linux/kernel/dma/mapping.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * arch-independent dma-mapping routines
   4 *
   5 * Copyright (c) 2006  SUSE Linux Products GmbH
   6 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
   7 */
   8#include <linux/memblock.h> /* for max_pfn */
   9#include <linux/acpi.h>
  10#include <linux/dma-direct.h>
  11#include <linux/dma-noncoherent.h>
  12#include <linux/export.h>
  13#include <linux/gfp.h>
  14#include <linux/of_device.h>
  15#include <linux/slab.h>
  16#include <linux/vmalloc.h>
  17
  18/*
  19 * Managed DMA API
  20 */
  21struct dma_devres {
  22        size_t          size;
  23        void            *vaddr;
  24        dma_addr_t      dma_handle;
  25        unsigned long   attrs;
  26};
  27
  28static void dmam_release(struct device *dev, void *res)
  29{
  30        struct dma_devres *this = res;
  31
  32        dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
  33                        this->attrs);
  34}
  35
  36static int dmam_match(struct device *dev, void *res, void *match_data)
  37{
  38        struct dma_devres *this = res, *match = match_data;
  39
  40        if (this->vaddr == match->vaddr) {
  41                WARN_ON(this->size != match->size ||
  42                        this->dma_handle != match->dma_handle);
  43                return 1;
  44        }
  45        return 0;
  46}
  47
  48/**
  49 * dmam_free_coherent - Managed dma_free_coherent()
  50 * @dev: Device to free coherent memory for
  51 * @size: Size of allocation
  52 * @vaddr: Virtual address of the memory to free
  53 * @dma_handle: DMA handle of the memory to free
  54 *
  55 * Managed dma_free_coherent().
  56 */
  57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  58                        dma_addr_t dma_handle)
  59{
  60        struct dma_devres match_data = { size, vaddr, dma_handle };
  61
  62        dma_free_coherent(dev, size, vaddr, dma_handle);
  63        WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
  64}
  65EXPORT_SYMBOL(dmam_free_coherent);
  66
  67/**
  68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
  69 * @dev: Device to allocate non_coherent memory for
  70 * @size: Size of allocation
  71 * @dma_handle: Out argument for allocated DMA handle
  72 * @gfp: Allocation flags
  73 * @attrs: Flags in the DMA_ATTR_* namespace.
  74 *
  75 * Managed dma_alloc_attrs().  Memory allocated using this function will be
  76 * automatically released on driver detach.
  77 *
  78 * RETURNS:
  79 * Pointer to allocated memory on success, NULL on failure.
  80 */
  81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
  82                gfp_t gfp, unsigned long attrs)
  83{
  84        struct dma_devres *dr;
  85        void *vaddr;
  86
  87        dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  88        if (!dr)
  89                return NULL;
  90
  91        vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
  92        if (!vaddr) {
  93                devres_free(dr);
  94                return NULL;
  95        }
  96
  97        dr->vaddr = vaddr;
  98        dr->dma_handle = *dma_handle;
  99        dr->size = size;
 100        dr->attrs = attrs;
 101
 102        devres_add(dev, dr);
 103
 104        return vaddr;
 105}
 106EXPORT_SYMBOL(dmam_alloc_attrs);
 107
 108/*
 109 * Create scatter-list for the already allocated DMA buffer.
 110 */
 111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
 112                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 113                 unsigned long attrs)
 114{
 115        struct page *page = virt_to_page(cpu_addr);
 116        int ret;
 117
 118        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 119        if (!ret)
 120                sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 121        return ret;
 122}
 123
 124/*
 125 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
 126 * that the intention is to allow exporting memory allocated via the
 127 * coherent DMA APIs through the dma_buf API, which only accepts a
 128 * scattertable.  This presents a couple of problems:
 129 * 1. Not all memory allocated via the coherent DMA APIs is backed by
 130 *    a struct page
 131 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
 132 *    as we will try to flush the memory through a different alias to that
 133 *    actually being used (and the flushes are redundant.)
