linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8 *
   9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11 * Papers:
  12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14 *
  15 * For detailed explanation of Read-Copy Update mechanism see -
  16 *              http://lse.sourceforge.net/locking/rcupdate.html
  17 *
  18 */
  19
  20#ifndef __LINUX_RCUPDATE_H
  21#define __LINUX_RCUPDATE_H
  22
  23#include <linux/types.h>
  24#include <linux/compiler.h>
  25#include <linux/atomic.h>
  26#include <linux/irqflags.h>
  27#include <linux/preempt.h>
  28#include <linux/bottom_half.h>
  29#include <linux/lockdep.h>
  30#include <asm/processor.h>
  31#include <linux/cpumask.h>
  32
  33#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  34#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  35#define ulong2long(a)           (*(long *)(&(a)))
  36
  37/* Exported common interfaces */
  38void call_rcu(struct rcu_head *head, rcu_callback_t func);
  39void rcu_barrier_tasks(void);
  40void synchronize_rcu(void);
  41
  42#ifdef CONFIG_PREEMPT_RCU
  43
  44void __rcu_read_lock(void);
  45void __rcu_read_unlock(void);
  46
  47/*
  48 * Defined as a macro as it is a very low level header included from
  49 * areas that don't even know about current.  This gives the rcu_read_lock()
  50 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  51 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  52 */
  53#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
  54
  55#else /* #ifdef CONFIG_PREEMPT_RCU */
  56
  57static inline void __rcu_read_lock(void)
  58{
  59        preempt_disable();
  60}
  61
  62static inline void __rcu_read_unlock(void)
  63{
  64        preempt_enable();
  65}
  66
  67static inline int rcu_preempt_depth(void)
  68{
  69        return 0;
  70}
  71
  72#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  73
  74/* Internal to kernel */
  75void rcu_init(void);
  76extern int rcu_scheduler_active __read_mostly;
  77void rcu_sched_clock_irq(int user);
  78void rcu_report_dead(unsigned int cpu);
  79void rcutree_migrate_callbacks(int cpu);
  80
  81#ifdef CONFIG_RCU_STALL_COMMON
  82void rcu_sysrq_start(void);
  83void rcu_sysrq_end(void);
  84#else /* #ifdef CONFIG_RCU_STALL_COMMON */
  85static inline void rcu_sysrq_start(void) { }
  86static inline void rcu_sysrq_end(void) { }
  87#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
  88
  89#ifdef CONFIG_NO_HZ_FULL
  90void rcu_user_enter(void);
  91void rcu_user_exit(void);
  92#else
  93static inline void rcu_user_enter(void) { }
  94static inline void rcu_user_exit(void) { }
  95#endif /* CONFIG_NO_HZ_FULL */
  96
  97#ifdef CONFIG_RCU_NOCB_CPU
  98void rcu_init_nohz(void);
  99#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 100static inline void rcu_init_nohz(void) { }
 101#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 102
 103/**
 104 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 105 * @a: Code that RCU needs to pay attention to.
 106 *
 107 * RCU read-side critical sections are forbidden in the inner idle loop,
 108 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 109 * will happily ignore any such read-side critical sections.  However,
 110 * things like powertop need tracepoints in the inner idle loop.
 111 *
 112 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 113 * will tell RCU that it needs to pay attention, invoke its argument
 114 * (in this example, calling the do_something_with_RCU() function),
 115 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 116 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 117 * on the order of a million or so, even on 32-bit systems).  It is
 118 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 119 * transfer control either into or out of RCU_NONIDLE()'s statement.
 120 */
 121#define RCU_NONIDLE(a) \
 122        do { \
 123                rcu_irq_enter_irqson(); \
 124                do { a; } while (0); \
 125                rcu_irq_exit_irqson(); \
 126        } while (0)
 127
 128/*
 129 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 130 * This is a macro rather than an inline function to avoid #include hell.
