linux/lib/radix-tree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2005 SGI, Christoph Lameter
   6 * Copyright (C) 2006 Nick Piggin
   7 * Copyright (C) 2012 Konstantin Khlebnikov
   8 * Copyright (C) 2016 Intel, Matthew Wilcox
   9 * Copyright (C) 2016 Intel, Ross Zwisler
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/cpu.h>
  16#include <linux/errno.h>
  17#include <linux/export.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kmemleak.h>
  22#include <linux/percpu.h>
  23#include <linux/preempt.h>              /* in_interrupt() */
  24#include <linux/radix-tree.h>
  25#include <linux/rcupdate.h>
  26#include <linux/slab.h>
  27#include <linux/string.h>
  28#include <linux/xarray.h>
  29
  30
  31/*
  32 * Radix tree node cache.
  33 */
  34struct kmem_cache *radix_tree_node_cachep;
  35
  36/*
  37 * The radix tree is variable-height, so an insert operation not only has
  38 * to build the branch to its corresponding item, it also has to build the
  39 * branch to existing items if the size has to be increased (by
  40 * radix_tree_extend).
  41 *
  42 * The worst case is a zero height tree with just a single item at index 0,
  43 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  44 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  45 * Hence:
  46 */
  47#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  48
  49/*
  50 * The IDR does not have to be as high as the radix tree since it uses
  51 * signed integers, not unsigned longs.
  52 */
  53#define IDR_INDEX_BITS          (8 /* CHAR_BIT */ * sizeof(int) - 1)
  54#define IDR_MAX_PATH            (DIV_ROUND_UP(IDR_INDEX_BITS, \
  55                                                RADIX_TREE_MAP_SHIFT))
  56#define IDR_PRELOAD_SIZE        (IDR_MAX_PATH * 2 - 1)
  57
  58/*
  59 * Per-cpu pool of preloaded nodes
  60 */
  61struct radix_tree_preload {
  62        unsigned nr;
  63        /* nodes->parent points to next preallocated node */
  64        struct radix_tree_node *nodes;
  65};
  66static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  67
  68static inline struct radix_tree_node *entry_to_node(void *ptr)
  69{
  70        return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  71}
  72
  73static inline void *node_to_entry(void *ptr)
  74{
  75        return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  76}
  77
  78#define RADIX_TREE_RETRY        XA_RETRY_ENTRY
  79
  80static inline unsigned long
  81get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  82{
  83        return parent ? slot - parent->slots : 0;
  84}
  85
  86static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  87                        struct radix_tree_node **nodep, unsigned long index)
  88{
  89        unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  90        void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  91
  92        *nodep = (void *)entry;
  93        return offset;
  94}
  95
  96static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  97{
  98        return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
  99}
 100
 101static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 102                int offset)
 103{
 104        __set_bit(offset, node->tags[tag]);
 105}
 106
 107static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 108                int offset)
 109{
 110        __clear_bit(offset, node->tags[tag]);
 111}
 112
 113static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 114                int offset)
 115{
 116        return test_bit(offset, node->tags[tag]);
 117}
 118
 119static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 120{
 121        root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 122}
 123
 124static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 125{
 126        root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 127}
 128
 129static inline void root_tag_clear_all(struct radix_tree_root *root)
 130{
 131        root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 132}
 133
 134static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 135{
 136        return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 137}
 138
 139static inline unsigned root_tags_get(const struct radix_tree_root *root)
 140{
 141        return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 142}
 143
 144static inline bool is_idr(const struct radix_tree_root *root)
 145{
 146        return !!(root->xa_flags & ROOT_IS_IDR);
 147}
 148
 149/*
 150 * Returns 1 if any slot in the node has this tag set.
 151 * Otherwise returns 0.
 152 */
 153static inline int any_tag_set(const struct radix_tree_node *node,
 154                                                        unsigned int tag)
 155{
 156        unsigned idx;
 157        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 158                if (node->tags[tag][idx])
 159                        return 1;
 160        }
 161        return 0;
 162}
 163
 164static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 165{
 166        bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 167}
 168
 169/**
 170 * radix_tree_find_next_bit - find the next set bit in a memory region
 171 *
 172 * @addr: The address to base the search on
 173 * @size: The bitmap size in bits
 174 * @offset: The bitnumber to start searching at
 175 *
 176 * Unrollable variant of find_next_bit() for constant size arrays.
 177 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 178 * Returns next bit offset, or size if nothing found.
 179 */
 180static __always_inline unsigned long
 181radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 182                         unsigned long offset)
 183{
 184        const unsigned long *addr = node->tags[tag];
 185
 186        if (offset < RADIX_TREE_MAP_SIZE) {
 187                unsigned long tmp;
 188
 189                addr += offset / BITS_PER_LONG;
 190                tmp = *addr >> (offset % BITS_PER_LONG);
 191                if (tmp)
 192                        return __ffs(tmp) + offset;
 193                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 194                while (offset < RADIX_TREE_MAP_SIZE) {
 195                        tmp = *++addr;
 196                        if (tmp)
 197                                return __ffs(tmp) + offset;
 198                        offset += BITS_PER_LONG;
 199                }
 200        }
 201        return RADIX_TREE_MAP_SIZE;
 202}
 203
 204static unsigned int iter_offset(const struct radix_tree_iter *iter)
 205{
 206        return iter->index & RADIX_TREE_MAP_MASK;
 207}
 208
 209/*
 210 * The maximum index which can be stored in a radix tree
 211 */
 212static inline unsigned long shift_maxindex(unsigned int shift)
 213{
 214        return (RADIX_TREE_MAP_SIZE << shift) - 1;
 215}
 216
 217static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 218{
 219        return shift_maxindex(node->shift);
 220}
 221
 222static unsigned long next_index(unsigned long index,
 223                                const struct radix_tree_node *node,
 224                                unsigned long offset)
 225{
 226        return (index & ~node_maxindex(node)) + (offset << node->shift);
 227}
 228
 229/*
 230 * This assumes that the caller has performed appropriate preallocation, and
 231 * that the caller has pinned this thread of control to the current CPU.
