linux/kernel/time/timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46
  47#include <linux/uaccess.h>
  48#include <asm/unistd.h>
  49#include <asm/div64.h>
  50#include <asm/timex.h>
  51#include <asm/io.h>
  52
  53#include "tick-internal.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/timer.h>
  57
  58__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  59
  60EXPORT_SYMBOL(jiffies_64);
  61
  62/*
  63 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  65 * level has a different granularity.
  66 *
  67 * The level granularity is:            LVL_CLK_DIV ^ lvl
  68 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  69 *
  70 * The array level of a newly armed timer depends on the relative expiry
  71 * time. The farther the expiry time is away the higher the array level and
  72 * therefor the granularity becomes.
  73 *
  74 * Contrary to the original timer wheel implementation, which aims for 'exact'
  75 * expiry of the timers, this implementation removes the need for recascading
  76 * the timers into the lower array levels. The previous 'classic' timer wheel
  77 * implementation of the kernel already violated the 'exact' expiry by adding
  78 * slack to the expiry time to provide batched expiration. The granularity
  79 * levels provide implicit batching.
  80 *
  81 * This is an optimization of the original timer wheel implementation for the
  82 * majority of the timer wheel use cases: timeouts. The vast majority of
  83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  84 * the timeout expires it indicates that normal operation is disturbed, so it
  85 * does not matter much whether the timeout comes with a slight delay.
  86 *
  87 * The only exception to this are networking timers with a small expiry
  88 * time. They rely on the granularity. Those fit into the first wheel level,
  89 * which has HZ granularity.
  90 *
  91 * We don't have cascading anymore. timers with a expiry time above the
  92 * capacity of the last wheel level are force expired at the maximum timeout
  93 * value of the last wheel level. From data sampling we know that the maximum
  94 * value observed is 5 days (network connection tracking), so this should not
  95 * be an issue.
  96 *
  97 * The currently chosen array constants values are a good compromise between
  98 * array size and granularity.
  99 *
 100 * This results in the following granularity and range levels:
 101 *
 102 * HZ 1000 steps
 103 * Level Offset  Granularity            Range
 104 *  0      0         1 ms                0 ms -         63 ms
 105 *  1     64         8 ms               64 ms -        511 ms
 106 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 107 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 108 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 109 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 110 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 111 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 112 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 113 *
 114 * HZ  300
 115 * Level Offset  Granularity            Range
 116 *  0      0         3 ms                0 ms -        210 ms
 117 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 118 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 119 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 120 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 121 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 122 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 123 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 124 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 125 *
 126 * HZ  250
 127 * Level Offset  Granularity            Range
 128 *  0      0         4 ms                0 ms -        255 ms
 129 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 130 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 131 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 132 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 133 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 134 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 135 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 136 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 137 *
 138 * HZ  100
 139 * Level Offset  Granularity            Range
 140 *  0      0         10 ms               0 ms -        630 ms
 141 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 142 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 143 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 144 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 145 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 146 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 147 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 148 */
 149
 150/* Clock divisor for the next level */
 151#define LVL_CLK_SHIFT   3
 152#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 153#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 154#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 155#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 156
 157/*
 158 * The time start value for each level to select the bucket at enqueue
 159 * time.
 160 */
 161#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 162
 163/* Size of each clock level */
 164#define LVL_BITS        6
 165#define LVL_SIZE        (1UL << LVL_BITS)
 166#define LVL_MASK        (LVL_SIZE - 1)
 167#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 168
 169/* Level depth */
 170#if HZ > 100
 171# define LVL_DEPTH      9
 172# else
 173# define LVL_DEPTH      8
 174#endif
 175
 176/* The cutoff (max. capacity of the wheel) */
 177#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 178#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 179
 180/*
 181 * The resulting wheel size. If NOHZ is configured we allocate two
 182 * wheels so we have a separate storage for the deferrable timers.
 183 */
 184#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 185
 186#ifdef CONFIG_NO_HZ_COMMON
 187# define NR_BASES       2
 188# define BASE_STD       0
 189# define BASE_DEF       1
 190#else
 191# define NR_BASES       1
 192# define BASE_STD       0
 193# define BASE_DEF       0
 194#endif
 195
 196struct timer_base {
 197        raw_spinlock_t          lock;
 198        struct timer_list       *running_timer;
 199#ifdef CONFIG_PREEMPT_RT
 200        spinlock_t              expiry_lock;
 201        atomic_t                timer_waiters;
 202#endif
 203        unsigned long           clk;
 204        unsigned long           next_expiry;
 205        unsigned int            cpu;
 206        bool                    is_idle;
 207        bool                    must_forward_clk;
 208        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 209        struct hlist_head       vectors[WHEEL_SIZE];
 210} ____cacheline_aligned;
 211
 212static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 213
 214#ifdef CONFIG_NO_HZ_COMMON
 215
 216static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 217static DEFINE_MUTEX(timer_keys_mutex);
 218
 219static void timer_update_keys(struct work_struct *work);
 220static DECLARE_WORK(timer_update_work, timer_update_keys);
 221
 222#ifdef CONFIG_SMP
 223unsigned int sysctl_timer_migration = 1;
 224
 225DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 226
 227static void timers_update_migration(void)
 228{
 229        if (sysctl_timer_migration && tick_nohz_active)
 230                static_branch_enable(&timers_migration_enabled);
 231        else
 232                static_branch_disable(&timers_migration_enabled);
 233}
 234#else
 235static inline void timers_update_migration(void) { }
 236#endif /* !CONFIG_SMP */
 237
 238static void timer_update_keys(struct work_struct *work)
 239{
 240        mutex_lock(&timer_keys_mutex);
 241        timers_update_migration();
 242        static_branch_enable(&timers_nohz_active);
 243        mutex_unlock(&timer_keys_mutex);
 244}
 245
 246void timers_update_nohz(void)
 247{
 248        schedule_work(&timer_update_work);
 249}
 250
 251int timer_migration_handler(struct ctl_table *table, int write,
 252                            void __user *buffer, size_t *lenp,
 253                            loff_t *ppos)
 254{
 255        int ret;
 256
 257        mutex_lock(&timer_keys_mutex);
 258        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 259        if (!ret && write)
 260                timers_update_migration();
 261        mutex_unlock(&timer_keys_mutex);
 262        return ret;
 263}
 264
 265static inline bool is_timers_nohz_active(void)
 266{
 267        return static_branch_unlikely(&timers_nohz_active);
 268}
 269#else
 270static inline bool is_timers_nohz_active(void) { return false; }
 271#endif /* NO_HZ_COMMON */
 272
 273static unsigned long round_jiffies_common(unsigned long j, int cpu,
 274                bool force_up)
 275{
 276        int rem;
 277        unsigned long original = j;
 278
 279        /*
 280         * We don't want all cpus firing their timers at once hitting the
 281         * same lock or cachelines, so we skew each extra cpu with an extra
 282         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 283         * already did this.
 284         * The skew is done by adding 3*cpunr, then round, then subtract this
 285         * extra offset again.
 286         */
 287        j += cpu * 3;
 288
 289        rem = j % HZ;
 290
 291        /*
 292         * If the target jiffie is just after a whole second (which can happen
 293         * due to delays of the timer irq, long irq off times etc etc) then
 294         * we should round down to the whole second, not up. Use 1/4th second
 295         * as cutoff for this rounding as an extreme upper bound for this.
 296         * But never round down if @force_up is set.
 297         */
 298        if (rem < HZ/4 && !force_up) /* round down */
 299                j = j - rem;
 300        else /* round up */
 301                j = j - rem + HZ;
 302
 303        /* now that we have rounded, subtract the extra skew again */
 304        j -= cpu * 3;
 305
 306        /*
 307         * Make sure j is still in the future. Otherwise return the
 308         * unmodified value.
 309         */
 310        return time_is_after_jiffies(j) ? j : original;
 311}
 312
 313/**
 314 * __round_jiffies - function to round jiffies to a full second
 315 * @j: the time in (absolute) jiffies that should be rounded
 316 * @cpu: the processor number on which the timeout will happen
 317 *
 318 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 319 * up or down to (approximately) full seconds. This is useful for timers
 320 * for which the exact time they fire does not matter too much, as long as
 321 * they fire approximately every X seconds.