 131 */
 132#ifdef CONFIG_TASKS_RCU
 133#define rcu_tasks_qs(t) \
 134        do { \
 135                if (READ_ONCE((t)->rcu_tasks_holdout)) \
 136                        WRITE_ONCE((t)->rcu_tasks_holdout, false); \
 137        } while (0)
 138#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
 139void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 140void synchronize_rcu_tasks(void);
 141void exit_tasks_rcu_start(void);
 142void exit_tasks_rcu_finish(void);
 143#else /* #ifdef CONFIG_TASKS_RCU */
 144#define rcu_tasks_qs(t) do { } while (0)
 145#define rcu_note_voluntary_context_switch(t) do { } while (0)
 146#define call_rcu_tasks call_rcu
 147#define synchronize_rcu_tasks synchronize_rcu
 148static inline void exit_tasks_rcu_start(void) { }
 149static inline void exit_tasks_rcu_finish(void) { }
 150#endif /* #else #ifdef CONFIG_TASKS_RCU */
 151
 152/**
 153 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 154 *
 155 * This macro resembles cond_resched(), except that it is defined to
 156 * report potential quiescent states to RCU-tasks even if the cond_resched()
 157 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
 158 */
 159#define cond_resched_tasks_rcu_qs() \
 160do { \
 161        rcu_tasks_qs(current); \
 162        cond_resched(); \
 163} while (0)
 164
 165/*
 166 * Infrastructure to implement the synchronize_() primitives in
 167 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 168 */
 169
 170#if defined(CONFIG_TREE_RCU)
 171#include <linux/rcutree.h>
 172#elif defined(CONFIG_TINY_RCU)
 173#include <linux/rcutiny.h>
 174#else
 175#error "Unknown RCU implementation specified to kernel configuration"
 176#endif
 177
 178/*
 179 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 180 * are needed for dynamic initialization and destruction of rcu_head
 181 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 182 * dynamic initialization and destruction of statically allocated rcu_head
 183 * structures.  However, rcu_head structures allocated dynamically in the
 184 * heap don't need any initialization.
 185 */
 186#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 187void init_rcu_head(struct rcu_head *head);
 188void destroy_rcu_head(struct rcu_head *head);
 189void init_rcu_head_on_stack(struct rcu_head *head);
 190void destroy_rcu_head_on_stack(struct rcu_head *head);
 191#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 192static inline void init_rcu_head(struct rcu_head *head) { }
 193static inline void destroy_rcu_head(struct rcu_head *head) { }
 194static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 195static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 196#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 197
 198#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 199bool rcu_lockdep_current_cpu_online(void);
 200#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 201static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 202#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 203
 204#ifdef CONFIG_DEBUG_LOCK_ALLOC
 205
 206static inline void rcu_lock_acquire(struct lockdep_map *map)
 207{
 208        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 209}
 210
 211static inline void rcu_lock_release(struct lockdep_map *map)
 212{
 213        lock_release(map, _THIS_IP_);
 214}
 215
 216extern struct lockdep_map rcu_lock_map;
 217extern struct lockdep_map rcu_bh_lock_map;
 218extern struct lockdep_map rcu_sched_lock_map;
 219extern struct lockdep_map rcu_callback_map;
 220int debug_lockdep_rcu_enabled(void);
 221int rcu_read_lock_held(void);
 222int rcu_read_lock_bh_held(void);
 223int rcu_read_lock_sched_held(void);
 224int rcu_read_lock_any_held(void);
 225
 226#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 227
 228# define rcu_lock_acquire(a)            do { } while (0)
 229# define rcu_lock_release(a)            do { } while (0)
 230
 231static inline int rcu_read_lock_held(void)
 232{
 233        return 1;
 234}
 235
 236static inline int rcu_read_lock_bh_held(void)
 237{
 238        return 1;
 239}
 240
 241static inline int rcu_read_lock_sched_held(void)
 242{
 243        return !preemptible();
 244}
 245
 246static inline int rcu_read_lock_any_held(void)
 247{
 248        return !preemptible();
 249}
 250
 251#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 252
 253#ifdef CONFIG_PROVE_RCU
 254
 255/**
 256 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 257 * @c: condition to check
 258 * @s: informative message
 259 */
 260#define RCU_LOCKDEP_WARN(c, s)                                          \