 232 */
 233static struct radix_tree_node *
 234radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 235                        struct radix_tree_root *root,
 236                        unsigned int shift, unsigned int offset,
 237                        unsigned int count, unsigned int nr_values)
 238{
 239        struct radix_tree_node *ret = NULL;
 240
 241        /*
 242         * Preload code isn't irq safe and it doesn't make sense to use
 243         * preloading during an interrupt anyway as all the allocations have
 244         * to be atomic. So just do normal allocation when in interrupt.
 245         */
 246        if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 247                struct radix_tree_preload *rtp;
 248
 249                /*
 250                 * Even if the caller has preloaded, try to allocate from the
 251                 * cache first for the new node to get accounted to the memory
 252                 * cgroup.
 253                 */
 254                ret = kmem_cache_alloc(radix_tree_node_cachep,
 255                                       gfp_mask | __GFP_NOWARN);
 256                if (ret)
 257                        goto out;
 258
 259                /*
 260                 * Provided the caller has preloaded here, we will always
 261                 * succeed in getting a node here (and never reach
 262                 * kmem_cache_alloc)
 263                 */
 264                rtp = this_cpu_ptr(&radix_tree_preloads);
 265                if (rtp->nr) {
 266                        ret = rtp->nodes;
 267                        rtp->nodes = ret->parent;
 268                        rtp->nr--;
 269                }
 270                /*
 271                 * Update the allocation stack trace as this is more useful
 272                 * for debugging.
 273                 */
 274                kmemleak_update_trace(ret);
 275                goto out;
 276        }
 277        ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 278out:
 279        BUG_ON(radix_tree_is_internal_node(ret));
 280        if (ret) {
 281                ret->shift = shift;
 282                ret->offset = offset;
 283                ret->count = count;
 284                ret->nr_values = nr_values;
 285                ret->parent = parent;
 286                ret->array = root;
 287        }
 288        return ret;
 289}
 290
 291void radix_tree_node_rcu_free(struct rcu_head *head)
 292{
 293        struct radix_tree_node *node =
 294                        container_of(head, struct radix_tree_node, rcu_head);
 295
 296        /*
 297         * Must only free zeroed nodes into the slab.  We can be left with
 298         * non-NULL entries by radix_tree_free_nodes, so clear the entries
 299         * and tags here.
 300         */
 301        memset(node->slots, 0, sizeof(node->slots));
 302        memset(node->tags, 0, sizeof(node->tags));
 303        INIT_LIST_HEAD(&node->private_list);
 304
 305        kmem_cache_free(radix_tree_node_cachep, node);
 306}
 307
 308static inline void
 309radix_tree_node_free(struct radix_tree_node *node)
 310{
 311        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 312}
 313
 314/*
 315 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 316 * ensure that the addition of a single element in the tree cannot fail.  On
 317 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 318 * with preemption not disabled.
 319 *
 320 * To make use of this facility, the radix tree must be initialised without
 321 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 322 */
 323static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 324{
 325        struct radix_tree_preload *rtp;
 326        struct radix_tree_node *node;
 327        int ret = -ENOMEM;
 328
 329        /*
 330         * Nodes preloaded by one cgroup can be be used by another cgroup, so
 331         * they should never be accounted to any particular memory cgroup.
 332         */
 333        gfp_mask &= ~__GFP_ACCOUNT;
 334
 335        preempt_disable();
 336        rtp = this_cpu_ptr(&radix_tree_preloads);
 337        while (rtp->nr < nr) {
 338                preempt_enable();
 339                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 340                if (node == NULL)
 341                        goto out;
 342                preempt_disable();
 343                rtp = this_cpu_ptr(&radix_tree_preloads);
 344                if (rtp->nr < nr) {
 345                        node->parent = rtp->nodes;
 346                        rtp->nodes = node;
 347                        rtp->nr++;
 348                } else {
 349                        kmem_cache_free(radix_tree_node_cachep, node);
 350                }
 351        }
 352        ret = 0;
 353out:
 354        return ret;
 355}
 356
 357/*
 358 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 359 * ensure that the addition of a single element in the tree cannot fail.  On
 360 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 361 * with preemption not disabled.
 362 *
 363 * To make use of this facility, the radix tree must be initialised without
 364 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 365 */
 366int radix_tree_preload(gfp_t gfp_mask)
 367{
 368        /* Warn on non-sensical use... */
 369        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 370        return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 371}
 372EXPORT_SYMBOL(radix_tree_preload);
 373
 374/*
 375 * The same as above function, except we don't guarantee preloading happens.
 376 * We do it, if we decide it helps. On success, return zero with preemption
 377 * disabled. On error, return -ENOMEM with preemption not disabled.
 378 */
 379int radix_tree_maybe_preload(gfp_t gfp_mask)
 380{
 381        if (gfpflags_allow_blocking(gfp_mask))
 382                return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 383        /* Preloading doesn't help anything with this gfp mask, skip it */
 384        preempt_disable();
 385        return 0;
 386}
 387EXPORT_SYMBOL(radix_tree_maybe_preload);
 388
 389static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 390                struct radix_tree_node **nodep, unsigned long *maxindex)
 391{
 392        struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 393
 394        *nodep = node;
 395
 396        if (likely(radix_tree_is_internal_node(node))) {
 397                node = entry_to_node(node);
 398                *maxindex = node_maxindex(node);
 399                return node->shift + RADIX_TREE_MAP_SHIFT;
 400        }
 401
 402        *maxindex = 0;
 403        return 0;
 404}
 405
 406/*
 407 *      Extend a radix tree so it can store key @index.