 322 *
 323 * By rounding these timers to whole seconds, all such timers will fire
 324 * at the same time, rather than at various times spread out. The goal
 325 * of this is to have the CPU wake up less, which saves power.
 326 *
 327 * The exact rounding is skewed for each processor to avoid all
 328 * processors firing at the exact same time, which could lead
 329 * to lock contention or spurious cache line bouncing.
 330 *
 331 * The return value is the rounded version of the @j parameter.
 332 */
 333unsigned long __round_jiffies(unsigned long j, int cpu)
 334{
 335        return round_jiffies_common(j, cpu, false);
 336}
 337EXPORT_SYMBOL_GPL(__round_jiffies);
 338
 339/**
 340 * __round_jiffies_relative - function to round jiffies to a full second
 341 * @j: the time in (relative) jiffies that should be rounded
 342 * @cpu: the processor number on which the timeout will happen
 343 *
 344 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 345 * up or down to (approximately) full seconds. This is useful for timers
 346 * for which the exact time they fire does not matter too much, as long as
 347 * they fire approximately every X seconds.
 348 *
 349 * By rounding these timers to whole seconds, all such timers will fire
 350 * at the same time, rather than at various times spread out. The goal
 351 * of this is to have the CPU wake up less, which saves power.
 352 *
 353 * The exact rounding is skewed for each processor to avoid all
 354 * processors firing at the exact same time, which could lead
 355 * to lock contention or spurious cache line bouncing.
 356 *
 357 * The return value is the rounded version of the @j parameter.
 358 */
 359unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 360{
 361        unsigned long j0 = jiffies;
 362
 363        /* Use j0 because jiffies might change while we run */
 364        return round_jiffies_common(j + j0, cpu, false) - j0;
 365}
 366EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 367
 368/**
 369 * round_jiffies - function to round jiffies to a full second
 370 * @j: the time in (absolute) jiffies that should be rounded
 371 *
 372 * round_jiffies() rounds an absolute time in the future (in jiffies)
 373 * up or down to (approximately) full seconds. This is useful for timers
 374 * for which the exact time they fire does not matter too much, as long as
 375 * they fire approximately every X seconds.
 376 *
 377 * By rounding these timers to whole seconds, all such timers will fire
 378 * at the same time, rather than at various times spread out. The goal
 379 * of this is to have the CPU wake up less, which saves power.
 380 *
 381 * The return value is the rounded version of the @j parameter.
 382 */
 383unsigned long round_jiffies(unsigned long j)
 384{
 385        return round_jiffies_common(j, raw_smp_processor_id(), false);
 386}
 387EXPORT_SYMBOL_GPL(round_jiffies);
 388
 389/**
 390 * round_jiffies_relative - function to round jiffies to a full second
 391 * @j: the time in (relative) jiffies that should be rounded
 392 *
 393 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 394 * up or down to (approximately) full seconds. This is useful for timers
 395 * for which the exact time they fire does not matter too much, as long as
 396 * they fire approximately every X seconds.
 397 *
 398 * By rounding these timers to whole seconds, all such timers will fire
 399 * at the same time, rather than at various times spread out. The goal
 400 * of this is to have the CPU wake up less, which saves power.
 401 *
 402 * The return value is the rounded version of the @j parameter.
 403 */
 404unsigned long round_jiffies_relative(unsigned long j)
 405{
 406        return __round_jiffies_relative(j, raw_smp_processor_id());
 407}
 408EXPORT_SYMBOL_GPL(round_jiffies_relative);
 409
 410/**
 411 * __round_jiffies_up - function to round jiffies up to a full second
 412 * @j: the time in (absolute) jiffies that should be rounded
 413 * @cpu: the processor number on which the timeout will happen
 414 *
 415 * This is the same as __round_jiffies() except that it will never
 416 * round down.  This is useful for timeouts for which the exact time
 417 * of firing does not matter too much, as long as they don't fire too
 418 * early.
 419 */
 420unsigned long __round_jiffies_up(unsigned long j, int cpu)
 421{
 422        return round_jiffies_common(j, cpu, true);
 423}
 424EXPORT_SYMBOL_GPL(__round_jiffies_up);
 425
 426/**
 427 * __round_jiffies_up_relative - function to round jiffies up to a full second
 428 * @j: the time in (relative) jiffies that should be rounded
 429 * @cpu: the processor number on which the timeout will happen
 430 *
 431 * This is the same as __round_jiffies_relative() except that it will never
 432 * round down.  This is useful for timeouts for which the exact time
 433 * of firing does not matter too much, as long as they don't fire too
 434 * early.
 435 */
 436unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 437{
 438        unsigned long j0 = jiffies;
 439
 440        /* Use j0 because jiffies might change while we run */
 441        return round_jiffies_common(j + j0, cpu, true) - j0;
 442}
 443EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 444
 445/**
 446 * round_jiffies_up - function to round jiffies up to a full second
 447 * @j: the time in (absolute) jiffies that should be rounded
 448 *
 449 * This is the same as round_jiffies() except that it will never
 450 * round down.  This is useful for timeouts for which the exact time
 451 * of firing does not matter too much, as long as they don't fire too
 452 * early.
 453 */
 454unsigned long round_jiffies_up(unsigned long j)
 455{
 456        return round_jiffies_common(j, raw_smp_processor_id(), true);
 457}
 458EXPORT_SYMBOL_GPL(round_jiffies_up);
 459
 460/**
 461 * round_jiffies_up_relative - function to round jiffies up to a full second
 462 * @j: the time in (relative) jiffies that should be rounded
 463 *
 464 * This is the same as round_jiffies_relative() except that it will never
 465 * round down.  This is useful for timeouts for which the exact time
 466 * of firing does not matter too much, as long as they don't fire too
 467 * early.
 468 */
 469unsigned long round_jiffies_up_relative(unsigned long j)
 470{
 471        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 472}
 473EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 474
 475
 476static inline unsigned int timer_get_idx(struct timer_list *timer)
 477{
 478        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 479}
 480
 481static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 482{
 483        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 484                        idx << TIMER_ARRAYSHIFT;
 485}
 486
 487/*
 488 * Helper function to calculate the array index for a given expiry
 489 * time.
 490 */
 491static inline unsigned calc_index(unsigned expires, unsigned lvl)
 492{
 493        expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 494        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 495}
 496
 497static int calc_wheel_index(unsigned long expires, unsigned long clk)
 498{
 499        unsigned long delta = expires - clk;
 500        unsigned int idx;
 501
 502        if (delta < LVL_START(1)) {
 503                idx = calc_index(expires, 0);
 504        } else if (delta < LVL_START(2)) {
 505                idx = calc_index(expires, 1);
 506        } else if (delta < LVL_START(3)) {
 507                idx = calc_index(expires, 2);
 508        } else if (delta < LVL_START(4)) {
 509                idx = calc_index(expires, 3);
 510        } else if (delta < LVL_START(5)) {
 511                idx = calc_index(expires, 4);
 512        } else if (delta < LVL_START(6)) {
 513                idx = calc_index(expires, 5);
 514        } else if (delta < LVL_START(7)) {
 515                idx = calc_index(expires, 6);
 516        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 517                idx = calc_index(expires, 7);
 518        } else if ((long) delta < 0) {
 519                idx = clk & LVL_MASK;
 520        } else {
 521                /*
 522                 * Force expire obscene large timeouts to expire at the
 523                 * capacity limit of the wheel.
 524                 */
 525                if (expires >= WHEEL_TIMEOUT_CUTOFF)
 526                        expires = WHEEL_TIMEOUT_MAX;
 527
 528                idx = calc_index(expires, LVL_DEPTH - 1);
 529        }
 530        return idx;
 531}
 532
 533/*
 534 * Enqueue the timer into the hash bucket, mark it pending in
 535 * the bitmap and store the index in the timer flags.
