linux/kernel/debug/debug_core.c
<<
>>
Prefs
   1/*
   2 * Kernel Debug Core
   3 *
   4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
   5 *
   6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
   7 * Copyright (C) 2002-2004 Timesys Corporation
   8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
   9 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
  10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
  11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
  12 * Copyright (C) 2005-2009 Wind River Systems, Inc.
  13 * Copyright (C) 2007 MontaVista Software, Inc.
  14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  15 *
  16 * Contributors at various stages not listed above:
  17 *  Jason Wessel ( jason.wessel@windriver.com )
  18 *  George Anzinger <george@mvista.com>
  19 *  Anurekh Saxena (anurekh.saxena@timesys.com)
  20 *  Lake Stevens Instrument Division (Glenn Engel)
  21 *  Jim Kingdon, Cygnus Support.
  22 *
  23 * Original KGDB stub: David Grothe <dave@gcom.com>,
  24 * Tigran Aivazian <tigran@sco.com>
  25 *
  26 * This file is licensed under the terms of the GNU General Public License
  27 * version 2. This program is licensed "as is" without any warranty of any
  28 * kind, whether express or implied.
  29 */
  30
  31#define pr_fmt(fmt) "KGDB: " fmt
  32
  33#include <linux/pid_namespace.h>
  34#include <linux/clocksource.h>
  35#include <linux/serial_core.h>
  36#include <linux/interrupt.h>
  37#include <linux/spinlock.h>
  38#include <linux/console.h>
  39#include <linux/threads.h>
  40#include <linux/uaccess.h>
  41#include <linux/kernel.h>
  42#include <linux/module.h>
  43#include <linux/ptrace.h>
  44#include <linux/string.h>
  45#include <linux/delay.h>
  46#include <linux/sched.h>
  47#include <linux/sysrq.h>
  48#include <linux/reboot.h>
  49#include <linux/init.h>
  50#include <linux/kgdb.h>
  51#include <linux/kdb.h>
  52#include <linux/nmi.h>
  53#include <linux/pid.h>
  54#include <linux/smp.h>
  55#include <linux/mm.h>
  56#include <linux/vmacache.h>
  57#include <linux/rcupdate.h>
  58#include <linux/irq.h>
  59
  60#include <asm/cacheflush.h>
  61#include <asm/byteorder.h>
  62#include <linux/atomic.h>
  63
  64#include "debug_core.h"
  65
  66static int kgdb_break_asap;
  67
  68struct debuggerinfo_struct kgdb_info[NR_CPUS];
  69
  70/**
  71 * kgdb_connected - Is a host GDB connected to us?
  72 */
  73int                             kgdb_connected;
  74EXPORT_SYMBOL_GPL(kgdb_connected);
  75
  76/* All the KGDB handlers are installed */
  77int                     kgdb_io_module_registered;
  78
  79/* Guard for recursive entry */
  80static int                      exception_level;
  81
  82struct kgdb_io          *dbg_io_ops;
  83static DEFINE_SPINLOCK(kgdb_registration_lock);
  84
  85/* Action for the reboot notifiter, a global allow kdb to change it */
  86static int kgdbreboot;
  87/* kgdb console driver is loaded */
  88static int kgdb_con_registered;
  89/* determine if kgdb console output should be used */
  90static int kgdb_use_con;
  91/* Flag for alternate operations for early debugging */
  92bool dbg_is_early = true;
  93/* Next cpu to become the master debug core */
  94int dbg_switch_cpu;
  95
  96/* Use kdb or gdbserver mode */
  97int dbg_kdb_mode = 1;
  98
  99static int __init opt_kgdb_con(char *str)
 100{
 101        kgdb_use_con = 1;
 102        return 0;
 103}
 104
 105early_param("kgdbcon", opt_kgdb_con);
 106
 107module_param(kgdb_use_con, int, 0644);
 108module_param(kgdbreboot, int, 0644);
 109
 110/*
 111 * Holds information about breakpoints in a kernel. These breakpoints are
 112 * added and removed by gdb.
