linux/kernel/dma/direct.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Christoph Hellwig.
   4 *
   5 * DMA operations that map physical memory directly without using an IOMMU.
   6 */
   7#include <linux/memblock.h> /* for max_pfn */
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/dma-direct.h>
  11#include <linux/scatterlist.h>
  12#include <linux/dma-contiguous.h>
  13#include <linux/dma-noncoherent.h>
  14#include <linux/pfn.h>
  15#include <linux/vmalloc.h>
  16#include <linux/set_memory.h>
  17#include <linux/swiotlb.h>
  18
  19/*
  20 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
  21 * it for entirely different regions. In that case the arch code needs to
  22 * override the variable below for dma-direct to work properly.
  23 */
  24unsigned int zone_dma_bits __ro_after_init = 24;
  25
  26static inline dma_addr_t phys_to_dma_direct(struct device *dev,
  27                phys_addr_t phys)
  28{
  29        if (force_dma_unencrypted(dev))
  30                return __phys_to_dma(dev, phys);
  31        return phys_to_dma(dev, phys);
  32}
  33
  34static inline struct page *dma_direct_to_page(struct device *dev,
  35                dma_addr_t dma_addr)
  36{
  37        return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
  38}
  39
  40u64 dma_direct_get_required_mask(struct device *dev)
  41{
  42        phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
  43        u64 max_dma = phys_to_dma_direct(dev, phys);
  44
  45        return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
  46}
  47
  48static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
  49                u64 *phys_limit)
  50{
  51        u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
  52
  53        if (force_dma_unencrypted(dev))
  54                *phys_limit = __dma_to_phys(dev, dma_limit);
  55        else
  56                *phys_limit = dma_to_phys(dev, dma_limit);
  57
  58        /*
  59         * Optimistically try the zone that the physical address mask falls
  60         * into first.  If that returns memory that isn't actually addressable
  61         * we will fallback to the next lower zone and try again.
  62         *
  63         * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
  64         * zones.
  65         */
  66        if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
  67                return GFP_DMA;
  68        if (*phys_limit <= DMA_BIT_MASK(32))
  69                return GFP_DMA32;
  70        return 0;
  71}
  72
  73static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
  74{
  75        return phys_to_dma_direct(dev, phys) + size - 1 <=
  76                        min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
  77}
  78
  79struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
  80                gfp_t gfp, unsigned long attrs)
  81{
  82        size_t alloc_size = PAGE_ALIGN(size);
  83        int node = dev_to_node(dev);
  84        struct page *page = NULL;
  85        u64 phys_limit;
  86
  87        if (attrs & DMA_ATTR_NO_WARN)
  88                gfp |= __GFP_NOWARN;
  89
  90        /* we always manually zero the memory once we are done: */
  91        gfp &= ~__GFP_ZERO;
  92        gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
  93                        &phys_limit);
  94        page = dma_alloc_contiguous(dev, alloc_size, gfp);
  95        if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
  96                dma_free_contiguous(dev, page, alloc_size);
  97                page = NULL;
  98        }
  99again:
 100        if (!page)
 101                page = alloc_pages_node(node, gfp, get_order(alloc_size));
 102        if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
 103                dma_free_contiguous(dev, page, size);
 104                page = NULL;
 105
 106                if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
 107                    phys_limit < DMA_BIT_MASK(64) &&
 108                    !(gfp & (GFP_DMA32 | GFP_DMA))) {
 109                        gfp |= GFP_DMA32;
 110                        goto again;
 111                }
 112
 113                if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
 114                        gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
 115                        goto again;
 116                }
 117        }
 118
 119        return page;
 120}
 121
 122void *dma_direct_alloc_pages(struct device *dev, size_t size,
 123                dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 124{
 125        struct page *page;
 126        void *ret;
 127
 128        if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 129            dma_alloc_need_uncached(dev, attrs) &&
 130            !gfpflags_allow_blocking(gfp)) {
 131                ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
 132                if (!ret)
 133                        return NULL;
 134                goto done;
 135        }
 136
 137        page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
 138        if (!page)
 139                return NULL;
 140
 141        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
 142            !force_dma_unencrypted(dev)) {
 143                /* remove any dirty cache lines on the kernel alias */
 144                if (!PageHighMem(page))
 145                        arch_dma_prep_coherent(page, size);
 146                /* return the page pointer as the opaque cookie */
 147                ret = page;
 148                goto done;
 149        }
 150
 151        if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 152             dma_alloc_need_uncached(dev, attrs)) ||
 153            (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
 154                /* remove any dirty cache lines on the kernel alias */
 155                arch_dma_prep_coherent(page, PAGE_ALIGN(size));
 156
 157                /* create a coherent mapping */
 158                ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
 159                                dma_pgprot(dev, PAGE_KERNEL, attrs),
 160                                __builtin_return_address(0));
 161                if (!ret)
 162                        goto out_free_pages;
 163                memset(ret, 0, size);
 164                goto done;
 165        }
 166
 167        if (PageHighMem(page)) {
 168                /*
 169                 * Depending on the cma= arguments and per-arch setup
 170                 * dma_alloc_contiguous could return highmem pages.