 261        do {                                                            \
 262                static bool __section(.data.unlikely) __warned;         \
 263                if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 264                        __warned = true;                                \
 265                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 266                }                                                       \
 267        } while (0)
 268
 269#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 270static inline void rcu_preempt_sleep_check(void)
 271{
 272        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 273                         "Illegal context switch in RCU read-side critical section");
 274}
 275#else /* #ifdef CONFIG_PROVE_RCU */
 276static inline void rcu_preempt_sleep_check(void) { }
 277#endif /* #else #ifdef CONFIG_PROVE_RCU */
 278
 279#define rcu_sleep_check()                                               \
 280        do {                                                            \
 281                rcu_preempt_sleep_check();                              \
 282                RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 283                                 "Illegal context switch in RCU-bh read-side critical section"); \
 284                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 285                                 "Illegal context switch in RCU-sched read-side critical section"); \
 286        } while (0)
 287
 288#else /* #ifdef CONFIG_PROVE_RCU */
 289
 290#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 291#define rcu_sleep_check() do { } while (0)
 292
 293#endif /* #else #ifdef CONFIG_PROVE_RCU */
 294
 295/*
 296 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 297 * and rcu_assign_pointer().  Some of these could be folded into their
 298 * callers, but they are left separate in order to ease introduction of
 299 * multiple pointers markings to match different RCU implementations
 300 * (e.g., __srcu), should this make sense in the future.
 301 */
 302
 303#ifdef __CHECKER__
 304#define rcu_check_sparse(p, space) \
 305        ((void)(((typeof(*p) space *)p) == p))
 306#else /* #ifdef __CHECKER__ */
 307#define rcu_check_sparse(p, space)
 308#endif /* #else #ifdef __CHECKER__ */
 309
 310#define __rcu_access_pointer(p, space) \
 311({ \
 312        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 313        rcu_check_sparse(p, space); \
 314        ((typeof(*p) __force __kernel *)(_________p1)); \
 315})
 316#define __rcu_dereference_check(p, c, space) \
 317({ \
 318        /* Dependency order vs. p above. */ \
 319        typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 320        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 321        rcu_check_sparse(p, space); \
 322        ((typeof(*p) __force __kernel *)(________p1)); \
 323})
 324#define __rcu_dereference_protected(p, c, space) \
 325({ \
 326        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 327        rcu_check_sparse(p, space); \
 328        ((typeof(*p) __force __kernel *)(p)); \
 329})
 330#define rcu_dereference_raw(p) \
 331({ \
 332        /* Dependency order vs. p above. */ \
 333        typeof(p) ________p1 = READ_ONCE(p); \
 334        ((typeof(*p) __force __kernel *)(________p1)); \
 335})
 336
 337/**
 338 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 339 * @v: The value to statically initialize with.
 340 */
 341#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 342
 343/**
 344 * rcu_assign_pointer() - assign to RCU-protected pointer
 345 * @p: pointer to assign to
 346 * @v: value to assign (publish)
 347 *
 348 * Assigns the specified value to the specified RCU-protected
 349 * pointer, ensuring that any concurrent RCU readers will see
 350 * any prior initialization.
 351 *
 352 * Inserts memory barriers on architectures that require them
 353 * (which is most of them), and also prevents the compiler from
 354 * reordering the code that initializes the structure after the pointer
 355 * assignment.  More importantly, this call documents which pointers
 356 * will be dereferenced by RCU read-side code.
 357 *
 358 * In some special cases, you may use RCU_INIT_POINTER() instead
 359 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 360 * to the fact that it does not constrain either the CPU or the compiler.
 361 * That said, using RCU_INIT_POINTER() when you should have used
 362 * rcu_assign_pointer() is a very bad thing that results in
 363 * impossible-to-diagnose memory corruption.  So please be careful.