 536 */
 537static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 538                          unsigned int idx)
 539{
 540        hlist_add_head(&timer->entry, base->vectors + idx);
 541        __set_bit(idx, base->pending_map);
 542        timer_set_idx(timer, idx);
 543
 544        trace_timer_start(timer, timer->expires, timer->flags);
 545}
 546
 547static void
 548__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 549{
 550        unsigned int idx;
 551
 552        idx = calc_wheel_index(timer->expires, base->clk);
 553        enqueue_timer(base, timer, idx);
 554}
 555
 556static void
 557trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 558{
 559        if (!is_timers_nohz_active())
 560                return;
 561
 562        /*
 563         * TODO: This wants some optimizing similar to the code below, but we
 564         * will do that when we switch from push to pull for deferrable timers.
 565         */
 566        if (timer->flags & TIMER_DEFERRABLE) {
 567                if (tick_nohz_full_cpu(base->cpu))
 568                        wake_up_nohz_cpu(base->cpu);
 569                return;
 570        }
 571
 572        /*
 573         * We might have to IPI the remote CPU if the base is idle and the
 574         * timer is not deferrable. If the other CPU is on the way to idle
 575         * then it can't set base->is_idle as we hold the base lock:
 576         */
 577        if (!base->is_idle)
 578                return;
 579
 580        /* Check whether this is the new first expiring timer: */
 581        if (time_after_eq(timer->expires, base->next_expiry))
 582                return;
 583
 584        /*
 585         * Set the next expiry time and kick the CPU so it can reevaluate the
 586         * wheel:
 587         */
 588        base->next_expiry = timer->expires;
 589        wake_up_nohz_cpu(base->cpu);
 590}
 591
 592static void
 593internal_add_timer(struct timer_base *base, struct timer_list *timer)
 594{
 595        __internal_add_timer(base, timer);
 596        trigger_dyntick_cpu(base, timer);
 597}
 598
 599#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 600
 601static struct debug_obj_descr timer_debug_descr;
 602
 603static void *timer_debug_hint(void *addr)
 604{
 605        return ((struct timer_list *) addr)->function;
 606}
 607
 608static bool timer_is_static_object(void *addr)
 609{
 610        struct timer_list *timer = addr;
 611
 612        return (timer->entry.pprev == NULL &&
 613                timer->entry.next == TIMER_ENTRY_STATIC);
 614}
 615
 616/*
 617 * fixup_init is called when:
 618 * - an active object is initialized
 619 */
 620static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 621{
 622        struct timer_list *timer = addr;
 623
 624        switch (state) {
 625        case ODEBUG_STATE_ACTIVE:
 626                del_timer_sync(timer);
 627                debug_object_init(timer, &timer_debug_descr);
 628                return true;
 629        default:
 630                return false;
 631        }
 632}
 633
 634/* Stub timer callback for improperly used timers. */
 635static void stub_timer(struct timer_list *unused)
 636{
 637        WARN_ON(1);
 638}
 639
 640/*
 641 * fixup_activate is called when:
 642 * - an active object is activated
 643 * - an unknown non-static object is activated
 644 */
 645static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 646{
 647        struct timer_list *timer = addr;
 648
 649        switch (state) {
 650        case ODEBUG_STATE_NOTAVAILABLE:
 651                timer_setup(timer, stub_timer, 0);
 652                return true;
 653
 654        case ODEBUG_STATE_ACTIVE:
 655                WARN_ON(1);
 656                /* fall through */
 657        default:
 658                return false;
 659        }
 660}
 661
 662/*
 663 * fixup_free is called when:
 664 * - an active object is freed
 665 */
 666static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 667{
 668        struct timer_list *timer = addr;
 669
 670        switch (state) {
 671        case ODEBUG_STATE_ACTIVE:
 672                del_timer_sync(timer);
 673                debug_object_free(timer, &timer_debug_descr);
 674                return true;
 675        default:
 676                return false;
 677        }
 678}
 679
 680/*
 681 * fixup_assert_init is called when:
 682 * - an untracked/uninit-ed object is found
 683 */
 684static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 685{
 686        struct timer_list *timer = addr;
 687
 688        switch (state) {
 689        case ODEBUG_STATE_NOTAVAILABLE:
 690                timer_setup(timer, stub_timer, 0);
 691                return true;
 692        default:
 693                return false;
 694        }
 695}
 696
 697static struct debug_obj_descr timer_debug_descr = {
 698        .name                   = "timer_list",
 699        .debug_hint             = timer_debug_hint,
 700        .is_static_object       = timer_is_static_object,
 701        .fixup_init             = timer_fixup_init,
 702        .fixup_activate         = timer_fixup_activate,
 703        .fixup_free             = timer_fixup_free,
 704        .fixup_assert_init      = timer_fixup_assert_init,
 705};
 706
 707static inline void debug_timer_init(struct timer_list *timer)
 708{
 709        debug_object_init(timer, &timer_debug_descr);
 710}
 711
 712static inline void debug_timer_activate(struct timer_list *timer)
 713{
 714        debug_object_activate(timer, &timer_debug_descr);
 715}
 716
 717static inline void debug_timer_deactivate(struct timer_list *timer)
 718{
 719        debug_object_deactivate(timer, &timer_debug_descr);
 720}
 721
 722static inline void debug_timer_free(struct timer_list *timer)
 723{
 724        debug_object_free(timer, &timer_debug_descr);
 725}
 726
 727static inline void debug_timer_assert_init(struct timer_list *timer)
 728{
 729        debug_object_assert_init(timer, &timer_debug_descr);
 730}
 731
 732static void do_init_timer(struct timer_list *timer,
 733                          void (*func)(struct timer_list *),
 734                          unsigned int flags,
 735                          const char *name, struct lock_class_key *key);
 736
 737void init_timer_on_stack_key(struct timer_list *timer,
 738                             void (*func)(struct timer_list *),
 739                             unsigned int flags,
 740                             const char *name, struct lock_class_key *key)
 741{
 742        debug_object_init_on_stack(timer, &timer_debug_descr);
 743        do_init_timer(timer, func, flags, name, key);
 744}
 745EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 746
 747void destroy_timer_on_stack(struct timer_list *timer)
 748{
 749        debug_object_free(timer, &timer_debug_descr);
 750}
 751EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 752
 753#else
 754static inline void debug_timer_init(struct timer_list *timer) { }
 755static inline void debug_timer_activate(struct timer_list *timer) { }
 756static inline void debug_timer_deactivate(struct timer_list *timer) { }
 757static inline void debug_timer_assert_init(struct timer_list *timer) { }
 758#endif
 759
 760static inline void debug_init(struct timer_list *timer)
 761{
 762        debug_timer_init(timer);
 763        trace_timer_init(timer);
 764}
 765
 766static inline void debug_deactivate(struct timer_list *timer)
 767{
 768        debug_timer_deactivate(timer);
 769        trace_timer_cancel(timer);
 770}
 771
 772static inline void debug_assert_init(struct timer_list *timer)
 773{
 774        debug_timer_assert_init(timer);
 775}
 776
 777static void do_init_timer(struct timer_list *timer,
 778                          void (*func)(struct timer_list *),
 779                          unsigned int flags,
 780                          const char *name, struct lock_class_key *key)
 781{
 782        timer->entry.pprev = NULL;
 783        timer->function = func;
 784        timer->flags = flags | raw_smp_processor_id();
 785        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 786}
 787
 788/**
 789 * init_timer_key - initialize a timer
 790 * @timer: the timer to be initialized
 791 * @func: timer callback function
 792 * @flags: timer flags
 793 * @name: name of the timer
 794 * @key: lockdep class key of the fake lock used for tracking timer
 795 *       sync lock dependencies
 796 *
 797 * init_timer_key() must be done to a timer prior calling *any* of the
 798 * other timer functions.
 799 */
 800void init_timer_key(struct timer_list *timer,
 801                    void (*func)(struct timer_list *), unsigned int flags,
 802                    const char *name, struct lock_class_key *key)
 803{
 804        debug_init(timer);
 805        do_init_timer(timer, func, flags, name, key);
 806}
 807EXPORT_SYMBOL(init_timer_key);
 808
 809static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 810{
 811        struct hlist_node *entry = &timer->entry;
 812
 813        debug_deactivate(timer);
 814
 815        __hlist_del(entry);
 816        if (clear_pending)
 817                entry->pprev = NULL;
 818        entry->next = LIST_POISON2;
 819}
 820
 821static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 822                             bool clear_pending)
 823{
 824        unsigned idx = timer_get_idx(timer);
 825
 826        if (!timer_pending(timer))
 827                return 0;
 828
 829        if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 830                __clear_bit(idx, base->pending_map);
 831
 832        detach_timer(timer, clear_pending);
 833        return 1;
 834}
 835
 836static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 837{
 838        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 839
 840        /*
 841         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 842         * to use the deferrable base.
