linux/include/linux/skbuff.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 *      Definitions for the 'struct sk_buff' memory handlers.
   4 *
   5 *      Authors:
   6 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   7 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   8 */
   9
  10#ifndef _LINUX_SKBUFF_H
  11#define _LINUX_SKBUFF_H
  12
  13#include <linux/kernel.h>
  14#include <linux/compiler.h>
  15#include <linux/time.h>
  16#include <linux/bug.h>
  17#include <linux/bvec.h>
  18#include <linux/cache.h>
  19#include <linux/rbtree.h>
  20#include <linux/socket.h>
  21#include <linux/refcount.h>
  22
  23#include <linux/atomic.h>
  24#include <asm/types.h>
  25#include <linux/spinlock.h>
  26#include <linux/net.h>
  27#include <linux/textsearch.h>
  28#include <net/checksum.h>
  29#include <linux/rcupdate.h>
  30#include <linux/hrtimer.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/netdev_features.h>
  33#include <linux/sched.h>
  34#include <linux/sched/clock.h>
  35#include <net/flow_dissector.h>
  36#include <linux/splice.h>
  37#include <linux/in6.h>
  38#include <linux/if_packet.h>
  39#include <net/flow.h>
  40#if IS_ENABLED(CONFIG_NF_CONNTRACK)
  41#include <linux/netfilter/nf_conntrack_common.h>
  42#endif
  43
  44/* The interface for checksum offload between the stack and networking drivers
  45 * is as follows...
  46 *
  47 * A. IP checksum related features
  48 *
  49 * Drivers advertise checksum offload capabilities in the features of a device.
  50 * From the stack's point of view these are capabilities offered by the driver.
  51 * A driver typically only advertises features that it is capable of offloading
  52 * to its device.
  53 *
  54 * The checksum related features are:
  55 *
  56 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  57 *                        IP (one's complement) checksum for any combination
  58 *                        of protocols or protocol layering. The checksum is
  59 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  60 *                        interface (see below).
  61 *
  62 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  63 *                        TCP or UDP packets over IPv4. These are specifically
  64 *                        unencapsulated packets of the form IPv4|TCP or
  65 *                        IPv4|UDP where the Protocol field in the IPv4 header
  66 *                        is TCP or UDP. The IPv4 header may contain IP options.
  67 *                        This feature cannot be set in features for a device
  68 *                        with NETIF_F_HW_CSUM also set. This feature is being
  69 *                        DEPRECATED (see below).
  70 *
  71 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  72 *                        TCP or UDP packets over IPv6. These are specifically
  73 *                        unencapsulated packets of the form IPv6|TCP or
  74 *                        IPv4|UDP where the Next Header field in the IPv6
  75 *                        header is either TCP or UDP. IPv6 extension headers
  76 *                        are not supported with this feature. This feature
  77 *                        cannot be set in features for a device with
  78 *                        NETIF_F_HW_CSUM also set. This feature is being
  79 *                        DEPRECATED (see below).
  80 *
  81 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  82 *                       This flag is only used to disable the RX checksum
  83 *                       feature for a device. The stack will accept receive
  84 *                       checksum indication in packets received on a device
  85 *                       regardless of whether NETIF_F_RXCSUM is set.
  86 *
  87 * B. Checksumming of received packets by device. Indication of checksum
  88 *    verification is set in skb->ip_summed. Possible values are:
  89 *
  90 * CHECKSUM_NONE:
  91 *
  92 *   Device did not checksum this packet e.g. due to lack of capabilities.
  93 *   The packet contains full (though not verified) checksum in packet but
  94 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  95 *
  96 * CHECKSUM_UNNECESSARY:
  97 *
  98 *   The hardware you're dealing with doesn't calculate the full checksum
  99 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 100 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 101 *   if their checksums are okay. skb->csum is still undefined in this case
 102 *   though. A driver or device must never modify the checksum field in the
 103 *   packet even if checksum is verified.
 104 *
 105 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 106 *     TCP: IPv6 and IPv4.
 107 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 108 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 109 *       may perform further validation in this case.
 110 *     GRE: only if the checksum is present in the header.
 111 *     SCTP: indicates the CRC in SCTP header has been validated.
 112 *     FCOE: indicates the CRC in FC frame has been validated.
 113 *
 114 *   skb->csum_level indicates the number of consecutive checksums found in
 115 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 116 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 117 *   and a device is able to verify the checksums for UDP (possibly zero),
 118 *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
 119 *   two. If the device were only able to verify the UDP checksum and not
 120 *   GRE, either because it doesn't support GRE checksum or because GRE
 121 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 122 *   not considered in this case).
 123 *
 124 * CHECKSUM_COMPLETE:
 125 *
 126 *   This is the most generic way. The device supplied checksum of the _whole_
 127 *   packet as seen by netif_rx() and fills in skb->csum. This means the
 128 *   hardware doesn't need to parse L3/L4 headers to implement this.
 129 *
 130 *   Notes:
 131 *   - Even if device supports only some protocols, but is able to produce
 132 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 133 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 134 *
 135 * CHECKSUM_PARTIAL:
 136 *
 137 *   A checksum is set up to be offloaded to a device as described in the
 138 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 139 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 140 *   on the same host, or it may be set in the input path in GRO or remote
 141 *   checksum offload. For the purposes of checksum verification, the checksum
 142 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 143 *   checksums in the packet are considered verified. Any checksums in the
 144 *   packet that are after the checksum being offloaded are not considered to
 145 *   be verified.
 146 *
 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 148 *    in the skb->ip_summed for a packet. Values are:
 149 *
 150 * CHECKSUM_PARTIAL:
 151 *
 152 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 153 *   from skb->csum_start up to the end, and to record/write the checksum at
 154 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 155 *   csum_start and csum_offset values are valid values given the length and
 156 *   offset of the packet, but it should not attempt to validate that the
 157 *   checksum refers to a legitimate transport layer checksum -- it is the
 158 *   purview of the stack to validate that csum_start and csum_offset are set
 159 *   correctly.
 160 *
 161 *   When the stack requests checksum offload for a packet, the driver MUST
 162 *   ensure that the checksum is set correctly. A driver can either offload the
 163 *   checksum calculation to the device, or call skb_checksum_help (in the case
 164 *   that the device does not support offload for a particular checksum).
 165 *
 166 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 167 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 168 *   checksum offload capability.
 169 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 170 *   on network device checksumming capabilities: if a packet does not match
 171 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 172 *   csum_not_inet, see item D.) is called to resolve the checksum.
 173 *
 174 * CHECKSUM_NONE:
 175 *
 176 *   The skb was already checksummed by the protocol, or a checksum is not
 177 *   required.
 178 *
 179 * CHECKSUM_UNNECESSARY:
 180 *
 181 *   This has the same meaning as CHECKSUM_NONE for checksum offload on
 182 *   output.
 183 *
 184 * CHECKSUM_COMPLETE:
 185 *   Not used in checksum output. If a driver observes a packet with this value
 186 *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
 187 *
 188 * D. Non-IP checksum (CRC) offloads
 189 *
 190 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 191 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 192 *     will set csum_start and csum_offset accordingly, set ip_summed to
 193 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 194 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 195 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 196 *     must verify which offload is configured for a packet by testing the
 197 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 198 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 199 *
 200 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 201 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 202 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 203 *     accordingly. Note that there is no indication in the skbuff that the
 204 *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
 205 *     both IP checksum offload and FCOE CRC offload must verify which offload
 206 *     is configured for a packet, presumably by inspecting packet headers.
 207 *
 208 * E. Checksumming on output with GSO.
 209 *
 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 213 * part of the GSO operation is implied. If a checksum is being offloaded
 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
 215 * csum_offset are set to refer to the outermost checksum being offloaded
 216 * (two offloaded checksums are possible with UDP encapsulation).
 217 */
 218
 219/* Don't change this without changing skb_csum_unnecessary! */
 220#define CHECKSUM_NONE           0
 221#define CHECKSUM_UNNECESSARY    1
 222#define CHECKSUM_COMPLETE       2
 223#define CHECKSUM_PARTIAL        3
 224
 225/* Maximum value in skb->csum_level */
 226#define SKB_MAX_CSUM_LEVEL      3
 227
 228#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 229#define SKB_WITH_OVERHEAD(X)    \
 230        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 231#define SKB_MAX_ORDER(X, ORDER) \
 232        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 233#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 234#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 235
 236/* return minimum truesize of one skb containing X bytes of data */
 237#define SKB_TRUESIZE(X) ((X) +                                          \
 238                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 239                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 240
 241struct net_device;
 242struct scatterlist;
 243struct pipe_inode_info;
 244struct iov_iter;
 245struct napi_struct;
 246struct bpf_prog;
 247union bpf_attr;
 248struct skb_ext;
 249
 250#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 251struct nf_bridge_info {
 252        enum {
 253                BRNF_PROTO_UNCHANGED,
 254                BRNF_PROTO_8021Q,
 255                BRNF_PROTO_PPPOE
 256        } orig_proto:8;
 257        u8                      pkt_otherhost:1;
 258        u8                      in_prerouting:1;
 259        u8                      bridged_dnat:1;
 260        __u16                   frag_max_size;
 261        struct net_device       *physindev;
 262
 263        /* always valid & non-NULL from FORWARD on, for physdev match */
 264        struct net_device       *physoutdev;
 265        union {
 266                /* prerouting: detect dnat in orig/reply direction */
 267                __be32          ipv4_daddr;
 268                struct in6_addr ipv6_daddr;
 269
 270                /* after prerouting + nat detected: store original source
 271                 * mac since neigh resolution overwrites it, only used while
 272                 * skb is out in neigh layer.
 273                 */
 274                char neigh_header[8];
 275        };
 276};
 277#endif
 278
 279#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
 280/* Chain in tc_skb_ext will be used to share the tc chain with
 281 * ovs recirc_id. It will be set to the current chain by tc
 282 * and read by ovs to recirc_id.
 283 */
 284struct tc_skb_ext {
 285        __u32 chain;
 286};
 287#endif
 288
 289struct sk_buff_head {
 290        /* These two members must be first. */
 291        struct sk_buff  *next;
 292        struct sk_buff  *prev;
 293
 294        __u32           qlen;
 295        spinlock_t      lock;
 296};
 297
 298struct sk_buff;
 299
 300/* To allow 64K frame to be packed as single skb without frag_list we
 301 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 302 * buffers which do not start on a page boundary.
 303 *
 304 * Since GRO uses frags we allocate at least 16 regardless of page
 305 * size.
 306 */
 307#if (65536/PAGE_SIZE + 1) < 16
 308#define MAX_SKB_FRAGS 16UL
 309#else
 310#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 311#endif
 312extern int sysctl_max_skb_frags;
 313
 314/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 315 * segment using its current segmentation instead.
 316 */
 317#define GSO_BY_FRAGS    0xFFFF
 318
 319typedef struct bio_vec skb_frag_t;
 320
 321/**
 322 * skb_frag_size() - Returns the size of a skb fragment
 323 * @frag: skb fragment
 324 */
 325static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 326{
 327        return frag->bv_len;
 328}
 329
 330/**
 331 * skb_frag_size_set() - Sets the size of a skb fragment
 332 * @frag: skb fragment
 333 * @size: size of fragment
 334 */
 335static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 336{
 337        frag->bv_len = size;
 338}
 339
 340/**
 341 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
 342 * @frag: skb fragment
 343 * @delta: value to add
 344 */
 345static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 346{
 347        frag->bv_len += delta;
 348}
 349
 350/**
 351 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
 352 * @frag: skb fragment
 353 * @delta: value to subtract
 354 */
 355static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 356{
 357        frag->bv_len -= delta;
 358}
 359
 360/**
 361 * skb_frag_must_loop - Test if %p is a high memory page
 362 * @p: fragment's page
 363 */
 364static inline bool skb_frag_must_loop(struct page *p)
 365{
 366#if defined(CONFIG_HIGHMEM)
 367        if (PageHighMem(p))
 368                return true;
 369#endif
 370        return false;
 371}
 372
 373/**
 374 *      skb_frag_foreach_page - loop over pages in a fragment
 375 *
 376 *      @f:             skb frag to operate on
 377 *      @f_off:         offset from start of f->bv_page
 378 *      @f_len:         length from f_off to loop over
 379 *      @p:             (temp var) current page
 380 *      @p_off:         (temp var) offset from start of current page,
 381 *                                 non-zero only on first page.
 382 *      @p_len:         (temp var) length in current page,
 383 *                                 < PAGE_SIZE only on first and last page.
 384 *      @copied:        (temp var) length so far, excluding current p_len.
 385 *
 386 *      A fragment can hold a compound page, in which case per-page
 387 *      operations, notably kmap_atomic, must be called for each
 388 *      regular page.
 389 */
 390#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
 391        for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
 392             p_off = (f_off) & (PAGE_SIZE - 1),                         \
 393             p_len = skb_frag_must_loop(p) ?                            \
 394             min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
 395             copied = 0;                                                \
 396             copied < f_len;                                            \
 397             copied += p_len, p++, p_off = 0,                           \
 398             p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
 399
 400#define HAVE_HW_TIME_STAMP
 401
 402/**
 403 * struct skb_shared_hwtstamps - hardware time stamps
 404 * @hwtstamp:   hardware time stamp transformed into duration
 405 *              since arbitrary point in time
 406 *
 407 * Software time stamps generated by ktime_get_real() are stored in
 408 * skb->tstamp.
 409 *
 410 * hwtstamps can only be compared against other hwtstamps from
 411 * the same device.
 412 *
 413 * This structure is attached to packets as part of the
 414 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 415 */
 416struct skb_shared_hwtstamps {
 417        ktime_t hwtstamp;
 418};
 419
 420/* Definitions for tx_flags in struct skb_shared_info */
 421enum {
 422        /* generate hardware time stamp */
 423        SKBTX_HW_TSTAMP = 1 << 0,
 424
 425        /* generate software time stamp when queueing packet to NIC */
 426        SKBTX_SW_TSTAMP = 1 << 1,
 427
 428        /* device driver is going to provide hardware time stamp */
 429        SKBTX_IN_PROGRESS = 1 << 2,
 430
 431        /* device driver supports TX zero-copy buffers */
 432        SKBTX_DEV_ZEROCOPY = 1 << 3,
 433
 434        /* generate wifi status information (where possible) */
 435        SKBTX_WIFI_STATUS = 1 << 4,
 436
 437        /* This indicates at least one fragment might be overwritten
 438         * (as in vmsplice(), sendfile() ...)
 439         * If we need to compute a TX checksum, we'll need to copy
 440         * all frags to avoid possible bad checksum
 441         */
 442        SKBTX_SHARED_FRAG = 1 << 5,
 443
 444        /* generate software time stamp when entering packet scheduling */
 445        SKBTX_SCHED_TSTAMP = 1 << 6,
 446};
 447
 448#define SKBTX_ZEROCOPY_FRAG     (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
 449#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 450                                 SKBTX_SCHED_TSTAMP)
 451#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 452
 453/*
 454 * The callback notifies userspace to release buffers when skb DMA is done in
 455 * lower device, the skb last reference should be 0 when calling this.
 456 * The zerocopy_success argument is true if zero copy transmit occurred,
 457 * false on data copy or out of memory error caused by data copy attempt.
 458 * The ctx field is used to track device context.
 459 * The desc field is used to track userspace buffer index.
 460 */
 461struct ubuf_info {
 462        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 463        union {
 464                struct {
 465                        unsigned long desc;
 466                        void *ctx;
 467                };
 468                struct {
 469                        u32 id;
 470                        u16 len;
 471                        u16 zerocopy:1;
 472                        u32 bytelen;
 473                };
 474        };
 475        refcount_t refcnt;
 476
 477        struct mmpin {
 478                struct user_struct *user;
 479                unsigned int num_pg;
 480        } mmp;
 481};
 482
 483#define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
 484
 485int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
 486void mm_unaccount_pinned_pages(struct mmpin *mmp);
 487
 488struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
 489struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
 490                                        struct ubuf_info *uarg);
 491
 492static inline void sock_zerocopy_get(struct ubuf_info *uarg)
 493{
 494        refcount_inc(&uarg->refcnt);
 495}
 496
 497void sock_zerocopy_put(struct ubuf_info *uarg);
 498void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
 499
 500void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
 501
 502int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
 503int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
 504                             struct msghdr *msg, int len,
 505                             struct ubuf_info *uarg);
 506
 507/* This data is invariant across clones and lives at
 508 * the end of the header data, ie. at skb->end.