 364 * See the RCU_INIT_POINTER() comment header for details.
 365 *
 366 * Note that rcu_assign_pointer() evaluates each of its arguments only
 367 * once, appearances notwithstanding.  One of the "extra" evaluations
 368 * is in typeof() and the other visible only to sparse (__CHECKER__),
 369 * neither of which actually execute the argument.  As with most cpp
 370 * macros, this execute-arguments-only-once property is important, so
 371 * please be careful when making changes to rcu_assign_pointer() and the
 372 * other macros that it invokes.
 373 */
 374#define rcu_assign_pointer(p, v)                                              \
 375do {                                                                          \
 376        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 377        rcu_check_sparse(p, __rcu);                                           \
 378                                                                              \
 379        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 380                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 381        else                                                                  \
 382                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 383} while (0)
 384
 385/**
 386 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
 387 * @rcu_ptr: RCU pointer, whose old value is returned
 388 * @ptr: regular pointer
 389 * @c: the lockdep conditions under which the dereference will take place
 390 *
 391 * Perform a replacement, where @rcu_ptr is an RCU-annotated
 392 * pointer and @c is the lockdep argument that is passed to the
 393 * rcu_dereference_protected() call used to read that pointer.  The old
 394 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
 395 */
 396#define rcu_replace_pointer(rcu_ptr, ptr, c)                            \
 397({                                                                      \
 398        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 399        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 400        __tmp;                                                          \
 401})
 402
 403/**
 404 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 405 * @p: The pointer to read
 406 *
 407 * Return the value of the specified RCU-protected pointer, but omit the
 408 * lockdep checks for being in an RCU read-side critical section.  This is
 409 * useful when the value of this pointer is accessed, but the pointer is
 410 * not dereferenced, for example, when testing an RCU-protected pointer
 411 * against NULL.  Although rcu_access_pointer() may also be used in cases
 412 * where update-side locks prevent the value of the pointer from changing,
 413 * you should instead use rcu_dereference_protected() for this use case.
 414 *
 415 * It is also permissible to use rcu_access_pointer() when read-side
 416 * access to the pointer was removed at least one grace period ago, as
 417 * is the case in the context of the RCU callback that is freeing up
 418 * the data, or after a synchronize_rcu() returns.  This can be useful
 419 * when tearing down multi-linked structures after a grace period
 420 * has elapsed.
 421 */
 422#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 423
 424/**
 425 * rcu_dereference_check() - rcu_dereference with debug checking
 426 * @p: The pointer to read, prior to dereferencing
 427 * @c: The conditions under which the dereference will take place
 428 *
 429 * Do an rcu_dereference(), but check that the conditions under which the
 430 * dereference will take place are correct.  Typically the conditions
 431 * indicate the various locking conditions that should be held at that
 432 * point.  The check should return true if the conditions are satisfied.
 433 * An implicit check for being in an RCU read-side critical section
 434 * (rcu_read_lock()) is included.
 435 *
 436 * For example:
 437 *
 438 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 439 *
 440 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 441 * if either rcu_read_lock() is held, or that the lock required to replace
 442 * the bar struct at foo->bar is held.
 443 *
 444 * Note that the list of conditions may also include indications of when a lock
 445 * need not be held, for example during initialisation or destruction of the
 446 * target struct:
 447 *
 448 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 449 *                                            atomic_read(&foo->usage) == 0);
 450 *
 451 * Inserts memory barriers on architectures that require them
 452 * (currently only the Alpha), prevents the compiler from refetching
 453 * (and from merging fetches), and, more importantly, documents exactly
 454 * which pointers are protected by RCU and checks that the pointer is
 455 * annotated as __rcu.
 456 */
 457#define rcu_dereference_check(p, c) \
 458        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 459
 460/**
 461 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 462 * @p: The pointer to read, prior to dereferencing
 463 * @c: The conditions under which the dereference will take place
 464 *
 465 * This is the RCU-bh counterpart to rcu_dereference_check().
