linux/kernel/rcu/update.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *          Manfred Spraul <manfred@colorfullife.com>
   9 *
  10 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  11 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  12 * Papers:
  13 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  14 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  15 *
  16 * For detailed explanation of Read-Copy Update mechanism see -
  17 *              http://lse.sourceforge.net/locking/rcupdate.html
  18 *
  19 */
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/interrupt.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sched/debug.h>
  28#include <linux/atomic.h>
  29#include <linux/bitops.h>
  30#include <linux/percpu.h>
  31#include <linux/notifier.h>
  32#include <linux/cpu.h>
  33#include <linux/mutex.h>
  34#include <linux/export.h>
  35#include <linux/hardirq.h>
  36#include <linux/delay.h>
  37#include <linux/moduleparam.h>
  38#include <linux/kthread.h>
  39#include <linux/tick.h>
  40#include <linux/rcupdate_wait.h>
  41#include <linux/sched/isolation.h>
  42#include <linux/kprobes.h>
  43#include <linux/slab.h>
  44
  45#define CREATE_TRACE_POINTS
  46
  47#include "rcu.h"
  48
  49#ifdef MODULE_PARAM_PREFIX
  50#undef MODULE_PARAM_PREFIX
  51#endif
  52#define MODULE_PARAM_PREFIX "rcupdate."
  53
  54#ifndef CONFIG_TINY_RCU
  55module_param(rcu_expedited, int, 0);
  56module_param(rcu_normal, int, 0);
  57static int rcu_normal_after_boot;
  58module_param(rcu_normal_after_boot, int, 0);
  59#endif /* #ifndef CONFIG_TINY_RCU */
  60
  61#ifdef CONFIG_DEBUG_LOCK_ALLOC
  62/**
  63 * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
  64 * @ret:        Best guess answer if lockdep cannot be relied on
  65 *
  66 * Returns true if lockdep must be ignored, in which case *ret contains
  67 * the best guess described below.  Otherwise returns false, in which
  68 * case *ret tells the caller nothing and the caller should instead
  69 * consult lockdep.
  70 *
  71 * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
  72 * RCU-sched read-side critical section.  In absence of
  73 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  74 * critical section unless it can prove otherwise.  Note that disabling
  75 * of preemption (including disabling irqs) counts as an RCU-sched
  76 * read-side critical section.  This is useful for debug checks in functions
  77 * that required that they be called within an RCU-sched read-side
  78 * critical section.
  79 *
  80 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  81 * and while lockdep is disabled.
  82 *
  83 * Note that if the CPU is in the idle loop from an RCU point of view (ie:
  84 * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
  85 * then rcu_read_lock_held() sets *ret to false even if the CPU did an
  86 * rcu_read_lock().  The reason for this is that RCU ignores CPUs that are
  87 * in such a section, considering these as in extended quiescent state,
  88 * so such a CPU is effectively never in an RCU read-side critical section
  89 * regardless of what RCU primitives it invokes.  This state of affairs is
  90 * required --- we need to keep an RCU-free window in idle where the CPU may
  91 * possibly enter into low power mode. This way we can notice an extended
  92 * quiescent state to other CPUs that started a grace period. Otherwise
  93 * we would delay any grace period as long as we run in the idle task.
  94 *
  95 * Similarly, we avoid claiming an RCU read lock held if the current
  96 * CPU is offline.