 843         */
 844        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 845                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 846        return base;
 847}
 848
 849static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 850{
 851        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 852
 853        /*
 854         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 855         * to use the deferrable base.
 856         */
 857        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 858                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 859        return base;
 860}
 861
 862static inline struct timer_base *get_timer_base(u32 tflags)
 863{
 864        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 865}
 866
 867static inline struct timer_base *
 868get_target_base(struct timer_base *base, unsigned tflags)
 869{
 870#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 871        if (static_branch_likely(&timers_migration_enabled) &&
 872            !(tflags & TIMER_PINNED))
 873                return get_timer_cpu_base(tflags, get_nohz_timer_target());
 874#endif
 875        return get_timer_this_cpu_base(tflags);
 876}
 877
 878static inline void forward_timer_base(struct timer_base *base)
 879{
 880#ifdef CONFIG_NO_HZ_COMMON
 881        unsigned long jnow;
 882
 883        /*
 884         * We only forward the base when we are idle or have just come out of
 885         * idle (must_forward_clk logic), and have a delta between base clock
 886         * and jiffies. In the common case, run_timers will take care of it.
 887         */
 888        if (likely(!base->must_forward_clk))
 889                return;
 890
 891        jnow = READ_ONCE(jiffies);
 892        base->must_forward_clk = base->is_idle;
 893        if ((long)(jnow - base->clk) < 2)
 894                return;
 895
 896        /*
 897         * If the next expiry value is > jiffies, then we fast forward to
 898         * jiffies otherwise we forward to the next expiry value.
 899         */
 900        if (time_after(base->next_expiry, jnow))
 901                base->clk = jnow;
 902        else
 903                base->clk = base->next_expiry;
 904#endif
 905}
 906
 907
 908/*
 909 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 910 * that all timers which are tied to this base are locked, and the base itself
 911 * is locked too.
 912 *
 913 * So __run_timers/migrate_timers can safely modify all timers which could
 914 * be found in the base->vectors array.
 915 *
 916 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 917 * to wait until the migration is done.
 918 */
 919static struct timer_base *lock_timer_base(struct timer_list *timer,
 920                                          unsigned long *flags)
 921        __acquires(timer->base->lock)
 922{
 923        for (;;) {
 924                struct timer_base *base;
 925                u32 tf;
 926
 927                /*
 928                 * We need to use READ_ONCE() here, otherwise the compiler
 929                 * might re-read @tf between the check for TIMER_MIGRATING
 930                 * and spin_lock().
 931                 */
 932                tf = READ_ONCE(timer->flags);
 933
 934                if (!(tf & TIMER_MIGRATING)) {
 935                        base = get_timer_base(tf);
 936                        raw_spin_lock_irqsave(&base->lock, *flags);
 937                        if (timer->flags == tf)
 938                                return base;
 939                        raw_spin_unlock_irqrestore(&base->lock, *flags);
 940                }
 941                cpu_relax();
 942        }
 943}
 944
 945#define MOD_TIMER_PENDING_ONLY          0x01
 946#define MOD_TIMER_REDUCE                0x02
 947#define MOD_TIMER_NOTPENDING            0x04
 948
 949static inline int
 950__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
 951{
 952        struct timer_base *base, *new_base;
 953        unsigned int idx = UINT_MAX;
 954        unsigned long clk = 0, flags;
 955        int ret = 0;
 956
 957        BUG_ON(!timer->function);
 958
 959        /*
 960         * This is a common optimization triggered by the networking code - if
 961         * the timer is re-modified to have the same timeout or ends up in the
 962         * same array bucket then just return:
 963         */
 964        if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
 965                /*
 966                 * The downside of this optimization is that it can result in
 967                 * larger granularity than you would get from adding a new
 968                 * timer with this expiry.
 969                 */
 970                long diff = timer->expires - expires;
 971
 972                if (!diff)
 973                        return 1;
 974                if (options & MOD_TIMER_REDUCE && diff <= 0)
 975                        return 1;
 976
 977                /*
 978                 * We lock timer base and calculate the bucket index right
 979                 * here. If the timer ends up in the same bucket, then we
 980                 * just update the expiry time and avoid the whole
 981                 * dequeue/enqueue dance.
 982                 */
 983                base = lock_timer_base(timer, &flags);
 984                forward_timer_base(base);
 985
 986                if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
 987                    time_before_eq(timer->expires, expires)) {
 988                        ret = 1;
 989                        goto out_unlock;
 990                }
 991
 992                clk = base->clk;
 993                idx = calc_wheel_index(expires, clk);
 994
 995                /*
 996                 * Retrieve and compare the array index of the pending
 997                 * timer. If it matches set the expiry to the new value so a
 998                 * subsequent call will exit in the expires check above.
 999                 */
1000                if (idx == timer_get_idx(timer)) {
1001                        if (!(options & MOD_TIMER_REDUCE))
1002                                timer->expires = expires;
1003                        else if (time_after(timer->expires, expires))
1004                                timer->expires = expires;
1005                        ret = 1;
1006                        goto out_unlock;
1007                }
1008        } else {
1009                base = lock_timer_base(timer, &flags);
1010                forward_timer_base(base);
1011        }
1012
1013        ret = detach_if_pending(timer, base, false);
1014        if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1015                goto out_unlock;
1016
1017        new_base = get_target_base(base, timer->flags);
1018
1019        if (base != new_base) {
1020                /*
1021                 * We are trying to schedule the timer on the new base.
1022                 * However we can't change timer's base while it is running,
1023                 * otherwise del_timer_sync() can't detect that the timer's
1024                 * handler yet has not finished. This also guarantees that the
1025                 * timer is serialized wrt itself.
1026                 */
1027                if (likely(base->running_timer != timer)) {
1028                        /* See the comment in lock_timer_base() */
1029                        timer->flags |= TIMER_MIGRATING;
1030
1031                        raw_spin_unlock(&base->lock);
1032                        base = new_base;
1033                        raw_spin_lock(&base->lock);
1034                        WRITE_ONCE(timer->flags,
1035                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1036                        forward_timer_base(base);
1037                }
1038        }
1039
1040        debug_timer_activate(timer);
1041
1042        timer->expires = expires;
1043        /*
1044         * If 'idx' was calculated above and the base time did not advance
1045         * between calculating 'idx' and possibly switching the base, only
1046         * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1047         * we need to (re)calculate the wheel index via
1048         * internal_add_timer().
1049         */
1050        if (idx != UINT_MAX && clk == base->clk) {
1051                enqueue_timer(base, timer, idx);
1052                trigger_dyntick_cpu(base, timer);
1053        } else {
1054                internal_add_timer(base, timer);
1055        }
1056
1057out_unlock:
1058        raw_spin_unlock_irqrestore(&base->lock, flags);
1059
1060        return ret;
1061}
1062
1063/**
1064 * mod_timer_pending - modify a pending timer's timeout
1065 * @timer: the pending timer to be modified
1066 * @expires: new timeout in jiffies
1067 *
1068 * mod_timer_pending() is the same for pending timers as mod_timer(),
1069 * but will not re-activate and modify already deleted timers.
1070 *
1071 * It is useful for unserialized use of timers.
1072 */
1073int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1074{
1075        return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1076}
1077EXPORT_SYMBOL(mod_timer_pending);
1078
1079/**
1080 * mod_timer - modify a timer's timeout
1081 * @timer: the timer to be modified
1082 * @expires: new timeout in jiffies
1083 *
1084 * mod_timer() is a more efficient way to update the expire field of an
1085 * active timer (if the timer is inactive it will be activated)
1086 *
1087 * mod_timer(timer, expires) is equivalent to:
1088 *
1089 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1090 *
1091 * Note that if there are multiple unserialized concurrent users of the
1092 * same timer, then mod_timer() is the only safe way to modify the timeout,
1093 * since add_timer() cannot modify an already running timer.