 509 */
 510struct skb_shared_info {
 511        __u8            __unused;
 512        __u8            meta_len;
 513        __u8            nr_frags;
 514        __u8            tx_flags;
 515        unsigned short  gso_size;
 516        /* Warning: this field is not always filled in (UFO)! */
 517        unsigned short  gso_segs;
 518        struct sk_buff  *frag_list;
 519        struct skb_shared_hwtstamps hwtstamps;
 520        unsigned int    gso_type;
 521        u32             tskey;
 522
 523        /*
 524         * Warning : all fields before dataref are cleared in __alloc_skb()
 525         */
 526        atomic_t        dataref;
 527
 528        /* Intermediate layers must ensure that destructor_arg
 529         * remains valid until skb destructor */
 530        void *          destructor_arg;
 531
 532        /* must be last field, see pskb_expand_head() */
 533        skb_frag_t      frags[MAX_SKB_FRAGS];
 534};
 535
 536/* We divide dataref into two halves.  The higher 16 bits hold references
 537 * to the payload part of skb->data.  The lower 16 bits hold references to
 538 * the entire skb->data.  A clone of a headerless skb holds the length of
 539 * the header in skb->hdr_len.
 540 *
 541 * All users must obey the rule that the skb->data reference count must be
 542 * greater than or equal to the payload reference count.
 543 *
 544 * Holding a reference to the payload part means that the user does not
 545 * care about modifications to the header part of skb->data.
 546 */
 547#define SKB_DATAREF_SHIFT 16
 548#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 549
 550
 551enum {
 552        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 553        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 554        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 555};
 556
 557enum {
 558        SKB_GSO_TCPV4 = 1 << 0,
 559
 560        /* This indicates the skb is from an untrusted source. */
 561        SKB_GSO_DODGY = 1 << 1,
 562
 563        /* This indicates the tcp segment has CWR set. */
 564        SKB_GSO_TCP_ECN = 1 << 2,
 565
 566        SKB_GSO_TCP_FIXEDID = 1 << 3,
 567
 568        SKB_GSO_TCPV6 = 1 << 4,
 569
 570        SKB_GSO_FCOE = 1 << 5,
 571
 572        SKB_GSO_GRE = 1 << 6,
 573
 574        SKB_GSO_GRE_CSUM = 1 << 7,
 575
 576        SKB_GSO_IPXIP4 = 1 << 8,
 577
 578        SKB_GSO_IPXIP6 = 1 << 9,
 579
 580        SKB_GSO_UDP_TUNNEL = 1 << 10,
 581
 582        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 583
 584        SKB_GSO_PARTIAL = 1 << 12,
 585
 586        SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
 587
 588        SKB_GSO_SCTP = 1 << 14,
 589
 590        SKB_GSO_ESP = 1 << 15,
 591
 592        SKB_GSO_UDP = 1 << 16,
 593
 594        SKB_GSO_UDP_L4 = 1 << 17,
 595
 596        SKB_GSO_FRAGLIST = 1 << 18,
 597};
 598
 599#if BITS_PER_LONG > 32
 600#define NET_SKBUFF_DATA_USES_OFFSET 1
 601#endif
 602
 603#ifdef NET_SKBUFF_DATA_USES_OFFSET
 604typedef unsigned int sk_buff_data_t;
 605#else
 606typedef unsigned char *sk_buff_data_t;
 607#endif
 608
 609/**
 610 *      struct sk_buff - socket buffer
 611 *      @next: Next buffer in list
 612 *      @prev: Previous buffer in list
 613 *      @tstamp: Time we arrived/left
 614 *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
 615 *              for retransmit timer
 616 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 617 *      @list: queue head
 618 *      @sk: Socket we are owned by
 619 *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
 620 *              fragmentation management
 621 *      @dev: Device we arrived on/are leaving by
 622 *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
 623 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 624 *      @_skb_refdst: destination entry (with norefcount bit)
 625 *      @sp: the security path, used for xfrm
 626 *      @len: Length of actual data
 627 *      @data_len: Data length
 628 *      @mac_len: Length of link layer header
 629 *      @hdr_len: writable header length of cloned skb
 630 *      @csum: Checksum (must include start/offset pair)
 631 *      @csum_start: Offset from skb->head where checksumming should start
 632 *      @csum_offset: Offset from csum_start where checksum should be stored
 633 *      @priority: Packet queueing priority
 634 *      @ignore_df: allow local fragmentation
 635 *      @cloned: Head may be cloned (check refcnt to be sure)
 636 *      @ip_summed: Driver fed us an IP checksum
 637 *      @nohdr: Payload reference only, must not modify header
 638 *      @pkt_type: Packet class
 639 *      @fclone: skbuff clone status
 640 *      @ipvs_property: skbuff is owned by ipvs
 641 *      @inner_protocol_type: whether the inner protocol is
 642 *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
 643 *      @remcsum_offload: remote checksum offload is enabled
 644 *      @offload_fwd_mark: Packet was L2-forwarded in hardware
 645 *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
 646 *      @tc_skip_classify: do not classify packet. set by IFB device
 647 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 648 *      @redirected: packet was redirected by packet classifier
 649 *      @from_ingress: packet was redirected from the ingress path
 650 *      @peeked: this packet has been seen already, so stats have been
 651 *              done for it, don't do them again
 652 *      @nf_trace: netfilter packet trace flag
 653 *      @protocol: Packet protocol from driver
 654 *      @destructor: Destruct function
 655 *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
 656 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 657 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 658 *      @skb_iif: ifindex of device we arrived on
 659 *      @tc_index: Traffic control index
 660 *      @hash: the packet hash
 661 *      @queue_mapping: Queue mapping for multiqueue devices
 662 *      @head_frag: skb was allocated from page fragments,
 663 *              not allocated by kmalloc() or vmalloc().
 664 *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
 665 *      @active_extensions: active extensions (skb_ext_id types)
 666 *      @ndisc_nodetype: router type (from link layer)
 667 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 668 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 669 *              ports.
 670 *      @sw_hash: indicates hash was computed in software stack
 671 *      @wifi_acked_valid: wifi_acked was set
 672 *      @wifi_acked: whether frame was acked on wifi or not
 673 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 674 *      @encapsulation: indicates the inner headers in the skbuff are valid
 675 *      @encap_hdr_csum: software checksum is needed
 676 *      @csum_valid: checksum is already valid
 677 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 678 *      @csum_complete_sw: checksum was completed by software
 679 *      @csum_level: indicates the number of consecutive checksums found in
 680 *              the packet minus one that have been verified as
 681 *              CHECKSUM_UNNECESSARY (max 3)
 682 *      @dst_pending_confirm: need to confirm neighbour
 683 *      @decrypted: Decrypted SKB
 684 *      @napi_id: id of the NAPI struct this skb came from
 685 *      @sender_cpu: (aka @napi_id) source CPU in XPS
 686 *      @secmark: security marking
 687 *      @mark: Generic packet mark
 688 *      @reserved_tailroom: (aka @mark) number of bytes of free space available
 689 *              at the tail of an sk_buff
 690 *      @vlan_present: VLAN tag is present
 691 *      @vlan_proto: vlan encapsulation protocol
 692 *      @vlan_tci: vlan tag control information
 693 *      @inner_protocol: Protocol (encapsulation)
 694 *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
 695 *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
 696 *      @inner_transport_header: Inner transport layer header (encapsulation)
 697 *      @inner_network_header: Network layer header (encapsulation)
 698 *      @inner_mac_header: Link layer header (encapsulation)
 699 *      @transport_header: Transport layer header
 700 *      @network_header: Network layer header
 701 *      @mac_header: Link layer header
 702 *      @tail: Tail pointer
 703 *      @end: End pointer
 704 *      @head: Head of buffer
 705 *      @data: Data head pointer
 706 *      @truesize: Buffer size
 707 *      @users: User count - see {datagram,tcp}.c
 708 *      @extensions: allocated extensions, valid if active_extensions is nonzero
 709 */
 710
 711struct sk_buff {
 712        union {
 713                struct {
 714                        /* These two members must be first. */
 715                        struct sk_buff          *next;
 716                        struct sk_buff          *prev;
 717
 718                        union {
 719                                struct net_device       *dev;
 720                                /* Some protocols might use this space to store information,
 721                                 * while device pointer would be NULL.
 722                                 * UDP receive path is one user.
 723                                 */
 724                                unsigned long           dev_scratch;
 725                        };
 726                };
 727                struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
 728                struct list_head        list;
 729        };
 730
 731        union {
 732                struct sock             *sk;
 733                int                     ip_defrag_offset;
 734        };
 735
 736        union {
 737                ktime_t         tstamp;
 738                u64             skb_mstamp_ns; /* earliest departure time */
 739        };
 740        /*
 741         * This is the control buffer. It is free to use for every
 742         * layer. Please put your private variables there. If you
 743         * want to keep them across layers you have to do a skb_clone()
 744         * first. This is owned by whoever has the skb queued ATM.
 745         */
 746        char                    cb[48] __aligned(8);
 747
 748        union {
 749                struct {
 750                        unsigned long   _skb_refdst;
 751                        void            (*destructor)(struct sk_buff *skb);
 752                };
 753                struct list_head        tcp_tsorted_anchor;
 754        };
 755
 756#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 757        unsigned long            _nfct;
 758#endif
 759        unsigned int            len,
 760                                data_len;
 761        __u16                   mac_len,
 762                                hdr_len;
 763
 764        /* Following fields are _not_ copied in __copy_skb_header()
 765         * Note that queue_mapping is here mostly to fill a hole.
 766         */
 767        __u16                   queue_mapping;
 768
 769/* if you move cloned around you also must adapt those constants */
 770#ifdef __BIG_ENDIAN_BITFIELD
 771#define CLONED_MASK     (1 << 7)
 772#else
 773#define CLONED_MASK     1
 774#endif
 775#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 776
 777        /* private: */
 778        __u8                    __cloned_offset[0];
 779        /* public: */
 780        __u8                    cloned:1,
 781                                nohdr:1,
 782                                fclone:2,
 783                                peeked:1,
 784                                head_frag:1,
 785                                pfmemalloc:1;
 786#ifdef CONFIG_SKB_EXTENSIONS
 787        __u8                    active_extensions;
 788#endif
 789        /* fields enclosed in headers_start/headers_end are copied
 790         * using a single memcpy() in __copy_skb_header()
 791         */
 792        /* private: */
 793        __u32                   headers_start[0];
 794        /* public: */
 795
 796/* if you move pkt_type around you also must adapt those constants */
 797#ifdef __BIG_ENDIAN_BITFIELD
 798#define PKT_TYPE_MAX    (7 << 5)
 799#else
 800#define PKT_TYPE_MAX    7
 801#endif
 802#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 803
 804        /* private: */
 805        __u8                    __pkt_type_offset[0];
 806        /* public: */
 807        __u8                    pkt_type:3;
 808        __u8                    ignore_df:1;
 809        __u8                    nf_trace:1;
 810        __u8                    ip_summed:2;
 811        __u8                    ooo_okay:1;
 812
 813        __u8                    l4_hash:1;
 814        __u8                    sw_hash:1;
 815        __u8                    wifi_acked_valid:1;
 816        __u8                    wifi_acked:1;
 817        __u8                    no_fcs:1;
 818        /* Indicates the inner headers are valid in the skbuff. */
 819        __u8                    encapsulation:1;
 820        __u8                    encap_hdr_csum:1;
 821        __u8                    csum_valid:1;
 822
 823#ifdef __BIG_ENDIAN_BITFIELD
 824#define PKT_VLAN_PRESENT_BIT    7
 825#else
 826#define PKT_VLAN_PRESENT_BIT    0
 827#endif
 828#define PKT_VLAN_PRESENT_OFFSET()       offsetof(struct sk_buff, __pkt_vlan_present_offset)
 829        /* private: */
 830        __u8                    __pkt_vlan_present_offset[0];
 831        /* public: */
 832        __u8                    vlan_present:1;
 833        __u8                    csum_complete_sw:1;
 834        __u8                    csum_level:2;
 835        __u8                    csum_not_inet:1;
 836        __u8                    dst_pending_confirm:1;
 837#ifdef CONFIG_IPV6_NDISC_NODETYPE
 838        __u8                    ndisc_nodetype:2;
 839#endif
 840
 841        __u8                    ipvs_property:1;
 842        __u8                    inner_protocol_type:1;
 843        __u8                    remcsum_offload:1;
 844#ifdef CONFIG_NET_SWITCHDEV
 845        __u8                    offload_fwd_mark:1;
 846        __u8                    offload_l3_fwd_mark:1;
 847#endif
 848#ifdef CONFIG_NET_CLS_ACT
 849        __u8                    tc_skip_classify:1;
 850        __u8                    tc_at_ingress:1;
 851#endif
 852#ifdef CONFIG_NET_REDIRECT
 853        __u8                    redirected:1;
 854        __u8                    from_ingress:1;
 855#endif
 856#ifdef CONFIG_TLS_DEVICE
 857        __u8                    decrypted:1;
 858#endif
 859
 860#ifdef CONFIG_NET_SCHED
 861        __u16                   tc_index;       /* traffic control index */
 862#endif
 863
 864        union {
 865                __wsum          csum;
 866                struct {
 867                        __u16   csum_start;
 868                        __u16   csum_offset;
 869                };
 870        };
 871        __u32                   priority;
 872        int                     skb_iif;
 873        __u32                   hash;
 874        __be16                  vlan_proto;
 875        __u16                   vlan_tci;
 876#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 877        union {
 878                unsigned int    napi_id;
 879                unsigned int    sender_cpu;
 880        };
 881#endif
 882#ifdef CONFIG_NETWORK_SECMARK
 883        __u32           secmark;
 884#endif
 885
 886        union {
 887                __u32           mark;
 888                __u32           reserved_tailroom;
 889        };
 890
 891        union {
 892                __be16          inner_protocol;
 893                __u8            inner_ipproto;
 894        };
 895
 896        __u16                   inner_transport_header;
 897        __u16                   inner_network_header;
 898        __u16                   inner_mac_header;
 899
 900        __be16                  protocol;
 901        __u16                   transport_header;
 902        __u16                   network_header;
 903        __u16                   mac_header;
 904
 905        /* private: */
 906        __u32                   headers_end[0];
 907        /* public: */
 908
 909        /* These elements must be at the end, see alloc_skb() for details.  */
 910        sk_buff_data_t          tail;
 911        sk_buff_data_t          end;
 912        unsigned char           *head,
 913                                *data;
 914        unsigned int            truesize;
 915        refcount_t              users;
 916
 917#ifdef CONFIG_SKB_EXTENSIONS
 918        /* only useable after checking ->active_extensions != 0 */
 919        struct skb_ext          *extensions;
 920#endif
 921};
 922
 923#ifdef __KERNEL__
 924/*
 925 *      Handling routines are only of interest to the kernel
 926 */
 927
 928#define SKB_ALLOC_FCLONE        0x01
 929#define SKB_ALLOC_RX            0x02
 930#define SKB_ALLOC_NAPI          0x04
 931
 932/**
 933 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
 934 * @skb: buffer
 935 */
 936static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 937{
 938        return unlikely(skb->pfmemalloc);
 939}
 940
 941/*
 942 * skb might have a dst pointer attached, refcounted or not.
 943 * _skb_refdst low order bit is set if refcount was _not_ taken
 944 */
 945#define SKB_DST_NOREF   1UL
 946#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 947
 948/**
 949 * skb_dst - returns skb dst_entry
 950 * @skb: buffer
 951 *
 952 * Returns skb dst_entry, regardless of reference taken or not.
 953 */
 954static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 955{
 956        /* If refdst was not refcounted, check we still are in a
 957         * rcu_read_lock section
 958         */
 959        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 960                !rcu_read_lock_held() &&
 961                !rcu_read_lock_bh_held());
 962        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 963}
 964
 965/**
 966 * skb_dst_set - sets skb dst
 967 * @skb: buffer
 968 * @dst: dst entry
 969 *
 970 * Sets skb dst, assuming a reference was taken on dst and should
 971 * be released by skb_dst_drop()
 972 */
 973static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 974{
 975        skb->_skb_refdst = (unsigned long)dst;
 976}
 977
 978/**
 979 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 980 * @skb: buffer
 981 * @dst: dst entry
 982 *
 983 * Sets skb dst, assuming a reference was not taken on dst.
 984 * If dst entry is cached, we do not take reference and dst_release
 985 * will be avoided by refdst_drop. If dst entry is not cached, we take
 986 * reference, so that last dst_release can destroy the dst immediately.