  97 */
  98static bool rcu_read_lock_held_common(bool *ret)
  99{
 100        if (!debug_lockdep_rcu_enabled()) {
 101                *ret = 1;
 102                return true;
 103        }
 104        if (!rcu_is_watching()) {
 105                *ret = 0;
 106                return true;
 107        }
 108        if (!rcu_lockdep_current_cpu_online()) {
 109                *ret = 0;
 110                return true;
 111        }
 112        return false;
 113}
 114
 115int rcu_read_lock_sched_held(void)
 116{
 117        bool ret;
 118
 119        if (rcu_read_lock_held_common(&ret))
 120                return ret;
 121        return lock_is_held(&rcu_sched_lock_map) || !preemptible();
 122}
 123EXPORT_SYMBOL(rcu_read_lock_sched_held);
 124#endif
 125
 126#ifndef CONFIG_TINY_RCU
 127
 128/*
 129 * Should expedited grace-period primitives always fall back to their
 130 * non-expedited counterparts?  Intended for use within RCU.  Note
 131 * that if the user specifies both rcu_expedited and rcu_normal, then
 132 * rcu_normal wins.  (Except during the time period during boot from
 133 * when the first task is spawned until the rcu_set_runtime_mode()
 134 * core_initcall() is invoked, at which point everything is expedited.)
 135 */
 136bool rcu_gp_is_normal(void)
 137{
 138        return READ_ONCE(rcu_normal) &&
 139               rcu_scheduler_active != RCU_SCHEDULER_INIT;
 140}
 141EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 142
 143static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 144
 145/*
 146 * Should normal grace-period primitives be expedited?  Intended for
 147 * use within RCU.  Note that this function takes the rcu_expedited
 148 * sysfs/boot variable and rcu_scheduler_active into account as well
 149 * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 150 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 151 */
 152bool rcu_gp_is_expedited(void)
 153{
 154        return rcu_expedited || atomic_read(&rcu_expedited_nesting);
 155}
 156EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 157
 158/**
 159 * rcu_expedite_gp - Expedite future RCU grace periods
 160 *
 161 * After a call to this function, future calls to synchronize_rcu() and
 162 * friends act as the corresponding synchronize_rcu_expedited() function
 163 * had instead been called.
 164 */
 165void rcu_expedite_gp(void)
 166{
 167        atomic_inc(&rcu_expedited_nesting);
 168}
 169EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 170
 171/**
 172 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 173 *
 174 * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 175 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 176 * and if the rcu_expedited sysfs/boot parameter is not set, then all
 177 * subsequent calls to synchronize_rcu() and friends will return to
 178 * their normal non-expedited behavior.
 179 */
 180void rcu_unexpedite_gp(void)
 181{
 182        atomic_dec(&rcu_expedited_nesting);
 183}
 184EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 185
 186static bool rcu_boot_ended __read_mostly;
 187
 188/*
 189 * Inform RCU of the end of the in-kernel boot sequence.
 190 */
 191void rcu_end_inkernel_boot(void)
 192{
 193        rcu_unexpedite_gp();
 194        if (rcu_normal_after_boot)
 195                WRITE_ONCE(rcu_normal, 1);
 196        rcu_boot_ended = 1;
 197}
 198
 199/*
 200 * Let rcutorture know when it is OK to turn it up to eleven.
 201 */
 202bool rcu_inkernel_boot_has_ended(void)
 203{
 204        return rcu_boot_ended;
 205}
 206EXPORT_SYMBOL_GPL(rcu_inkernel_boot_has_ended);
 207
 208#endif /* #ifndef CONFIG_TINY_RCU */
 209
 210/*
 211 * Test each non-SRCU synchronous grace-period wait API.  This is
 212 * useful just after a change in mode for these primitives, and
 213 * during early boot.
 214 */
 215void rcu_test_sync_prims(void)
 216{
 217        if (!IS_ENABLED(CONFIG_PROVE_RCU))
 218                return;
 219        synchronize_rcu();
 220        synchronize_rcu_expedited();
 221}
 222
 223#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 224
 225/*
 226 * Switch to run-time mode once RCU has fully initialized.