 113 */
 114static struct kgdb_bkpt         kgdb_break[KGDB_MAX_BREAKPOINTS] = {
 115        [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
 116};
 117
 118/*
 119 * The CPU# of the active CPU, or -1 if none:
 120 */
 121atomic_t                        kgdb_active = ATOMIC_INIT(-1);
 122EXPORT_SYMBOL_GPL(kgdb_active);
 123static DEFINE_RAW_SPINLOCK(dbg_master_lock);
 124static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
 125
 126/*
 127 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
 128 * bootup code (which might not have percpu set up yet):
 129 */
 130static atomic_t                 masters_in_kgdb;
 131static atomic_t                 slaves_in_kgdb;
 132static atomic_t                 kgdb_break_tasklet_var;
 133atomic_t                        kgdb_setting_breakpoint;
 134
 135struct task_struct              *kgdb_usethread;
 136struct task_struct              *kgdb_contthread;
 137
 138int                             kgdb_single_step;
 139static pid_t                    kgdb_sstep_pid;
 140
 141/* to keep track of the CPU which is doing the single stepping*/
 142atomic_t                        kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
 143
 144/*
 145 * If you are debugging a problem where roundup (the collection of
 146 * all other CPUs) is a problem [this should be extremely rare],
 147 * then use the nokgdbroundup option to avoid roundup. In that case
 148 * the other CPUs might interfere with your debugging context, so
 149 * use this with care:
 150 */
 151static int kgdb_do_roundup = 1;
 152
 153static int __init opt_nokgdbroundup(char *str)
 154{
 155        kgdb_do_roundup = 0;
 156
 157        return 0;
 158}
 159
 160early_param("nokgdbroundup", opt_nokgdbroundup);
 161
 162/*
 163 * Finally, some KGDB code :-)
 164 */
 165
 166/*
 167 * Weak aliases for breakpoint management,
 168 * can be overriden by architectures when needed:
 169 */
 170int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
 171{
 172        int err;
 173
 174        err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
 175                                BREAK_INSTR_SIZE);
 176        if (err)
 177                return err;
 178        err = probe_kernel_write((char *)bpt->bpt_addr,
 179                                 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
 180        return err;
 181}
 182
 183int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
 184{
 185        return probe_kernel_write((char *)bpt->bpt_addr,
 186                                  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
 187}
 188
 189int __weak kgdb_validate_break_address(unsigned long addr)
 190{
 191        struct kgdb_bkpt tmp;
 192        int err;
 193        /* Validate setting the breakpoint and then removing it.  If the
 194         * remove fails, the kernel needs to emit a bad message because we
 195         * are deep trouble not being able to put things back the way we
 196         * found them.
 197         */
 198        tmp.bpt_addr = addr;
 199        err = kgdb_arch_set_breakpoint(&tmp);
 200        if (err)
 201                return err;
 202        err = kgdb_arch_remove_breakpoint(&tmp);
 203        if (err)
 204                pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
 205                       addr);
 206        return err;
 207}
 208
 209unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
 210{
 211        return instruction_pointer(regs);
 212}
 213
 214int __weak kgdb_arch_init(void)
 215{
 216        return 0;
 217}
 218
 219int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
 220{
 221        return 0;
 222}
 223
 224#ifdef CONFIG_SMP
 225
 226/*
 227 * Default (weak) implementation for kgdb_roundup_cpus
 228 */
 229
 230static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
 231
 232void __weak kgdb_call_nmi_hook(void *ignored)
 233{
 234        /*
 235         * NOTE: get_irq_regs() is supposed to get the registers from
 236         * before the IPI interrupt happened and so is supposed to
 237         * show where the processor was.  In some situations it's
 238         * possible we might be called without an IPI, so it might be
 239         * safer to figure out how to make kgdb_breakpoint() work
 240         * properly here.
 241         */
 242        kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
 243}
 244
 245void __weak kgdb_roundup_cpus(void)
 246{
 247        call_single_data_t *csd;
 248        int this_cpu = raw_smp_processor_id();
 249        int cpu;
 250        int ret;
 251
 252        for_each_online_cpu(cpu) {
 253                /* No need to roundup ourselves */
 254                if (cpu == this_cpu)
 255                        continue;
 256
 257                csd = &per_cpu(kgdb_roundup_csd, cpu);
 258
 259                /*
 260                 * If it didn't round up last time, don't try again
 261                 * since smp_call_function_single_async() will block.
 262                 *
 263                 * If rounding_up is false then we know that the
 264                 * previous call must have at least started and that
 265                 * means smp_call_function_single_async() won't block.