 987 */
 988static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 989{
 990        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 991        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 992}
 993
 994/**
 995 * skb_dst_is_noref - Test if skb dst isn't refcounted
 996 * @skb: buffer
 997 */
 998static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 999{
1000        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1001}
1002
1003/**
1004 * skb_rtable - Returns the skb &rtable
1005 * @skb: buffer
1006 */
1007static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1008{
1009        return (struct rtable *)skb_dst(skb);
1010}
1011
1012/* For mangling skb->pkt_type from user space side from applications
1013 * such as nft, tc, etc, we only allow a conservative subset of
1014 * possible pkt_types to be set.
1015*/
1016static inline bool skb_pkt_type_ok(u32 ptype)
1017{
1018        return ptype <= PACKET_OTHERHOST;
1019}
1020
1021/**
1022 * skb_napi_id - Returns the skb's NAPI id
1023 * @skb: buffer
1024 */
1025static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1026{
1027#ifdef CONFIG_NET_RX_BUSY_POLL
1028        return skb->napi_id;
1029#else
1030        return 0;
1031#endif
1032}
1033
1034/**
1035 * skb_unref - decrement the skb's reference count
1036 * @skb: buffer
1037 *
1038 * Returns true if we can free the skb.
1039 */
1040static inline bool skb_unref(struct sk_buff *skb)
1041{
1042        if (unlikely(!skb))
1043                return false;
1044        if (likely(refcount_read(&skb->users) == 1))
1045                smp_rmb();
1046        else if (likely(!refcount_dec_and_test(&skb->users)))
1047                return false;
1048
1049        return true;
1050}
1051
1052void skb_release_head_state(struct sk_buff *skb);
1053void kfree_skb(struct sk_buff *skb);
1054void kfree_skb_list(struct sk_buff *segs);
1055void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1056void skb_tx_error(struct sk_buff *skb);
1057void consume_skb(struct sk_buff *skb);
1058void __consume_stateless_skb(struct sk_buff *skb);
1059void  __kfree_skb(struct sk_buff *skb);
1060extern struct kmem_cache *skbuff_head_cache;
1061
1062void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1063bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1064                      bool *fragstolen, int *delta_truesize);
1065
1066struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1067                            int node);
1068struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1069struct sk_buff *build_skb(void *data, unsigned int frag_size);
1070struct sk_buff *build_skb_around(struct sk_buff *skb,
1071                                 void *data, unsigned int frag_size);
1072
1073/**
1074 * alloc_skb - allocate a network buffer
1075 * @size: size to allocate
1076 * @priority: allocation mask
1077 *
1078 * This function is a convenient wrapper around __alloc_skb().
1079 */
1080static inline struct sk_buff *alloc_skb(unsigned int size,
1081                                        gfp_t priority)
1082{
1083        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1084}
1085
1086struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1087                                     unsigned long data_len,
1088                                     int max_page_order,
1089                                     int *errcode,
1090                                     gfp_t gfp_mask);
1091struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1092
1093/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1094struct sk_buff_fclones {
1095        struct sk_buff  skb1;
1096
1097        struct sk_buff  skb2;
1098
1099        refcount_t      fclone_ref;
1100};
1101
1102/**
1103 *      skb_fclone_busy - check if fclone is busy
1104 *      @sk: socket
1105 *      @skb: buffer
1106 *
1107 * Returns true if skb is a fast clone, and its clone is not freed.
1108 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1109 * so we also check that this didnt happen.
1110 */
1111static inline bool skb_fclone_busy(const struct sock *sk,
1112                                   const struct sk_buff *skb)
1113{
1114        const struct sk_buff_fclones *fclones;
1115
1116        fclones = container_of(skb, struct sk_buff_fclones, skb1);
1117
1118        return skb->fclone == SKB_FCLONE_ORIG &&
1119               refcount_read(&fclones->fclone_ref) > 1 &&
1120               fclones->skb2.sk == sk;
1121}
1122
1123/**
1124 * alloc_skb_fclone - allocate a network buffer from fclone cache
1125 * @size: size to allocate
1126 * @priority: allocation mask
1127 *
1128 * This function is a convenient wrapper around __alloc_skb().
1129 */
1130static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1131                                               gfp_t priority)
1132{
1133        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1134}
1135
1136struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1137void skb_headers_offset_update(struct sk_buff *skb, int off);
1138int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1139struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1140void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1141struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1142struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1143                                   gfp_t gfp_mask, bool fclone);
1144static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1145                                          gfp_t gfp_mask)
1146{
1147        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1148}
1149
1150int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1151struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1152                                     unsigned int headroom);
1153struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1154                                int newtailroom, gfp_t priority);
1155int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1156                                     int offset, int len);
1157int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1158                              int offset, int len);
1159int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1160int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1161
1162/**
1163 *      skb_pad                 -       zero pad the tail of an skb
1164 *      @skb: buffer to pad
1165 *      @pad: space to pad
1166 *
1167 *      Ensure that a buffer is followed by a padding area that is zero
1168 *      filled. Used by network drivers which may DMA or transfer data
1169 *      beyond the buffer end onto the wire.
1170 *
1171 *      May return error in out of memory cases. The skb is freed on error.
1172 */
1173static inline int skb_pad(struct sk_buff *skb, int pad)
1174{
1175        return __skb_pad(skb, pad, true);
1176}
1177#define dev_kfree_skb(a)        consume_skb(a)
1178
1179int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1180                         int offset, size_t size);
1181
1182struct skb_seq_state {
1183        __u32           lower_offset;
1184        __u32           upper_offset;
1185        __u32           frag_idx;
1186        __u32           stepped_offset;
1187        struct sk_buff  *root_skb;
1188        struct sk_buff  *cur_skb;
1189        __u8            *frag_data;
1190};
1191
1192void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1193                          unsigned int to, struct skb_seq_state *st);
1194unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1195                          struct skb_seq_state *st);
1196void skb_abort_seq_read(struct skb_seq_state *st);
1197
1198unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1199                           unsigned int to, struct ts_config *config);
1200
1201/*
1202 * Packet hash types specify the type of hash in skb_set_hash.
1203 *
1204 * Hash types refer to the protocol layer addresses which are used to
1205 * construct a packet's hash. The hashes are used to differentiate or identify
1206 * flows of the protocol layer for the hash type. Hash types are either
1207 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1208 *
1209 * Properties of hashes:
1210 *
1211 * 1) Two packets in different flows have different hash values
1212 * 2) Two packets in the same flow should have the same hash value
1213 *
1214 * A hash at a higher layer is considered to be more specific. A driver should
1215 * set the most specific hash possible.
1216 *
1217 * A driver cannot indicate a more specific hash than the layer at which a hash
1218 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1219 *
1220 * A driver may indicate a hash level which is less specific than the
1221 * actual layer the hash was computed on. For instance, a hash computed
1222 * at L4 may be considered an L3 hash. This should only be done if the
1223 * driver can't unambiguously determine that the HW computed the hash at
1224 * the higher layer. Note that the "should" in the second property above
1225 * permits this.
1226 */
1227enum pkt_hash_types {
1228        PKT_HASH_TYPE_NONE,     /* Undefined type */
1229        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1230        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1231        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1232};
1233
1234static inline void skb_clear_hash(struct sk_buff *skb)
1235{
1236        skb->hash = 0;
1237        skb->sw_hash = 0;
1238        skb->l4_hash = 0;
1239}
1240
1241static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1242{
1243        if (!skb->l4_hash)
1244                skb_clear_hash(skb);
1245}
1246
1247static inline void
1248__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1249{
1250        skb->l4_hash = is_l4;
1251        skb->sw_hash = is_sw;
1252        skb->hash = hash;
1253}
1254
1255static inline void
1256skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1257{
1258        /* Used by drivers to set hash from HW */
1259        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1260}
1261
1262static inline void
1263__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1264{
1265        __skb_set_hash(skb, hash, true, is_l4);
1266}
1267
1268void __skb_get_hash(struct sk_buff *skb);
1269u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1270u32 skb_get_poff(const struct sk_buff *skb);
1271u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1272                   const struct flow_keys_basic *keys, int hlen);
1273__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1274                            void *data, int hlen_proto);
1275
1276static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1277                                        int thoff, u8 ip_proto)
1278{
1279        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1280}
1281
1282void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1283                             const struct flow_dissector_key *key,
1284                             unsigned int key_count);
1285
1286#ifdef CONFIG_NET
1287int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1288                                  union bpf_attr __user *uattr);
1289int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1290                                       struct bpf_prog *prog);
1291
1292int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1293#else
1294static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1295                                                union bpf_attr __user *uattr)
1296{
1297        return -EOPNOTSUPP;
1298}
1299
1300static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1301                                                     struct bpf_prog *prog)
1302{
1303        return -EOPNOTSUPP;
1304}
1305
1306static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1307{
1308        return -EOPNOTSUPP;
1309}
1310#endif
1311
1312struct bpf_flow_dissector;
1313bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1314                      __be16 proto, int nhoff, int hlen, unsigned int flags);
1315
1316bool __skb_flow_dissect(const struct net *net,
1317                        const struct sk_buff *skb,
1318                        struct flow_dissector *flow_dissector,
1319                        void *target_container,
1320                        void *data, __be16 proto, int nhoff, int hlen,
1321                        unsigned int flags);
1322
1323static inline bool skb_flow_dissect(const struct sk_buff *skb,
1324                                    struct flow_dissector *flow_dissector,
1325                                    void *target_container, unsigned int flags)
1326{
1327        return __skb_flow_dissect(NULL, skb, flow_dissector,
1328                                  target_container, NULL, 0, 0, 0, flags);
1329}
1330
1331static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1332                                              struct flow_keys *flow,
1333                                              unsigned int flags)
1334{
1335        memset(flow, 0, sizeof(*flow));
1336        return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1337                                  flow, NULL, 0, 0, 0, flags);
1338}
1339
1340static inline bool
1341skb_flow_dissect_flow_keys_basic(const struct net *net,
1342                                 const struct sk_buff *skb,
1343                                 struct flow_keys_basic *flow, void *data,
1344                                 __be16 proto, int nhoff, int hlen,
1345                                 unsigned int flags)
1346{
1347        memset(flow, 0, sizeof(*flow));
1348        return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1349                                  data, proto, nhoff, hlen, flags);
1350}
1351
1352void skb_flow_dissect_meta(const struct sk_buff *skb,
1353                           struct flow_dissector *flow_dissector,
1354                           void *target_container);
1355
1356/* Gets a skb connection tracking info, ctinfo map should be a
1357 * a map of mapsize to translate enum ip_conntrack_info states
1358 * to user states.
1359 */
1360void
1361skb_flow_dissect_ct(const struct sk_buff *skb,
1362                    struct flow_dissector *flow_dissector,
1363                    void *target_container,
1364                    u16 *ctinfo_map,
1365                    size_t mapsize);
1366void
1367skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1368                             struct flow_dissector *flow_dissector,
1369                             void *target_container);
1370
1371static inline __u32 skb_get_hash(struct sk_buff *skb)
1372{
1373        if (!skb->l4_hash && !skb->sw_hash)
1374                __skb_get_hash(skb);
1375
1376        return skb->hash;
1377}
1378
1379static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1380{
1381        if (!skb->l4_hash && !skb->sw_hash) {
1382                struct flow_keys keys;
1383                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1384
1385                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1386        }
1387
1388        return skb->hash;
1389}
1390
1391__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1392                           const siphash_key_t *perturb);
1393
1394static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1395{
1396        return skb->hash;
1397}
1398
1399static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1400{
1401        to->hash = from->hash;
1402        to->sw_hash = from->sw_hash;
1403        to->l4_hash = from->l4_hash;
1404};
1405
1406static inline void skb_copy_decrypted(struct sk_buff *to,
1407                                      const struct sk_buff *from)
1408{
1409#ifdef CONFIG_TLS_DEVICE
1410        to->decrypted = from->decrypted;
1411#endif
1412}
1413
1414#ifdef NET_SKBUFF_DATA_USES_OFFSET
1415static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1416{
1417        return skb->head + skb->end;
1418}
1419
1420static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1421{
1422        return skb->end;
1423}
1424#else
1425static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1426{
1427        return skb->end;
1428}
1429
1430static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1431{
1432        return skb->end - skb->head;
1433}
1434#endif
1435
1436/* Internal */
1437#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1438
1439static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1440{
1441        return &skb_shinfo(skb)->hwtstamps;
1442}
1443
1444static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1445{
1446        bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1447
1448        return is_zcopy ? skb_uarg(skb) : NULL;
1449}
1450
1451static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1452                                 bool *have_ref)
1453{
1454        if (skb && uarg && !skb_zcopy(skb)) {
1455                if (unlikely(have_ref && *have_ref))
1456                        *have_ref = false;
1457                else
1458                        sock_zerocopy_get(uarg);
1459                skb_shinfo(skb)->destructor_arg = uarg;
1460                skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1461        }
1462}
1463
1464static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1465{
1466        skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1467        skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1468}
1469
1470static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1471{
1472        return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1473}
1474
1475static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1476{
1477        return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1478}
1479
1480/* Release a reference on a zerocopy structure */
1481static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1482{
1483        struct ubuf_info *uarg = skb_zcopy(skb);
1484
1485        if (uarg) {
1486                if (skb_zcopy_is_nouarg(skb)) {
1487                        /* no notification callback */
1488                } else if (uarg->callback == sock_zerocopy_callback) {
1489                        uarg->zerocopy = uarg->zerocopy && zerocopy;
1490                        sock_zerocopy_put(uarg);
1491                } else {
1492                        uarg->callback(uarg, zerocopy);
1493                }
1494
1495                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1496        }
1497}
1498
1499/* Abort a zerocopy operation and revert zckey on error in send syscall */
1500static inline void skb_zcopy_abort(struct sk_buff *skb)
1501{
1502        struct ubuf_info *uarg = skb_zcopy(skb);
1503
1504        if (uarg) {
1505                sock_zerocopy_put_abort(uarg, false);
1506                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1507        }
1508}
1509
1510static inline void skb_mark_not_on_list(struct sk_buff *skb)
1511{
1512        skb->next = NULL;
1513}
1514
1515/* Iterate through singly-linked GSO fragments of an skb. */
1516#define skb_list_walk_safe(first, skb, next_skb)                               \
1517        for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1518             (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1519
1520static inline void skb_list_del_init(struct sk_buff *skb)
1521{
1522        __list_del_entry(&skb->list);
1523        skb_mark_not_on_list(skb);
1524}
1525
1526/**
1527 *      skb_queue_empty - check if a queue is empty
1528 *      @list: queue head
1529 *
1530 *      Returns true if the queue is empty, false otherwise.
1531 */
1532static inline int skb_queue_empty(const struct sk_buff_head *list)
1533{
1534        return list->next == (const struct sk_buff *) list;
1535}
1536
1537/**
1538 *      skb_queue_empty_lockless - check if a queue is empty
1539 *      @list: queue head
1540 *
1541 *      Returns true if the queue is empty, false otherwise.
1542 *      This variant can be used in lockless contexts.
1543 */
1544static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1545{
1546        return READ_ONCE(list->next) == (const struct sk_buff *) list;
1547}
1548
1549
1550/**
1551 *      skb_queue_is_last - check if skb is the last entry in the queue
1552 *      @list: queue head
1553 *      @skb: buffer
1554 *
1555 *      Returns true if @skb is the last buffer on the list.
1556 */
1557static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1558                                     const struct sk_buff *skb)
1559{
1560        return skb->next == (const struct sk_buff *) list;
1561}
1562
1563/**
1564 *      skb_queue_is_first - check if skb is the first entry in the queue
1565 *      @list: queue head
1566 *      @skb: buffer
1567 *
1568 *      Returns true if @skb is the first buffer on the list.
1569 */
1570static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1571                                      const struct sk_buff *skb)
1572{
1573        return skb->prev == (const struct sk_buff *) list;
1574}
1575
1576/**
1577 *      skb_queue_next - return the next packet in the queue
1578 *      @list: queue head
1579 *      @skb: current buffer
1580 *
1581 *      Return the next packet in @list after @skb.  It is only valid to
1582 *      call this if skb_queue_is_last() evaluates to false.
1583 */
1584static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1585                                             const struct sk_buff *skb)
1586{
1587        /* This BUG_ON may seem severe, but if we just return then we
1588         * are going to dereference garbage.
1589         */
1590        BUG_ON(skb_queue_is_last(list, skb));
1591        return skb->next;
1592}
1593
1594/**
1595 *      skb_queue_prev - return the prev packet in the queue
1596 *      @list: queue head
1597 *      @skb: current buffer
1598 *
1599 *      Return the prev packet in @list before @skb.  It is only valid to
1600 *      call this if skb_queue_is_first() evaluates to false.