 227 */
 228static int __init rcu_set_runtime_mode(void)
 229{
 230        rcu_test_sync_prims();
 231        rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 232        kfree_rcu_scheduler_running();
 233        rcu_test_sync_prims();
 234        return 0;
 235}
 236core_initcall(rcu_set_runtime_mode);
 237
 238#endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 239
 240#ifdef CONFIG_DEBUG_LOCK_ALLOC
 241static struct lock_class_key rcu_lock_key;
 242struct lockdep_map rcu_lock_map = {
 243        .name = "rcu_read_lock",
 244        .key = &rcu_lock_key,
 245        .wait_type_outer = LD_WAIT_FREE,
 246        .wait_type_inner = LD_WAIT_CONFIG, /* XXX PREEMPT_RCU ? */
 247};
 248EXPORT_SYMBOL_GPL(rcu_lock_map);
 249
 250static struct lock_class_key rcu_bh_lock_key;
 251struct lockdep_map rcu_bh_lock_map = {
 252        .name = "rcu_read_lock_bh",
 253        .key = &rcu_bh_lock_key,
 254        .wait_type_outer = LD_WAIT_FREE,
 255        .wait_type_inner = LD_WAIT_CONFIG, /* PREEMPT_LOCK also makes BH preemptible */
 256};
 257EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 258
 259static struct lock_class_key rcu_sched_lock_key;
 260struct lockdep_map rcu_sched_lock_map = {
 261        .name = "rcu_read_lock_sched",
 262        .key = &rcu_sched_lock_key,
 263        .wait_type_outer = LD_WAIT_FREE,
 264        .wait_type_inner = LD_WAIT_SPIN,
 265};
 266EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 267
 268static struct lock_class_key rcu_callback_key;
 269struct lockdep_map rcu_callback_map =
 270        STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 271EXPORT_SYMBOL_GPL(rcu_callback_map);
 272
 273int notrace debug_lockdep_rcu_enabled(void)
 274{
 275        return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 276               current->lockdep_recursion == 0;
 277}
 278EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 279NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
 280
 281/**
 282 * rcu_read_lock_held() - might we be in RCU read-side critical section?
 283 *
 284 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 285 * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 286 * this assumes we are in an RCU read-side critical section unless it can
 287 * prove otherwise.  This is useful for debug checks in functions that
 288 * require that they be called within an RCU read-side critical section.
 289 *
 290 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 291 * and while lockdep is disabled.
 292 *
 293 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 294 * occur in the same context, for example, it is illegal to invoke
 295 * rcu_read_unlock() in process context if the matching rcu_read_lock()
 296 * was invoked from within an irq handler.
 297 *
 298 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 299 * offline from an RCU perspective, so check for those as well.
 300 */
 301int rcu_read_lock_held(void)
 302{
 303        bool ret;
 304
 305        if (rcu_read_lock_held_common(&ret))
 306                return ret;
 307        return lock_is_held(&rcu_lock_map);
 308}
 309EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 310
 311/**
 312 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 313 *
 314 * Check for bottom half being disabled, which covers both the
 315 * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 316 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 317 * will show the situation.  This is useful for debug checks in functions
 318 * that require that they be called within an RCU read-side critical
 319 * section.
 320 *
 321 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 322 *
 323 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
 324 * offline from an RCU perspective, so check for those as well.
 325 */
 326int rcu_read_lock_bh_held(void)
 327{
 328        bool ret;
 329
 330        if (rcu_read_lock_held_common(&ret))
 331                return ret;
 332        return in_softirq() || irqs_disabled();
 333}
 334EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 335
 336int rcu_read_lock_any_held(void)
 337{
 338        bool ret;
 339
 340        if (rcu_read_lock_held_common(&ret))
 341                return ret;
 342        if (lock_is_held(&rcu_lock_map) ||
 343            lock_is_held(&rcu_bh_lock_map) ||
 344            lock_is_held(&rcu_sched_lock_map))
 345                return 1;
 346        return !preemptible();
 347}
 348EXPORT_SYMBOL_GPL(rcu_read_lock_any_held);
 349
 350#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 351
 352/**
 353 * wakeme_after_rcu() - Callback function to awaken a task after grace period
 354 * @head: Pointer to rcu_head member within rcu_synchronize structure
 355 *
 356 * Awaken the corresponding task now that a grace period has elapsed.