 466 */
 467#define rcu_dereference_bh_check(p, c) \
 468        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 469
 470/**
 471 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 472 * @p: The pointer to read, prior to dereferencing
 473 * @c: The conditions under which the dereference will take place
 474 *
 475 * This is the RCU-sched counterpart to rcu_dereference_check().
 476 */
 477#define rcu_dereference_sched_check(p, c) \
 478        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 479                                __rcu)
 480
 481/*
 482 * The tracing infrastructure traces RCU (we want that), but unfortunately
 483 * some of the RCU checks causes tracing to lock up the system.
 484 *
 485 * The no-tracing version of rcu_dereference_raw() must not call
 486 * rcu_read_lock_held().
 487 */
 488#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
 489
 490/**
 491 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 492 * @p: The pointer to read, prior to dereferencing
 493 * @c: The conditions under which the dereference will take place
 494 *
 495 * Return the value of the specified RCU-protected pointer, but omit
 496 * the READ_ONCE().  This is useful in cases where update-side locks
 497 * prevent the value of the pointer from changing.  Please note that this
 498 * primitive does *not* prevent the compiler from repeating this reference
 499 * or combining it with other references, so it should not be used without
 500 * protection of appropriate locks.
 501 *
 502 * This function is only for update-side use.  Using this function
 503 * when protected only by rcu_read_lock() will result in infrequent
 504 * but very ugly failures.
 505 */
 506#define rcu_dereference_protected(p, c) \
 507        __rcu_dereference_protected((p), (c), __rcu)
 508
 509
 510/**
 511 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 512 * @p: The pointer to read, prior to dereferencing
 513 *
 514 * This is a simple wrapper around rcu_dereference_check().
 515 */
 516#define rcu_dereference(p) rcu_dereference_check(p, 0)
 517
 518/**
 519 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 520 * @p: The pointer to read, prior to dereferencing
 521 *
 522 * Makes rcu_dereference_check() do the dirty work.
 523 */
 524#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 525
 526/**
 527 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 528 * @p: The pointer to read, prior to dereferencing
 529 *
 530 * Makes rcu_dereference_check() do the dirty work.
 531 */
 532#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 533
 534/**
 535 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 536 * @p: The pointer to hand off
 537 *
 538 * This is simply an identity function, but it documents where a pointer
 539 * is handed off from RCU to some other synchronization mechanism, for
 540 * example, reference counting or locking.  In C11, it would map to
 541 * kill_dependency().  It could be used as follows::
 542 *
 543 *      rcu_read_lock();
 544 *      p = rcu_dereference(gp);
 545 *      long_lived = is_long_lived(p);
 546 *      if (long_lived) {
 547 *              if (!atomic_inc_not_zero(p->refcnt))
 548 *                      long_lived = false;
 549 *              else
 550 *                      p = rcu_pointer_handoff(p);
 551 *      }
 552 *      rcu_read_unlock();
 553 */
 554#define rcu_pointer_handoff(p) (p)
 555
 556/**
 557 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 558 *
 559 * When synchronize_rcu() is invoked on one CPU while other CPUs
 560 * are within RCU read-side critical sections, then the
 561 * synchronize_rcu() is guaranteed to block until after all the other
 562 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 563 * on one CPU while other CPUs are within RCU read-side critical
 564 * sections, invocation of the corresponding RCU callback is deferred
 565 * until after the all the other CPUs exit their critical sections.
 566 *
 567 * Note, however, that RCU callbacks are permitted to run concurrently
 568 * with new RCU read-side critical sections.  One way that this can happen
 569 * is via the following sequence of events: (1) CPU 0 enters an RCU
 570 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 571 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 572 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 573 * callback is invoked.  This is legal, because the RCU read-side critical
 574 * section that was running concurrently with the call_rcu() (and which
 575 * therefore might be referencing something that the corresponding RCU
 576 * callback would free up) has completed before the corresponding
 577 * RCU callback is invoked.