1601 */
1602static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1603                                             const struct sk_buff *skb)
1604{
1605        /* This BUG_ON may seem severe, but if we just return then we
1606         * are going to dereference garbage.
1607         */
1608        BUG_ON(skb_queue_is_first(list, skb));
1609        return skb->prev;
1610}
1611
1612/**
1613 *      skb_get - reference buffer
1614 *      @skb: buffer to reference
1615 *
1616 *      Makes another reference to a socket buffer and returns a pointer
1617 *      to the buffer.
1618 */
1619static inline struct sk_buff *skb_get(struct sk_buff *skb)
1620{
1621        refcount_inc(&skb->users);
1622        return skb;
1623}
1624
1625/*
1626 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1627 */
1628
1629/**
1630 *      skb_cloned - is the buffer a clone
1631 *      @skb: buffer to check
1632 *
1633 *      Returns true if the buffer was generated with skb_clone() and is
1634 *      one of multiple shared copies of the buffer. Cloned buffers are
1635 *      shared data so must not be written to under normal circumstances.
1636 */
1637static inline int skb_cloned(const struct sk_buff *skb)
1638{
1639        return skb->cloned &&
1640               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1641}
1642
1643static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1644{
1645        might_sleep_if(gfpflags_allow_blocking(pri));
1646
1647        if (skb_cloned(skb))
1648                return pskb_expand_head(skb, 0, 0, pri);
1649
1650        return 0;
1651}
1652
1653/**
1654 *      skb_header_cloned - is the header a clone
1655 *      @skb: buffer to check
1656 *
1657 *      Returns true if modifying the header part of the buffer requires
1658 *      the data to be copied.
1659 */
1660static inline int skb_header_cloned(const struct sk_buff *skb)
1661{
1662        int dataref;
1663
1664        if (!skb->cloned)
1665                return 0;
1666
1667        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1668        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1669        return dataref != 1;
1670}
1671
1672static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1673{
1674        might_sleep_if(gfpflags_allow_blocking(pri));
1675
1676        if (skb_header_cloned(skb))
1677                return pskb_expand_head(skb, 0, 0, pri);
1678
1679        return 0;
1680}
1681
1682/**
1683 *      __skb_header_release - release reference to header
1684 *      @skb: buffer to operate on
1685 */
1686static inline void __skb_header_release(struct sk_buff *skb)
1687{
1688        skb->nohdr = 1;
1689        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1690}
1691
1692
1693/**
1694 *      skb_shared - is the buffer shared
1695 *      @skb: buffer to check
1696 *
1697 *      Returns true if more than one person has a reference to this
1698 *      buffer.
1699 */
1700static inline int skb_shared(const struct sk_buff *skb)
1701{
1702        return refcount_read(&skb->users) != 1;
1703}
1704
1705/**
1706 *      skb_share_check - check if buffer is shared and if so clone it
1707 *      @skb: buffer to check
1708 *      @pri: priority for memory allocation
1709 *
1710 *      If the buffer is shared the buffer is cloned and the old copy
1711 *      drops a reference. A new clone with a single reference is returned.
1712 *      If the buffer is not shared the original buffer is returned. When
1713 *      being called from interrupt status or with spinlocks held pri must
1714 *      be GFP_ATOMIC.
1715 *
1716 *      NULL is returned on a memory allocation failure.
1717 */
1718static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1719{
1720        might_sleep_if(gfpflags_allow_blocking(pri));
1721        if (skb_shared(skb)) {
1722                struct sk_buff *nskb = skb_clone(skb, pri);
1723
1724                if (likely(nskb))
1725                        consume_skb(skb);
1726                else
1727                        kfree_skb(skb);
1728                skb = nskb;
1729        }
1730        return skb;
1731}
1732
1733/*
1734 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1735 *      packets to handle cases where we have a local reader and forward
1736 *      and a couple of other messy ones. The normal one is tcpdumping
1737 *      a packet thats being forwarded.
1738 */
1739
1740/**
1741 *      skb_unshare - make a copy of a shared buffer
1742 *      @skb: buffer to check
1743 *      @pri: priority for memory allocation
1744 *
1745 *      If the socket buffer is a clone then this function creates a new
1746 *      copy of the data, drops a reference count on the old copy and returns
1747 *      the new copy with the reference count at 1. If the buffer is not a clone
1748 *      the original buffer is returned. When called with a spinlock held or
1749 *      from interrupt state @pri must be %GFP_ATOMIC
1750 *
1751 *      %NULL is returned on a memory allocation failure.
1752 */
1753static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1754                                          gfp_t pri)
1755{
1756        might_sleep_if(gfpflags_allow_blocking(pri));
1757        if (skb_cloned(skb)) {
1758                struct sk_buff *nskb = skb_copy(skb, pri);
1759
1760                /* Free our shared copy */
1761                if (likely(nskb))
1762                        consume_skb(skb);
1763                else
1764                        kfree_skb(skb);
1765                skb = nskb;
1766        }
1767        return skb;
1768}
1769
1770/**
1771 *      skb_peek - peek at the head of an &sk_buff_head
1772 *      @list_: list to peek at
1773 *
1774 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1775 *      be careful with this one. A peek leaves the buffer on the
1776 *      list and someone else may run off with it. You must hold
1777 *      the appropriate locks or have a private queue to do this.
1778 *
1779 *      Returns %NULL for an empty list or a pointer to the head element.
1780 *      The reference count is not incremented and the reference is therefore
1781 *      volatile. Use with caution.
1782 */
1783static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1784{
1785        struct sk_buff *skb = list_->next;
1786
1787        if (skb == (struct sk_buff *)list_)
1788                skb = NULL;
1789        return skb;
1790}
1791
1792/**
1793 *      __skb_peek - peek at the head of a non-empty &sk_buff_head
1794 *      @list_: list to peek at
1795 *
1796 *      Like skb_peek(), but the caller knows that the list is not empty.
1797 */
1798static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1799{
1800        return list_->next;
1801}
1802
1803/**
1804 *      skb_peek_next - peek skb following the given one from a queue
1805 *      @skb: skb to start from
1806 *      @list_: list to peek at
1807 *
1808 *      Returns %NULL when the end of the list is met or a pointer to the
1809 *      next element. The reference count is not incremented and the
1810 *      reference is therefore volatile. Use with caution.
1811 */
1812static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1813                const struct sk_buff_head *list_)
1814{
1815        struct sk_buff *next = skb->next;
1816
1817        if (next == (struct sk_buff *)list_)
1818                next = NULL;
1819        return next;
1820}
1821
1822/**
1823 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1824 *      @list_: list to peek at
1825 *
1826 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1827 *      be careful with this one. A peek leaves the buffer on the
1828 *      list and someone else may run off with it. You must hold
1829 *      the appropriate locks or have a private queue to do this.
1830 *
1831 *      Returns %NULL for an empty list or a pointer to the tail element.
1832 *      The reference count is not incremented and the reference is therefore
1833 *      volatile. Use with caution.
1834 */
1835static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1836{
1837        struct sk_buff *skb = READ_ONCE(list_->prev);
1838
1839        if (skb == (struct sk_buff *)list_)
1840                skb = NULL;
1841        return skb;
1842
1843}
1844
1845/**
1846 *      skb_queue_len   - get queue length
1847 *      @list_: list to measure
1848 *
1849 *      Return the length of an &sk_buff queue.
1850 */
1851static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1852{
1853        return list_->qlen;
1854}
1855
1856/**
1857 *      skb_queue_len_lockless  - get queue length
1858 *      @list_: list to measure
1859 *
1860 *      Return the length of an &sk_buff queue.
1861 *      This variant can be used in lockless contexts.
1862 */
1863static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1864{
1865        return READ_ONCE(list_->qlen);
1866}
1867
1868/**
1869 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1870 *      @list: queue to initialize
1871 *
1872 *      This initializes only the list and queue length aspects of
1873 *      an sk_buff_head object.  This allows to initialize the list
1874 *      aspects of an sk_buff_head without reinitializing things like
1875 *      the spinlock.  It can also be used for on-stack sk_buff_head
1876 *      objects where the spinlock is known to not be used.
1877 */
1878static inline void __skb_queue_head_init(struct sk_buff_head *list)
1879{
1880        list->prev = list->next = (struct sk_buff *)list;
1881        list->qlen = 0;
1882}
1883
1884/*
1885 * This function creates a split out lock class for each invocation;
1886 * this is needed for now since a whole lot of users of the skb-queue
1887 * infrastructure in drivers have different locking usage (in hardirq)
1888 * than the networking core (in softirq only). In the long run either the
1889 * network layer or drivers should need annotation to consolidate the
1890 * main types of usage into 3 classes.
1891 */
1892static inline void skb_queue_head_init(struct sk_buff_head *list)
1893{
1894        spin_lock_init(&list->lock);
1895        __skb_queue_head_init(list);
1896}
1897
1898static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1899                struct lock_class_key *class)
1900{
1901        skb_queue_head_init(list);
1902        lockdep_set_class(&list->lock, class);
1903}
1904
1905/*
1906 *      Insert an sk_buff on a list.
1907 *
1908 *      The "__skb_xxxx()" functions are the non-atomic ones that
1909 *      can only be called with interrupts disabled.
1910 */
1911static inline void __skb_insert(struct sk_buff *newsk,
1912                                struct sk_buff *prev, struct sk_buff *next,
1913                                struct sk_buff_head *list)
1914{
1915        /* See skb_queue_empty_lockless() and skb_peek_tail()
1916         * for the opposite READ_ONCE()
1917         */
1918        WRITE_ONCE(newsk->next, next);
1919        WRITE_ONCE(newsk->prev, prev);
1920        WRITE_ONCE(next->prev, newsk);
1921        WRITE_ONCE(prev->next, newsk);
1922        list->qlen++;
1923}
1924
1925static inline void __skb_queue_splice(const struct sk_buff_head *list,
1926                                      struct sk_buff *prev,
1927                                      struct sk_buff *next)
1928{
1929        struct sk_buff *first = list->next;
1930        struct sk_buff *last = list->prev;
1931
1932        WRITE_ONCE(first->prev, prev);
1933        WRITE_ONCE(prev->next, first);
1934
1935        WRITE_ONCE(last->next, next);
1936        WRITE_ONCE(next->prev, last);
1937}
1938
1939/**
1940 *      skb_queue_splice - join two skb lists, this is designed for stacks
1941 *      @list: the new list to add
1942 *      @head: the place to add it in the first list
1943 */
1944static inline void skb_queue_splice(const struct sk_buff_head *list,
1945                                    struct sk_buff_head *head)
1946{
1947        if (!skb_queue_empty(list)) {
1948                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1949                head->qlen += list->qlen;
1950        }
1951}
1952
1953/**
1954 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1955 *      @list: the new list to add
1956 *      @head: the place to add it in the first list
1957 *
1958 *      The list at @list is reinitialised
1959 */
1960static inline void skb_queue_splice_init(struct sk_buff_head *list,
1961                                         struct sk_buff_head *head)
1962{
1963        if (!skb_queue_empty(list)) {
1964                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1965                head->qlen += list->qlen;
1966                __skb_queue_head_init(list);
1967        }
1968}
1969
1970/**
1971 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1972 *      @list: the new list to add
1973 *      @head: the place to add it in the first list
1974 */
1975static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1976                                         struct sk_buff_head *head)
1977{
1978        if (!skb_queue_empty(list)) {
1979                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1980                head->qlen += list->qlen;
1981        }
1982}
1983
1984/**
1985 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1986 *      @list: the new list to add
1987 *      @head: the place to add it in the first list
1988 *
1989 *      Each of the lists is a queue.
1990 *      The list at @list is reinitialised
1991 */
1992static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1993                                              struct sk_buff_head *head)
1994{
1995        if (!skb_queue_empty(list)) {
1996                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1997                head->qlen += list->qlen;
1998                __skb_queue_head_init(list);
1999        }
2000}
2001
2002/**
2003 *      __skb_queue_after - queue a buffer at the list head
2004 *      @list: list to use
2005 *      @prev: place after this buffer
2006 *      @newsk: buffer to queue
2007 *
2008 *      Queue a buffer int the middle of a list. This function takes no locks
2009 *      and you must therefore hold required locks before calling it.
2010 *
2011 *      A buffer cannot be placed on two lists at the same time.
2012 */
2013static inline void __skb_queue_after(struct sk_buff_head *list,
2014                                     struct sk_buff *prev,
2015                                     struct sk_buff *newsk)
2016{
2017        __skb_insert(newsk, prev, prev->next, list);
2018}
2019
2020void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2021                struct sk_buff_head *list);
2022
2023static inline void __skb_queue_before(struct sk_buff_head *list,
2024                                      struct sk_buff *next,
2025                                      struct sk_buff *newsk)
2026{
2027        __skb_insert(newsk, next->prev, next, list);
2028}
2029
2030/**
2031 *      __skb_queue_head - queue a buffer at the list head
2032 *      @list: list to use
2033 *      @newsk: buffer to queue
2034 *
2035 *      Queue a buffer at the start of a list. This function takes no locks
2036 *      and you must therefore hold required locks before calling it.
2037 *
2038 *      A buffer cannot be placed on two lists at the same time.
2039 */
2040static inline void __skb_queue_head(struct sk_buff_head *list,
2041                                    struct sk_buff *newsk)
2042{
2043        __skb_queue_after(list, (struct sk_buff *)list, newsk);
2044}
2045void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2046
2047/**
2048 *      __skb_queue_tail - queue a buffer at the list tail
2049 *      @list: list to use
2050 *      @newsk: buffer to queue
2051 *
2052 *      Queue a buffer at the end of a list. This function takes no locks
2053 *      and you must therefore hold required locks before calling it.
2054 *
2055 *      A buffer cannot be placed on two lists at the same time.
2056 */
2057static inline void __skb_queue_tail(struct sk_buff_head *list,
2058                                   struct sk_buff *newsk)
2059{
2060        __skb_queue_before(list, (struct sk_buff *)list, newsk);
2061}
2062void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2063
2064/*
2065 * remove sk_buff from list. _Must_ be called atomically, and with
2066 * the list known..
2067 */
2068void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2069static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2070{
2071        struct sk_buff *next, *prev;
2072
2073        WRITE_ONCE(list->qlen, list->qlen - 1);
2074        next       = skb->next;
2075        prev       = skb->prev;
2076        skb->next  = skb->prev = NULL;
2077        WRITE_ONCE(next->prev, prev);
2078        WRITE_ONCE(prev->next, next);
2079}
2080
2081/**
2082 *      __skb_dequeue - remove from the head of the queue
2083 *      @list: list to dequeue from
2084 *
2085 *      Remove the head of the list. This function does not take any locks
2086 *      so must be used with appropriate locks held only. The head item is
2087 *      returned or %NULL if the list is empty.
2088 */
2089static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2090{
2091        struct sk_buff *skb = skb_peek(list);
2092        if (skb)
2093                __skb_unlink(skb, list);
2094        return skb;
2095}
2096struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2097
2098/**
2099 *      __skb_dequeue_tail - remove from the tail of the queue
2100 *      @list: list to dequeue from
2101 *
2102 *      Remove the tail of the list. This function does not take any locks
2103 *      so must be used with appropriate locks held only. The tail item is
2104 *      returned or %NULL if the list is empty.
2105 */
2106static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2107{
2108        struct sk_buff *skb = skb_peek_tail(list);
2109        if (skb)
2110                __skb_unlink(skb, list);
2111        return skb;
2112}
2113struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2114
2115
2116static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2117{
2118        return skb->data_len;
2119}
2120
2121static inline unsigned int skb_headlen(const struct sk_buff *skb)
2122{
2123        return skb->len - skb->data_len;
2124}
2125
2126static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2127{
2128        unsigned int i, len = 0;
2129
2130        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2131                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2132        return len;
2133}
2134
2135static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2136{
2137        return skb_headlen(skb) + __skb_pagelen(skb);
2138}
2139
2140/**
2141 * __skb_fill_page_desc - initialise a paged fragment in an skb
2142 * @skb: buffer containing fragment to be initialised
2143 * @i: paged fragment index to initialise
2144 * @page: the page to use for this fragment
2145 * @off: the offset to the data with @page
2146 * @size: the length of the data
2147 *
2148 * Initialises the @i'th fragment of @skb to point to &size bytes at
2149 * offset @off within @page.
2150 *
2151 * Does not take any additional reference on the fragment.
2152 */
2153static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2154                                        struct page *page, int off, int size)
2155{
2156        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2157
2158        /*
2159         * Propagate page pfmemalloc to the skb if we can. The problem is
2160         * that not all callers have unique ownership of the page but rely
2161         * on page_is_pfmemalloc doing the right thing(tm).