 357 */
 358void wakeme_after_rcu(struct rcu_head *head)
 359{
 360        struct rcu_synchronize *rcu;
 361
 362        rcu = container_of(head, struct rcu_synchronize, head);
 363        complete(&rcu->completion);
 364}
 365EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 366
 367void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 368                   struct rcu_synchronize *rs_array)
 369{
 370        int i;
 371        int j;
 372
 373        /* Initialize and register callbacks for each crcu_array element. */
 374        for (i = 0; i < n; i++) {
 375                if (checktiny &&
 376                    (crcu_array[i] == call_rcu)) {
 377                        might_sleep();
 378                        continue;
 379                }
 380                init_rcu_head_on_stack(&rs_array[i].head);
 381                init_completion(&rs_array[i].completion);
 382                for (j = 0; j < i; j++)
 383                        if (crcu_array[j] == crcu_array[i])
 384                                break;
 385                if (j == i)
 386                        (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 387        }
 388
 389        /* Wait for all callbacks to be invoked. */
 390        for (i = 0; i < n; i++) {
 391                if (checktiny &&
 392                    (crcu_array[i] == call_rcu))
 393                        continue;
 394                for (j = 0; j < i; j++)
 395                        if (crcu_array[j] == crcu_array[i])
 396                                break;
 397                if (j == i)
 398                        wait_for_completion(&rs_array[i].completion);
 399                destroy_rcu_head_on_stack(&rs_array[i].head);
 400        }
 401}
 402EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 403
 404#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 405void init_rcu_head(struct rcu_head *head)
 406{
 407        debug_object_init(head, &rcuhead_debug_descr);
 408}
 409EXPORT_SYMBOL_GPL(init_rcu_head);
 410
 411void destroy_rcu_head(struct rcu_head *head)
 412{
 413        debug_object_free(head, &rcuhead_debug_descr);
 414}
 415EXPORT_SYMBOL_GPL(destroy_rcu_head);
 416
 417static bool rcuhead_is_static_object(void *addr)
 418{
 419        return true;
 420}
 421
 422/**
 423 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 424 * @head: pointer to rcu_head structure to be initialized
 425 *
 426 * This function informs debugobjects of a new rcu_head structure that
 427 * has been allocated as an auto variable on the stack.  This function
 428 * is not required for rcu_head structures that are statically defined or
 429 * that are dynamically allocated on the heap.  This function has no
 430 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 431 */
 432void init_rcu_head_on_stack(struct rcu_head *head)
 433{
 434        debug_object_init_on_stack(head, &rcuhead_debug_descr);
 435}
 436EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 437
 438/**
 439 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 440 * @head: pointer to rcu_head structure to be initialized
 441 *
 442 * This function informs debugobjects that an on-stack rcu_head structure
 443 * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 444 * function is not required for rcu_head structures that are statically
 445 * defined or that are dynamically allocated on the heap.  Also as with
 446 * init_rcu_head_on_stack(), this function has no effect for
 447 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 448 */
 449void destroy_rcu_head_on_stack(struct rcu_head *head)
 450{
 451        debug_object_free(head, &rcuhead_debug_descr);
 452}
 453EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 454
 455struct debug_obj_descr rcuhead_debug_descr = {
 456        .name = "rcu_head",
 457        .is_static_object = rcuhead_is_static_object,
 458};
 459EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 460#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 461
 462#if defined(CONFIG_TREE_RCU) || defined(CONFIG_RCU_TRACE)
 463void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 464                               unsigned long secs,
 465                               unsigned long c_old, unsigned long c)
 466{
 467        trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 468}
 469EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 470#else
 471#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 472        do { } while (0)
 473#endif
 474
 475#if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
 476/* Get rcutorture access to sched_setaffinity(). */
 477long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 478{
 479        int ret;
 480
 481        ret = sched_setaffinity(pid, in_mask);
 482        WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
 483        return ret;
 484}
 485EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
 486#endif
 487
 488#ifdef CONFIG_RCU_STALL_COMMON
 489int rcu_cpu_stall_ftrace_dump __read_mostly;
 490module_param(rcu_cpu_stall_ftrace_dump, int, 0644);
 491int rcu_cpu_stall_suppress __read_mostly; // !0 = suppress stall warnings.