 408 */
 409static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 410                                unsigned long index, unsigned int shift)
 411{
 412        void *entry;
 413        unsigned int maxshift;
 414        int tag;
 415
 416        /* Figure out what the shift should be.  */
 417        maxshift = shift;
 418        while (index > shift_maxindex(maxshift))
 419                maxshift += RADIX_TREE_MAP_SHIFT;
 420
 421        entry = rcu_dereference_raw(root->xa_head);
 422        if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 423                goto out;
 424
 425        do {
 426                struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 427                                                        root, shift, 0, 1, 0);
 428                if (!node)
 429                        return -ENOMEM;
 430
 431                if (is_idr(root)) {
 432                        all_tag_set(node, IDR_FREE);
 433                        if (!root_tag_get(root, IDR_FREE)) {
 434                                tag_clear(node, IDR_FREE, 0);
 435                                root_tag_set(root, IDR_FREE);
 436                        }
 437                } else {
 438                        /* Propagate the aggregated tag info to the new child */
 439                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 440                                if (root_tag_get(root, tag))
 441                                        tag_set(node, tag, 0);
 442                        }
 443                }
 444
 445                BUG_ON(shift > BITS_PER_LONG);
 446                if (radix_tree_is_internal_node(entry)) {
 447                        entry_to_node(entry)->parent = node;
 448                } else if (xa_is_value(entry)) {
 449                        /* Moving a value entry root->xa_head to a node */
 450                        node->nr_values = 1;
 451                }
 452                /*
 453                 * entry was already in the radix tree, so we do not need
 454                 * rcu_assign_pointer here
 455                 */
 456                node->slots[0] = (void __rcu *)entry;
 457                entry = node_to_entry(node);
 458                rcu_assign_pointer(root->xa_head, entry);
 459                shift += RADIX_TREE_MAP_SHIFT;
 460        } while (shift <= maxshift);
 461out:
 462        return maxshift + RADIX_TREE_MAP_SHIFT;
 463}
 464
 465/**
 466 *      radix_tree_shrink    -    shrink radix tree to minimum height
 467 *      @root           radix tree root
 468 */
 469static inline bool radix_tree_shrink(struct radix_tree_root *root)
 470{
 471        bool shrunk = false;
 472
 473        for (;;) {
 474                struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 475                struct radix_tree_node *child;
 476
 477                if (!radix_tree_is_internal_node(node))
 478                        break;
 479                node = entry_to_node(node);
 480
 481                /*
 482                 * The candidate node has more than one child, or its child
 483                 * is not at the leftmost slot, we cannot shrink.
 484                 */
 485                if (node->count != 1)
 486                        break;
 487                child = rcu_dereference_raw(node->slots[0]);
 488                if (!child)
 489                        break;
 490
 491                /*
 492                 * For an IDR, we must not shrink entry 0 into the root in
 493                 * case somebody calls idr_replace() with a pointer that
 494                 * appears to be an internal entry
 495                 */
 496                if (!node->shift && is_idr(root))
 497                        break;
 498
 499                if (radix_tree_is_internal_node(child))
 500                        entry_to_node(child)->parent = NULL;
 501
 502                /*
 503                 * We don't need rcu_assign_pointer(), since we are simply
 504                 * moving the node from one part of the tree to another: if it
 505                 * was safe to dereference the old pointer to it
 506                 * (node->slots[0]), it will be safe to dereference the new
 507                 * one (root->xa_head) as far as dependent read barriers go.
 508                 */
 509                root->xa_head = (void __rcu *)child;
 510                if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 511                        root_tag_clear(root, IDR_FREE);
 512
 513                /*
 514                 * We have a dilemma here. The node's slot[0] must not be
 515                 * NULLed in case there are concurrent lookups expecting to
 516                 * find the item. However if this was a bottom-level node,
 517                 * then it may be subject to the slot pointer being visible
 518                 * to callers dereferencing it. If item corresponding to
 519                 * slot[0] is subsequently deleted, these callers would expect
 520                 * their slot to become empty sooner or later.
 521                 *
 522                 * For example, lockless pagecache will look up a slot, deref
 523                 * the page pointer, and if the page has 0 refcount it means it
 524                 * was concurrently deleted from pagecache so try the deref
 525                 * again. Fortunately there is already a requirement for logic
 526                 * to retry the entire slot lookup -- the indirect pointer
 527                 * problem (replacing direct root node with an indirect pointer
 528                 * also results in a stale slot). So tag the slot as indirect
 529                 * to force callers to retry.
 530                 */
 531                node->count = 0;
 532                if (!radix_tree_is_internal_node(child)) {
 533                        node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 534                }
 535
 536                WARN_ON_ONCE(!list_empty(&node->private_list));
 537                radix_tree_node_free(node);
 538                shrunk = true;
 539        }
 540
 541        return shrunk;
 542}
 543
 544static bool delete_node(struct radix_tree_root *root,
 545                        struct radix_tree_node *node)
 546{
 547        bool deleted = false;
 548
 549        do {
 550                struct radix_tree_node *parent;
 551
 552                if (node->count) {
 553                        if (node_to_entry(node) ==
 554                                        rcu_dereference_raw(root->xa_head))
 555                                deleted |= radix_tree_shrink(root);
 556                        return deleted;
 557                }
 558
 559                parent = node->parent;
 560                if (parent) {
 561                        parent->slots[node->offset] = NULL;
 562                        parent->count--;
 563                } else {
 564                        /*
 565                         * Shouldn't the tags already have all been cleared
 566                         * by the caller?