2162         */
2163        frag->bv_page             = page;
2164        frag->bv_offset           = off;
2165        skb_frag_size_set(frag, size);
2166
2167        page = compound_head(page);
2168        if (page_is_pfmemalloc(page))
2169                skb->pfmemalloc = true;
2170}
2171
2172/**
2173 * skb_fill_page_desc - initialise a paged fragment in an skb
2174 * @skb: buffer containing fragment to be initialised
2175 * @i: paged fragment index to initialise
2176 * @page: the page to use for this fragment
2177 * @off: the offset to the data with @page
2178 * @size: the length of the data
2179 *
2180 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2181 * @skb to point to @size bytes at offset @off within @page. In
2182 * addition updates @skb such that @i is the last fragment.
2183 *
2184 * Does not take any additional reference on the fragment.
2185 */
2186static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2187                                      struct page *page, int off, int size)
2188{
2189        __skb_fill_page_desc(skb, i, page, off, size);
2190        skb_shinfo(skb)->nr_frags = i + 1;
2191}
2192
2193void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2194                     int size, unsigned int truesize);
2195
2196void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2197                          unsigned int truesize);
2198
2199#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2200
2201#ifdef NET_SKBUFF_DATA_USES_OFFSET
2202static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2203{
2204        return skb->head + skb->tail;
2205}
2206
2207static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2208{
2209        skb->tail = skb->data - skb->head;
2210}
2211
2212static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2213{
2214        skb_reset_tail_pointer(skb);
2215        skb->tail += offset;
2216}
2217
2218#else /* NET_SKBUFF_DATA_USES_OFFSET */
2219static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2220{
2221        return skb->tail;
2222}
2223
2224static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2225{
2226        skb->tail = skb->data;
2227}
2228
2229static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2230{
2231        skb->tail = skb->data + offset;
2232}
2233
2234#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2235
2236/*
2237 *      Add data to an sk_buff
2238 */
2239void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2240void *skb_put(struct sk_buff *skb, unsigned int len);
2241static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2242{
2243        void *tmp = skb_tail_pointer(skb);
2244        SKB_LINEAR_ASSERT(skb);
2245        skb->tail += len;
2246        skb->len  += len;
2247        return tmp;
2248}
2249
2250static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2251{
2252        void *tmp = __skb_put(skb, len);
2253
2254        memset(tmp, 0, len);
2255        return tmp;
2256}
2257
2258static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2259                                   unsigned int len)
2260{
2261        void *tmp = __skb_put(skb, len);
2262
2263        memcpy(tmp, data, len);
2264        return tmp;
2265}
2266
2267static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2268{
2269        *(u8 *)__skb_put(skb, 1) = val;
2270}
2271
2272static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2273{
2274        void *tmp = skb_put(skb, len);
2275
2276        memset(tmp, 0, len);
2277
2278        return tmp;
2279}
2280
2281static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2282                                 unsigned int len)
2283{
2284        void *tmp = skb_put(skb, len);
2285
2286        memcpy(tmp, data, len);
2287
2288        return tmp;
2289}
2290
2291static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2292{
2293        *(u8 *)skb_put(skb, 1) = val;
2294}
2295
2296void *skb_push(struct sk_buff *skb, unsigned int len);
2297static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2298{
2299        skb->data -= len;
2300        skb->len  += len;
2301        return skb->data;
2302}
2303
2304void *skb_pull(struct sk_buff *skb, unsigned int len);
2305static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2306{
2307        skb->len -= len;
2308        BUG_ON(skb->len < skb->data_len);
2309        return skb->data += len;
2310}
2311
2312static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2313{
2314        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2315}
2316
2317void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2318
2319static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2320{
2321        if (len > skb_headlen(skb) &&
2322            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2323                return NULL;
2324        skb->len -= len;
2325        return skb->data += len;
2326}
2327
2328static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2329{
2330        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2331}
2332
2333static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2334{
2335        if (likely(len <= skb_headlen(skb)))
2336                return true;
2337        if (unlikely(len > skb->len))
2338                return false;
2339        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2340}
2341
2342void skb_condense(struct sk_buff *skb);
2343
2344/**
2345 *      skb_headroom - bytes at buffer head
2346 *      @skb: buffer to check
2347 *
2348 *      Return the number of bytes of free space at the head of an &sk_buff.
2349 */
2350static inline unsigned int skb_headroom(const struct sk_buff *skb)
2351{
2352        return skb->data - skb->head;
2353}
2354
2355/**
2356 *      skb_tailroom - bytes at buffer end
2357 *      @skb: buffer to check
2358 *
2359 *      Return the number of bytes of free space at the tail of an sk_buff
2360 */
2361static inline int skb_tailroom(const struct sk_buff *skb)
2362{
2363        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2364}
2365
2366/**
2367 *      skb_availroom - bytes at buffer end
2368 *      @skb: buffer to check
2369 *
2370 *      Return the number of bytes of free space at the tail of an sk_buff
2371 *      allocated by sk_stream_alloc()
2372 */
2373static inline int skb_availroom(const struct sk_buff *skb)
2374{
2375        if (skb_is_nonlinear(skb))
2376                return 0;
2377
2378        return skb->end - skb->tail - skb->reserved_tailroom;
2379}
2380
2381/**
2382 *      skb_reserve - adjust headroom
2383 *      @skb: buffer to alter
2384 *      @len: bytes to move
2385 *
2386 *      Increase the headroom of an empty &sk_buff by reducing the tail
2387 *      room. This is only allowed for an empty buffer.
2388 */
2389static inline void skb_reserve(struct sk_buff *skb, int len)
2390{
2391        skb->data += len;
2392        skb->tail += len;
2393}
2394
2395/**
2396 *      skb_tailroom_reserve - adjust reserved_tailroom
2397 *      @skb: buffer to alter
2398 *      @mtu: maximum amount of headlen permitted
2399 *      @needed_tailroom: minimum amount of reserved_tailroom
2400 *
2401 *      Set reserved_tailroom so that headlen can be as large as possible but
2402 *      not larger than mtu and tailroom cannot be smaller than
2403 *      needed_tailroom.
2404 *      The required headroom should already have been reserved before using
2405 *      this function.
2406 */
2407static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2408                                        unsigned int needed_tailroom)
2409{
2410        SKB_LINEAR_ASSERT(skb);
2411        if (mtu < skb_tailroom(skb) - needed_tailroom)
2412                /* use at most mtu */
2413                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2414        else
2415                /* use up to all available space */
2416                skb->reserved_tailroom = needed_tailroom;
2417}
2418
2419#define ENCAP_TYPE_ETHER        0
2420#define ENCAP_TYPE_IPPROTO      1
2421
2422static inline void skb_set_inner_protocol(struct sk_buff *skb,
2423                                          __be16 protocol)
2424{
2425        skb->inner_protocol = protocol;
2426        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2427}
2428
2429static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2430                                         __u8 ipproto)
2431{
2432        skb->inner_ipproto = ipproto;
2433        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2434}
2435
2436static inline void skb_reset_inner_headers(struct sk_buff *skb)
2437{
2438        skb->inner_mac_header = skb->mac_header;
2439        skb->inner_network_header = skb->network_header;
2440        skb->inner_transport_header = skb->transport_header;
2441}
2442
2443static inline void skb_reset_mac_len(struct sk_buff *skb)
2444{
2445        skb->mac_len = skb->network_header - skb->mac_header;
2446}
2447
2448static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2449                                                        *skb)
2450{
2451        return skb->head + skb->inner_transport_header;
2452}
2453
2454static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2455{
2456        return skb_inner_transport_header(skb) - skb->data;
2457}
2458
2459static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2460{
2461        skb->inner_transport_header = skb->data - skb->head;
2462}
2463
2464static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2465                                                   const int offset)
2466{
2467        skb_reset_inner_transport_header(skb);
2468        skb->inner_transport_header += offset;
2469}
2470
2471static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2472{
2473        return skb->head + skb->inner_network_header;
2474}
2475
2476static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2477{
2478        skb->inner_network_header = skb->data - skb->head;
2479}
2480
2481static inline void skb_set_inner_network_header(struct sk_buff *skb,
2482                                                const int offset)
2483{
2484        skb_reset_inner_network_header(skb);
2485        skb->inner_network_header += offset;
2486}
2487
2488static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2489{
2490        return skb->head + skb->inner_mac_header;
2491}
2492
2493static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2494{
2495        skb->inner_mac_header = skb->data - skb->head;
2496}
2497
2498static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2499                                            const int offset)
2500{
2501        skb_reset_inner_mac_header(skb);
2502        skb->inner_mac_header += offset;
2503}
2504static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2505{
2506        return skb->transport_header != (typeof(skb->transport_header))~0U;
2507}
2508
2509static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2510{
2511        return skb->head + skb->transport_header;
2512}
2513
2514static inline void skb_reset_transport_header(struct sk_buff *skb)
2515{
2516        skb->transport_header = skb->data - skb->head;
2517}
2518
2519static inline void skb_set_transport_header(struct sk_buff *skb,
2520                                            const int offset)
2521{
2522        skb_reset_transport_header(skb);
2523        skb->transport_header += offset;
2524}
2525
2526static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2527{
2528        return skb->head + skb->network_header;
2529}
2530
2531static inline void skb_reset_network_header(struct sk_buff *skb)
2532{
2533        skb->network_header = skb->data - skb->head;
2534}
2535
2536static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2537{
2538        skb_reset_network_header(skb);
2539        skb->network_header += offset;
2540}
2541
2542static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2543{
2544        return skb->head + skb->mac_header;
2545}
2546
2547static inline int skb_mac_offset(const struct sk_buff *skb)
2548{
2549        return skb_mac_header(skb) - skb->data;
2550}
2551
2552static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2553{
2554        return skb->network_header - skb->mac_header;
2555}
2556
2557static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2558{
2559        return skb->mac_header != (typeof(skb->mac_header))~0U;
2560}
2561
2562static inline void skb_reset_mac_header(struct sk_buff *skb)
2563{
2564        skb->mac_header = skb->data - skb->head;
2565}
2566
2567static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2568{
2569        skb_reset_mac_header(skb);
2570        skb->mac_header += offset;
2571}
2572
2573static inline void skb_pop_mac_header(struct sk_buff *skb)
2574{
2575        skb->mac_header = skb->network_header;
2576}
2577
2578static inline void skb_probe_transport_header(struct sk_buff *skb)
2579{
2580        struct flow_keys_basic keys;
2581
2582        if (skb_transport_header_was_set(skb))
2583                return;
2584
2585        if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2586                                             NULL, 0, 0, 0, 0))
2587                skb_set_transport_header(skb, keys.control.thoff);
2588}
2589
2590static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2591{
2592        if (skb_mac_header_was_set(skb)) {
2593                const unsigned char *old_mac = skb_mac_header(skb);
2594
2595                skb_set_mac_header(skb, -skb->mac_len);
2596                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2597        }
2598}
2599
2600static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2601{
2602        return skb->csum_start - skb_headroom(skb);
2603}
2604
2605static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2606{
2607        return skb->head + skb->csum_start;
2608}
2609
2610static inline int skb_transport_offset(const struct sk_buff *skb)
2611{
2612        return skb_transport_header(skb) - skb->data;
2613}
2614
2615static inline u32 skb_network_header_len(const struct sk_buff *skb)
2616{
2617        return skb->transport_header - skb->network_header;
2618}
2619
2620static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2621{
2622        return skb->inner_transport_header - skb->inner_network_header;
2623}
2624
2625static inline int skb_network_offset(const struct sk_buff *skb)
2626{
2627        return skb_network_header(skb) - skb->data;
2628}
2629
2630static inline int skb_inner_network_offset(const struct sk_buff *skb)
2631{
2632        return skb_inner_network_header(skb) - skb->data;
2633}
2634
2635static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2636{
2637        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2638}
2639
2640/*
2641 * CPUs often take a performance hit when accessing unaligned memory
2642 * locations. The actual performance hit varies, it can be small if the
2643 * hardware handles it or large if we have to take an exception and fix it
2644 * in software.
2645 *
2646 * Since an ethernet header is 14 bytes network drivers often end up with
2647 * the IP header at an unaligned offset. The IP header can be aligned by
2648 * shifting the start of the packet by 2 bytes. Drivers should do this
2649 * with:
2650 *
2651 * skb_reserve(skb, NET_IP_ALIGN);
2652 *
2653 * The downside to this alignment of the IP header is that the DMA is now
2654 * unaligned. On some architectures the cost of an unaligned DMA is high
2655 * and this cost outweighs the gains made by aligning the IP header.
2656 *
2657 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2658 * to be overridden.
2659 */
2660#ifndef NET_IP_ALIGN
2661#define NET_IP_ALIGN    2
2662#endif
2663
2664/*
2665 * The networking layer reserves some headroom in skb data (via
2666 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2667 * the header has to grow. In the default case, if the header has to grow
2668 * 32 bytes or less we avoid the reallocation.
2669 *
2670 * Unfortunately this headroom changes the DMA alignment of the resulting
2671 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2672 * on some architectures. An architecture can override this value,
2673 * perhaps setting it to a cacheline in size (since that will maintain
2674 * cacheline alignment of the DMA). It must be a power of 2.
2675 *
2676 * Various parts of the networking layer expect at least 32 bytes of
2677 * headroom, you should not reduce this.
2678 *
2679 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2680 * to reduce average number of cache lines per packet.
2681 * get_rps_cpus() for example only access one 64 bytes aligned block :
2682 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2683 */
2684#ifndef NET_SKB_PAD
2685#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2686#endif
2687
2688int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2689
2690static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2691{
2692        if (WARN_ON(skb_is_nonlinear(skb)))
2693                return;
2694        skb->len = len;
2695        skb_set_tail_pointer(skb, len);
2696}
2697
2698static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2699{
2700        __skb_set_length(skb, len);
2701}
2702
2703void skb_trim(struct sk_buff *skb, unsigned int len);
2704
2705static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2706{
2707        if (skb->data_len)
2708                return ___pskb_trim(skb, len);
2709        __skb_trim(skb, len);
2710        return 0;
2711}
2712
2713static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2714{
2715        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2716}
2717
2718/**
2719 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2720 *      @skb: buffer to alter
2721 *      @len: new length
2722 *
2723 *      This is identical to pskb_trim except that the caller knows that
2724 *      the skb is not cloned so we should never get an error due to out-
2725 *      of-memory.
2726 */
2727static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2728{
2729        int err = pskb_trim(skb, len);
2730        BUG_ON(err);
2731}
2732
2733static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2734{
2735        unsigned int diff = len - skb->len;
2736
2737        if (skb_tailroom(skb) < diff) {
2738                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2739                                           GFP_ATOMIC);
2740                if (ret)
2741                        return ret;
2742        }
2743        __skb_set_length(skb, len);
2744        return 0;
2745}
2746
2747/**
2748 *      skb_orphan - orphan a buffer
2749 *      @skb: buffer to orphan
2750 *
2751 *      If a buffer currently has an owner then we call the owner's
2752 *      destructor function and make the @skb unowned. The buffer continues
2753 *      to exist but is no longer charged to its former owner.
2754 */
2755static inline void skb_orphan(struct sk_buff *skb)
2756{
2757        if (skb->destructor) {
2758                skb->destructor(skb);
2759                skb->destructor = NULL;
2760                skb->sk         = NULL;
2761        } else {
2762                BUG_ON(skb->sk);
2763        }
2764}
2765
2766/**
2767 *      skb_orphan_frags - orphan the frags contained in a buffer
2768 *      @skb: buffer to orphan frags from
2769 *      @gfp_mask: allocation mask for replacement pages
2770 *
2771 *      For each frag in the SKB which needs a destructor (i.e. has an
2772 *      owner) create a copy of that frag and release the original
2773 *      page by calling the destructor.
2774 */
2775static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2776{
2777        if (likely(!skb_zcopy(skb)))
2778                return 0;
2779        if (!skb_zcopy_is_nouarg(skb) &&
2780            skb_uarg(skb)->callback == sock_zerocopy_callback)
2781                return 0;
2782        return skb_copy_ubufs(skb, gfp_mask);
2783}
2784
2785/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2786static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2787{
2788        if (likely(!skb_zcopy(skb)))
2789                return 0;
2790        return skb_copy_ubufs(skb, gfp_mask);
2791}
2792
2793/**
2794 *      __skb_queue_purge - empty a list
2795 *      @list: list to empty
2796 *
2797 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2798 *      the list and one reference dropped. This function does not take the
2799 *      list lock and the caller must hold the relevant locks to use it.