 171                 * Without remapping there is no way to return them here,
 172                 * so log an error and fail.
 173                 */
 174                dev_info(dev, "Rejecting highmem page from CMA.\n");
 175                goto out_free_pages;
 176        }
 177
 178        ret = page_address(page);
 179        if (force_dma_unencrypted(dev))
 180                set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
 181
 182        memset(ret, 0, size);
 183
 184        if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 185            dma_alloc_need_uncached(dev, attrs)) {
 186                arch_dma_prep_coherent(page, size);
 187                ret = arch_dma_set_uncached(ret, size);
 188                if (IS_ERR(ret))
 189                        goto out_free_pages;
 190        }
 191done:
 192        if (force_dma_unencrypted(dev))
 193                *dma_handle = __phys_to_dma(dev, page_to_phys(page));
 194        else
 195                *dma_handle = phys_to_dma(dev, page_to_phys(page));
 196        return ret;
 197out_free_pages:
 198        dma_free_contiguous(dev, page, size);
 199        return NULL;
 200}
 201
 202void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
 203                dma_addr_t dma_addr, unsigned long attrs)
 204{
 205        unsigned int page_order = get_order(size);
 206
 207        if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
 208            !force_dma_unencrypted(dev)) {
 209                /* cpu_addr is a struct page cookie, not a kernel address */
 210                dma_free_contiguous(dev, cpu_addr, size);
 211                return;
 212        }
 213
 214        if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 215            dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
 216                return;
 217
 218        if (force_dma_unencrypted(dev))
 219                set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
 220
 221        if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
 222                vunmap(cpu_addr);
 223        else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
 224                arch_dma_clear_uncached(cpu_addr, size);
 225
 226        dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
 227}
 228
 229void *dma_direct_alloc(struct device *dev, size_t size,
 230                dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 231{
 232        if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 233            !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 234            dma_alloc_need_uncached(dev, attrs))
 235                return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
 236        return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
 237}
 238
 239void dma_direct_free(struct device *dev, size_t size,
 240                void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
 241{
 242        if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
 243            !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 244            dma_alloc_need_uncached(dev, attrs))
 245                arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
 246        else
 247                dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
 248}
 249
 250#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
 251    defined(CONFIG_SWIOTLB)
 252void dma_direct_sync_single_for_device(struct device *dev,
 253                dma_addr_t addr, size_t size, enum dma_data_direction dir)
 254{
 255        phys_addr_t paddr = dma_to_phys(dev, addr);
 256
 257        if (unlikely(is_swiotlb_buffer(paddr)))
 258                swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
 259
 260        if (!dev_is_dma_coherent(dev))
 261                arch_sync_dma_for_device(paddr, size, dir);
 262}
 263EXPORT_SYMBOL(dma_direct_sync_single_for_device);
 264
 265void dma_direct_sync_sg_for_device(struct device *dev,
 266                struct scatterlist *sgl, int nents, enum dma_data_direction dir)
 267{
 268        struct scatterlist *sg;
 269        int i;
 270
 271        for_each_sg(sgl, sg, nents, i) {
 272                phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
 273
 274                if (unlikely(is_swiotlb_buffer(paddr)))
 275                        swiotlb_tbl_sync_single(dev, paddr, sg->length,
 276                                        dir, SYNC_FOR_DEVICE);
 277
 278                if (!dev_is_dma_coherent(dev))
 279                        arch_sync_dma_for_device(paddr, sg->length,
 280                                        dir);
 281        }
 282}
 283EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
 284#endif
 285
 286#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
 287    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
 288    defined(CONFIG_SWIOTLB)
 289void dma_direct_sync_single_for_cpu(struct device *dev,
 290                dma_addr_t addr, size_t size, enum dma_data_direction dir)
 291{
 292        phys_addr_t paddr = dma_to_phys(dev, addr);
 293
 294        if (!dev_is_dma_coherent(dev)) {
 295                arch_sync_dma_for_cpu(paddr, size, dir);
 296                arch_sync_dma_for_cpu_all();
 297        }
 298
 299        if (unlikely(is_swiotlb_buffer(paddr)))
 300                swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
 301}
 302EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
 303
 304void dma_direct_sync_sg_for_cpu(struct device *dev,
 305                struct scatterlist *sgl, int nents, enum dma_data_direction dir)
 306{
 307        struct scatterlist *sg;
 308        int i;
 309
 310        for_each_sg(sgl, sg, nents, i) {
 311                phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
 312
 313                if (!dev_is_dma_coherent(dev))
 314                        arch_sync_dma_for_cpu(paddr, sg->length, dir);
 315
 316                if (unlikely(is_swiotlb_buffer(paddr)))
 317                        swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
 318                                        SYNC_FOR_CPU);
 319        }
 320
 321        if (!dev_is_dma_coherent(dev))
 322                arch_sync_dma_for_cpu_all();
 323}
 324EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
 325
 326void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
 327                size_t size, enum dma_data_direction dir, unsigned long attrs)
 328{
 329        phys_addr_t phys = dma_to_phys(dev, addr);
 330