 567                         */
 568                        if (!is_idr(root))
 569                                root_tag_clear_all(root);
 570                        root->xa_head = NULL;
 571                }
 572
 573                WARN_ON_ONCE(!list_empty(&node->private_list));
 574                radix_tree_node_free(node);
 575                deleted = true;
 576
 577                node = parent;
 578        } while (node);
 579
 580        return deleted;
 581}
 582
 583/**
 584 *      __radix_tree_create     -       create a slot in a radix tree
 585 *      @root:          radix tree root
 586 *      @index:         index key
 587 *      @nodep:         returns node
 588 *      @slotp:         returns slot
 589 *
 590 *      Create, if necessary, and return the node and slot for an item
 591 *      at position @index in the radix tree @root.
 592 *
 593 *      Until there is more than one item in the tree, no nodes are
 594 *      allocated and @root->xa_head is used as a direct slot instead of
 595 *      pointing to a node, in which case *@nodep will be NULL.
 596 *
 597 *      Returns -ENOMEM, or 0 for success.
 598 */
 599static int __radix_tree_create(struct radix_tree_root *root,
 600                unsigned long index, struct radix_tree_node **nodep,
 601                void __rcu ***slotp)
 602{
 603        struct radix_tree_node *node = NULL, *child;
 604        void __rcu **slot = (void __rcu **)&root->xa_head;
 605        unsigned long maxindex;
 606        unsigned int shift, offset = 0;
 607        unsigned long max = index;
 608        gfp_t gfp = root_gfp_mask(root);
 609
 610        shift = radix_tree_load_root(root, &child, &maxindex);
 611
 612        /* Make sure the tree is high enough.  */
 613        if (max > maxindex) {
 614                int error = radix_tree_extend(root, gfp, max, shift);
 615                if (error < 0)
 616                        return error;
 617                shift = error;
 618                child = rcu_dereference_raw(root->xa_head);
 619        }
 620
 621        while (shift > 0) {
 622                shift -= RADIX_TREE_MAP_SHIFT;
 623                if (child == NULL) {
 624                        /* Have to add a child node.  */
 625                        child = radix_tree_node_alloc(gfp, node, root, shift,
 626                                                        offset, 0, 0);
 627                        if (!child)
 628                                return -ENOMEM;
 629                        rcu_assign_pointer(*slot, node_to_entry(child));
 630                        if (node)
 631                                node->count++;
 632                } else if (!radix_tree_is_internal_node(child))
 633                        break;
 634
 635                /* Go a level down */
 636                node = entry_to_node(child);
 637                offset = radix_tree_descend(node, &child, index);
 638                slot = &node->slots[offset];
 639        }
 640
 641        if (nodep)
 642                *nodep = node;
 643        if (slotp)
 644                *slotp = slot;
 645        return 0;
 646}
 647
 648/*
 649 * Free any nodes below this node.  The tree is presumed to not need
 650 * shrinking, and any user data in the tree is presumed to not need a
 651 * destructor called on it.  If we need to add a destructor, we can
 652 * add that functionality later.  Note that we may not clear tags or
 653 * slots from the tree as an RCU walker may still have a pointer into
 654 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 655 * but we'll still have to clear those in rcu_free.
 656 */
 657static void radix_tree_free_nodes(struct radix_tree_node *node)
 658{
 659        unsigned offset = 0;
 660        struct radix_tree_node *child = entry_to_node(node);
 661
 662        for (;;) {
 663                void *entry = rcu_dereference_raw(child->slots[offset]);
 664                if (xa_is_node(entry) && child->shift) {
 665                        child = entry_to_node(entry);
 666                        offset = 0;
 667                        continue;
 668                }
 669                offset++;
 670                while (offset == RADIX_TREE_MAP_SIZE) {
 671                        struct radix_tree_node *old = child;
 672                        offset = child->offset + 1;
 673                        child = child->parent;
 674                        WARN_ON_ONCE(!list_empty(&old->private_list));
 675                        radix_tree_node_free(old);
 676                        if (old == entry_to_node(node))
 677                                return;
 678                }
 679        }
 680}
 681
 682static inline int insert_entries(struct radix_tree_node *node,
 683                void __rcu **slot, void *item, bool replace)
 684{
 685        if (*slot)
 686                return -EEXIST;
 687        rcu_assign_pointer(*slot, item);
 688        if (node) {
 689                node->count++;
 690                if (xa_is_value(item))
 691                        node->nr_values++;
 692        }
 693        return 1;
 694}
 695
 696/**
 697 *      __radix_tree_insert    -    insert into a radix tree
 698 *      @root:          radix tree root
 699 *      @index:         index key
 700 *      @item:          item to insert
 701 *
 702 *      Insert an item into the radix tree at position @index.
 703 */
 704int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 705                        void *item)
 706{
 707        struct radix_tree_node *node;
 708        void __rcu **slot;
 709        int error;
 710
 711        BUG_ON(radix_tree_is_internal_node(item));
 712
 713        error = __radix_tree_create(root, index, &node, &slot);
 714        if (error)
 715                return error;
 716
 717        error = insert_entries(node, slot, item, false);
 718        if (error < 0)
 719                return error;
 720
 721        if (node) {
 722                unsigned offset = get_slot_offset(node, slot);
 723                BUG_ON(tag_get(node, 0, offset));
 724                BUG_ON(tag_get(node, 1, offset));
 725                BUG_ON(tag_get(node, 2, offset));
 726        } else {
 727                BUG_ON(root_tags_get(root));
 728        }
 729
 730        return 0;
 731}
 732EXPORT_SYMBOL(radix_tree_insert);
 733
 734/**
 735 *      __radix_tree_lookup     -       lookup an item in a radix tree
 736 *      @root:          radix tree root
 737 *      @index:         index key
 738 *      @nodep:         returns node
 739 *      @slotp:         returns slot
 740 *
 741 *      Lookup and return the item at position @index in the radix
 742 *      tree @root.