2800 */
2801static inline void __skb_queue_purge(struct sk_buff_head *list)
2802{
2803        struct sk_buff *skb;
2804        while ((skb = __skb_dequeue(list)) != NULL)
2805                kfree_skb(skb);
2806}
2807void skb_queue_purge(struct sk_buff_head *list);
2808
2809unsigned int skb_rbtree_purge(struct rb_root *root);
2810
2811void *netdev_alloc_frag(unsigned int fragsz);
2812
2813struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2814                                   gfp_t gfp_mask);
2815
2816/**
2817 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2818 *      @dev: network device to receive on
2819 *      @length: length to allocate
2820 *
2821 *      Allocate a new &sk_buff and assign it a usage count of one. The
2822 *      buffer has unspecified headroom built in. Users should allocate
2823 *      the headroom they think they need without accounting for the
2824 *      built in space. The built in space is used for optimisations.
2825 *
2826 *      %NULL is returned if there is no free memory. Although this function
2827 *      allocates memory it can be called from an interrupt.
2828 */
2829static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2830                                               unsigned int length)
2831{
2832        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2833}
2834
2835/* legacy helper around __netdev_alloc_skb() */
2836static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2837                                              gfp_t gfp_mask)
2838{
2839        return __netdev_alloc_skb(NULL, length, gfp_mask);
2840}
2841
2842/* legacy helper around netdev_alloc_skb() */
2843static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2844{
2845        return netdev_alloc_skb(NULL, length);
2846}
2847
2848
2849static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2850                unsigned int length, gfp_t gfp)
2851{
2852        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2853
2854        if (NET_IP_ALIGN && skb)
2855                skb_reserve(skb, NET_IP_ALIGN);
2856        return skb;
2857}
2858
2859static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2860                unsigned int length)
2861{
2862        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2863}
2864
2865static inline void skb_free_frag(void *addr)
2866{
2867        page_frag_free(addr);
2868}
2869
2870void *napi_alloc_frag(unsigned int fragsz);
2871struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2872                                 unsigned int length, gfp_t gfp_mask);
2873static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2874                                             unsigned int length)
2875{
2876        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2877}
2878void napi_consume_skb(struct sk_buff *skb, int budget);
2879
2880void __kfree_skb_flush(void);
2881void __kfree_skb_defer(struct sk_buff *skb);
2882
2883/**
2884 * __dev_alloc_pages - allocate page for network Rx
2885 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2886 * @order: size of the allocation
2887 *
2888 * Allocate a new page.
2889 *
2890 * %NULL is returned if there is no free memory.
2891*/
2892static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2893                                             unsigned int order)
2894{
2895        /* This piece of code contains several assumptions.
2896         * 1.  This is for device Rx, therefor a cold page is preferred.
2897         * 2.  The expectation is the user wants a compound page.
2898         * 3.  If requesting a order 0 page it will not be compound
2899         *     due to the check to see if order has a value in prep_new_page
2900         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2901         *     code in gfp_to_alloc_flags that should be enforcing this.
2902         */
2903        gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2904
2905        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2906}
2907
2908static inline struct page *dev_alloc_pages(unsigned int order)
2909{
2910        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2911}
2912
2913/**
2914 * __dev_alloc_page - allocate a page for network Rx
2915 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2916 *
2917 * Allocate a new page.
2918 *
2919 * %NULL is returned if there is no free memory.
2920 */
2921static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2922{
2923        return __dev_alloc_pages(gfp_mask, 0);
2924}
2925
2926static inline struct page *dev_alloc_page(void)
2927{
2928        return dev_alloc_pages(0);
2929}
2930
2931/**
2932 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2933 *      @page: The page that was allocated from skb_alloc_page
2934 *      @skb: The skb that may need pfmemalloc set
2935 */
2936static inline void skb_propagate_pfmemalloc(struct page *page,
2937                                             struct sk_buff *skb)
2938{
2939        if (page_is_pfmemalloc(page))
2940                skb->pfmemalloc = true;
2941}
2942
2943/**
2944 * skb_frag_off() - Returns the offset of a skb fragment
2945 * @frag: the paged fragment
2946 */
2947static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2948{
2949        return frag->bv_offset;
2950}
2951
2952/**
2953 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2954 * @frag: skb fragment
2955 * @delta: value to add
2956 */
2957static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2958{
2959        frag->bv_offset += delta;
2960}
2961
2962/**
2963 * skb_frag_off_set() - Sets the offset of a skb fragment
2964 * @frag: skb fragment
2965 * @offset: offset of fragment
2966 */
2967static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2968{
2969        frag->bv_offset = offset;
2970}
2971
2972/**
2973 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2974 * @fragto: skb fragment where offset is set
2975 * @fragfrom: skb fragment offset is copied from
2976 */
2977static inline void skb_frag_off_copy(skb_frag_t *fragto,
2978                                     const skb_frag_t *fragfrom)
2979{
2980        fragto->bv_offset = fragfrom->bv_offset;
2981}
2982
2983/**
2984 * skb_frag_page - retrieve the page referred to by a paged fragment
2985 * @frag: the paged fragment
2986 *
2987 * Returns the &struct page associated with @frag.
2988 */
2989static inline struct page *skb_frag_page(const skb_frag_t *frag)
2990{
2991        return frag->bv_page;
2992}
2993
2994/**
2995 * __skb_frag_ref - take an addition reference on a paged fragment.
2996 * @frag: the paged fragment
2997 *
2998 * Takes an additional reference on the paged fragment @frag.
2999 */
3000static inline void __skb_frag_ref(skb_frag_t *frag)
3001{
3002        get_page(skb_frag_page(frag));
3003}
3004
3005/**
3006 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3007 * @skb: the buffer
3008 * @f: the fragment offset.
3009 *
3010 * Takes an additional reference on the @f'th paged fragment of @skb.
3011 */
3012static inline void skb_frag_ref(struct sk_buff *skb, int f)
3013{
3014        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3015}
3016
3017/**
3018 * __skb_frag_unref - release a reference on a paged fragment.
3019 * @frag: the paged fragment
3020 *
3021 * Releases a reference on the paged fragment @frag.
3022 */
3023static inline void __skb_frag_unref(skb_frag_t *frag)
3024{
3025        put_page(skb_frag_page(frag));
3026}
3027
3028/**
3029 * skb_frag_unref - release a reference on a paged fragment of an skb.
3030 * @skb: the buffer
3031 * @f: the fragment offset
3032 *
3033 * Releases a reference on the @f'th paged fragment of @skb.
3034 */
3035static inline void skb_frag_unref(struct sk_buff *skb, int f)
3036{
3037        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3038}
3039
3040/**
3041 * skb_frag_address - gets the address of the data contained in a paged fragment
3042 * @frag: the paged fragment buffer
3043 *
3044 * Returns the address of the data within @frag. The page must already
3045 * be mapped.
3046 */
3047static inline void *skb_frag_address(const skb_frag_t *frag)
3048{
3049        return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3050}
3051
3052/**
3053 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3054 * @frag: the paged fragment buffer
3055 *
3056 * Returns the address of the data within @frag. Checks that the page
3057 * is mapped and returns %NULL otherwise.
3058 */
3059static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3060{
3061        void *ptr = page_address(skb_frag_page(frag));
3062        if (unlikely(!ptr))
3063                return NULL;
3064
3065        return ptr + skb_frag_off(frag);
3066}
3067
3068/**
3069 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3070 * @fragto: skb fragment where page is set
3071 * @fragfrom: skb fragment page is copied from
3072 */
3073static inline void skb_frag_page_copy(skb_frag_t *fragto,
3074                                      const skb_frag_t *fragfrom)
3075{
3076        fragto->bv_page = fragfrom->bv_page;
3077}
3078
3079/**
3080 * __skb_frag_set_page - sets the page contained in a paged fragment
3081 * @frag: the paged fragment
3082 * @page: the page to set
3083 *
3084 * Sets the fragment @frag to contain @page.
3085 */
3086static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3087{
3088        frag->bv_page = page;
3089}
3090
3091/**
3092 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3093 * @skb: the buffer
3094 * @f: the fragment offset
3095 * @page: the page to set
3096 *
3097 * Sets the @f'th fragment of @skb to contain @page.
3098 */
3099static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3100                                     struct page *page)
3101{
3102        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3103}
3104
3105bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3106
3107/**
3108 * skb_frag_dma_map - maps a paged fragment via the DMA API
3109 * @dev: the device to map the fragment to
3110 * @frag: the paged fragment to map
3111 * @offset: the offset within the fragment (starting at the
3112 *          fragment's own offset)
3113 * @size: the number of bytes to map
3114 * @dir: the direction of the mapping (``PCI_DMA_*``)
3115 *
3116 * Maps the page associated with @frag to @device.
3117 */
3118static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3119                                          const skb_frag_t *frag,
3120                                          size_t offset, size_t size,
3121                                          enum dma_data_direction dir)
3122{
3123        return dma_map_page(dev, skb_frag_page(frag),
3124                            skb_frag_off(frag) + offset, size, dir);
3125}
3126
3127static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3128                                        gfp_t gfp_mask)
3129{
3130        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3131}
3132
3133
3134static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3135                                                  gfp_t gfp_mask)
3136{
3137        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3138}
3139
3140
3141/**
3142 *      skb_clone_writable - is the header of a clone writable
3143 *      @skb: buffer to check
3144 *      @len: length up to which to write
3145 *
3146 *      Returns true if modifying the header part of the cloned buffer
3147 *      does not requires the data to be copied.
3148 */
3149static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3150{
3151        return !skb_header_cloned(skb) &&
3152               skb_headroom(skb) + len <= skb->hdr_len;
3153}
3154
3155static inline int skb_try_make_writable(struct sk_buff *skb,
3156                                        unsigned int write_len)
3157{
3158        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3159               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3160}
3161
3162static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3163                            int cloned)
3164{
3165        int delta = 0;
3166
3167        if (headroom > skb_headroom(skb))
3168                delta = headroom - skb_headroom(skb);
3169
3170        if (delta || cloned)
3171                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3172                                        GFP_ATOMIC);
3173        return 0;
3174}
3175
3176/**
3177 *      skb_cow - copy header of skb when it is required
3178 *      @skb: buffer to cow
3179 *      @headroom: needed headroom
3180 *
3181 *      If the skb passed lacks sufficient headroom or its data part
3182 *      is shared, data is reallocated. If reallocation fails, an error
3183 *      is returned and original skb is not changed.
3184 *
3185 *      The result is skb with writable area skb->head...skb->tail
3186 *      and at least @headroom of space at head.
3187 */
3188static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3189{
3190        return __skb_cow(skb, headroom, skb_cloned(skb));
3191}
3192
3193/**
3194 *      skb_cow_head - skb_cow but only making the head writable
3195 *      @skb: buffer to cow
3196 *      @headroom: needed headroom
3197 *
3198 *      This function is identical to skb_cow except that we replace the
3199 *      skb_cloned check by skb_header_cloned.  It should be used when
3200 *      you only need to push on some header and do not need to modify
3201 *      the data.
3202 */
3203static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3204{
3205        return __skb_cow(skb, headroom, skb_header_cloned(skb));
3206}
3207
3208/**
3209 *      skb_padto       - pad an skbuff up to a minimal size
3210 *      @skb: buffer to pad
3211 *      @len: minimal length
3212 *
3213 *      Pads up a buffer to ensure the trailing bytes exist and are
3214 *      blanked. If the buffer already contains sufficient data it
3215 *      is untouched. Otherwise it is extended. Returns zero on
3216 *      success. The skb is freed on error.
3217 */
3218static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3219{
3220        unsigned int size = skb->len;
3221        if (likely(size >= len))
3222                return 0;
3223        return skb_pad(skb, len - size);
3224}
3225
3226/**
3227 *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3228 *      @skb: buffer to pad
3229 *      @len: minimal length
3230 *      @free_on_error: free buffer on error
3231 *
3232 *      Pads up a buffer to ensure the trailing bytes exist and are
3233 *      blanked. If the buffer already contains sufficient data it
3234 *      is untouched. Otherwise it is extended. Returns zero on
3235 *      success. The skb is freed on error if @free_on_error is true.
3236 */
3237static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3238                                  bool free_on_error)
3239{
3240        unsigned int size = skb->len;
3241
3242        if (unlikely(size < len)) {
3243                len -= size;
3244                if (__skb_pad(skb, len, free_on_error))
3245                        return -ENOMEM;
3246                __skb_put(skb, len);
3247        }
3248        return 0;
3249}
3250
3251/**
3252 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3253 *      @skb: buffer to pad
3254 *      @len: minimal length
3255 *
3256 *      Pads up a buffer to ensure the trailing bytes exist and are
3257 *      blanked. If the buffer already contains sufficient data it
3258 *      is untouched. Otherwise it is extended. Returns zero on
3259 *      success. The skb is freed on error.
3260 */
3261static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3262{
3263        return __skb_put_padto(skb, len, true);
3264}
3265
3266static inline int skb_add_data(struct sk_buff *skb,
3267                               struct iov_iter *from, int copy)
3268{
3269        const int off = skb->len;
3270
3271        if (skb->ip_summed == CHECKSUM_NONE) {
3272                __wsum csum = 0;
3273                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3274                                                 &csum, from)) {
3275                        skb->csum = csum_block_add(skb->csum, csum, off);
3276                        return 0;
3277                }
3278        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3279                return 0;
3280
3281        __skb_trim(skb, off);
3282        return -EFAULT;
3283}
3284
3285static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3286                                    const struct page *page, int off)
3287{
3288        if (skb_zcopy(skb))
3289                return false;
3290        if (i) {
3291                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3292
3293                return page == skb_frag_page(frag) &&
3294                       off == skb_frag_off(frag) + skb_frag_size(frag);
3295        }
3296        return false;
3297}
3298
3299static inline int __skb_linearize(struct sk_buff *skb)
3300{
3301        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3302}
3303
3304/**
3305 *      skb_linearize - convert paged skb to linear one
3306 *      @skb: buffer to linarize
3307 *
3308 *      If there is no free memory -ENOMEM is returned, otherwise zero
3309 *      is returned and the old skb data released.
3310 */
3311static inline int skb_linearize(struct sk_buff *skb)
3312{
3313        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3314}
3315
3316/**
3317 * skb_has_shared_frag - can any frag be overwritten
3318 * @skb: buffer to test
3319 *
3320 * Return true if the skb has at least one frag that might be modified
3321 * by an external entity (as in vmsplice()/sendfile())
3322 */
3323static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3324{
3325        return skb_is_nonlinear(skb) &&
3326               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3327}
3328
3329/**
3330 *      skb_linearize_cow - make sure skb is linear and writable
3331 *      @skb: buffer to process
3332 *
3333 *      If there is no free memory -ENOMEM is returned, otherwise zero
3334 *      is returned and the old skb data released.
3335 */
3336static inline int skb_linearize_cow(struct sk_buff *skb)
3337{
3338        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3339               __skb_linearize(skb) : 0;
3340}
3341
3342static __always_inline void
3343__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3344                     unsigned int off)
3345{
3346        if (skb->ip_summed == CHECKSUM_COMPLETE)
3347                skb->csum = csum_block_sub(skb->csum,
3348                                           csum_partial(start, len, 0), off);
3349        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3350                 skb_checksum_start_offset(skb) < 0)
3351                skb->ip_summed = CHECKSUM_NONE;
3352}
3353
3354/**
3355 *      skb_postpull_rcsum - update checksum for received skb after pull
3356 *      @skb: buffer to update
3357 *      @start: start of data before pull
3358 *      @len: length of data pulled
3359 *
3360 *      After doing a pull on a received packet, you need to call this to
3361 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3362 *      CHECKSUM_NONE so that it can be recomputed from scratch.
3363 */
3364static inline void skb_postpull_rcsum(struct sk_buff *skb,
3365                                      const void *start, unsigned int len)
3366{
3367        __skb_postpull_rcsum(skb, start, len, 0);
3368}
3369
3370static __always_inline void
3371__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3372                     unsigned int off)
3373{
3374        if (skb->ip_summed == CHECKSUM_COMPLETE)
3375                skb->csum = csum_block_add(skb->csum,
3376                                           csum_partial(start, len, 0), off);
3377}
3378
3379/**
3380 *      skb_postpush_rcsum - update checksum for received skb after push
3381 *      @skb: buffer to update
3382 *      @start: start of data after push
3383 *      @len: length of data pushed
3384 *
3385 *      After doing a push on a received packet, you need to call this to
3386 *      update the CHECKSUM_COMPLETE checksum.