 578 *
 579 * RCU read-side critical sections may be nested.  Any deferred actions
 580 * will be deferred until the outermost RCU read-side critical section
 581 * completes.
 582 *
 583 * You can avoid reading and understanding the next paragraph by
 584 * following this rule: don't put anything in an rcu_read_lock() RCU
 585 * read-side critical section that would block in a !PREEMPTION kernel.
 586 * But if you want the full story, read on!
 587 *
 588 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
 589 * it is illegal to block while in an RCU read-side critical section.
 590 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 591 * kernel builds, RCU read-side critical sections may be preempted,
 592 * but explicit blocking is illegal.  Finally, in preemptible RCU
 593 * implementations in real-time (with -rt patchset) kernel builds, RCU
 594 * read-side critical sections may be preempted and they may also block, but
 595 * only when acquiring spinlocks that are subject to priority inheritance.
 596 */
 597static __always_inline void rcu_read_lock(void)
 598{
 599        __rcu_read_lock();
 600        __acquire(RCU);
 601        rcu_lock_acquire(&rcu_lock_map);
 602        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 603                         "rcu_read_lock() used illegally while idle");
 604}
 605
 606/*
 607 * So where is rcu_write_lock()?  It does not exist, as there is no
 608 * way for writers to lock out RCU readers.  This is a feature, not
 609 * a bug -- this property is what provides RCU's performance benefits.
 610 * Of course, writers must coordinate with each other.  The normal
 611 * spinlock primitives work well for this, but any other technique may be
 612 * used as well.  RCU does not care how the writers keep out of each
 613 * others' way, as long as they do so.
 614 */
 615
 616/**
 617 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 618 *
 619 * In most situations, rcu_read_unlock() is immune from deadlock.
 620 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 621 * is responsible for deboosting, which it does via rt_mutex_unlock().
 622 * Unfortunately, this function acquires the scheduler's runqueue and
 623 * priority-inheritance spinlocks.  This means that deadlock could result
 624 * if the caller of rcu_read_unlock() already holds one of these locks or
 625 * any lock that is ever acquired while holding them.
 626 *
 627 * That said, RCU readers are never priority boosted unless they were
 628 * preempted.  Therefore, one way to avoid deadlock is to make sure
 629 * that preemption never happens within any RCU read-side critical
 630 * section whose outermost rcu_read_unlock() is called with one of
 631 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 632 * a number of ways, for example, by invoking preempt_disable() before
 633 * critical section's outermost rcu_read_lock().
 634 *
 635 * Given that the set of locks acquired by rt_mutex_unlock() might change
 636 * at any time, a somewhat more future-proofed approach is to make sure
 637 * that that preemption never happens within any RCU read-side critical
 638 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 639 * This approach relies on the fact that rt_mutex_unlock() currently only
 640 * acquires irq-disabled locks.
 641 *
 642 * The second of these two approaches is best in most situations,
 643 * however, the first approach can also be useful, at least to those
 644 * developers willing to keep abreast of the set of locks acquired by
 645 * rt_mutex_unlock().
 646 *
 647 * See rcu_read_lock() for more information.
 648 */
 649static inline void rcu_read_unlock(void)
 650{
 651        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 652                         "rcu_read_unlock() used illegally while idle");
 653        __release(RCU);
 654        __rcu_read_unlock();
 655        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 656}
 657
 658/**
 659 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 660 *
 661 * This is equivalent of rcu_read_lock(), but also disables softirqs.
 662 * Note that anything else that disables softirqs can also serve as
 663 * an RCU read-side critical section.
 664 *
 665 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 666 * must occur in the same context, for example, it is illegal to invoke
 667 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 668 * was invoked from some other task.
 669 */
 670static inline void rcu_read_lock_bh(void)
 671{
 672        local_bh_disable();
 673        __acquire(RCU_BH);
 674        rcu_lock_acquire(&rcu_bh_lock_map);
 675        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 676                         "rcu_read_lock_bh() used illegally while idle");
 677}
 678
 679/*
 680 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 681 *
 682 * See rcu_read_lock_bh() for more information.