 743 *
 744 *      Until there is more than one item in the tree, no nodes are
 745 *      allocated and @root->xa_head is used as a direct slot instead of
 746 *      pointing to a node, in which case *@nodep will be NULL.
 747 */
 748void *__radix_tree_lookup(const struct radix_tree_root *root,
 749                          unsigned long index, struct radix_tree_node **nodep,
 750                          void __rcu ***slotp)
 751{
 752        struct radix_tree_node *node, *parent;
 753        unsigned long maxindex;
 754        void __rcu **slot;
 755
 756 restart:
 757        parent = NULL;
 758        slot = (void __rcu **)&root->xa_head;
 759        radix_tree_load_root(root, &node, &maxindex);
 760        if (index > maxindex)
 761                return NULL;
 762
 763        while (radix_tree_is_internal_node(node)) {
 764                unsigned offset;
 765
 766                parent = entry_to_node(node);
 767                offset = radix_tree_descend(parent, &node, index);
 768                slot = parent->slots + offset;
 769                if (node == RADIX_TREE_RETRY)
 770                        goto restart;
 771                if (parent->shift == 0)
 772                        break;
 773        }
 774
 775        if (nodep)
 776                *nodep = parent;
 777        if (slotp)
 778                *slotp = slot;
 779        return node;
 780}
 781
 782/**
 783 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
 784 *      @root:          radix tree root
 785 *      @index:         index key
 786 *
 787 *      Returns:  the slot corresponding to the position @index in the
 788 *      radix tree @root. This is useful for update-if-exists operations.
 789 *
 790 *      This function can be called under rcu_read_lock iff the slot is not
 791 *      modified by radix_tree_replace_slot, otherwise it must be called
 792 *      exclusive from other writers. Any dereference of the slot must be done
 793 *      using radix_tree_deref_slot.
 794 */
 795void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 796                                unsigned long index)
 797{
 798        void __rcu **slot;
 799
 800        if (!__radix_tree_lookup(root, index, NULL, &slot))
 801                return NULL;
 802        return slot;
 803}
 804EXPORT_SYMBOL(radix_tree_lookup_slot);
 805
 806/**
 807 *      radix_tree_lookup    -    perform lookup operation on a radix tree
 808 *      @root:          radix tree root
 809 *      @index:         index key
 810 *
 811 *      Lookup the item at the position @index in the radix tree @root.
 812 *
 813 *      This function can be called under rcu_read_lock, however the caller
 814 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 815 *      them safely). No RCU barriers are required to access or modify the
 816 *      returned item, however.
 817 */
 818void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 819{
 820        return __radix_tree_lookup(root, index, NULL, NULL);
 821}
 822EXPORT_SYMBOL(radix_tree_lookup);
 823
 824static void replace_slot(void __rcu **slot, void *item,
 825                struct radix_tree_node *node, int count, int values)
 826{
 827        if (node && (count || values)) {
 828                node->count += count;
 829                node->nr_values += values;
 830        }
 831
 832        rcu_assign_pointer(*slot, item);
 833}
 834
 835static bool node_tag_get(const struct radix_tree_root *root,
 836                                const struct radix_tree_node *node,
 837                                unsigned int tag, unsigned int offset)
 838{
 839        if (node)
 840                return tag_get(node, tag, offset);
 841        return root_tag_get(root, tag);
 842}
 843
 844/*
 845 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 846 * free, don't adjust the count, even if it's transitioning between NULL and
 847 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 848 * have empty bits, but it only stores NULL in slots when they're being
 849 * deleted.
 850 */
 851static int calculate_count(struct radix_tree_root *root,
 852                                struct radix_tree_node *node, void __rcu **slot,
 853                                void *item, void *old)
 854{
 855        if (is_idr(root)) {
 856                unsigned offset = get_slot_offset(node, slot);
 857                bool free = node_tag_get(root, node, IDR_FREE, offset);
 858                if (!free)
 859                        return 0;
 860                if (!old)
 861                        return 1;
 862        }
 863        return !!item - !!old;
 864}
 865
 866/**
 867 * __radix_tree_replace         - replace item in a slot
 868 * @root:               radix tree root
 869 * @node:               pointer to tree node
 870 * @slot:               pointer to slot in @node
 871 * @item:               new item to store in the slot.
 872 *
 873 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 874 * across slot lookup and replacement.
 875 */
 876void __radix_tree_replace(struct radix_tree_root *root,
 877                          struct radix_tree_node *node,
 878                          void __rcu **slot, void *item)
 879{
 880        void *old = rcu_dereference_raw(*slot);
 881        int values = !!xa_is_value(item) - !!xa_is_value(old);
 882        int count = calculate_count(root, node, slot, item, old);
 883
 884        /*
 885         * This function supports replacing value entries and
 886         * deleting entries, but that needs accounting against the
 887         * node unless the slot is root->xa_head.
 888         */
 889        WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 890                        (count || values));
 891        replace_slot(slot, item, node, count, values);
 892
 893        if (!node)
 894                return;
 895
 896        delete_node(root, node);
 897}
 898
 899/**
 900 * radix_tree_replace_slot      - replace item in a slot
 901 * @root:       radix tree root
 902 * @slot:       pointer to slot
 903 * @item:       new item to store in the slot.
 904 *
 905 * For use with radix_tree_lookup_slot() and
 906 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 907 * across slot lookup and replacement.
 908 *
 909 * NOTE: This cannot be used to switch between non-entries (empty slots),
 910 * regular entries, and value entries, as that requires accounting
 911 * inside the radix tree node. When switching from one type of entry or
 912 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 913 * radix_tree_iter_replace().