3387 */
3388static inline void skb_postpush_rcsum(struct sk_buff *skb,
3389                                      const void *start, unsigned int len)
3390{
3391        __skb_postpush_rcsum(skb, start, len, 0);
3392}
3393
3394void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3395
3396/**
3397 *      skb_push_rcsum - push skb and update receive checksum
3398 *      @skb: buffer to update
3399 *      @len: length of data pulled
3400 *
3401 *      This function performs an skb_push on the packet and updates
3402 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3403 *      receive path processing instead of skb_push unless you know
3404 *      that the checksum difference is zero (e.g., a valid IP header)
3405 *      or you are setting ip_summed to CHECKSUM_NONE.
3406 */
3407static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3408{
3409        skb_push(skb, len);
3410        skb_postpush_rcsum(skb, skb->data, len);
3411        return skb->data;
3412}
3413
3414int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3415/**
3416 *      pskb_trim_rcsum - trim received skb and update checksum
3417 *      @skb: buffer to trim
3418 *      @len: new length
3419 *
3420 *      This is exactly the same as pskb_trim except that it ensures the
3421 *      checksum of received packets are still valid after the operation.
3422 *      It can change skb pointers.
3423 */
3424
3425static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3426{
3427        if (likely(len >= skb->len))
3428                return 0;
3429        return pskb_trim_rcsum_slow(skb, len);
3430}
3431
3432static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3433{
3434        if (skb->ip_summed == CHECKSUM_COMPLETE)
3435                skb->ip_summed = CHECKSUM_NONE;
3436        __skb_trim(skb, len);
3437        return 0;
3438}
3439
3440static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3441{
3442        if (skb->ip_summed == CHECKSUM_COMPLETE)
3443                skb->ip_summed = CHECKSUM_NONE;
3444        return __skb_grow(skb, len);
3445}
3446
3447#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3448#define skb_rb_first(root) rb_to_skb(rb_first(root))
3449#define skb_rb_last(root)  rb_to_skb(rb_last(root))
3450#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3451#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3452
3453#define skb_queue_walk(queue, skb) \
3454                for (skb = (queue)->next;                                       \
3455                     skb != (struct sk_buff *)(queue);                          \
3456                     skb = skb->next)
3457
3458#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3459                for (skb = (queue)->next, tmp = skb->next;                      \
3460                     skb != (struct sk_buff *)(queue);                          \
3461                     skb = tmp, tmp = skb->next)
3462
3463#define skb_queue_walk_from(queue, skb)                                         \
3464                for (; skb != (struct sk_buff *)(queue);                        \
3465                     skb = skb->next)
3466
3467#define skb_rbtree_walk(skb, root)                                              \
3468                for (skb = skb_rb_first(root); skb != NULL;                     \
3469                     skb = skb_rb_next(skb))
3470
3471#define skb_rbtree_walk_from(skb)                                               \
3472                for (; skb != NULL;                                             \
3473                     skb = skb_rb_next(skb))
3474
3475#define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3476                for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3477                     skb = tmp)
3478
3479#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3480                for (tmp = skb->next;                                           \
3481                     skb != (struct sk_buff *)(queue);                          \
3482                     skb = tmp, tmp = skb->next)
3483
3484#define skb_queue_reverse_walk(queue, skb) \
3485                for (skb = (queue)->prev;                                       \
3486                     skb != (struct sk_buff *)(queue);                          \
3487                     skb = skb->prev)
3488
3489#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3490                for (skb = (queue)->prev, tmp = skb->prev;                      \
3491                     skb != (struct sk_buff *)(queue);                          \
3492                     skb = tmp, tmp = skb->prev)
3493
3494#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3495                for (tmp = skb->prev;                                           \
3496                     skb != (struct sk_buff *)(queue);                          \
3497                     skb = tmp, tmp = skb->prev)
3498
3499static inline bool skb_has_frag_list(const struct sk_buff *skb)
3500{
3501        return skb_shinfo(skb)->frag_list != NULL;
3502}
3503
3504static inline void skb_frag_list_init(struct sk_buff *skb)
3505{
3506        skb_shinfo(skb)->frag_list = NULL;
3507}
3508
3509#define skb_walk_frags(skb, iter)       \
3510        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3511
3512
3513int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3514                                int *err, long *timeo_p,
3515                                const struct sk_buff *skb);
3516struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3517                                          struct sk_buff_head *queue,
3518                                          unsigned int flags,
3519                                          int *off, int *err,
3520                                          struct sk_buff **last);
3521struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3522                                        struct sk_buff_head *queue,
3523                                        unsigned int flags, int *off, int *err,
3524                                        struct sk_buff **last);
3525struct sk_buff *__skb_recv_datagram(struct sock *sk,
3526                                    struct sk_buff_head *sk_queue,
3527                                    unsigned int flags, int *off, int *err);
3528struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3529                                  int *err);
3530__poll_t datagram_poll(struct file *file, struct socket *sock,
3531                           struct poll_table_struct *wait);
3532int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3533                           struct iov_iter *to, int size);
3534static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3535                                        struct msghdr *msg, int size)
3536{
3537        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3538}
3539int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3540                                   struct msghdr *msg);
3541int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3542                           struct iov_iter *to, int len,
3543                           struct ahash_request *hash);
3544int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3545                                 struct iov_iter *from, int len);
3546int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3547void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3548void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3549static inline void skb_free_datagram_locked(struct sock *sk,
3550                                            struct sk_buff *skb)
3551{
3552        __skb_free_datagram_locked(sk, skb, 0);
3553}
3554int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3555int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3556int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3557__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3558                              int len, __wsum csum);
3559int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3560                    struct pipe_inode_info *pipe, unsigned int len,
3561                    unsigned int flags);
3562int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3563                         int len);
3564void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3565unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3566int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3567                 int len, int hlen);
3568void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3569int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3570void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3571bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3572bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3573struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3574struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3575                                 unsigned int offset);
3576struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3577int skb_ensure_writable(struct sk_buff *skb, int write_len);
3578int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3579int skb_vlan_pop(struct sk_buff *skb);
3580int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3581int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3582                  int mac_len, bool ethernet);
3583int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3584                 bool ethernet);
3585int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3586int skb_mpls_dec_ttl(struct sk_buff *skb);
3587struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3588                             gfp_t gfp);
3589
3590static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3591{
3592        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3593}
3594
3595static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3596{
3597        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3598}
3599
3600struct skb_checksum_ops {
3601        __wsum (*update)(const void *mem, int len, __wsum wsum);
3602        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3603};
3604
3605extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3606
3607__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3608                      __wsum csum, const struct skb_checksum_ops *ops);
3609__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3610                    __wsum csum);
3611
3612static inline void * __must_check
3613__skb_header_pointer(const struct sk_buff *skb, int offset,
3614                     int len, void *data, int hlen, void *buffer)
3615{
3616        if (hlen - offset >= len)
3617                return data + offset;
3618
3619        if (!skb ||
3620            skb_copy_bits(skb, offset, buffer, len) < 0)
3621                return NULL;
3622
3623        return buffer;
3624}
3625
3626static inline void * __must_check
3627skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3628{
3629        return __skb_header_pointer(skb, offset, len, skb->data,
3630                                    skb_headlen(skb), buffer);
3631}
3632
3633/**
3634 *      skb_needs_linearize - check if we need to linearize a given skb
3635 *                            depending on the given device features.
3636 *      @skb: socket buffer to check
3637 *      @features: net device features
3638 *
3639 *      Returns true if either:
3640 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3641 *      2. skb is fragmented and the device does not support SG.
3642 */
3643static inline bool skb_needs_linearize(struct sk_buff *skb,
3644                                       netdev_features_t features)
3645{
3646        return skb_is_nonlinear(skb) &&
3647               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3648                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3649}
3650
3651static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3652                                             void *to,
3653                                             const unsigned int len)
3654{
3655        memcpy(to, skb->data, len);
3656}
3657
3658static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3659                                                    const int offset, void *to,
3660                                                    const unsigned int len)
3661{
3662        memcpy(to, skb->data + offset, len);
3663}
3664
3665static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3666                                           const void *from,
3667                                           const unsigned int len)
3668{
3669        memcpy(skb->data, from, len);
3670}
3671
3672static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3673                                                  const int offset,
3674                                                  const void *from,
3675                                                  const unsigned int len)
3676{
3677        memcpy(skb->data + offset, from, len);
3678}
3679
3680void skb_init(void);
3681
3682static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3683{
3684        return skb->tstamp;
3685}
3686
3687/**
3688 *      skb_get_timestamp - get timestamp from a skb
3689 *      @skb: skb to get stamp from
3690 *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
3691 *
3692 *      Timestamps are stored in the skb as offsets to a base timestamp.
3693 *      This function converts the offset back to a struct timeval and stores
3694 *      it in stamp.
3695 */
3696static inline void skb_get_timestamp(const struct sk_buff *skb,
3697                                     struct __kernel_old_timeval *stamp)
3698{
3699        *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3700}
3701
3702static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3703                                         struct __kernel_sock_timeval *stamp)
3704{
3705        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3706
3707        stamp->tv_sec = ts.tv_sec;
3708        stamp->tv_usec = ts.tv_nsec / 1000;
3709}
3710
3711static inline void skb_get_timestampns(const struct sk_buff *skb,
3712                                       struct __kernel_old_timespec *stamp)
3713{
3714        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3715
3716        stamp->tv_sec = ts.tv_sec;
3717        stamp->tv_nsec = ts.tv_nsec;
3718}
3719
3720static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3721                                           struct __kernel_timespec *stamp)
3722{
3723        struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3724
3725        stamp->tv_sec = ts.tv_sec;
3726        stamp->tv_nsec = ts.tv_nsec;
3727}
3728
3729static inline void __net_timestamp(struct sk_buff *skb)
3730{
3731        skb->tstamp = ktime_get_real();
3732}
3733
3734static inline ktime_t net_timedelta(ktime_t t)
3735{
3736        return ktime_sub(ktime_get_real(), t);
3737}
3738
3739static inline ktime_t net_invalid_timestamp(void)
3740{
3741        return 0;
3742}
3743
3744static inline u8 skb_metadata_len(const struct sk_buff *skb)
3745{
3746        return skb_shinfo(skb)->meta_len;
3747}
3748
3749static inline void *skb_metadata_end(const struct sk_buff *skb)
3750{
3751        return skb_mac_header(skb);
3752}
3753
3754static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3755                                          const struct sk_buff *skb_b,
3756                                          u8 meta_len)
3757{
3758        const void *a = skb_metadata_end(skb_a);
3759        const void *b = skb_metadata_end(skb_b);
3760        /* Using more efficient varaiant than plain call to memcmp(). */
3761#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3762        u64 diffs = 0;
3763
3764        switch (meta_len) {
3765#define __it(x, op) (x -= sizeof(u##op))
3766#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3767        case 32: diffs |= __it_diff(a, b, 64);
3768                 /* fall through */
3769        case 24: diffs |= __it_diff(a, b, 64);
3770                 /* fall through */
3771        case 16: diffs |= __it_diff(a, b, 64);
3772                 /* fall through */
3773        case  8: diffs |= __it_diff(a, b, 64);
3774                break;
3775        case 28: diffs |= __it_diff(a, b, 64);
3776                 /* fall through */
3777        case 20: diffs |= __it_diff(a, b, 64);
3778                 /* fall through */
3779        case 12: diffs |= __it_diff(a, b, 64);
3780                 /* fall through */
3781        case  4: diffs |= __it_diff(a, b, 32);
3782                break;
3783        }
3784        return diffs;
3785#else
3786        return memcmp(a - meta_len, b - meta_len, meta_len);
3787#endif
3788}
3789
3790static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3791                                        const struct sk_buff *skb_b)
3792{
3793        u8 len_a = skb_metadata_len(skb_a);
3794        u8 len_b = skb_metadata_len(skb_b);
3795
3796        if (!(len_a | len_b))
3797                return false;
3798
3799        return len_a != len_b ?
3800               true : __skb_metadata_differs(skb_a, skb_b, len_a);
3801}
3802
3803static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3804{
3805        skb_shinfo(skb)->meta_len = meta_len;
3806}
3807
3808static inline void skb_metadata_clear(struct sk_buff *skb)
3809{
3810        skb_metadata_set(skb, 0);
3811}
3812
3813struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3814
3815#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3816
3817void skb_clone_tx_timestamp(struct sk_buff *skb);
3818bool skb_defer_rx_timestamp(struct sk_buff *skb);
3819
3820#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3821
3822static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3823{
3824}
3825
3826static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3827{
3828        return false;
3829}
3830
3831#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3832
3833/**
3834 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3835 *
3836 * PHY drivers may accept clones of transmitted packets for
3837 * timestamping via their phy_driver.txtstamp method. These drivers
3838 * must call this function to return the skb back to the stack with a
3839 * timestamp.
3840 *
3841 * @skb: clone of the the original outgoing packet
3842 * @hwtstamps: hardware time stamps
3843 *
3844 */
3845void skb_complete_tx_timestamp(struct sk_buff *skb,
3846                               struct skb_shared_hwtstamps *hwtstamps);
3847
3848void __skb_tstamp_tx(struct sk_buff *orig_skb,
3849                     struct skb_shared_hwtstamps *hwtstamps,
3850                     struct sock *sk, int tstype);
3851
3852/**
3853 * skb_tstamp_tx - queue clone of skb with send time stamps
3854 * @orig_skb:   the original outgoing packet
3855 * @hwtstamps:  hardware time stamps, may be NULL if not available
3856 *
3857 * If the skb has a socket associated, then this function clones the
3858 * skb (thus sharing the actual data and optional structures), stores
3859 * the optional hardware time stamping information (if non NULL) or
3860 * generates a software time stamp (otherwise), then queues the clone
3861 * to the error queue of the socket.  Errors are silently ignored.
3862 */
3863void skb_tstamp_tx(struct sk_buff *orig_skb,
3864                   struct skb_shared_hwtstamps *hwtstamps);
3865
3866/**
3867 * skb_tx_timestamp() - Driver hook for transmit timestamping
3868 *
3869 * Ethernet MAC Drivers should call this function in their hard_xmit()
3870 * function immediately before giving the sk_buff to the MAC hardware.
3871 *
3872 * Specifically, one should make absolutely sure that this function is
3873 * called before TX completion of this packet can trigger.  Otherwise
3874 * the packet could potentially already be freed.
3875 *
3876 * @skb: A socket buffer.
3877 */
3878static inline void skb_tx_timestamp(struct sk_buff *skb)
3879{
3880        skb_clone_tx_timestamp(skb);
3881        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3882                skb_tstamp_tx(skb, NULL);
3883}
3884
3885/**
3886 * skb_complete_wifi_ack - deliver skb with wifi status
3887 *
3888 * @skb: the original outgoing packet
3889 * @acked: ack status
3890 *
3891 */
3892void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3893
3894__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3895__sum16 __skb_checksum_complete(struct sk_buff *skb);
3896
3897static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3898{
3899        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3900                skb->csum_valid ||
3901                (skb->ip_summed == CHECKSUM_PARTIAL &&
3902                 skb_checksum_start_offset(skb) >= 0));
3903}
3904
3905/**
3906 *      skb_checksum_complete - Calculate checksum of an entire packet
3907 *      @skb: packet to process
3908 *
3909 *      This function calculates the checksum over the entire packet plus
3910 *      the value of skb->csum.  The latter can be used to supply the
3911 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3912 *      checksum.
3913 *
3914 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3915 *      this function can be used to verify that checksum on received
3916 *      packets.  In that case the function should return zero if the
3917 *      checksum is correct.  In particular, this function will return zero
3918 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3919 *      hardware has already verified the correctness of the checksum.
3920 */
3921static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3922{
3923        return skb_csum_unnecessary(skb) ?
3924               0 : __skb_checksum_complete(skb);
3925}
3926
3927static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3928{
3929        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3930                if (skb->csum_level == 0)
3931                        skb->ip_summed = CHECKSUM_NONE;
3932                else
3933                        skb->csum_level--;
3934        }
3935}
3936
3937static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3938{
3939        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3940                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3941                        skb->csum_level++;
3942        } else if (skb->ip_summed == CHECKSUM_NONE) {
3943                skb->ip_summed = CHECKSUM_UNNECESSARY;
3944                skb->csum_level = 0;
3945        }
3946}
3947
3948/* Check if we need to perform checksum complete validation.
3949 *
3950 * Returns true if checksum complete is needed, false otherwise
3951 * (either checksum is unnecessary or zero checksum is allowed).