 492EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 493module_param(rcu_cpu_stall_suppress, int, 0644);
 494int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 495module_param(rcu_cpu_stall_timeout, int, 0644);
 496#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 497
 498// Suppress boot-time RCU CPU stall warnings and rcutorture writer stall
 499// warnings.  Also used by rcutorture even if stall warnings are excluded.
 500int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls.
 501EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot);
 502module_param(rcu_cpu_stall_suppress_at_boot, int, 0444);
 503
 504#ifdef CONFIG_TASKS_RCU
 505
 506/*
 507 * Simple variant of RCU whose quiescent states are voluntary context
 508 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
 509 * As such, grace periods can take one good long time.  There are no
 510 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
 511 * because this implementation is intended to get the system into a safe
 512 * state for some of the manipulations involved in tracing and the like.
 513 * Finally, this implementation does not support high call_rcu_tasks()
 514 * rates from multiple CPUs.  If this is required, per-CPU callback lists
 515 * will be needed.
 516 */
 517
 518/* Global list of callbacks and associated lock. */
 519static struct rcu_head *rcu_tasks_cbs_head;
 520static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 521static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 522static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 523
 524/* Track exiting tasks in order to allow them to be waited for. */
 525DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 526
 527/* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 528#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 529static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 530module_param(rcu_task_stall_timeout, int, 0644);
 531
 532static struct task_struct *rcu_tasks_kthread_ptr;
 533
 534/**
 535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 536 * @rhp: structure to be used for queueing the RCU updates.
 537 * @func: actual callback function to be invoked after the grace period
 538 *
 539 * The callback function will be invoked some time after a full grace
 540 * period elapses, in other words after all currently executing RCU
 541 * read-side critical sections have completed. call_rcu_tasks() assumes
 542 * that the read-side critical sections end at a voluntary context
 543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
 544 * or transition to usermode execution.  As such, there are no read-side
 545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 546 * this primitive is intended to determine that all tasks have passed
 547 * through a safe state, not so much for data-strcuture synchronization.
 548 *
 549 * See the description of call_rcu() for more detailed information on
 550 * memory ordering guarantees.
 551 */
 552void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 553{
 554        unsigned long flags;
 555        bool needwake;
 556
 557        rhp->next = NULL;
 558        rhp->func = func;
 559        raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 560        needwake = !rcu_tasks_cbs_head;
 561        WRITE_ONCE(*rcu_tasks_cbs_tail, rhp);
 562        rcu_tasks_cbs_tail = &rhp->next;
 563        raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 564        /* We can't create the thread unless interrupts are enabled. */
 565        if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
 566                wake_up(&rcu_tasks_cbs_wq);
 567}
 568EXPORT_SYMBOL_GPL(call_rcu_tasks);
 569
 570/**
 571 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 572 *
 573 * Control will return to the caller some time after a full rcu-tasks
 574 * grace period has elapsed, in other words after all currently
 575 * executing rcu-tasks read-side critical sections have elapsed.  These
 576 * read-side critical sections are delimited by calls to schedule(),
 577 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 578 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 579 *
 580 * This is a very specialized primitive, intended only for a few uses in
 581 * tracing and other situations requiring manipulation of function
 582 * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 583 * is not (yet) intended for heavy use from multiple CPUs.
 584 *
 585 * Note that this guarantee implies further memory-ordering guarantees.
 586 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 587 * each CPU is guaranteed to have executed a full memory barrier since the
 588 * end of its last RCU-tasks read-side critical section whose beginning
 589 * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 590 * having an RCU-tasks read-side critical section that extends beyond
 591 * the return from synchronize_rcu_tasks() is guaranteed to have executed
 592 * a full memory barrier after the beginning of synchronize_rcu_tasks()
 593 * and before the beginning of that RCU-tasks read-side critical section.
 594 * Note that these guarantees include CPUs that are offline, idle, or
 595 * executing in user mode, as well as CPUs that are executing in the kernel.