 914 */
 915void radix_tree_replace_slot(struct radix_tree_root *root,
 916                             void __rcu **slot, void *item)
 917{
 918        __radix_tree_replace(root, NULL, slot, item);
 919}
 920EXPORT_SYMBOL(radix_tree_replace_slot);
 921
 922/**
 923 * radix_tree_iter_replace - replace item in a slot
 924 * @root:       radix tree root
 925 * @slot:       pointer to slot
 926 * @item:       new item to store in the slot.
 927 *
 928 * For use with radix_tree_for_each_slot().
 929 * Caller must hold tree write locked.
 930 */
 931void radix_tree_iter_replace(struct radix_tree_root *root,
 932                                const struct radix_tree_iter *iter,
 933                                void __rcu **slot, void *item)
 934{
 935        __radix_tree_replace(root, iter->node, slot, item);
 936}
 937
 938static void node_tag_set(struct radix_tree_root *root,
 939                                struct radix_tree_node *node,
 940                                unsigned int tag, unsigned int offset)
 941{
 942        while (node) {
 943                if (tag_get(node, tag, offset))
 944                        return;
 945                tag_set(node, tag, offset);
 946                offset = node->offset;
 947                node = node->parent;
 948        }
 949
 950        if (!root_tag_get(root, tag))
 951                root_tag_set(root, tag);
 952}
 953
 954/**
 955 *      radix_tree_tag_set - set a tag on a radix tree node
 956 *      @root:          radix tree root
 957 *      @index:         index key
 958 *      @tag:           tag index
 959 *
 960 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 961 *      corresponding to @index in the radix tree.  From
 962 *      the root all the way down to the leaf node.
 963 *
 964 *      Returns the address of the tagged item.  Setting a tag on a not-present
 965 *      item is a bug.
 966 */
 967void *radix_tree_tag_set(struct radix_tree_root *root,
 968                        unsigned long index, unsigned int tag)
 969{
 970        struct radix_tree_node *node, *parent;
 971        unsigned long maxindex;
 972
 973        radix_tree_load_root(root, &node, &maxindex);
 974        BUG_ON(index > maxindex);
 975
 976        while (radix_tree_is_internal_node(node)) {
 977                unsigned offset;
 978
 979                parent = entry_to_node(node);
 980                offset = radix_tree_descend(parent, &node, index);
 981                BUG_ON(!node);
 982
 983                if (!tag_get(parent, tag, offset))
 984                        tag_set(parent, tag, offset);
 985        }
 986
 987        /* set the root's tag bit */
 988        if (!root_tag_get(root, tag))
 989                root_tag_set(root, tag);
 990
 991        return node;
 992}
 993EXPORT_SYMBOL(radix_tree_tag_set);
 994
 995static void node_tag_clear(struct radix_tree_root *root,
 996                                struct radix_tree_node *node,
 997                                unsigned int tag, unsigned int offset)
 998{
 999        while (node) {
1000                if (!tag_get(node, tag, offset))
1001                        return;
1002                tag_clear(node, tag, offset);
1003                if (any_tag_set(node, tag))
1004                        return;
1005
1006                offset = node->offset;
1007                node = node->parent;
1008        }
1009
1010        /* clear the root's tag bit */
1011        if (root_tag_get(root, tag))
1012                root_tag_clear(root, tag);
1013}
1014
1015/**
1016 *      radix_tree_tag_clear - clear a tag on a radix tree node
1017 *      @root:          radix tree root
1018 *      @index:         index key
1019 *      @tag:           tag index
1020 *
1021 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1022 *      corresponding to @index in the radix tree.  If this causes
1023 *      the leaf node to have no tags set then clear the tag in the
1024 *      next-to-leaf node, etc.
1025 *
1026 *      Returns the address of the tagged item on success, else NULL.  ie:
1027 *      has the same return value and semantics as radix_tree_lookup().
1028 */
1029void *radix_tree_tag_clear(struct radix_tree_root *root,
1030                        unsigned long index, unsigned int tag)
1031{
1032        struct radix_tree_node *node, *parent;
1033        unsigned long maxindex;
1034        int uninitialized_var(offset);
1035
1036        radix_tree_load_root(root, &node, &maxindex);
1037        if (index > maxindex)
1038                return NULL;
1039
1040        parent = NULL;
1041
1042        while (radix_tree_is_internal_node(node)) {
1043                parent = entry_to_node(node);
1044                offset = radix_tree_descend(parent, &node, index);
1045        }
1046
1047        if (node)
1048                node_tag_clear(root, parent, tag, offset);
1049
1050        return node;
1051}
1052EXPORT_SYMBOL(radix_tree_tag_clear);
1053
1054/**
1055  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1056  * @root: radix tree root
1057  * @iter: iterator state
1058  * @tag: tag to clear
1059  */
1060void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1061                        const struct radix_tree_iter *iter, unsigned int tag)
1062{
1063        node_tag_clear(root, iter->node, tag, iter_offset(iter));
1064}
1065
1066/**
1067 * radix_tree_tag_get - get a tag on a radix tree node
1068 * @root:               radix tree root
1069 * @index:              index key
1070 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
1071 *
1072 * Return values:
1073 *
1074 *  0: tag not present or not set
1075 *  1: tag set
1076 *
1077 * Note that the return value of this function may not be relied on, even if
1078 * the RCU lock is held, unless tag modification and node deletion are excluded
1079 * from concurrency.