3952 */
3953static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3954                                                  bool zero_okay,
3955                                                  __sum16 check)
3956{
3957        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3958                skb->csum_valid = 1;
3959                __skb_decr_checksum_unnecessary(skb);
3960                return false;
3961        }
3962
3963        return true;
3964}
3965
3966/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3967 * in checksum_init.
3968 */
3969#define CHECKSUM_BREAK 76
3970
3971/* Unset checksum-complete
3972 *
3973 * Unset checksum complete can be done when packet is being modified
3974 * (uncompressed for instance) and checksum-complete value is
3975 * invalidated.
3976 */
3977static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3978{
3979        if (skb->ip_summed == CHECKSUM_COMPLETE)
3980                skb->ip_summed = CHECKSUM_NONE;
3981}
3982
3983/* Validate (init) checksum based on checksum complete.
3984 *
3985 * Return values:
3986 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3987 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3988 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3989 *   non-zero: value of invalid checksum
3990 *
3991 */
3992static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3993                                                       bool complete,
3994                                                       __wsum psum)
3995{
3996        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3997                if (!csum_fold(csum_add(psum, skb->csum))) {
3998                        skb->csum_valid = 1;
3999                        return 0;
4000                }
4001        }
4002
4003        skb->csum = psum;
4004
4005        if (complete || skb->len <= CHECKSUM_BREAK) {
4006                __sum16 csum;
4007
4008                csum = __skb_checksum_complete(skb);
4009                skb->csum_valid = !csum;
4010                return csum;
4011        }
4012
4013        return 0;
4014}
4015
4016static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4017{
4018        return 0;
4019}
4020
4021/* Perform checksum validate (init). Note that this is a macro since we only
4022 * want to calculate the pseudo header which is an input function if necessary.
4023 * First we try to validate without any computation (checksum unnecessary) and
4024 * then calculate based on checksum complete calling the function to compute
4025 * pseudo header.
4026 *
4027 * Return values:
4028 *   0: checksum is validated or try to in skb_checksum_complete
4029 *   non-zero: value of invalid checksum
4030 */
4031#define __skb_checksum_validate(skb, proto, complete,                   \
4032                                zero_okay, check, compute_pseudo)       \
4033({                                                                      \
4034        __sum16 __ret = 0;                                              \
4035        skb->csum_valid = 0;                                            \
4036        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4037                __ret = __skb_checksum_validate_complete(skb,           \
4038                                complete, compute_pseudo(skb, proto));  \
4039        __ret;                                                          \
4040})
4041
4042#define skb_checksum_init(skb, proto, compute_pseudo)                   \
4043        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4044
4045#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4046        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4047
4048#define skb_checksum_validate(skb, proto, compute_pseudo)               \
4049        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4050
4051#define skb_checksum_validate_zero_check(skb, proto, check,             \
4052                                         compute_pseudo)                \
4053        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4054
4055#define skb_checksum_simple_validate(skb)                               \
4056        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4057
4058static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4059{
4060        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4061}
4062
4063static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4064{
4065        skb->csum = ~pseudo;
4066        skb->ip_summed = CHECKSUM_COMPLETE;
4067}
4068
4069#define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4070do {                                                                    \
4071        if (__skb_checksum_convert_check(skb))                          \
4072                __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4073} while (0)
4074
4075static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4076                                              u16 start, u16 offset)
4077{
4078        skb->ip_summed = CHECKSUM_PARTIAL;
4079        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4080        skb->csum_offset = offset - start;
4081}
4082
4083/* Update skbuf and packet to reflect the remote checksum offload operation.
4084 * When called, ptr indicates the starting point for skb->csum when
4085 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4086 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4087 */
4088static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4089                                       int start, int offset, bool nopartial)
4090{
4091        __wsum delta;
4092
4093        if (!nopartial) {
4094                skb_remcsum_adjust_partial(skb, ptr, start, offset);
4095                return;
4096        }
4097
4098         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4099                __skb_checksum_complete(skb);
4100                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4101        }
4102
4103        delta = remcsum_adjust(ptr, skb->csum, start, offset);
4104
4105        /* Adjust skb->csum since we changed the packet */
4106        skb->csum = csum_add(skb->csum, delta);
4107}
4108
4109static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4110{
4111#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4112        return (void *)(skb->_nfct & NFCT_PTRMASK);
4113#else
4114        return NULL;
4115#endif
4116}
4117
4118static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4119{
4120#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4121        return skb->_nfct;
4122#else
4123        return 0UL;
4124#endif
4125}
4126
4127static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4128{
4129#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4130        skb->_nfct = nfct;
4131#endif
4132}
4133
4134#ifdef CONFIG_SKB_EXTENSIONS
4135enum skb_ext_id {
4136#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4137        SKB_EXT_BRIDGE_NF,
4138#endif
4139#ifdef CONFIG_XFRM
4140        SKB_EXT_SEC_PATH,
4141#endif
4142#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4143        TC_SKB_EXT,
4144#endif
4145#if IS_ENABLED(CONFIG_MPTCP)
4146        SKB_EXT_MPTCP,
4147#endif
4148        SKB_EXT_NUM, /* must be last */
4149};
4150
4151/**
4152 *      struct skb_ext - sk_buff extensions
4153 *      @refcnt: 1 on allocation, deallocated on 0
4154 *      @offset: offset to add to @data to obtain extension address
4155 *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4156 *      @data: start of extension data, variable sized
4157 *
4158 *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4159 *      to use 'u8' types while allowing up to 2kb worth of extension data.
4160 */
4161struct skb_ext {
4162        refcount_t refcnt;
4163        u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4164        u8 chunks;              /* same */
4165        char data[] __aligned(8);
4166};
4167
4168struct skb_ext *__skb_ext_alloc(void);
4169void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4170                    struct skb_ext *ext);
4171void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4172void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4173void __skb_ext_put(struct skb_ext *ext);
4174
4175static inline void skb_ext_put(struct sk_buff *skb)
4176{
4177        if (skb->active_extensions)
4178                __skb_ext_put(skb->extensions);
4179}
4180
4181static inline void __skb_ext_copy(struct sk_buff *dst,
4182                                  const struct sk_buff *src)
4183{
4184        dst->active_extensions = src->active_extensions;
4185
4186        if (src->active_extensions) {
4187                struct skb_ext *ext = src->extensions;
4188
4189                refcount_inc(&ext->refcnt);
4190                dst->extensions = ext;
4191        }
4192}
4193
4194static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4195{
4196        skb_ext_put(dst);
4197        __skb_ext_copy(dst, src);
4198}
4199
4200static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4201{
4202        return !!ext->offset[i];
4203}
4204
4205static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4206{
4207        return skb->active_extensions & (1 << id);
4208}
4209
4210static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4211{
4212        if (skb_ext_exist(skb, id))
4213                __skb_ext_del(skb, id);
4214}
4215
4216static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4217{
4218        if (skb_ext_exist(skb, id)) {
4219                struct skb_ext *ext = skb->extensions;
4220
4221                return (void *)ext + (ext->offset[id] << 3);
4222        }
4223
4224        return NULL;
4225}
4226
4227static inline void skb_ext_reset(struct sk_buff *skb)
4228{
4229        if (unlikely(skb->active_extensions)) {
4230                __skb_ext_put(skb->extensions);
4231                skb->active_extensions = 0;
4232        }
4233}
4234
4235static inline bool skb_has_extensions(struct sk_buff *skb)
4236{
4237        return unlikely(skb->active_extensions);
4238}
4239#else
4240static inline void skb_ext_put(struct sk_buff *skb) {}
4241static inline void skb_ext_reset(struct sk_buff *skb) {}
4242static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4243static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4244static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4245static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4246#endif /* CONFIG_SKB_EXTENSIONS */
4247
4248static inline void nf_reset_ct(struct sk_buff *skb)
4249{
4250#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4251        nf_conntrack_put(skb_nfct(skb));
4252        skb->_nfct = 0;
4253#endif
4254}
4255
4256static inline void nf_reset_trace(struct sk_buff *skb)
4257{
4258#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4259        skb->nf_trace = 0;
4260#endif
4261}
4262
4263static inline void ipvs_reset(struct sk_buff *skb)
4264{
4265#if IS_ENABLED(CONFIG_IP_VS)
4266        skb->ipvs_property = 0;
4267#endif
4268}
4269
4270/* Note: This doesn't put any conntrack info in dst. */
4271static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4272                             bool copy)
4273{
4274#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4275        dst->_nfct = src->_nfct;
4276        nf_conntrack_get(skb_nfct(src));
4277#endif
4278#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4279        if (copy)
4280                dst->nf_trace = src->nf_trace;
4281#endif
4282}
4283
4284static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4285{
4286#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4287        nf_conntrack_put(skb_nfct(dst));
4288#endif
4289        __nf_copy(dst, src, true);
4290}
4291
4292#ifdef CONFIG_NETWORK_SECMARK
4293static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4294{
4295        to->secmark = from->secmark;
4296}
4297
4298static inline void skb_init_secmark(struct sk_buff *skb)
4299{
4300        skb->secmark = 0;
4301}
4302#else
4303static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4304{ }
4305
4306static inline void skb_init_secmark(struct sk_buff *skb)
4307{ }
4308#endif
4309
4310static inline int secpath_exists(const struct sk_buff *skb)
4311{
4312#ifdef CONFIG_XFRM
4313        return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4314#else
4315        return 0;
4316#endif
4317}
4318
4319static inline bool skb_irq_freeable(const struct sk_buff *skb)
4320{
4321        return !skb->destructor &&
4322                !secpath_exists(skb) &&
4323                !skb_nfct(skb) &&
4324                !skb->_skb_refdst &&
4325                !skb_has_frag_list(skb);
4326}
4327
4328static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4329{
4330        skb->queue_mapping = queue_mapping;
4331}
4332
4333static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4334{
4335        return skb->queue_mapping;
4336}
4337
4338static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4339{
4340        to->queue_mapping = from->queue_mapping;
4341}
4342
4343static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4344{
4345        skb->queue_mapping = rx_queue + 1;
4346}
4347
4348static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4349{
4350        return skb->queue_mapping - 1;
4351}
4352
4353static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4354{
4355        return skb->queue_mapping != 0;
4356}
4357
4358static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4359{
4360        skb->dst_pending_confirm = val;
4361}
4362
4363static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4364{
4365        return skb->dst_pending_confirm != 0;
4366}
4367
4368static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4369{
4370#ifdef CONFIG_XFRM
4371        return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4372#else
4373        return NULL;
4374#endif
4375}
4376
4377/* Keeps track of mac header offset relative to skb->head.
4378 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4379 * For non-tunnel skb it points to skb_mac_header() and for
4380 * tunnel skb it points to outer mac header.
4381 * Keeps track of level of encapsulation of network headers.
4382 */
4383struct skb_gso_cb {
4384        union {
4385                int     mac_offset;
4386                int     data_offset;
4387        };
4388        int     encap_level;
4389        __wsum  csum;
4390        __u16   csum_start;
4391};
4392#define SKB_GSO_CB_OFFSET       32
4393#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4394
4395static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4396{
4397        return (skb_mac_header(inner_skb) - inner_skb->head) -
4398                SKB_GSO_CB(inner_skb)->mac_offset;
4399}
4400
4401static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4402{
4403        int new_headroom, headroom;
4404        int ret;
4405
4406        headroom = skb_headroom(skb);
4407        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4408        if (ret)
4409                return ret;
4410
4411        new_headroom = skb_headroom(skb);
4412        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4413        return 0;
4414}
4415
4416static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4417{
4418        /* Do not update partial checksums if remote checksum is enabled. */
4419        if (skb->remcsum_offload)
4420                return;
4421
4422        SKB_GSO_CB(skb)->csum = res;
4423        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4424}
4425
4426/* Compute the checksum for a gso segment. First compute the checksum value
4427 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4428 * then add in skb->csum (checksum from csum_start to end of packet).
4429 * skb->csum and csum_start are then updated to reflect the checksum of the
4430 * resultant packet starting from the transport header-- the resultant checksum
4431 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4432 * header.
4433 */
4434static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4435{
4436        unsigned char *csum_start = skb_transport_header(skb);
4437        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4438        __wsum partial = SKB_GSO_CB(skb)->csum;
4439
4440        SKB_GSO_CB(skb)->csum = res;
4441        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4442
4443        return csum_fold(csum_partial(csum_start, plen, partial));
4444}
4445
4446static inline bool skb_is_gso(const struct sk_buff *skb)
4447{
4448        return skb_shinfo(skb)->gso_size;
4449}
4450
4451/* Note: Should be called only if skb_is_gso(skb) is true */
4452static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4453{
4454        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4455}
4456
4457/* Note: Should be called only if skb_is_gso(skb) is true */
4458static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4459{
4460        return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4461}
4462
4463/* Note: Should be called only if skb_is_gso(skb) is true */
4464static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4465{
4466        return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4467}
4468
4469static inline void skb_gso_reset(struct sk_buff *skb)
4470{
4471        skb_shinfo(skb)->gso_size = 0;
4472        skb_shinfo(skb)->gso_segs = 0;
4473        skb_shinfo(skb)->gso_type = 0;
4474}
4475
4476static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4477                                         u16 increment)
4478{
4479        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4480                return;
4481        shinfo->gso_size += increment;
4482}
4483
4484static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4485                                         u16 decrement)
4486{
4487        if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4488                return;
4489        shinfo->gso_size -= decrement;
4490}
4491
4492void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4493
4494static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4495{
4496        /* LRO sets gso_size but not gso_type, whereas if GSO is really
4497         * wanted then gso_type will be set. */
4498        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4499
4500        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4501            unlikely(shinfo->gso_type == 0)) {
4502                __skb_warn_lro_forwarding(skb);
4503                return true;
4504        }
4505        return false;
4506}
4507
4508static inline void skb_forward_csum(struct sk_buff *skb)
4509{
4510        /* Unfortunately we don't support this one.  Any brave souls? */
4511        if (skb->ip_summed == CHECKSUM_COMPLETE)
4512                skb->ip_summed = CHECKSUM_NONE;
4513}
4514
4515/**
4516 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4517 * @skb: skb to check
4518 *
4519 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4520 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4521 * use this helper, to document places where we make this assertion.
4522 */
4523static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4524{
4525#ifdef DEBUG
4526        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4527#endif
4528}
4529
4530bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4531
4532int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4533struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4534                                     unsigned int transport_len,
4535                                     __sum16(*skb_chkf)(struct sk_buff *skb));
4536
4537/**
4538 * skb_head_is_locked - Determine if the skb->head is locked down
4539 * @skb: skb to check
4540 *
4541 * The head on skbs build around a head frag can be removed if they are
4542 * not cloned.  This function returns true if the skb head is locked down
4543 * due to either being allocated via kmalloc, or by being a clone with
4544 * multiple references to the head.
4545 */
4546static inline bool skb_head_is_locked(const struct sk_buff *skb)
4547{
4548        return !skb->head_frag || skb_cloned(skb);
4549}
4550
4551/* Local Checksum Offload.
4552 * Compute outer checksum based on the assumption that the
4553 * inner checksum will be offloaded later.
4554 * See Documentation/networking/checksum-offloads.rst for
4555 * explanation of how this works.
4556 * Fill in outer checksum adjustment (e.g. with sum of outer
4557 * pseudo-header) before calling.
4558 * Also ensure that inner checksum is in linear data area.
4559 */
4560static inline __wsum lco_csum(struct sk_buff *skb)
4561{
4562        unsigned char *csum_start = skb_checksum_start(skb);
4563        unsigned char *l4_hdr = skb_transport_header(skb);
4564        __wsum partial;
4565
4566        /* Start with complement of inner checksum adjustment */
4567        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4568                                                    skb->csum_offset));
4569
4570        /* Add in checksum of our headers (incl. outer checksum
4571         * adjustment filled in by caller) and return result.
4572         */
4573        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4574}
4575
4576static inline bool skb_is_redirected(const struct sk_buff *skb)
4577{
4578#ifdef CONFIG_NET_REDIRECT
4579        return skb->redirected;
4580#else
4581        return false;
4582#endif
4583}
4584
4585static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4586{
4587#ifdef CONFIG_NET_REDIRECT
4588        skb->redirected = 1;
4589        skb->from_ingress = from_ingress;
4590        if (skb->from_ingress)
4591                skb->tstamp = 0;
4592#endif
4593}
4594
4595static inline void skb_reset_redirect(struct sk_buff *skb)
4596{
4597#ifdef CONFIG_NET_REDIRECT
4598        skb->redirected = 0;
4599#endif
4600}
4601
4602#endif  /* __KERNEL__ */
4603#endif  /* _LINUX_SKBUFF_H */
4604