 266                 */
 267                if (kgdb_info[cpu].rounding_up)
 268                        continue;
 269                kgdb_info[cpu].rounding_up = true;
 270
 271                csd->func = kgdb_call_nmi_hook;
 272                ret = smp_call_function_single_async(cpu, csd);
 273                if (ret)
 274                        kgdb_info[cpu].rounding_up = false;
 275        }
 276}
 277
 278#endif
 279
 280/*
 281 * Some architectures need cache flushes when we set/clear a
 282 * breakpoint:
 283 */
 284static void kgdb_flush_swbreak_addr(unsigned long addr)
 285{
 286        if (!CACHE_FLUSH_IS_SAFE)
 287                return;
 288
 289        if (current->mm) {
 290                int i;
 291
 292                for (i = 0; i < VMACACHE_SIZE; i++) {
 293                        if (!current->vmacache.vmas[i])
 294                                continue;
 295                        flush_cache_range(current->vmacache.vmas[i],
 296                                          addr, addr + BREAK_INSTR_SIZE);
 297                }
 298        }
 299
 300        /* Force flush instruction cache if it was outside the mm */
 301        flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
 302}
 303
 304/*
 305 * SW breakpoint management:
 306 */
 307int dbg_activate_sw_breakpoints(void)
 308{
 309        int error;
 310        int ret = 0;
 311        int i;
 312
 313        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 314                if (kgdb_break[i].state != BP_SET)
 315                        continue;
 316
 317                error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
 318                if (error) {
 319                        ret = error;
 320                        pr_info("BP install failed: %lx\n",
 321                                kgdb_break[i].bpt_addr);
 322                        continue;
 323                }
 324
 325                kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
 326                kgdb_break[i].state = BP_ACTIVE;
 327        }
 328        return ret;
 329}
 330
 331int dbg_set_sw_break(unsigned long addr)
 332{
 333        int err = kgdb_validate_break_address(addr);
 334        int breakno = -1;
 335        int i;
 336
 337        if (err)
 338                return err;
 339
 340        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 341                if ((kgdb_break[i].state == BP_SET) &&
 342                                        (kgdb_break[i].bpt_addr == addr))
 343                        return -EEXIST;
 344        }
 345        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 346                if (kgdb_break[i].state == BP_REMOVED &&
 347                                        kgdb_break[i].bpt_addr == addr) {
 348                        breakno = i;
 349                        break;
 350                }
 351        }
 352
 353        if (breakno == -1) {
 354                for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 355                        if (kgdb_break[i].state == BP_UNDEFINED) {
 356                                breakno = i;
 357                                break;
 358                        }
 359                }
 360        }
 361
 362        if (breakno == -1)
 363                return -E2BIG;
 364
 365        kgdb_break[breakno].state = BP_SET;
 366        kgdb_break[breakno].type = BP_BREAKPOINT;
 367        kgdb_break[breakno].bpt_addr = addr;
 368
 369        return 0;
 370}
 371
 372int dbg_deactivate_sw_breakpoints(void)
 373{
 374        int error;
 375        int ret = 0;
 376        int i;
 377
 378        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 379                if (kgdb_break[i].state != BP_ACTIVE)
 380                        continue;
 381                error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
 382                if (error) {
 383                        pr_info("BP remove failed: %lx\n",
 384                                kgdb_break[i].bpt_addr);
 385                        ret = error;
 386                }
 387
 388                kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
 389                kgdb_break[i].state = BP_SET;
 390        }
 391        return ret;
 392}
 393
 394int dbg_remove_sw_break(unsigned long addr)
 395{
 396        int i;
 397
 398        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 399                if ((kgdb_break[i].state == BP_SET) &&
 400                                (kgdb_break[i].bpt_addr == addr)) {
 401                        kgdb_break[i].state = BP_REMOVED;
 402                        return 0;
 403                }
 404        }
 405        return -ENOENT;
 406}
 407
 408int kgdb_isremovedbreak(unsigned long addr)
 409{
 410        int i;
 411
 412        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 413                if ((kgdb_break[i].state == BP_REMOVED) &&
 414                                        (kgdb_break[i].bpt_addr == addr))
 415                        return 1;
 416        }
 417        return 0;
 418}
 419
 420int dbg_remove_all_break(void)
 421{
 422        int error;
 423        int i;
 424
 425        /* Clear memory breakpoints. */
 426        for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 427                if (kgdb_break[i].state != BP_ACTIVE)
 428                        goto setundefined;
 429                error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
 430                if (error)
 431                        pr_err("breakpoint remove failed: %lx\n",
 432                               kgdb_break[i].bpt_addr);
 433setundefined:
 434                kgdb_break[i].state = BP_UNDEFINED;
 435        }
 436
 437        /* Clear hardware breakpoints. */
 438        if (arch_kgdb_ops.remove_all_hw_break)
 439                arch_kgdb_ops.remove_all_hw_break();
 440
 441        return 0;
 442}
 443
 444#ifdef CONFIG_KGDB_KDB
 445void kdb_dump_stack_on_cpu(int cpu)
 446{
 447        if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
 448                dump_stack();
 449                return;
 450        }
 451
 452        if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
 453                kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
 454                           cpu);
 455                return;
 456        }
 457
 458        /*
 459         * In general, architectures don't support dumping the stack of a
 460         * "running" process that's not the current one.  From the point of
 461         * view of the Linux, kernel processes that are looping in the kgdb
 462         * slave loop are still "running".  There's also no API (that actually
 463         * works across all architectures) that can do a stack crawl based
 464         * on registers passed as a parameter.