1080 */
1081int radix_tree_tag_get(const struct radix_tree_root *root,
1082                        unsigned long index, unsigned int tag)
1083{
1084        struct radix_tree_node *node, *parent;
1085        unsigned long maxindex;
1086
1087        if (!root_tag_get(root, tag))
1088                return 0;
1089
1090        radix_tree_load_root(root, &node, &maxindex);
1091        if (index > maxindex)
1092                return 0;
1093
1094        while (radix_tree_is_internal_node(node)) {
1095                unsigned offset;
1096
1097                parent = entry_to_node(node);
1098                offset = radix_tree_descend(parent, &node, index);
1099
1100                if (!tag_get(parent, tag, offset))
1101                        return 0;
1102                if (node == RADIX_TREE_RETRY)
1103                        break;
1104        }
1105
1106        return 1;
1107}
1108EXPORT_SYMBOL(radix_tree_tag_get);
1109
1110/* Construct iter->tags bit-mask from node->tags[tag] array */
1111static void set_iter_tags(struct radix_tree_iter *iter,
1112                                struct radix_tree_node *node, unsigned offset,
1113                                unsigned tag)
1114{
1115        unsigned tag_long = offset / BITS_PER_LONG;
1116        unsigned tag_bit  = offset % BITS_PER_LONG;
1117
1118        if (!node) {
1119                iter->tags = 1;
1120                return;
1121        }
1122
1123        iter->tags = node->tags[tag][tag_long] >> tag_bit;
1124
1125        /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1126        if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1127                /* Pick tags from next element */
1128                if (tag_bit)
1129                        iter->tags |= node->tags[tag][tag_long + 1] <<
1130                                                (BITS_PER_LONG - tag_bit);
1131                /* Clip chunk size, here only BITS_PER_LONG tags */
1132                iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1133        }
1134}
1135
1136void __rcu **radix_tree_iter_resume(void __rcu **slot,
1137                                        struct radix_tree_iter *iter)
1138{
1139        slot++;
1140        iter->index = __radix_tree_iter_add(iter, 1);
1141        iter->next_index = iter->index;
1142        iter->tags = 0;
1143        return NULL;
1144}
1145EXPORT_SYMBOL(radix_tree_iter_resume);
1146
1147/**
1148 * radix_tree_next_chunk - find next chunk of slots for iteration
1149 *
1150 * @root:       radix tree root
1151 * @iter:       iterator state
1152 * @flags:      RADIX_TREE_ITER_* flags and tag index
1153 * Returns:     pointer to chunk first slot, or NULL if iteration is over
1154 */
1155void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1156                             struct radix_tree_iter *iter, unsigned flags)
1157{
1158        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1159        struct radix_tree_node *node, *child;
1160        unsigned long index, offset, maxindex;
1161
1162        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1163                return NULL;
1164
1165        /*
1166         * Catch next_index overflow after ~0UL. iter->index never overflows
1167         * during iterating; it can be zero only at the beginning.
1168         * And we cannot overflow iter->next_index in a single step,
1169         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1170         *
1171         * This condition also used by radix_tree_next_slot() to stop
1172         * contiguous iterating, and forbid switching to the next chunk.
1173         */
1174        index = iter->next_index;
1175        if (!index && iter->index)
1176                return NULL;
1177
1178 restart:
1179        radix_tree_load_root(root, &child, &maxindex);
1180        if (index > maxindex)
1181                return NULL;
1182        if (!child)
1183                return NULL;
1184
1185        if (!radix_tree_is_internal_node(child)) {
1186                /* Single-slot tree */
1187                iter->index = index;
1188                iter->next_index = maxindex + 1;
1189                iter->tags = 1;
1190                iter->node = NULL;
1191                return (void __rcu **)&root->xa_head;
1192        }
1193
1194        do {
1195                node = entry_to_node(child);
1196                offset = radix_tree_descend(node, &child, index);
1197
1198                if ((flags & RADIX_TREE_ITER_TAGGED) ?
1199                                !tag_get(node, tag, offset) : !child) {
1200                        /* Hole detected */
1201                        if (flags & RADIX_TREE_ITER_CONTIG)
1202                                return NULL;
1203
1204                        if (flags & RADIX_TREE_ITER_TAGGED)
1205                                offset = radix_tree_find_next_bit(node, tag,
1206                                                offset + 1);
1207                        else
1208                                while (++offset < RADIX_TREE_MAP_SIZE) {
1209                                        void *slot = rcu_dereference_raw(
1210                                                        node->slots[offset]);
1211                                        if (slot)
1212                                                break;
1213                                }
1214                        index &= ~node_maxindex(node);
1215                        index += offset << node->shift;
1216                        /* Overflow after ~0UL */
1217                        if (!index)
1218                                return NULL;
1219                        if (offset == RADIX_TREE_MAP_SIZE)
1220                                goto restart;
1221                        child = rcu_dereference_raw(node->slots[offset]);
1222                }
1223
1224                if (!child)
1225                        goto restart;
1226                if (child == RADIX_TREE_RETRY)
1227                        break;
1228        } while (node->shift && radix_tree_is_internal_node(child));
1229
1230        /* Update the iterator state */
1231        iter->index = (index &~ node_maxindex(node)) | offset;
1232        iter->next_index = (index | node_maxindex(node)) + 1;
1233        iter->node = node;
1234
1235        if (flags & RADIX_TREE_ITER_TAGGED)
1236                set_iter_tags(iter, node, offset, tag);
1237
1238        return node->slots + offset;
1239}
1240EXPORT_SYMBOL(radix_tree_next_chunk);
1241
1242/**
1243 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1244 *      @root:          radix tree root
1245 *      @results:       where the results of the lookup are placed
1246 *      @first_index:   start the lookup from this key
1247 *      @max_items:     place up to this many items at *results
1248 *
1249 *      Performs an index-ascending scan of the tree for present items.  Places
1250 *      them at *@results and returns the number of items which were placed at
1251 *      *@results.
1252 *
1253 *      The implementation is naive.
1254 *
1255 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1256 *      rcu_read_lock. In this case, rather than the returned results being
1257 *      an atomic snapshot of the tree at a single point in time, the
1258 *      semantics of an RCU protected gang lookup are as though multiple
1259 *      radix_tree_lookups have been issued in individual locks, and results
1260 *      stored in 'results'.
