_del_rcu(), running on this same list.
 479 * However, it is perfectly legal to run concurrently with
 480 * the _rcu list-traversal primitives, such as
 481 * hlist_for_each_entry().
 482 */
 483static inline void hlist_del_rcu(struct hlist_node *n)
 484{
 485        __hlist_del(n);
 486        WRITE_ONCE(n->pprev, LIST_POISON2);
 487}
 488
 489/**
 490 * hlist_replace_rcu - replace old entry by new one
 491 * @old : the element to be replaced
 492 * @new : the new element to insert
 493 *
 494 * The @old entry will be replaced with the @new entry atomically.
 495 */
 496static inline void hlist_replace_rcu(struct hlist_node *old,
 497                                        struct hlist_node *new)
 498{
 499        struct hlist_node *next = old->next;
 500
 501        new->next = next;
 502        WRITE_ONCE(new->pprev, old->pprev);
 503        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 504        if (next)
 505                WRITE_ONCE(new->next->pprev, &new->next);
 506        WRITE_ONCE(old->pprev, LIST_POISON2);
 507}
 508
 509/*
 510 * return the first or the next element in an RCU protected hlist
 511 */
 512#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 513#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 514#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 515
 516/**
 517 * hlist_add_head_rcu
 518 * @n: the element to add to the hash list.
 519 * @h: the list to add to.
 520 *
 521 * Description:
 522 * Adds the specified element to the specified hlist,
 523 * while permitting racing traversals.
 524 *
 525 * The caller must take whatever precautions are necessary
 526 * (such as holding appropriate locks) to avoid racing
 527 * with another list-mutation primitive, such as hlist_add_head_rcu()
 528 * or hlist_del_rcu(), running on this same list.
 529 * However, it is perfectly legal to run concurrently with
 530 * the _rcu list-traversal primitives, such as
 531 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 532 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 533 * list-traversal primitive must be guarded by rcu_read_lock().
 534 */
 535static inline void hlist_add_head_rcu(struct hlist_node *n,
 536                                        struct hlist_head *h)
 537{
 538        struct hlist_node *first = h->first;
 539
 540        n->next = first;
 541        WRITE_ONCE(n->pprev, &h->first);
 542        rcu_assign_pointer(hlist_first_rcu(h), n);
 543        if (first)
 544                WRITE_ONCE(first->pprev, &n->next);
 545}
 546
 547/**
 548 * hlist_add_tail_rcu
 549 * @n: the element to add to the hash list.
 550 * @h: the list to add to.
 551 *
 552 * Description:
 553 * Adds the specified element to the specified hlist,
 554 * while permitting racing traversals.
 555 *
 556 * The caller must take whatever precautions are necessary
 557 * (such as holding appropriate locks) to avoid racing
 558 * with another list-mutation primitive, such as hlist_add_head_rcu()
 559 * or hlist_del_rcu(), running on this same list.
 560 * However, it is perfectly legal to run concurrently with
 561 * the _rcu list-traversal primitives, such as
 562 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 563 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 564 * list-traversal primitive must be guarded by rcu_read_lock().
 565 */
 566static inline void hlist_add_tail_rcu(struct hlist_node *n,
 567                                      struct hlist_head *h)
 568{
 569        struct hlist_node *i, *last = NULL;
 570
 571        /* Note: write side code, so rcu accessors are not needed. */
 572        for (i = h->first; i; i = i->next)
 573                last = i;
 574
 575        if (last) {
 576                n->next = last->next;
 577                WRITE_ONCE(n->pprev, &last->next);
 578                rcu_assign_pointer(hlist_next_rcu(last), n);
 579        } else {
 580                hlist_add_head_rcu(n, h);
 581        }
 582}
 583
 584/**
 585 * hlist_add_before_rcu
 586 * @n: the new element to add to the hash list.
 587 * @next: the existing element to add the new element before.
 588 *
 589 * Description:
 590 * Adds the specified element to the specified hlist
 591 * before the specified node while permitting racing traversals.
 592 *
 593 * The caller must take whatever precautions are necessary
 594 * (such as holding appropriate locks) to avoid racing
 595 * with another list-mutation primitive, such as hlist_add_head_rcu()
 596 * or hlist_del_rcu(), running on this same list.
 597 * However, it is perfectly legal to run concurrently with
 598 * the _rcu list-traversal primitives, such as
 599 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 600 * problems on Alpha CPUs.