 465         *
 466         * Solve this conundrum by asking slave CPUs to do the backtrace
 467         * themselves.
 468         */
 469        kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
 470        while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
 471                cpu_relax();
 472}
 473#endif
 474
 475/*
 476 * Return true if there is a valid kgdb I/O module.  Also if no
 477 * debugger is attached a message can be printed to the console about
 478 * waiting for the debugger to attach.
 479 *
 480 * The print_wait argument is only to be true when called from inside
 481 * the core kgdb_handle_exception, because it will wait for the
 482 * debugger to attach.
 483 */
 484static int kgdb_io_ready(int print_wait)
 485{
 486        if (!dbg_io_ops)
 487                return 0;
 488        if (kgdb_connected)
 489                return 1;
 490        if (atomic_read(&kgdb_setting_breakpoint))
 491                return 1;
 492        if (print_wait) {
 493#ifdef CONFIG_KGDB_KDB
 494                if (!dbg_kdb_mode)
 495                        pr_crit("waiting... or $3#33 for KDB\n");
 496#else
 497                pr_crit("Waiting for remote debugger\n");
 498#endif
 499        }
 500        return 1;
 501}
 502
 503static int kgdb_reenter_check(struct kgdb_state *ks)
 504{
 505        unsigned long addr;
 506
 507        if (atomic_read(&kgdb_active) != raw_smp_processor_id())
 508                return 0;
 509
 510        /* Panic on recursive debugger calls: */
 511        exception_level++;
 512        addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
 513        dbg_deactivate_sw_breakpoints();
 514
 515        /*
 516         * If the break point removed ok at the place exception
 517         * occurred, try to recover and print a warning to the end
 518         * user because the user planted a breakpoint in a place that
 519         * KGDB needs in order to function.
 520         */
 521        if (dbg_remove_sw_break(addr) == 0) {
 522                exception_level = 0;
 523                kgdb_skipexception(ks->ex_vector, ks->linux_regs);
 524                dbg_activate_sw_breakpoints();
 525                pr_crit("re-enter error: breakpoint removed %lx\n", addr);
 526                WARN_ON_ONCE(1);
 527
 528                return 1;
 529        }
 530        dbg_remove_all_break();
 531        kgdb_skipexception(ks->ex_vector, ks->linux_regs);
 532
 533        if (exception_level > 1) {
 534                dump_stack();
 535                panic("Recursive entry to debugger");
 536        }
 537
 538        pr_crit("re-enter exception: ALL breakpoints killed\n");
 539#ifdef CONFIG_KGDB_KDB
 540        /* Allow kdb to debug itself one level */
 541        return 0;
 542#endif
 543        dump_stack();
 544        panic("Recursive entry to debugger");
 545
 546        return 1;
 547}
 548
 549static void dbg_touch_watchdogs(void)
 550{
 551        touch_softlockup_watchdog_sync();
 552        clocksource_touch_watchdog();
 553        rcu_cpu_stall_reset();
 554}
 555
 556static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
 557                int exception_state)
 558{
 559        unsigned long flags;
 560        int sstep_tries = 100;
 561        int error;
 562        int cpu;
 563        int trace_on = 0;
 564        int online_cpus = num_online_cpus();
 565        u64 time_left;
 566
 567        kgdb_info[ks->cpu].enter_kgdb++;
 568        kgdb_info[ks->cpu].exception_state |= exception_state;
 569
 570        if (exception_state == DCPU_WANT_MASTER)
 571                atomic_inc(&masters_in_kgdb);
 572        else
 573                atomic_inc(&slaves_in_kgdb);
 574
 575        if (arch_kgdb_ops.disable_hw_break)
 576                arch_kgdb_ops.disable_hw_break(regs);
 577
 578acquirelock:
 579        /*
 580         * Interrupts will be restored by the 'trap return' code, except when
 581         * single stepping.
 582         */
 583        local_irq_save(flags);
 584
 585        cpu = ks->cpu;
 586        kgdb_info[cpu].debuggerinfo = regs;
 587        kgdb_info[cpu].task = current;
 588        kgdb_info[cpu].ret_state = 0;
 589        kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
 590
 591        /* Make sure the above info reaches the primary CPU */
 592        smp_mb();
 593
 594        if (exception_level == 1) {
 595                if (raw_spin_trylock(&dbg_master_lock))
 596                        atomic_xchg(&kgdb_active, cpu);
 597                goto cpu_master_loop;
 598        }
 599
 600        /*
 601         * CPU will loop if it is a slave or request to become a kgdb
 602         * master cpu and acquire the kgdb_active lock:
 603         */
 604        while (1) {
 605cpu_loop:
 606                if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
 607                        kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
 608                        goto cpu_master_loop;
 609                } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
 610                        if (raw_spin_trylock(&dbg_master_lock)) {
 611                                atomic_xchg(&kgdb_active, cpu);
 612                                break;
 613                        }
 614                } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
 615                        dump_stack();
 616                        kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
 617                } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
 618                        if (!raw_spin_is_locked(&dbg_slave_lock))
 619                                goto return_normal;
 620                } else {
 621return_normal:
 622                        /* Return to normal operation by executing any
 623                         * hw breakpoint fixup.