1094 *
1095 * The function returns whether it has modified a pending timer or not.
1096 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1097 * active timer returns 1.)
1098 */
1099int mod_timer(struct timer_list *timer, unsigned long expires)
1100{
1101        return __mod_timer(timer, expires, 0);
1102}
1103EXPORT_SYMBOL(mod_timer);
1104
1105/**
1106 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1107 * @timer:      The timer to be modified
1108 * @expires:    New timeout in jiffies
1109 *
1110 * timer_reduce() is very similar to mod_timer(), except that it will only
1111 * modify a running timer if that would reduce the expiration time (it will
1112 * start a timer that isn't running).
1113 */
1114int timer_reduce(struct timer_list *timer, unsigned long expires)
1115{
1116        return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1117}
1118EXPORT_SYMBOL(timer_reduce);
1119
1120/**
1121 * add_timer - start a timer
1122 * @timer: the timer to be added
1123 *
1124 * The kernel will do a ->function(@timer) callback from the
1125 * timer interrupt at the ->expires point in the future. The
1126 * current time is 'jiffies'.
1127 *
1128 * The timer's ->expires, ->function fields must be set prior calling this
1129 * function.
1130 *
1131 * Timers with an ->expires field in the past will be executed in the next
1132 * timer tick.
1133 */
1134void add_timer(struct timer_list *timer)
1135{
1136        BUG_ON(timer_pending(timer));
1137        __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1138}
1139EXPORT_SYMBOL(add_timer);
1140
1141/**
1142 * add_timer_on - start a timer on a particular CPU
1143 * @timer: the timer to be added
1144 * @cpu: the CPU to start it on
1145 *
1146 * This is not very scalable on SMP. Double adds are not possible.
1147 */
1148void add_timer_on(struct timer_list *timer, int cpu)
1149{
1150        struct timer_base *new_base, *base;
1151        unsigned long flags;
1152
1153        BUG_ON(timer_pending(timer) || !timer->function);
1154
1155        new_base = get_timer_cpu_base(timer->flags, cpu);
1156
1157        /*
1158         * If @timer was on a different CPU, it should be migrated with the
1159         * old base locked to prevent other operations proceeding with the
1160         * wrong base locked.  See lock_timer_base().
1161         */
1162        base = lock_timer_base(timer, &flags);
1163        if (base != new_base) {
1164                timer->flags |= TIMER_MIGRATING;
1165
1166                raw_spin_unlock(&base->lock);
1167                base = new_base;
1168                raw_spin_lock(&base->lock);
1169                WRITE_ONCE(timer->flags,
1170                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1171        }
1172        forward_timer_base(base);
1173
1174        debug_timer_activate(timer);
1175        internal_add_timer(base, timer);
1176        raw_spin_unlock_irqrestore(&base->lock, flags);
1177}
1178EXPORT_SYMBOL_GPL(add_timer_on);
1179
1180/**
1181 * del_timer - deactivate a timer.
1182 * @timer: the timer to be deactivated
1183 *
1184 * del_timer() deactivates a timer - this works on both active and inactive
1185 * timers.
1186 *
1187 * The function returns whether it has deactivated a pending timer or not.
1188 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1189 * active timer returns 1.)
1190 */
1191int del_timer(struct timer_list *timer)
1192{
1193        struct timer_base *base;
1194        unsigned long flags;
1195        int ret = 0;
1196
1197        debug_assert_init(timer);
1198
1199        if (timer_pending(timer)) {
1200                base = lock_timer_base(timer, &flags);
1201                ret = detach_if_pending(timer, base, true);
1202                raw_spin_unlock_irqrestore(&base->lock, flags);
1203        }
1204
1205        return ret;
1206}
1207EXPORT_SYMBOL(del_timer);
1208
1209/**
1210 * try_to_del_timer_sync - Try to deactivate a timer
1211 * @timer: timer to delete
1212 *
1213 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1214 * exit the timer is not queued and the handler is not running on any CPU.
1215 */
1216int try_to_del_timer_sync(struct timer_list *timer)
1217{
1218        struct timer_base *base;
1219        unsigned long flags;
1220        int ret = -1;
1221
1222        debug_assert_init(timer);
1223
1224        base = lock_timer_base(timer, &flags);
1225
1226        if (base->running_timer != timer)
1227                ret = detach_if_pending(timer, base, true);
1228
1229        raw_spin_unlock_irqrestore(&base->lock, flags);
1230
1231        return ret;
1232}
1233EXPORT_SYMBOL(try_to_del_timer_sync);
1234
1235#ifdef CONFIG_PREEMPT_RT
1236static __init void timer_base_init_expiry_lock(struct timer_base *base)
1237{
1238        spin_lock_init(&base->expiry_lock);
1239}
1240
1241static inline void timer_base_lock_expiry(struct timer_base *base)
1242{
1243        spin_lock(&base->expiry_lock);
1244}
1245
1246static inline void timer_base_unlock_expiry(struct timer_base *base)
1247{
1248        spin_unlock(&base->expiry_lock);
1249}
1250
1251/*
1252 * The counterpart to del_timer_wait_running().
1253 *
1254 * If there is a waiter for base->expiry_lock, then it was waiting for the
1255 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1256 * the waiter to acquire the lock and make progress.
1257 */
1258static void timer_sync_wait_running(struct timer_base *base)
1259{
1260        if (atomic_read(&base->timer_waiters)) {
1261                spin_unlock(&base->expiry_lock);
1262                spin_lock(&base->expiry_lock);
1263        }
1264}
1265
1266/*
1267 * This function is called on PREEMPT_RT kernels when the fast path
1268 * deletion of a timer failed because the timer callback function was
1269 * running.
1270 *
1271 * This prevents priority inversion, if the softirq thread on a remote CPU
1272 * got preempted, and it prevents a life lock when the task which tries to
1273 * delete a timer preempted the softirq thread running the timer callback
1274 * function.
1275 */
1276static void del_timer_wait_running(struct timer_list *timer)
1277{
1278        u32 tf;
1279
1280        tf = READ_ONCE(timer->flags);
1281        if (!(tf & TIMER_MIGRATING)) {
1282                struct timer_base *base = get_timer_base(tf);
1283
1284                /*
1285                 * Mark the base as contended and grab the expiry lock,
1286                 * which is held by the softirq across the timer
1287                 * callback. Drop the lock immediately so the softirq can
1288                 * expire the next timer. In theory the timer could already
1289                 * be running again, but that's more than unlikely and just
1290                 * causes another wait loop.
1291                 */
1292                atomic_inc(&base->timer_waiters);
1293                spin_lock_bh(&base->expiry_lock);
1294                atomic_dec(&base->timer_waiters);
1295                spin_unlock_bh(&base->expiry_lock);
1296        }
1297}
1298#else
1299static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1300static inline void timer_base_lock_expiry(struct timer_base *base) { }
1301static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1302static inline void timer_sync_wait_running(struct timer_base *base) { }
1303static inline void del_timer_wait_running(struct timer_list *timer) { }
1304#endif
1305
1306#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1307/**
1308 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1309 * @timer: the timer to be deactivated
1310 *
1311 * This function only differs from del_timer() on SMP: besides deactivating
1312 * the timer it also makes sure the handler has finished executing on other
1313 * CPUs.
1314 *
1315 * Synchronization rules: Callers must prevent restarting of the timer,
1316 * otherwise this function is meaningless. It must not be called from
1317 * interrupt contexts unless the timer is an irqsafe one. The caller must
1318 * not hold locks which would prevent completion of the timer's
1319 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1320 * timer is not queued and the handler is not running on any CPU.
1321 *
1322 * Note: For !irqsafe timers, you must not hold locks that are held in
1323 *   interrupt context while calling this function. Even if the lock has
1324 *   nothing to do with the timer in question.  Here's why::
1325 *
1326 *    CPU0                             CPU1
1327 *    ----                             ----
1328 *                                     <SOFTIRQ>
1329 *                                       call_timer_fn();
1330 *                                       base->running_timer = mytimer;
1331 *    spin_lock_irq(somelock);
1332 *                                     <IRQ>
1333 *                                        spin_lock(somelock);
1334 *    del_timer_sync(mytimer);
1335 *    while (base->running_timer == mytimer);
1336 *
1337 * Now del_timer_sync() will never return and never release somelock.