 596 *
 597 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 598 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 599 * to have executed a full memory barrier during the execution of
 600 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 601 * (but again only if the system has more than one CPU).
 602 */
 603void synchronize_rcu_tasks(void)
 604{
 605        /* Complain if the scheduler has not started.  */
 606        RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 607                         "synchronize_rcu_tasks called too soon");
 608
 609        /* Wait for the grace period. */
 610        wait_rcu_gp(call_rcu_tasks);
 611}
 612EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 613
 614/**
 615 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 616 *
 617 * Although the current implementation is guaranteed to wait, it is not
 618 * obligated to, for example, if there are no pending callbacks.
 619 */
 620void rcu_barrier_tasks(void)
 621{
 622        /* There is only one callback queue, so this is easy.  ;-) */
 623        synchronize_rcu_tasks();
 624}
 625EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 626
 627/* See if tasks are still holding out, complain if so. */
 628static void check_holdout_task(struct task_struct *t,
 629                               bool needreport, bool *firstreport)
 630{
 631        int cpu;
 632
 633        if (!READ_ONCE(t->rcu_tasks_holdout) ||
 634            t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 635            !READ_ONCE(t->on_rq) ||
 636            (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 637             !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 638                WRITE_ONCE(t->rcu_tasks_holdout, false);
 639                list_del_init(&t->rcu_tasks_holdout_list);
 640                put_task_struct(t);
 641                return;
 642        }
 643        rcu_request_urgent_qs_task(t);
 644        if (!needreport)
 645                return;
 646        if (*firstreport) {
 647                pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 648                *firstreport = false;
 649        }
 650        cpu = task_cpu(t);
 651        pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 652                 t, ".I"[is_idle_task(t)],
 653                 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 654                 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 655                 t->rcu_tasks_idle_cpu, cpu);
 656        sched_show_task(t);
 657}
 658
 659/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 660static int __noreturn rcu_tasks_kthread(void *arg)
 661{
 662        unsigned long flags;
 663        struct task_struct *g, *t;
 664        unsigned long lastreport;
 665        struct rcu_head *list;
 666        struct rcu_head *next;
 667        LIST_HEAD(rcu_tasks_holdouts);
 668        int fract;
 669
 670        /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 671        housekeeping_affine(current, HK_FLAG_RCU);
 672
 673        /*
 674         * Each pass through the following loop makes one check for
 675         * newly arrived callbacks, and, if there are some, waits for
 676         * one RCU-tasks grace period and then invokes the callbacks.
 677         * This loop is terminated by the system going down.  ;-)
 678         */
 679        for (;;) {
 680
 681                /* Pick up any new callbacks. */
 682                raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 683                list = rcu_tasks_cbs_head;
 684                rcu_tasks_cbs_head = NULL;
 685                rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 686                raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 687
 688                /* If there were none, wait a bit and start over. */
 689                if (!list) {
 690                        wait_event_interruptible(rcu_tasks_cbs_wq,
 691                                                 READ_ONCE(rcu_tasks_cbs_head));
 692                        if (!rcu_tasks_cbs_head) {
 693                                WARN_ON(signal_pending(current));
 694                                schedule_timeout_interruptible(HZ/10);
 695                        }
 696                        continue;
 697                }
 698
 699                /*
 700                 * Wait for all pre-existing t->on_rq and t->nvcsw
 701                 * transitions to complete.  Invoking synchronize_rcu()
 702                 * suffices because all these transitions occur with
 703                 * interrupts disabled.  Without this synchronize_rcu(),
 704                 * a read-side critical section that started before the
 705                 * grace period might be incorrectly seen as having started
 706                 * after the grace period.
 707                 *
 708                 * This synchronize_rcu() also dispenses with the
 709                 * need for a memory barrier on the first store to
 710                 * ->rcu_tasks_holdout, as it forces the store to happen
 711                 * after the beginning of the grace period.