 683 */
 684static inline void rcu_read_unlock_bh(void)
 685{
 686        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 687                         "rcu_read_unlock_bh() used illegally while idle");
 688        rcu_lock_release(&rcu_bh_lock_map);
 689        __release(RCU_BH);
 690        local_bh_enable();
 691}
 692
 693/**
 694 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 695 *
 696 * This is equivalent of rcu_read_lock(), but disables preemption.
 697 * Read-side critical sections can also be introduced by anything else
 698 * that disables preemption, including local_irq_disable() and friends.
 699 *
 700 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 701 * must occur in the same context, for example, it is illegal to invoke
 702 * rcu_read_unlock_sched() from process context if the matching
 703 * rcu_read_lock_sched() was invoked from an NMI handler.
 704 */
 705static inline void rcu_read_lock_sched(void)
 706{
 707        preempt_disable();
 708        __acquire(RCU_SCHED);
 709        rcu_lock_acquire(&rcu_sched_lock_map);
 710        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 711                         "rcu_read_lock_sched() used illegally while idle");
 712}
 713
 714/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 715static inline notrace void rcu_read_lock_sched_notrace(void)
 716{
 717        preempt_disable_notrace();
 718        __acquire(RCU_SCHED);
 719}
 720
 721/*
 722 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 723 *
 724 * See rcu_read_lock_sched for more information.
 725 */
 726static inline void rcu_read_unlock_sched(void)
 727{
 728        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 729                         "rcu_read_unlock_sched() used illegally while idle");
 730        rcu_lock_release(&rcu_sched_lock_map);
 731        __release(RCU_SCHED);
 732        preempt_enable();
 733}
 734
 735/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 736static inline notrace void rcu_read_unlock_sched_notrace(void)
 737{
 738        __release(RCU_SCHED);
 739        preempt_enable_notrace();
 740}
 741
 742/**
 743 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 744 * @p: The pointer to be initialized.
 745 * @v: The value to initialized the pointer to.
 746 *
 747 * Initialize an RCU-protected pointer in special cases where readers
 748 * do not need ordering constraints on the CPU or the compiler.  These
 749 * special cases are:
 750 *
 751 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 752 * 2.   The caller has taken whatever steps are required to prevent
 753 *      RCU readers from concurrently accessing this pointer *or*
 754 * 3.   The referenced data structure has already been exposed to
 755 *      readers either at compile time or via rcu_assign_pointer() *and*
 756 *
 757 *      a.      You have not made *any* reader-visible changes to
 758 *              this structure since then *or*
 759 *      b.      It is OK for readers accessing this structure from its
 760 *              new location to see the old state of the structure.  (For
 761 *              example, the changes were to statistical counters or to
 762 *              other state where exact synchronization is not required.)
 763 *
 764 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 765 * result in impossible-to-diagnose memory corruption.  As in the structures
 766 * will look OK in crash dumps, but any concurrent RCU readers might
 767 * see pre-initialized values of the referenced data structure.  So
 768 * please be very careful how you use RCU_INIT_POINTER()!!!
 769 *
 770 * If you are creating an RCU-protected linked structure that is accessed
 771 * by a single external-to-structure RCU-protected pointer, then you may
 772 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 773 * pointers, but you must use rcu_assign_pointer() to initialize the
 774 * external-to-structure pointer *after* you have completely initialized
 775 * the reader-accessible portions of the linked structure.
 776 *
 777 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 778 * ordering guarantees for either the CPU or the compiler.
 779 */
 780#define RCU_INIT_POINTER(p, v) \
 781        do { \
 782                rcu_check_sparse(p, __rcu); \
 783                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 784        } while (0)
 785
 786/**
 787 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 788 * @p: The pointer to be initialized.
 789 * @v: The value to initialized the pointer to.
 790 *
 791 * GCC-style initialization for an RCU-protected pointer in a structure field.