1338 * The interrupt on the other CPU is waiting to grab somelock but
1339 * it has interrupted the softirq that CPU0 is waiting to finish.
1340 *
1341 * The function returns whether it has deactivated a pending timer or not.
1342 */
1343int del_timer_sync(struct timer_list *timer)
1344{
1345        int ret;
1346
1347#ifdef CONFIG_LOCKDEP
1348        unsigned long flags;
1349
1350        /*
1351         * If lockdep gives a backtrace here, please reference
1352         * the synchronization rules above.
1353         */
1354        local_irq_save(flags);
1355        lock_map_acquire(&timer->lockdep_map);
1356        lock_map_release(&timer->lockdep_map);
1357        local_irq_restore(flags);
1358#endif
1359        /*
1360         * don't use it in hardirq context, because it
1361         * could lead to deadlock.
1362         */
1363        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1364
1365        do {
1366                ret = try_to_del_timer_sync(timer);
1367
1368                if (unlikely(ret < 0)) {
1369                        del_timer_wait_running(timer);
1370                        cpu_relax();
1371                }
1372        } while (ret < 0);
1373
1374        return ret;
1375}
1376EXPORT_SYMBOL(del_timer_sync);
1377#endif
1378
1379static void call_timer_fn(struct timer_list *timer,
1380                          void (*fn)(struct timer_list *),
1381                          unsigned long baseclk)
1382{
1383        int count = preempt_count();
1384
1385#ifdef CONFIG_LOCKDEP
1386        /*
1387         * It is permissible to free the timer from inside the
1388         * function that is called from it, this we need to take into
1389         * account for lockdep too. To avoid bogus "held lock freed"
1390         * warnings as well as problems when looking into
1391         * timer->lockdep_map, make a copy and use that here.
1392         */
1393        struct lockdep_map lockdep_map;
1394
1395        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1396#endif
1397        /*
1398         * Couple the lock chain with the lock chain at
1399         * del_timer_sync() by acquiring the lock_map around the fn()
1400         * call here and in del_timer_sync().
1401         */
1402        lock_map_acquire(&lockdep_map);
1403
1404        trace_timer_expire_entry(timer, baseclk);
1405        fn(timer);
1406        trace_timer_expire_exit(timer);
1407
1408        lock_map_release(&lockdep_map);
1409
1410        if (count != preempt_count()) {
1411                WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1412                          fn, count, preempt_count());
1413                /*
1414                 * Restore the preempt count. That gives us a decent
1415                 * chance to survive and extract information. If the
1416                 * callback kept a lock held, bad luck, but not worse
1417                 * than the BUG() we had.
1418                 */
1419                preempt_count_set(count);
1420        }
1421}
1422
1423static void expire_timers(struct timer_base *base, struct hlist_head *head)
1424{
1425        /*
1426         * This value is required only for tracing. base->clk was
1427         * incremented directly before expire_timers was called. But expiry
1428         * is related to the old base->clk value.
1429         */
1430        unsigned long baseclk = base->clk - 1;
1431
1432        while (!hlist_empty(head)) {
1433                struct timer_list *timer;
1434                void (*fn)(struct timer_list *);
1435
1436                timer = hlist_entry(head->first, struct timer_list, entry);
1437
1438                base->running_timer = timer;
1439                detach_timer(timer, true);
1440
1441                fn = timer->function;
1442
1443                if (timer->flags & TIMER_IRQSAFE) {
1444                        raw_spin_unlock(&base->lock);
1445                        call_timer_fn(timer, fn, baseclk);
1446                        base->running_timer = NULL;
1447                        raw_spin_lock(&base->lock);
1448                } else {
1449                        raw_spin_unlock_irq(&base->lock);
1450                        call_timer_fn(timer, fn, baseclk);
1451                        base->running_timer = NULL;
1452                        timer_sync_wait_running(base);
1453                        raw_spin_lock_irq(&base->lock);
1454                }
1455        }
1456}
1457
1458static int __collect_expired_timers(struct timer_base *base,
1459                                    struct hlist_head *heads)
1460{
1461        unsigned long clk = base->clk;
1462        struct hlist_head *vec;
1463        int i, levels = 0;
1464        unsigned int idx;
1465
1466        for (i = 0; i < LVL_DEPTH; i++) {
1467                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1468
1469                if (__test_and_clear_bit(idx, base->pending_map)) {
1470                        vec = base->vectors + idx;
1471                        hlist_move_list(vec, heads++);
1472                        levels++;
1473                }
1474                /* Is it time to look at the next level? */
1475                if (clk & LVL_CLK_MASK)
1476                        break;
1477                /* Shift clock for the next level granularity */
1478                clk >>= LVL_CLK_SHIFT;
1479        }
1480        return levels;
1481}
1482
1483#ifdef CONFIG_NO_HZ_COMMON
1484/*
1485 * Find the next pending bucket of a level. Search from level start (@offset)
1486 * + @clk upwards and if nothing there, search from start of the level
1487 * (@offset) up to @offset + clk.
1488 */
1489static int next_pending_bucket(struct timer_base *base, unsigned offset,
1490                               unsigned clk)
1491{
1492        unsigned pos, start = offset + clk;
1493        unsigned end = offset + LVL_SIZE;
1494
1495        pos = find_next_bit(base->pending_map, end, start);
1496        if (pos < end)
1497                return pos - start;
1498
1499        pos = find_next_bit(base->pending_map, start, offset);
1500        return pos < start ? pos + LVL_SIZE - start : -1;
1501}
1502
1503/*
1504 * Search the first expiring timer in the various clock levels. Caller must
1505 * hold base->lock.
1506 */
1507static unsigned long __next_timer_interrupt(struct timer_base *base)
1508{
1509        unsigned long clk, next, adj;
1510        unsigned lvl, offset = 0;
1511
1512        next = base->clk + NEXT_TIMER_MAX_DELTA;
1513        clk = base->clk;
1514        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1515                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1516
1517                if (pos >= 0) {
1518                        unsigned long tmp = clk + (unsigned long) pos;
1519
1520                        tmp <<= LVL_SHIFT(lvl);
1521                        if (time_before(tmp, next))
1522                                next = tmp;
1523                }
1524                /*
1525                 * Clock for the next level. If the current level clock lower
1526                 * bits are zero, we look at the next level as is. If not we
1527                 * need to advance it by one because that's going to be the
1528                 * next expiring bucket in that level. base->clk is the next
1529                 * expiring jiffie. So in case of:
1530                 *
1531                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1532                 *  0    0    0    0    0    0
1533                 *
1534                 * we have to look at all levels @index 0. With
1535                 *
1536                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1537                 *  0    0    0    0    0    2
1538                 *
1539                 * LVL0 has the next expiring bucket @index 2. The upper
1540                 * levels have the next expiring bucket @index 1.
1541                 *
1542                 * In case that the propagation wraps the next level the same
1543                 * rules apply:
1544                 *
1545                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1546                 *  0    0    0    0    F    2
1547                 *
1548                 * So after looking at LVL0 we get:
1549                 *
1550                 * LVL5 LVL4 LVL3 LVL2 LVL1
1551                 *  0    0    0    1    0
1552                 *
1553                 * So no propagation from LVL1 to LVL2 because that happened
1554                 * with the add already, but then we need to propagate further
1555                 * from LVL2 to LVL3.
1556                 *
1557                 * So the simple check whether the lower bits of the current
1558                 * level are 0 or not is sufficient for all cases.
1559                 */
1560                adj = clk & LVL_CLK_MASK ? 1 : 0;
1561                clk >>= LVL_CLK_SHIFT;
1562                clk += adj;
1563        }
1564        return next;
1565}
1566
1567/*
1568 * Check, if the next hrtimer event is before the next timer wheel
1569 * event:
1570 */
1571static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1572{
1573        u64 nextevt = hrtimer_get_next_event();
1574
1575        /*
1576         * If high resolution timers are enabled
1577         * hrtimer_get_next_event() returns KTIME_MAX.