 134 */
 135int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
 136                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 137                unsigned long attrs)
 138{
 139        const struct dma_map_ops *ops = get_dma_ops(dev);
 140
 141        if (dma_is_direct(ops))
 142                return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
 143                                size, attrs);
 144        if (!ops->get_sgtable)
 145                return -ENXIO;
 146        return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
 147}
 148EXPORT_SYMBOL(dma_get_sgtable_attrs);
 149
 150#ifdef CONFIG_MMU
 151/*
 152 * Return the page attributes used for mapping dma_alloc_* memory, either in
 153 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
 154 */
 155pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
 156{
 157        if (force_dma_unencrypted(dev))
 158                prot = pgprot_decrypted(prot);
 159        if (dev_is_dma_coherent(dev) ||
 160            (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
 161             (attrs & DMA_ATTR_NON_CONSISTENT)))
 162                return prot;
 163#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
 164        if (attrs & DMA_ATTR_WRITE_COMBINE)
 165                return pgprot_writecombine(prot);
 166#endif
 167        return pgprot_dmacoherent(prot);
 168}
 169#endif /* CONFIG_MMU */
 170
 171/*
 172 * Create userspace mapping for the DMA-coherent memory.
 173 */
 174int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
 175                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 176                unsigned long attrs)
 177{
 178#ifdef CONFIG_MMU
 179        unsigned long user_count = vma_pages(vma);
 180        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 181        unsigned long off = vma->vm_pgoff;
 182        int ret = -ENXIO;
 183
 184        vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
 185
 186        if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 187                return ret;
 188
 189        if (off >= count || user_count > count - off)
 190                return -ENXIO;
 191
 192        return remap_pfn_range(vma, vma->vm_start,
 193                        page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
 194                        user_count << PAGE_SHIFT, vma->vm_page_prot);
 195#else
 196        return -ENXIO;
 197#endif /* CONFIG_MMU */
 198}
 199
 200/**
 201 * dma_can_mmap - check if a given device supports dma_mmap_*
 202 * @dev: device to check
 203 *
 204 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
 205 * map DMA allocations to userspace.
 206 */
 207bool dma_can_mmap(struct device *dev)
 208{
 209        const struct dma_map_ops *ops = get_dma_ops(dev);
 210
 211        if (dma_is_direct(ops))
 212                return dma_direct_can_mmap(dev);
 213        return ops->mmap != NULL;
 214}
 215EXPORT_SYMBOL_GPL(dma_can_mmap);
 216
 217/**
 218 * dma_mmap_attrs - map a coherent DMA allocation into user space
 219 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 220 * @vma: vm_area_struct describing requested user mapping
 221 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 222 * @dma_addr: device-view address returned from dma_alloc_attrs
 223 * @size: size of memory originally requested in dma_alloc_attrs
 224 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 225 *
 226 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
 227 * space.  The coherent DMA buffer must not be freed by the driver until the
 228 * user space mapping has been released.
 229 */
 230int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 231                void *cpu_addr, dma_addr_t dma_addr, size_t size,
 232                unsigned long attrs)
 233{
 234        const struct dma_map_ops *ops = get_dma_ops(dev);
 235
 236        if (dma_is_direct(ops))
 237                return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
 238                                attrs);
 239        if (!ops->mmap)
 240                return -ENXIO;
 241        return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 242}
 243EXPORT_SYMBOL(dma_mmap_attrs);
 244
 245u64 dma_get_required_mask(struct device *dev)
 246{
 247        const struct dma_map_ops *ops = get_dma_ops(dev);
 248
 249        if (dma_is_direct(ops))
 250                return dma_direct_get_required_mask(dev);
 251        if (ops->get_required_mask)
 252                return ops->get_required_mask(dev);
 253
 254        /*
 255         * We require every DMA ops implementation to at least support a 32-bit
 256         * DMA mask (and use bounce buffering if that isn't supported in
 257         * hardware).  As the direct mapping code has its own routine to
 258         * actually report an optimal mask we default to 32-bit here as that
 259         * is the right thing for most IOMMUs, and at least not actively
 260         * harmful in general.