 712                 */
 713                synchronize_rcu();
 714
 715                /*
 716                 * There were callbacks, so we need to wait for an
 717                 * RCU-tasks grace period.  Start off by scanning
 718                 * the task list for tasks that are not already
 719                 * voluntarily blocked.  Mark these tasks and make
 720                 * a list of them in rcu_tasks_holdouts.
 721                 */
 722                rcu_read_lock();
 723                for_each_process_thread(g, t) {
 724                        if (t != current && READ_ONCE(t->on_rq) &&
 725                            !is_idle_task(t)) {
 726                                get_task_struct(t);
 727                                t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 728                                WRITE_ONCE(t->rcu_tasks_holdout, true);
 729                                list_add(&t->rcu_tasks_holdout_list,
 730                                         &rcu_tasks_holdouts);
 731                        }
 732                }
 733                rcu_read_unlock();
 734
 735                /*
 736                 * Wait for tasks that are in the process of exiting.
 737                 * This does only part of the job, ensuring that all
 738                 * tasks that were previously exiting reach the point
 739                 * where they have disabled preemption, allowing the
 740                 * later synchronize_rcu() to finish the job.
 741                 */
 742                synchronize_srcu(&tasks_rcu_exit_srcu);
 743
 744                /*
 745                 * Each pass through the following loop scans the list
 746                 * of holdout tasks, removing any that are no longer
 747                 * holdouts.  When the list is empty, we are done.
 748                 */
 749                lastreport = jiffies;
 750
 751                /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
 752                fract = 10;
 753
 754                for (;;) {
 755                        bool firstreport;
 756                        bool needreport;
 757                        int rtst;
 758                        struct task_struct *t1;
 759
 760                        if (list_empty(&rcu_tasks_holdouts))
 761                                break;
 762
 763                        /* Slowly back off waiting for holdouts */
 764                        schedule_timeout_interruptible(HZ/fract);
 765
 766                        if (fract > 1)
 767                                fract--;
 768
 769                        rtst = READ_ONCE(rcu_task_stall_timeout);
 770                        needreport = rtst > 0 &&
 771                                     time_after(jiffies, lastreport + rtst);
 772                        if (needreport)
 773                                lastreport = jiffies;
 774                        firstreport = true;
 775                        WARN_ON(signal_pending(current));
 776                        list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 777                                                rcu_tasks_holdout_list) {
 778                                check_holdout_task(t, needreport, &firstreport);
 779                                cond_resched();
 780                        }
 781                }
 782
 783                /*
 784                 * Because ->on_rq and ->nvcsw are not guaranteed
 785                 * to have a full memory barriers prior to them in the
 786                 * schedule() path, memory reordering on other CPUs could
 787                 * cause their RCU-tasks read-side critical sections to
 788                 * extend past the end of the grace period.  However,
 789                 * because these ->nvcsw updates are carried out with
 790                 * interrupts disabled, we can use synchronize_rcu()
 791                 * to force the needed ordering on all such CPUs.
 792                 *
 793                 * This synchronize_rcu() also confines all
 794                 * ->rcu_tasks_holdout accesses to be within the grace
 795                 * period, avoiding the need for memory barriers for
 796                 * ->rcu_tasks_holdout accesses.
 797                 *
 798                 * In addition, this synchronize_rcu() waits for exiting
 799                 * tasks to complete their final preempt_disable() region
 800                 * of execution, cleaning up after the synchronize_srcu()
 801                 * above.