 331        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 332                dma_direct_sync_single_for_cpu(dev, addr, size, dir);
 333
 334        if (unlikely(is_swiotlb_buffer(phys)))
 335                swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
 336}
 337EXPORT_SYMBOL(dma_direct_unmap_page);
 338
 339void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
 340                int nents, enum dma_data_direction dir, unsigned long attrs)
 341{
 342        struct scatterlist *sg;
 343        int i;
 344
 345        for_each_sg(sgl, sg, nents, i)
 346                dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
 347                             attrs);
 348}
 349EXPORT_SYMBOL(dma_direct_unmap_sg);
 350#endif
 351
 352dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
 353                unsigned long offset, size_t size, enum dma_data_direction dir,
 354                unsigned long attrs)
 355{
 356        phys_addr_t phys = page_to_phys(page) + offset;
 357        dma_addr_t dma_addr = phys_to_dma(dev, phys);
 358
 359        if (unlikely(swiotlb_force == SWIOTLB_FORCE))
 360                return swiotlb_map(dev, phys, size, dir, attrs);
 361
 362        if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
 363                if (swiotlb_force != SWIOTLB_NO_FORCE)
 364                        return swiotlb_map(dev, phys, size, dir, attrs);
 365
 366                dev_WARN_ONCE(dev, 1,
 367                             "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
 368                             &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
 369                return DMA_MAPPING_ERROR;
 370        }
 371
 372        if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 373                arch_sync_dma_for_device(phys, size, dir);
 374        return dma_addr;
 375}
 376EXPORT_SYMBOL(dma_direct_map_page);
 377
 378int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
 379                enum dma_data_direction dir, unsigned long attrs)
 380{
 381        int i;
 382        struct scatterlist *sg;
 383
 384        for_each_sg(sgl, sg, nents, i) {
 385                sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
 386                                sg->offset, sg->length, dir, attrs);
 387                if (sg->dma_address == DMA_MAPPING_ERROR)
 388                        goto out_unmap;
 389                sg_dma_len(sg) = sg->length;
 390        }
 391
 392        return nents;
 393
 394out_unmap:
 395        dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
 396        return 0;
 397}
 398EXPORT_SYMBOL(dma_direct_map_sg);
 399
 400dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
 401                size_t size, enum dma_data_direction dir, unsigned long attrs)
 402{
 403        dma_addr_t dma_addr = paddr;
 404
 405        if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
 406                dev_err_once(dev,
 407                             "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
 408                             &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
 409                WARN_ON_ONCE(1);
 410                return DMA_MAPPING_ERROR;
 411        }
 412
 413        return dma_addr;
 414}
 415EXPORT_SYMBOL(dma_direct_map_resource);
 416
 417int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
 418                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 419                unsigned long attrs)
 420{
 421        struct page *page = dma_direct_to_page(dev, dma_addr);
 422        int ret;
 423
 424        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 425        if (!ret)
 426                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 427        return ret;
 428}
 429
 430#ifdef CONFIG_MMU
 431bool dma_direct_can_mmap(struct device *dev)
 432{
 433        return dev_is_dma_coherent(dev) ||
 434                IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
 435}
 436
 437int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
 438                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 439                unsigned long attrs)
 440{
 441        unsigned long user_count = vma_pages(vma);
 442        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 443        unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
 444        int ret = -ENXIO;
 445
 446        vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
 447
 448        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 449                return ret;
 450
 451        if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
 452                return -ENXIO;
 453        return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
 454                        user_count << PAGE_SHIFT, vma->vm_page_prot);
 455}
 456#else /* CONFIG_MMU */
 457bool dma_direct_can_mmap(struct device *dev)
 458{
 459        return false;
 460}
 461
 462int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
 463                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 464                unsigned long attrs)
 465{
 466        return -ENXIO;
 467}
 468#endif /* CONFIG_MMU */
 469
 470int dma_direct_supported(struct device *dev, u64 mask)
 471{
 472        u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
 473
 474        /*
 475         * Because 32-bit DMA masks are so common we expect every architecture
 476         * to be able to satisfy them - either by not supporting more physical
 477         * memory, or by providing a ZONE_DMA32.  If neither is the case, the
 478         * architecture needs to use an IOMMU instead of the direct mapping.
 479         */
 480        if (mask >= DMA_BIT_MASK(32))
 481                return 1;
 482
 483        /*
 484         * This check needs to be against the actual bit mask value, so
 485         * use __phys_to_dma() here so that the SME encryption mask isn't
 486         * part of the check.
 487         */
 488        if (IS_ENABLED(CONFIG_ZONE_DMA))
 489                min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
 490        return mask >= __phys_to_dma(dev, min_mask);
 491}
 492
 493size_t dma_direct_max_mapping_size(struct device *dev)
 494{
 495        /* If SWIOTLB is active, use its maximum mapping size */
 496        if (is_swiotlb_active() &&
 497            (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
 498                return swiotlb_max_mapping_size(dev);
 499        return SIZE_MAX;
 500}
 501