1578         */
1579        if (expires <= nextevt)
1580                return expires;
1581
1582        /*
1583         * If the next timer is already expired, return the tick base
1584         * time so the tick is fired immediately.
1585         */
1586        if (nextevt <= basem)
1587                return basem;
1588
1589        /*
1590         * Round up to the next jiffie. High resolution timers are
1591         * off, so the hrtimers are expired in the tick and we need to
1592         * make sure that this tick really expires the timer to avoid
1593         * a ping pong of the nohz stop code.
1594         *
1595         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1596         */
1597        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1598}
1599
1600/**
1601 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1602 * @basej:      base time jiffies
1603 * @basem:      base time clock monotonic
1604 *
1605 * Returns the tick aligned clock monotonic time of the next pending
1606 * timer or KTIME_MAX if no timer is pending.
1607 */
1608u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1609{
1610        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1611        u64 expires = KTIME_MAX;
1612        unsigned long nextevt;
1613        bool is_max_delta;
1614
1615        /*
1616         * Pretend that there is no timer pending if the cpu is offline.
1617         * Possible pending timers will be migrated later to an active cpu.
1618         */
1619        if (cpu_is_offline(smp_processor_id()))
1620                return expires;
1621
1622        raw_spin_lock(&base->lock);
1623        nextevt = __next_timer_interrupt(base);
1624        is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1625        base->next_expiry = nextevt;
1626        /*
1627         * We have a fresh next event. Check whether we can forward the
1628         * base. We can only do that when @basej is past base->clk
1629         * otherwise we might rewind base->clk.
1630         */
1631        if (time_after(basej, base->clk)) {
1632                if (time_after(nextevt, basej))
1633                        base->clk = basej;
1634                else if (time_after(nextevt, base->clk))
1635                        base->clk = nextevt;
1636        }
1637
1638        if (time_before_eq(nextevt, basej)) {
1639                expires = basem;
1640                base->is_idle = false;
1641        } else {
1642                if (!is_max_delta)
1643                        expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1644                /*
1645                 * If we expect to sleep more than a tick, mark the base idle.
1646                 * Also the tick is stopped so any added timer must forward
1647                 * the base clk itself to keep granularity small. This idle
1648                 * logic is only maintained for the BASE_STD base, deferrable
1649                 * timers may still see large granularity skew (by design).
1650                 */
1651                if ((expires - basem) > TICK_NSEC) {
1652                        base->must_forward_clk = true;
1653                        base->is_idle = true;
1654                }
1655        }
1656        raw_spin_unlock(&base->lock);
1657
1658        return cmp_next_hrtimer_event(basem, expires);
1659}
1660
1661/**
1662 * timer_clear_idle - Clear the idle state of the timer base
1663 *
1664 * Called with interrupts disabled
1665 */
1666void timer_clear_idle(void)
1667{
1668        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1669
1670        /*
1671         * We do this unlocked. The worst outcome is a remote enqueue sending
1672         * a pointless IPI, but taking the lock would just make the window for
1673         * sending the IPI a few instructions smaller for the cost of taking
1674         * the lock in the exit from idle path.
1675         */
1676        base->is_idle = false;
1677}
1678
1679static int collect_expired_timers(struct timer_base *base,
1680                                  struct hlist_head *heads)
1681{
1682        unsigned long now = READ_ONCE(jiffies);
1683
1684        /*
1685         * NOHZ optimization. After a long idle sleep we need to forward the
1686         * base to current jiffies. Avoid a loop by searching the bitfield for
1687         * the next expiring timer.
1688         */
1689        if ((long)(now - base->clk) > 2) {
1690                unsigned long next = __next_timer_interrupt(base);
1691
1692                /*
1693                 * If the next timer is ahead of time forward to current
1694                 * jiffies, otherwise forward to the next expiry time:
1695                 */
1696                if (time_after(next, now)) {
1697                        /*
1698                         * The call site will increment base->clk and then
1699                         * terminate the expiry loop immediately.
1700                         */
1701                        base->clk = now;
1702                        return 0;
1703                }
1704                base->clk = next;
1705        }
1706        return __collect_expired_timers(base, heads);
1707}
1708#else
1709static inline int collect_expired_timers(struct timer_base *base,
1710                                         struct hlist_head *heads)
1711{
1712        return __collect_expired_timers(base, heads);
1713}
1714#endif
1715
1716/*
1717 * Called from the timer interrupt handler to charge one tick to the current
1718 * process.  user_tick is 1 if the tick is user time, 0 for system.
1719 */
1720void update_process_times(int user_tick)
1721{
1722        struct task_struct *p = current;
1723
1724        /* Note: this timer irq context must be accounted for as well. */
1725        account_process_tick(p, user_tick);
1726        run_local_timers();
1727        rcu_sched_clock_irq(user_tick);
1728#ifdef CONFIG_IRQ_WORK
1729        if (in_irq())
1730                irq_work_tick();
1731#endif
1732        scheduler_tick();
1733        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1734                run_posix_cpu_timers();
1735}
1736
1737/**
1738 * __run_timers - run all expired timers (if any) on this CPU.
1739 * @base: the timer vector to be processed.
1740 */
1741static inline void __run_timers(struct timer_base *base)
1742{
1743        struct hlist_head heads[LVL_DEPTH];
1744        int levels;
1745
1746        if (!time_after_eq(jiffies, base->clk))
1747                return;
1748
1749        timer_base_lock_expiry(base);
1750        raw_spin_lock_irq(&base->lock);
1751
1752        /*
1753         * timer_base::must_forward_clk must be cleared before running
1754         * timers so that any timer functions that call mod_timer() will
1755         * not try to forward the base. Idle tracking / clock forwarding
1756         * logic is only used with BASE_STD timers.
1757         *
1758         * The must_forward_clk flag is cleared unconditionally also for
1759         * the deferrable base. The deferrable base is not affected by idle
1760         * tracking and never forwarded, so clearing the flag is a NOOP.
1761         *
1762         * The fact that the deferrable base is never forwarded can cause
1763         * large variations in granularity for deferrable timers, but they
1764         * can be deferred for long periods due to idle anyway.
1765         */
1766        base->must_forward_clk = false;
1767
1768        while (time_after_eq(jiffies, base->clk)) {
1769
1770                levels = collect_expired_timers(base, heads);
1771                base->clk++;
1772
1773                while (levels--)
1774                        expire_timers(base, heads + levels);
1775        }
1776        raw_spin_unlock_irq(&base->lock);
1777        timer_base_unlock_expiry(base);
1778}
1779
1780/*
1781 * This function runs timers and the timer-tq in bottom half context.
1782 */
1783static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1784{
1785        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1786
1787        __run_timers(base);
1788        if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1789                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1790}
1791
1792/*
1793 * Called by the local, per-CPU timer interrupt on SMP.
1794 */
1795void run_local_timers(void)
1796{
1797        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1798
1799        hrtimer_run_queues();
1800        /* Raise the softirq only if required. */
1801        if (time_before(jiffies, base->clk)) {
1802                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1803                        return;
1804                /* CPU is awake, so check the deferrable base. */
1805                base++;
1806                if (time_before(jiffies, base->clk))
1807                        return;
1808        }
1809        raise_softirq(TIMER_SOFTIRQ);
1810}
1811
1812/*
1813 * Since schedule_timeout()'s timer is defined on the stack, it must store
1814 * the target task on the stack as well.
1815 */
1816struct process_timer {
1817        struct timer_list timer;
1818        struct task_struct *task;
1819};
1820
1821static void process_timeout(struct timer_list *t)
1822{
1823        struct process_timer *timeout = from_timer(timeout, t, timer);
1824
1825        wake_up_process(timeout->task);
1826}
1827
1828/**
1829 * schedule_timeout - sleep until timeout
1830 * @timeout: timeout value in jiffies
1831 *
1832 * Make the current task sleep until @timeout jiffies have elapsed.
1833 * The function behavior depends on the current task state
1834 * (see also set_current_state() description):
1835 *
1836 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1837 * at all. That happens because sched_submit_work() does nothing for
1838 * tasks in %TASK_RUNNING state.