 601 */
 602static inline void hlist_add_before_rcu(struct hlist_node *n,
 603                                        struct hlist_node *next)
 604{
 605        WRITE_ONCE(n->pprev, next->pprev);
 606        n->next = next;
 607        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 608        WRITE_ONCE(next->pprev, &n->next);
 609}
 610
 611/**
 612 * hlist_add_behind_rcu
 613 * @n: the new element to add to the hash list.
 614 * @prev: the existing element to add the new element after.
 615 *
 616 * Description:
 617 * Adds the specified element to the specified hlist
 618 * after the specified node while permitting racing traversals.
 619 *
 620 * The caller must take whatever precautions are necessary
 621 * (such as holding appropriate locks) to avoid racing
 622 * with another list-mutation primitive, such as hlist_add_head_rcu()
 623 * or hlist_del_rcu(), running on this same list.
 624 * However, it is perfectly legal to run concurrently with
 625 * the _rcu list-traversal primitives, such as
 626 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 627 * problems on Alpha CPUs.
 628 */
 629static inline void hlist_add_behind_rcu(struct hlist_node *n,
 630                                        struct hlist_node *prev)
 631{
 632        n->next = prev->next;
 633        WRITE_ONCE(n->pprev, &prev->next);
 634        rcu_assign_pointer(hlist_next_rcu(prev), n);
 635        if (n->next)
 636                WRITE_ONCE(n->next->pprev, &n->next);
 637}
 638
 639#define __hlist_for_each_rcu(pos, head)                         \
 640        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 641             pos;                                               \
 642             pos = rcu_dereference(hlist_next_rcu(pos)))
 643
 644/**
 645 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 646 * @pos:        the type * to use as a loop cursor.
 647 * @head:       the head for your list.
 648 * @member:     the name of the hlist_node within the struct.
 649 * @cond...:    optional lockdep expression if called from non-RCU protection.
 650 *
 651 * This list-traversal primitive may safely run concurrently with
 652 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 653 * as long as the traversal is guarded by rcu_read_lock().
 654 */
 655#define hlist_for_each_entry_rcu(pos, head, member, cond...)            \
 656        for (__list_check_rcu(dummy, ## cond, 0),                       \
 657             pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
 658                        typeof(*(pos)), member);                        \
 659                pos;                                                    \
 660                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 661                        &(pos)->member)), typeof(*(pos)), member))
 662
 663/**
 664 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 665 * @pos:        the type * to use as a loop cursor.
 666 * @head:       the head for your list.
 667 * @member:     the name of the hlist_node within the struct.
 668 *
 669 * This list-traversal primitive may safely run concurrently with
 670 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 671 * as long as the traversal is guarded by rcu_read_lock().
 672 *
 673 * This is the same as hlist_for_each_entry_rcu() except that it does
 674 * not do any RCU debugging or tracing.
 675 */
 676#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 677        for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
 678                        typeof(*(pos)), member);                        \
 679                pos;                                                    \
 680                pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
 681                        &(pos)->member)), typeof(*(pos)), member))
 682
 683/**
 684 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 685 * @pos:        the type * to use as a loop cursor.
 686 * @head:       the head for your list.
 687 * @member:     the name of the hlist_node within the struct.
 688 *
 689 * This list-traversal primitive may safely run concurrently with
 690 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 691 * as long as the traversal is guarded by rcu_read_lock().
 692 */
 693#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 694        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 695                        typeof(*(pos)), member);                        \
 696                pos;                                                    \
 697                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 698                        &(pos)->member)), typeof(*(pos)), member))
 699
 700/**
 701 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 702 * @pos:        the type * to use as a loop cursor.
 703 * @member:     the name of the hlist_node within the struct.
 704 */
 705#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 706        for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 707                        &(pos)->member)), typeof(*(pos)), member);      \
 708             pos;                                                       \
 709             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 710                        &(pos)->member)), typeof(*(pos)), member))
 711
 712/**
 713 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 714 * @pos:        the type * to use as a loop cursor.
 715 * @member:     the name of the hlist_node within the struct.
 716 */
 717#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 718        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 719                        &(pos)->member)), typeof(*(pos)), member);      \
 720             pos;                                                       \
 721             pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 722                        &(pos)->member)), typeof(*(pos)), member))
 723
 724/**
 725 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
 726 * @pos:        the type * to use as a loop cursor.
 727 * @member:     the name of the hlist_node within the struct.
 728 */
 729#define hlist_for_each_entry_from_rcu(pos, member)                      \
 730        for (; pos;                                                     \
 731             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 732                        &(pos)->member)), typeof(*(pos)), member))
 733
 734#endif  /* __KERNEL__ */
 735#endif
 736