 802                 */
 803                synchronize_rcu();
 804
 805                /* Invoke the callbacks. */
 806                while (list) {
 807                        next = list->next;
 808                        local_bh_disable();
 809                        list->func(list);
 810                        local_bh_enable();
 811                        list = next;
 812                        cond_resched();
 813                }
 814                /* Paranoid sleep to keep this from entering a tight loop */
 815                schedule_timeout_uninterruptible(HZ/10);
 816        }
 817}
 818
 819/* Spawn rcu_tasks_kthread() at core_initcall() time. */
 820static int __init rcu_spawn_tasks_kthread(void)
 821{
 822        struct task_struct *t;
 823
 824        t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 825        if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
 826                return 0;
 827        smp_mb(); /* Ensure others see full kthread. */
 828        WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 829        return 0;
 830}
 831core_initcall(rcu_spawn_tasks_kthread);
 832
 833/* Do the srcu_read_lock() for the above synchronize_srcu().  */
 834void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
 835{
 836        preempt_disable();
 837        current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 838        preempt_enable();
 839}
 840
 841/* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 842void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
 843{
 844        preempt_disable();
 845        __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 846        preempt_enable();
 847}
 848
 849#endif /* #ifdef CONFIG_TASKS_RCU */
 850
 851#ifndef CONFIG_TINY_RCU
 852
 853/*
 854 * Print any non-default Tasks RCU settings.
 855 */
 856static void __init rcu_tasks_bootup_oddness(void)
 857{
 858#ifdef CONFIG_TASKS_RCU
 859        if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 860                pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 861        else
 862                pr_info("\tTasks RCU enabled.\n");
 863#endif /* #ifdef CONFIG_TASKS_RCU */
 864}
 865
 866#endif /* #ifndef CONFIG_TINY_RCU */
 867
 868#ifdef CONFIG_PROVE_RCU
 869
 870/*
 871 * Early boot self test parameters.
 872 */
 873static bool rcu_self_test;
 874module_param(rcu_self_test, bool, 0444);
 875
 876static int rcu_self_test_counter;
 877
 878static void test_callback(struct rcu_head *r)
 879{
 880        rcu_self_test_counter++;
 881        pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 882}
 883
 884DEFINE_STATIC_SRCU(early_srcu);
 885
 886struct early_boot_kfree_rcu {
 887        struct rcu_head rh;
 888};
 889
 890static void early_boot_test_call_rcu(void)
 891{
 892        static struct rcu_head head;
 893        static struct rcu_head shead;
 894        struct early_boot_kfree_rcu *rhp;
 895
 896        call_rcu(&head, test_callback);
 897        if (IS_ENABLED(CONFIG_SRCU))
 898                call_srcu(&early_srcu, &shead, test_callback);
 899        rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
 900        if (!WARN_ON_ONCE(!rhp))
 901                kfree_rcu(rhp, rh);
 902}
 903
 904void rcu_early_boot_tests(void)
 905{
 906        pr_info("Running RCU self tests\n");
 907
 908        if (rcu_self_test)
 909                early_boot_test_call_rcu();
 910        rcu_test_sync_prims();
 911}
 912
 913static int rcu_verify_early_boot_tests(void)
 914{
 915        int ret = 0;
 916        int early_boot_test_counter = 0;
 917
 918        if (rcu_self_test) {
 919                early_boot_test_counter++;
 920                rcu_barrier();
 921                if (IS_ENABLED(CONFIG_SRCU)) {
 922                        early_boot_test_counter++;
 923                        srcu_barrier(&early_srcu);
 924                }
 925        }
 926        if (rcu_self_test_counter != early_boot_test_counter) {
 927                WARN_ON(1);
 928                ret = -1;
 929        }
 930
 931        return ret;
 932}
 933late_initcall(rcu_verify_early_boot_tests);
 934#else
 935void rcu_early_boot_tests(void) {}
 936#endif /* CONFIG_PROVE_RCU */
 937
 938#ifndef CONFIG_TINY_RCU
 939
 940/*
 941 * Print any significant non-default boot-time settings.
 942 */
 943void __init rcupdate_announce_bootup_oddness(void)
 944{
 945        if (rcu_normal)
 946                pr_info("\tNo expedited grace period (rcu_normal).\n");
 947        else if (rcu_normal_after_boot)
 948                pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
 949        else if (rcu_expedited)
 950                pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
 951        if (rcu_cpu_stall_suppress)
 952                pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
 953        if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
 954                pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
 955        rcu_tasks_bootup_oddness();
 956}
 957
 958#endif /* #ifndef CONFIG_TINY_RCU */
 959