 624                         */
 625                        if (arch_kgdb_ops.correct_hw_break)
 626                                arch_kgdb_ops.correct_hw_break();
 627                        if (trace_on)
 628                                tracing_on();
 629                        kgdb_info[cpu].debuggerinfo = NULL;
 630                        kgdb_info[cpu].task = NULL;
 631                        kgdb_info[cpu].exception_state &=
 632                                ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
 633                        kgdb_info[cpu].enter_kgdb--;
 634                        smp_mb__before_atomic();
 635                        atomic_dec(&slaves_in_kgdb);
 636                        dbg_touch_watchdogs();
 637                        local_irq_restore(flags);
 638                        return 0;
 639                }
 640                cpu_relax();
 641        }
 642
 643        /*
 644         * For single stepping, try to only enter on the processor
 645         * that was single stepping.  To guard against a deadlock, the
 646         * kernel will only try for the value of sstep_tries before
 647         * giving up and continuing on.
 648         */
 649        if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
 650            (kgdb_info[cpu].task &&
 651             kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
 652                atomic_set(&kgdb_active, -1);
 653                raw_spin_unlock(&dbg_master_lock);
 654                dbg_touch_watchdogs();
 655                local_irq_restore(flags);
 656
 657                goto acquirelock;
 658        }
 659
 660        if (!kgdb_io_ready(1)) {
 661                kgdb_info[cpu].ret_state = 1;
 662                goto kgdb_restore; /* No I/O connection, resume the system */
 663        }
 664
 665        /*
 666         * Don't enter if we have hit a removed breakpoint.
 667         */
 668        if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
 669                goto kgdb_restore;
 670
 671        /* Call the I/O driver's pre_exception routine */
 672        if (dbg_io_ops->pre_exception)
 673                dbg_io_ops->pre_exception();
 674
 675        /*
 676         * Get the passive CPU lock which will hold all the non-primary
 677         * CPU in a spin state while the debugger is active
 678         */
 679        if (!kgdb_single_step)
 680                raw_spin_lock(&dbg_slave_lock);
 681
 682#ifdef CONFIG_SMP
 683        /* If send_ready set, slaves are already waiting */
 684        if (ks->send_ready)
 685                atomic_set(ks->send_ready, 1);
 686
 687        /* Signal the other CPUs to enter kgdb_wait() */
 688        else if ((!kgdb_single_step) && kgdb_do_roundup)
 689                kgdb_roundup_cpus();
 690#endif
 691
 692        /*
 693         * Wait for the other CPUs to be notified and be waiting for us:
 694         */
 695        time_left = MSEC_PER_SEC;
 696        while (kgdb_do_roundup && --time_left &&
 697               (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
 698                   online_cpus)
 699                udelay(1000);
 700        if (!time_left)
 701                pr_crit("Timed out waiting for secondary CPUs.\n");
 702
 703        /*
 704         * At this point the primary processor is completely
 705         * in the debugger and all secondary CPUs are quiescent
 706         */
 707        dbg_deactivate_sw_breakpoints();
 708        kgdb_single_step = 0;
 709        kgdb_contthread = current;
 710        exception_level = 0;
 711        trace_on = tracing_is_on();
 712        if (trace_on)
 713                tracing_off();
 714
 715        while (1) {
 716cpu_master_loop:
 717                if (dbg_kdb_mode) {
 718                        kgdb_connected = 1;
 719                        error = kdb_stub(ks);
 720                        if (error == -1)
 721                                continue;
 722                        kgdb_connected = 0;
 723                } else {
 724                        error = gdb_serial_stub(ks);
 725                }
 726
 727                if (error == DBG_PASS_EVENT) {
 728                        dbg_kdb_mode = !dbg_kdb_mode;
 729                } else if (error == DBG_SWITCH_CPU_EVENT) {
 730                        kgdb_info[dbg_switch_cpu].exception_state |=
 731                                DCPU_NEXT_MASTER;
 732                        goto cpu_loop;
 733                } else {
 734                        kgdb_info[cpu].ret_state = error;
 735                        break;
 736                }
 737        }
 738
 739        /* Call the I/O driver's post_exception routine */
 740        if (dbg_io_ops->post_exception)
 741                dbg_io_ops->post_exception();
 742
 743        if (!kgdb_single_step) {
 744                raw_spin_unlock(&dbg_slave_lock);