1839 *
1840 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1841 * pass before the routine returns unless the current task is explicitly
1842 * woken up, (e.g. by wake_up_process()).
1843 *
1844 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1845 * delivered to the current task or the current task is explicitly woken
1846 * up.
1847 *
1848 * The current task state is guaranteed to be %TASK_RUNNING when this
1849 * routine returns.
1850 *
1851 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1852 * the CPU away without a bound on the timeout. In this case the return
1853 * value will be %MAX_SCHEDULE_TIMEOUT.
1854 *
1855 * Returns 0 when the timer has expired otherwise the remaining time in
1856 * jiffies will be returned. In all cases the return value is guaranteed
1857 * to be non-negative.
1858 */
1859signed long __sched schedule_timeout(signed long timeout)
1860{
1861        struct process_timer timer;
1862        unsigned long expire;
1863
1864        switch (timeout)
1865        {
1866        case MAX_SCHEDULE_TIMEOUT:
1867                /*
1868                 * These two special cases are useful to be comfortable
1869                 * in the caller. Nothing more. We could take
1870                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1871                 * but I' d like to return a valid offset (>=0) to allow
1872                 * the caller to do everything it want with the retval.
1873                 */
1874                schedule();
1875                goto out;
1876        default:
1877                /*
1878                 * Another bit of PARANOID. Note that the retval will be
1879                 * 0 since no piece of kernel is supposed to do a check
1880                 * for a negative retval of schedule_timeout() (since it
1881                 * should never happens anyway). You just have the printk()
1882                 * that will tell you if something is gone wrong and where.
1883                 */
1884                if (timeout < 0) {
1885                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1886                                "value %lx\n", timeout);
1887                        dump_stack();
1888                        current->state = TASK_RUNNING;
1889                        goto out;
1890                }
1891        }
1892
1893        expire = timeout + jiffies;
1894
1895        timer.task = current;
1896        timer_setup_on_stack(&timer.timer, process_timeout, 0);
1897        __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1898        schedule();
1899        del_singleshot_timer_sync(&timer.timer);
1900
1901        /* Remove the timer from the object tracker */
1902        destroy_timer_on_stack(&timer.timer);
1903
1904        timeout = expire - jiffies;
1905
1906 out:
1907        return timeout < 0 ? 0 : timeout;
1908}
1909EXPORT_SYMBOL(schedule_timeout);
1910
1911/*
1912 * We can use __set_current_state() here because schedule_timeout() calls
1913 * schedule() unconditionally.
1914 */
1915signed long __sched schedule_timeout_interruptible(signed long timeout)
1916{
1917        __set_current_state(TASK_INTERRUPTIBLE);
1918        return schedule_timeout(timeout);
1919}
1920EXPORT_SYMBOL(schedule_timeout_interruptible);
1921
1922signed long __sched schedule_timeout_killable(signed long timeout)
1923{
1924        __set_current_state(TASK_KILLABLE);
1925        return schedule_timeout(timeout);
1926}
1927EXPORT_SYMBOL(schedule_timeout_killable);
1928
1929signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1930{
1931        __set_current_state(TASK_UNINTERRUPTIBLE);
1932        return schedule_timeout(timeout);
1933}
1934EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1935
1936/*
1937 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1938 * to load average.
1939 */
1940signed long __sched schedule_timeout_idle(signed long timeout)
1941{
1942        __set_current_state(TASK_IDLE);
1943        return schedule_timeout(timeout);
1944}
1945EXPORT_SYMBOL(schedule_timeout_idle);
1946
1947#ifdef CONFIG_HOTPLUG_CPU
1948static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1949{
1950        struct timer_list *timer;
1951        int cpu = new_base->cpu;
1952
1953        while (!hlist_empty(head)) {
1954                timer = hlist_entry(head->first, struct timer_list, entry);
1955                detach_timer(timer, false);
1956                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1957                internal_add_timer(new_base, timer);
1958        }
1959}
1960
1961int timers_prepare_cpu(unsigned int cpu)
1962{
1963        struct timer_base *base;
1964        int b;
1965
1966        for (b = 0; b < NR_BASES; b++) {
1967                base = per_cpu_ptr(&timer_bases[b], cpu);
1968                base->clk = jiffies;
1969                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1970                base->is_idle = false;
1971                base->must_forward_clk = true;
1972        }
1973        return 0;
1974}
1975
1976int timers_dead_cpu(unsigned int cpu)
1977{
1978        struct timer_base *old_base;
1979        struct timer_base *new_base;
1980        int b, i;
1981
1982        BUG_ON(cpu_online(cpu));
1983
1984        for (b = 0; b < NR_BASES; b++) {
1985                old_base = per_cpu_ptr(&timer_bases[b], cpu);
1986                new_base = get_cpu_ptr(&timer_bases[b]);
1987                /*
1988                 * The caller is globally serialized and nobody else
1989                 * takes two locks at once, deadlock is not possible.
1990                 */
1991                raw_spin_lock_irq(&new_base->lock);
1992                raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1993
1994                /*
1995                 * The current CPUs base clock might be stale. Update it
1996                 * before moving the timers over.
1997                 */
1998                forward_timer_base(new_base);
1999
2000                BUG_ON(old_base->running_timer);
2001
2002                for (i = 0; i < WHEEL_SIZE; i++)
2003                        migrate_timer_list(new_base, old_base->vectors + i);
2004
2005                raw_spin_unlock(&old_base->lock);
2006                raw_spin_unlock_irq(&new_base->lock);
2007                put_cpu_ptr(&timer_bases);
2008        }
2009        return 0;
2010}
2011
2012#endif /* CONFIG_HOTPLUG_CPU */
2013
2014static void __init init_timer_cpu(int cpu)
2015{
2016        struct timer_base *base;
2017        int i;
2018
2019        for (i = 0; i < NR_BASES; i++) {
2020                base = per_cpu_ptr(&timer_bases[i], cpu);
2021                base->cpu = cpu;
2022                raw_spin_lock_init(&base->lock);
2023                base->clk = jiffies;
2024                timer_base_init_expiry_lock(base);
2025        }
2026}
2027
2028static void __init init_timer_cpus(void)
2029{
2030        int cpu;
2031
2032        for_each_possible_cpu(cpu)
2033                init_timer_cpu(cpu);
2034}
2035
2036void __init init_timers(void)
2037{
2038        init_timer_cpus();
2039        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2040}
2041
2042/**
2043 * msleep - sleep safely even with waitqueue interruptions
2044 * @msecs: Time in milliseconds to sleep for
2045 */
2046void msleep(unsigned int msecs)
2047{
2048        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2049
2050        while (timeout)
2051                timeout = schedule_timeout_uninterruptible(timeout);
2052}
2053
2054EXPORT_SYMBOL(msleep);
2055
2056/**
2057 * msleep_interruptible - sleep waiting for signals
2058 * @msecs: Time in milliseconds to sleep for
2059 */
2060unsigned long msleep_interruptible(unsigned int msecs)
2061{
2062        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2063
2064        while (timeout && !signal_pending(current))
2065                timeout = schedule_timeout_interruptible(timeout);
2066        return jiffies_to_msecs(timeout);
2067}
2068
2069EXPORT_SYMBOL(msleep_interruptible);
2070
2071/**
2072 * usleep_range - Sleep for an approximate time
2073 * @min: Minimum time in usecs to sleep
2074 * @max: Maximum time in usecs to sleep
2075 *
2076 * In non-atomic context where the exact wakeup time is flexible, use
2077 * usleep_range() instead of udelay().  The sleep improves responsiveness
2078 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2079 * power usage by allowing hrtimers to take advantage of an already-
2080 * scheduled interrupt instead of scheduling a new one just for this sleep.
2081 */
2082void __sched usleep_range(unsigned long min, unsigned long max)
2083{
2084        ktime_t exp = ktime_add_us(ktime_get(), min);
2085        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2086
2087        for (;;) {
2088                __set_current_state(TASK_UNINTERRUPTIBLE);
2089                /* Do not return before the requested sleep time has elapsed */
2090                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2091                        break;
2092        }
2093}
2094EXPORT_SYMBOL(usleep_range);
2095