 261         */
 262        return DMA_BIT_MASK(32);
 263}
 264EXPORT_SYMBOL_GPL(dma_get_required_mask);
 265
 266void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
 267                gfp_t flag, unsigned long attrs)
 268{
 269        const struct dma_map_ops *ops = get_dma_ops(dev);
 270        void *cpu_addr;
 271
 272        WARN_ON_ONCE(!dev->coherent_dma_mask);
 273
 274        if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
 275                return cpu_addr;
 276
 277        /* let the implementation decide on the zone to allocate from: */
 278        flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 279
 280        if (dma_is_direct(ops))
 281                cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
 282        else if (ops->alloc)
 283                cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
 284        else
 285                return NULL;
 286
 287        debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
 288        return cpu_addr;
 289}
 290EXPORT_SYMBOL(dma_alloc_attrs);
 291
 292void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
 293                dma_addr_t dma_handle, unsigned long attrs)
 294{
 295        const struct dma_map_ops *ops = get_dma_ops(dev);
 296
 297        if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
 298                return;
 299        /*
 300         * On non-coherent platforms which implement DMA-coherent buffers via
 301         * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
 302         * this far in IRQ context is a) at risk of a BUG_ON() or trying to
 303         * sleep on some machines, and b) an indication that the driver is
 304         * probably misusing the coherent API anyway.
 305         */
 306        WARN_ON(irqs_disabled());
 307
 308        if (!cpu_addr)
 309                return;
 310
 311        debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
 312        if (dma_is_direct(ops))
 313                dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
 314        else if (ops->free)
 315                ops->free(dev, size, cpu_addr, dma_handle, attrs);
 316}
 317EXPORT_SYMBOL(dma_free_attrs);
 318
 319int dma_supported(struct device *dev, u64 mask)
 320{
 321        const struct dma_map_ops *ops = get_dma_ops(dev);
 322
 323        if (dma_is_direct(ops))
 324                return dma_direct_supported(dev, mask);
 325        if (!ops->dma_supported)
 326                return 1;
 327        return ops->dma_supported(dev, mask);
 328}
 329EXPORT_SYMBOL(dma_supported);
 330
 331#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
 332void arch_dma_set_mask(struct device *dev, u64 mask);
 333#else
 334#define arch_dma_set_mask(dev, mask)    do { } while (0)
 335#endif
 336
 337int dma_set_mask(struct device *dev, u64 mask)
 338{
 339        /*
 340         * Truncate the mask to the actually supported dma_addr_t width to
 341         * avoid generating unsupportable addresses.
 342         */
 343        mask = (dma_addr_t)mask;
 344
 345        if (!dev->dma_mask || !dma_supported(dev, mask))
 346                return -EIO;
 347
 348        arch_dma_set_mask(dev, mask);
 349        *dev->dma_mask = mask;
 350        return 0;
 351}
 352EXPORT_SYMBOL(dma_set_mask);
 353
 354#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
 355int dma_set_coherent_mask(struct device *dev, u64 mask)
 356{
 357        /*
 358         * Truncate the mask to the actually supported dma_addr_t width to
 359         * avoid generating unsupportable addresses.
 360         */
 361        mask = (dma_addr_t)mask;
 362
 363        if (!dma_supported(dev, mask))
 364                return -EIO;
 365
 366        dev->coherent_dma_mask = mask;
 367        return 0;
 368}
 369EXPORT_SYMBOL(dma_set_coherent_mask);
 370#endif
 371
 372void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 373                enum dma_data_direction dir)
 374{
 375        const struct dma_map_ops *ops = get_dma_ops(dev);
 376
 377        BUG_ON(!valid_dma_direction(dir));
 378
 379        if (dma_is_direct(ops))
 380                arch_dma_cache_sync(dev, vaddr, size, dir);
 381        else if (ops->cache_sync)
 382                ops->cache_sync(dev, vaddr, size, dir);
 383}
 384EXPORT_SYMBOL(dma_cache_sync);
 385
 386size_t dma_max_mapping_size(struct device *dev)
 387{
 388        const struct dma_map_ops *ops = get_dma_ops(dev);
 389        size_t size = SIZE_MAX;
 390
 391        if (dma_is_direct(ops))
 392                size = dma_direct_max_mapping_size(dev);
 393        else if (ops && ops->max_mapping_size)
 394                size = ops->max_mapping_size(dev);
 395
 396        return size;
 397}
 398EXPORT_SYMBOL_GPL(dma_max_mapping_size);
 399
 400unsigned long dma_get_merge_boundary(struct device *dev)
 401{
 402        const struct dma_map_ops *ops = get_dma_ops(dev);
 403
 404        if (!ops || !ops->get_merge_boundary)
 405                return 0;       /* can't merge */
 406
 407        return ops->get_merge_boundary(dev);
 408}
 409EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
 410