 745                /* Wait till all the CPUs have quit from the debugger. */
 746                while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
 747                        cpu_relax();
 748        }
 749
 750kgdb_restore:
 751        if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
 752                int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
 753                if (kgdb_info[sstep_cpu].task)
 754                        kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
 755                else
 756                        kgdb_sstep_pid = 0;
 757        }
 758        if (arch_kgdb_ops.correct_hw_break)
 759                arch_kgdb_ops.correct_hw_break();
 760        if (trace_on)
 761                tracing_on();
 762
 763        kgdb_info[cpu].debuggerinfo = NULL;
 764        kgdb_info[cpu].task = NULL;
 765        kgdb_info[cpu].exception_state &=
 766                ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
 767        kgdb_info[cpu].enter_kgdb--;
 768        smp_mb__before_atomic();
 769        atomic_dec(&masters_in_kgdb);
 770        /* Free kgdb_active */
 771        atomic_set(&kgdb_active, -1);
 772        raw_spin_unlock(&dbg_master_lock);
 773        dbg_touch_watchdogs();
 774        local_irq_restore(flags);
 775
 776        return kgdb_info[cpu].ret_state;
 777}
 778
 779/*
 780 * kgdb_handle_exception() - main entry point from a kernel exception
 781 *
 782 * Locking hierarchy:
 783 *      interface locks, if any (begin_session)
 784 *      kgdb lock (kgdb_active)
 785 */
 786int
 787kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
 788{
 789        struct kgdb_state kgdb_var;
 790        struct kgdb_state *ks = &kgdb_var;
 791        int ret = 0;
 792
 793        if (arch_kgdb_ops.enable_nmi)
 794                arch_kgdb_ops.enable_nmi(0);
 795        /*
 796         * Avoid entering the debugger if we were triggered due to an oops
 797         * but panic_timeout indicates the system should automatically
 798         * reboot on panic. We don't want to get stuck waiting for input
 799         * on such systems, especially if its "just" an oops.
 800         */
 801        if (signo != SIGTRAP && panic_timeout)
 802                return 1;
 803
 804        memset(ks, 0, sizeof(struct kgdb_state));
 805        ks->cpu                 = raw_smp_processor_id();
 806        ks->ex_vector           = evector;
 807        ks->signo               = signo;
 808        ks->err_code            = ecode;
 809        ks->linux_regs          = regs;
 810
 811        if (kgdb_reenter_check(ks))
 812                goto out; /* Ouch, double exception ! */
 813        if (kgdb_info[ks->cpu].enter_kgdb != 0)
 814                goto out;
 815
 816        ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
 817out:
 818        if (arch_kgdb_ops.enable_nmi)
 819                arch_kgdb_ops.enable_nmi(1);
 820        return ret;
 821}
 822
 823/*
 824 * GDB places a breakpoint at this function to know dynamically loaded objects.
 825 */
 826static int module_event(struct notifier_block *self, unsigned long val,
 827        void *data)
 828{
 829        return 0;
 830}
 831
 832static struct notifier_block dbg_module_load_nb = {
 833        .notifier_call  = module_event,
 834};
 835
 836int kgdb_nmicallback(int cpu, void *regs)
 837{
 838#ifdef CONFIG_SMP
 839        struct kgdb_state kgdb_var;
 840        struct kgdb_state *ks = &kgdb_var;
 841
 842        kgdb_info[cpu].rounding_up = false;
 843
 844        memset(ks, 0, sizeof(struct kgdb_state));
 845        ks->cpu                 = cpu;
 846        ks->linux_regs          = regs;
 847
 848        if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
 849                        raw_spin_is_locked(&dbg_master_lock)) {
 850                kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
 851                return 0;
 852        }
 853#endif
 854        return 1;
 855}
 856
 857int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
 858                                                        atomic_t *send_ready)
 859{
 860#ifdef CONFIG_SMP
 861        if (!kgdb_io_ready(0) || !send_ready)
 862                return 1;
 863
 864        if (kgdb_info[cpu].enter_kgdb == 0) {
 865                struct kgdb_state kgdb_var;
 866                struct kgdb_state *ks = &kgdb_var;
 867
 868                memset(ks, 0, sizeof(struct kgdb_state));
 869                ks->cpu                 = cpu;
 870                ks->ex_vector           = trapnr;
 871                ks->signo               = SIGTRAP;
 872                ks->err_code            = err_code;
 873                ks->linux_regs          = regs;
 874                ks->send_ready          = send_ready;
 875                kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
 876                return 0;
 877        }
 878#endif
 879        return 1;
 880}
 881