 792 */
 793#define RCU_POINTER_INITIALIZER(p, v) \
 794                .p = RCU_INITIALIZER(v)
 795
 796/*
 797 * Does the specified offset indicate that the corresponding rcu_head
 798 * structure can be handled by kfree_rcu()?
 799 */
 800#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
 801
 802/*
 803 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 804 */
 805#define __kfree_rcu(head, offset) \
 806        do { \
 807                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
 808                kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
 809        } while (0)
 810
 811/**
 812 * kfree_rcu() - kfree an object after a grace period.
 813 * @ptr:        pointer to kfree
 814 * @rhf:        the name of the struct rcu_head within the type of @ptr.
 815 *
 816 * Many rcu callbacks functions just call kfree() on the base structure.
 817 * These functions are trivial, but their size adds up, and furthermore
 818 * when they are used in a kernel module, that module must invoke the
 819 * high-latency rcu_barrier() function at module-unload time.
 820 *
 821 * The kfree_rcu() function handles this issue.  Rather than encoding a
 822 * function address in the embedded rcu_head structure, kfree_rcu() instead
 823 * encodes the offset of the rcu_head structure within the base structure.
 824 * Because the functions are not allowed in the low-order 4096 bytes of
 825 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 826 * If the offset is larger than 4095 bytes, a compile-time error will
 827 * be generated in __kfree_rcu().  If this error is triggered, you can
 828 * either fall back to use of call_rcu() or rearrange the structure to
 829 * position the rcu_head structure into the first 4096 bytes.
 830 *
 831 * Note that the allowable offset might decrease in the future, for example,
 832 * to allow something like kmem_cache_free_rcu().
 833 *
 834 * The BUILD_BUG_ON check must not involve any function calls, hence the
 835 * checks are done in macros here.
 836 */
 837#define kfree_rcu(ptr, rhf)                                             \
 838do {                                                                    \
 839        typeof (ptr) ___p = (ptr);                                      \
 840                                                                        \
 841        if (___p)                                                       \
 842                __kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
 843} while (0)
 844
 845/*
 846 * Place this after a lock-acquisition primitive to guarantee that
 847 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 848 * if the UNLOCK and LOCK are executed by the same CPU or if the
 849 * UNLOCK and LOCK operate on the same lock variable.
 850 */
 851#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 852#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 853#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 854#define smp_mb__after_unlock_lock()     do { } while (0)
 855#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 856
 857
 858/* Has the specified rcu_head structure been handed to call_rcu()? */
 859
 860/**
 861 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 862 * @rhp: The rcu_head structure to initialize.
 863 *
 864 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 865 * given rcu_head structure has already been passed to call_rcu(), then
 866 * you must also invoke this rcu_head_init() function on it just after
 867 * allocating that structure.  Calls to this function must not race with
 868 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 869 */
 870static inline void rcu_head_init(struct rcu_head *rhp)
 871{
 872        rhp->func = (rcu_callback_t)~0L;
 873}
 874
 875/**
 876 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
 877 * @rhp: The rcu_head structure to test.
 878 * @f: The function passed to call_rcu() along with @rhp.
 879 *
 880 * Returns @true if the @rhp has been passed to call_rcu() with @func,
 881 * and @false otherwise.  Emits a warning in any other case, including
 882 * the case where @rhp has already been invoked after a grace period.
 883 * Calls to this function must not race with callback invocation.  One way
 884 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
 885 * in an RCU read-side critical section that includes a read-side fetch
 886 * of the pointer to the structure containing @rhp.
 887 */
 888static inline bool
 889rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
 890{
 891        rcu_callback_t func = READ_ONCE(rhp->func);
 892
 893        if (func == f)
 894                return true;
 895        WARN_ON_ONCE(func != (rcu_callback_t)~0L);
 896        return false;
 897}
 898
 899/* kernel/ksysfs.c definitions */
 900extern int rcu_expedited;
 901extern int rcu_normal;
 902
 903#endif /* __LINUX_RCUPDATE_H */
 904