 882static void kgdb_console_write(struct console *co, const char *s,
 883   unsigned count)
 884{
 885        unsigned long flags;
 886
 887        /* If we're debugging, or KGDB has not connected, don't try
 888         * and print. */
 889        if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
 890                return;
 891
 892        local_irq_save(flags);
 893        gdbstub_msg_write(s, count);
 894        local_irq_restore(flags);
 895}
 896
 897static struct console kgdbcons = {
 898        .name           = "kgdb",
 899        .write          = kgdb_console_write,
 900        .flags          = CON_PRINTBUFFER | CON_ENABLED,
 901        .index          = -1,
 902};
 903
 904#ifdef CONFIG_MAGIC_SYSRQ
 905static void sysrq_handle_dbg(int key)
 906{
 907        if (!dbg_io_ops) {
 908                pr_crit("ERROR: No KGDB I/O module available\n");
 909                return;
 910        }
 911        if (!kgdb_connected) {
 912#ifdef CONFIG_KGDB_KDB
 913                if (!dbg_kdb_mode)
 914                        pr_crit("KGDB or $3#33 for KDB\n");
 915#else
 916                pr_crit("Entering KGDB\n");
 917#endif
 918        }
 919
 920        kgdb_breakpoint();
 921}
 922
 923static struct sysrq_key_op sysrq_dbg_op = {
 924        .handler        = sysrq_handle_dbg,
 925        .help_msg       = "debug(g)",
 926        .action_msg     = "DEBUG",
 927};
 928#endif
 929
 930void kgdb_panic(const char *msg)
 931{
 932        if (!kgdb_io_module_registered)
 933                return;
 934
 935        /*
 936         * We don't want to get stuck waiting for input from user if
 937         * "panic_timeout" indicates the system should automatically
 938         * reboot on panic.
 939         */
 940        if (panic_timeout)
 941                return;
 942
 943        if (dbg_kdb_mode)
 944                kdb_printf("PANIC: %s\n", msg);
 945
 946        kgdb_breakpoint();
 947}
 948
 949void __weak kgdb_arch_late(void)
 950{
 951}
 952
 953void __init dbg_late_init(void)
 954{
 955        dbg_is_early = false;
 956        if (kgdb_io_module_registered)
 957                kgdb_arch_late();
 958        kdb_init(KDB_INIT_FULL);
 959}
 960
 961static int
 962dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
 963{
 964        /*
 965         * Take the following action on reboot notify depending on value:
 966         *    1 == Enter debugger
 967         *    0 == [the default] detatch debug client
 968         *   -1 == Do nothing... and use this until the board resets
 969         */
 970        switch (kgdbreboot) {
 971        case 1:
 972                kgdb_breakpoint();
 973        case -1:
 974                goto done;
 975        }
 976        if (!dbg_kdb_mode)
 977                gdbstub_exit(code);
 978done:
 979        return NOTIFY_DONE;
 980}
 981
 982static struct notifier_block dbg_reboot_notifier = {
 983        .notifier_call          = dbg_notify_reboot,
 984        .next                   = NULL,
 985        .priority               = INT_MAX,
 986};
 987
 988static void kgdb_register_callbacks(void)
 989{
 990        if (!kgdb_io_module_registered) {
 991                kgdb_io_module_registered = 1;
 992                kgdb_arch_init();
 993                if (!dbg_is_early)
 994                        kgdb_arch_late();
 995                register_module_notifier(&dbg_module_load_nb);
 996                register_reboot_notifier(&dbg_reboot_notifier);
 997#ifdef CONFIG_MAGIC_SYSRQ
 998                register_sysrq_key('g', &sysrq_dbg_op);
 999#endif
1000                if (kgdb_use_con && !kgdb_con_registered) {
1001                        register_console(&kgdbcons);
1002                        kgdb_con_registered = 1;
1003                }
1004        }
1005}
1006
1007static void kgdb_unregister_callbacks(void)
1008{
1009        /*
1010         * When this routine is called KGDB should unregister from
1011         * handlers and clean up, making sure it is not handling any
1012         * break exceptions at the time.
1013         */
1014        if (kgdb_io_module_registered) {
1015                kgdb_io_module_registered = 0;
1016                unregister_reboot_notifier(&dbg_reboot_notifier);
1017                unregister_module_notifier(&dbg_module_load_nb);
1018                kgdb_arch_exit();
1019#ifdef CONFIG_MAGIC_SYSRQ
1020                unregister_sysrq_key('g', &sysrq_dbg_op);
1021#endif
1022                if (kgdb_con_registered) {
1023                        unregister_console(&kgdbcons);
1024                        kgdb_con_registered = 0;
1025                }
1026        }
1027}
1028
1029/*
1030 * There are times a tasklet needs to be used vs a compiled in
1031 * break point so as to cause an exception outside a kgdb I/O module,
1032 * such as is the case with kgdboe, where calling a breakpoint in the
1033 * I/O driver itself would be fatal.
1034 */
1035static void kgdb_tasklet_bpt(unsigned long ing)
1036{
1037        kgdb_breakpoint();
1038        atomic_set(&kgdb_break_tasklet_var, 0);
1039}
1040
1041static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1042
1043void kgdb_schedule_breakpoint(void)
1044{
1045        if (atomic_read(&kgdb_break_tasklet_var) ||
1046                atomic_read(&kgdb_active) != -1 ||
1047                atomic_read(&kgdb_setting_breakpoint))
1048                return;
1049        atomic_inc(&kgdb_break_tasklet_var);
1050        tasklet_schedule(&kgdb_tasklet_breakpoint);
1051}
1052EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1053
1054static void kgdb_initial_breakpoint(void)
1055{
1056        kgdb_break_asap = 0;
1057
1058        pr_crit("Waiting for connection from remote gdb...\n");
1059        kgdb_breakpoint();
1060}
1061
1062/**
1063 *      kgdb_register_io_module - register KGDB IO module
1064 *      @new_dbg_io_ops: the io ops vector
1065 *
1066 *      Register it with the KGDB core.
1067 */
1068int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1069{
1070        int err;
1071
1072        spin_lock(&kgdb_registration_lock);
1073
1074        if (dbg_io_ops) {
1075                spin_unlock(&kgdb_registration_lock);
1076
1077                pr_err("Another I/O driver is already registered with KGDB\n");
1078                return -EBUSY;
1079        }
1080
1081        if (new_dbg_io_ops->init) {
1082                err = new_dbg_io_ops->init();
1083                if (err) {
1084                        spin_unlock(&kgdb_registration_lock);
1085                        return err;
1086                }
1087        }
1088
1089        dbg_io_ops = new_dbg_io_ops;
1090
1091        spin_unlock(&kgdb_registration_lock);
1092
1093        pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1094
1095        /* Arm KGDB now. */
1096        kgdb_register_callbacks();
1097
1098        if (kgdb_break_asap)
1099                kgdb_initial_breakpoint();
1100
1101        return 0;
1102}
1103EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1104
1105/**
1106 *      kkgdb_unregister_io_module - unregister KGDB IO module
1107 *      @old_dbg_io_ops: the io ops vector
1108 *
1109 *      Unregister it with the KGDB core.
1110 */
1111void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1112{
1113        BUG_ON(kgdb_connected);
1114
1115        /*
1116         * KGDB is no longer able to communicate out, so
1117         * unregister our callbacks and reset state.
1118         */
1119        kgdb_unregister_callbacks();
1120
1121        spin_lock(&kgdb_registration_lock);
1122
1123        WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1124        dbg_io_ops = NULL;
1125
1126        spin_unlock(&kgdb_registration_lock);
1127
1128        pr_info("Unregistered I/O driver %s, debugger disabled\n",
1129                old_dbg_io_ops->name);
1130}
1131EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1132
1133int dbg_io_get_char(void)
1134{
1135        int ret = dbg_io_ops->read_char();
1136        if (ret == NO_POLL_CHAR)
1137                return -1;
1138        if (!dbg_kdb_mode)
1139                return ret;
1140        if (ret == 127)
1141                return 8;
1142        return ret;
1143}
1144
1145/**
1146 * kgdb_breakpoint - generate breakpoint exception
1147 *
1148 * This function will generate a breakpoint exception.  It is used at the
1149 * beginning of a program to sync up with a debugger and can be used
1150 * otherwise as a quick means to stop program execution and "break" into
1151 * the debugger.
1152 */
1153noinline void kgdb_breakpoint(void)
1154{
1155        atomic_inc(&kgdb_setting_breakpoint);
1156        wmb(); /* Sync point before breakpoint */
1157        arch_kgdb_breakpoint();
1158        wmb(); /* Sync point after breakpoint */
1159        atomic_dec(&kgdb_setting_breakpoint);
1160}
1161EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1162
1163static int __init opt_kgdb_wait(char *str)
1164{
1165        kgdb_break_asap = 1;
1166
1167        kdb_init(KDB_INIT_EARLY);
1168        if (kgdb_io_module_registered)
1169                kgdb_initial_breakpoint();
1170
1171        return 0;
1172}
1173
1174early_param("kgdbwait", opt_kgdb_wait);
1175