1261 */
1262unsigned int
1263radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1264                        unsigned long first_index, unsigned int max_items)
1265{
1266        struct radix_tree_iter iter;
1267        void __rcu **slot;
1268        unsigned int ret = 0;
1269
1270        if (unlikely(!max_items))
1271                return 0;
1272
1273        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1274                results[ret] = rcu_dereference_raw(*slot);
1275                if (!results[ret])
1276                        continue;
1277                if (radix_tree_is_internal_node(results[ret])) {
1278                        slot = radix_tree_iter_retry(&iter);
1279                        continue;
1280                }
1281                if (++ret == max_items)
1282                        break;
1283        }
1284
1285        return ret;
1286}
1287EXPORT_SYMBOL(radix_tree_gang_lookup);
1288
1289/**
1290 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1291 *                                   based on a tag
1292 *      @root:          radix tree root
1293 *      @results:       where the results of the lookup are placed
1294 *      @first_index:   start the lookup from this key
1295 *      @max_items:     place up to this many items at *results
1296 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1297 *
1298 *      Performs an index-ascending scan of the tree for present items which
1299 *      have the tag indexed by @tag set.  Places the items at *@results and
1300 *      returns the number of items which were placed at *@results.
1301 */
1302unsigned int
1303radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1304                unsigned long first_index, unsigned int max_items,
1305                unsigned int tag)
1306{
1307        struct radix_tree_iter iter;
1308        void __rcu **slot;
1309        unsigned int ret = 0;
1310
1311        if (unlikely(!max_items))
1312                return 0;
1313
1314        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1315                results[ret] = rcu_dereference_raw(*slot);
1316                if (!results[ret])
1317                        continue;
1318                if (radix_tree_is_internal_node(results[ret])) {
1319                        slot = radix_tree_iter_retry(&iter);
1320                        continue;
1321                }
1322                if (++ret == max_items)
1323                        break;
1324        }
1325
1326        return ret;
1327}
1328EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1329
1330/**
1331 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1332 *                                        radix tree based on a tag
1333 *      @root:          radix tree root
1334 *      @results:       where the results of the lookup are placed
1335 *      @first_index:   start the lookup from this key
1336 *      @max_items:     place up to this many items at *results
1337 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1338 *
1339 *      Performs an index-ascending scan of the tree for present items which
1340 *      have the tag indexed by @tag set.  Places the slots at *@results and
1341 *      returns the number of slots which were placed at *@results.
1342 */
1343unsigned int
1344radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1345                void __rcu ***results, unsigned long first_index,
1346                unsigned int max_items, unsigned int tag)
1347{
1348        struct radix_tree_iter iter;
1349        void __rcu **slot;
1350        unsigned int ret = 0;
1351
1352        if (unlikely(!max_items))
1353                return 0;
1354
1355        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1356                results[ret] = slot;
1357                if (++ret == max_items)
1358                        break;
1359        }
1360
1361        return ret;
1362}
1363EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1364
1365static bool __radix_tree_delete(struct radix_tree_root *root,
1366                                struct radix_tree_node *node, void __rcu **slot)
1367{
1368        void *old = rcu_dereference_raw(*slot);
1369        int values = xa_is_value(old) ? -1 : 0;
1370        unsigned offset = get_slot_offset(node, slot);
1371        int tag;
1372
1373        if (is_idr(root))
1374                node_tag_set(root, node, IDR_FREE, offset);
1375        else
1376                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1377                        node_tag_clear(root, node, tag, offset);
1378
1379        replace_slot(slot, NULL, node, -1, values);
1380        return node && delete_node(root, node);
1381}
1382
1383/**
1384 * radix_tree_iter_delete - delete the entry at this iterator position
1385 * @root: radix tree root
1386 * @iter: iterator state
1387 * @slot: pointer to slot
1388 *
1389 * Delete the entry at the position currently pointed to by the iterator.
1390 * This may result in the current node being freed; if it is, the iterator
1391 * is advanced so that it will not reference the freed memory.  This
1392 * function may be called without any locking if there are no other threads
1393 * which can access this tree.
1394 */
1395void radix_tree_iter_delete(struct radix_tree_root *root,
1396                                struct radix_tree_iter *iter, void __rcu **slot)
1397{
1398        if (__radix_tree_delete(root, iter->node, slot))
1399                iter->index = iter->next_index;
1400}
1401EXPORT_SYMBOL(radix_tree_iter_delete);
1402
1403/**
1404 * radix_tree_delete_item - delete an item from a radix tree
1405 * @root: radix tree root
1406 * @index: index key
1407 * @item: expected item
1408 *
1409 * Remove @item at @index from the radix tree rooted at @root.
1410 *
1411 * Return: the deleted entry, or %NULL if it was not present
1412 * or the entry at the given @index was not @item.
1413 */
1414void *radix_tree_delete_item(struct radix_tree_root *root,
1415                             unsigned long index, void *item)
1416{
1417        struct radix_tree_node *node = NULL;
1418        void __rcu **slot = NULL;
1419        void *entry;
1420
1421        entry = __radix_tree_lookup(root, index, &node, &slot);
1422        if (!slot)
1423                return NULL;
1424        if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1425                                                get_slot_offset(node, slot))))
1426                return NULL;
1427
1428        if (item && entry != item)
1429                return NULL;
1430
1431        __radix_tree_delete(root, node, slot);
1432
1433        return entry;
1434}
1435EXPORT_SYMBOL(radix_tree_delete_item);
1436
1437/**
1438 * radix_tree_delete - delete an entry from a radix tree
1439 * @root: radix tree root
1440 * @index: index key
1441 *
1442 * Remove the entry at @index from the radix tree rooted at @root.
1443 *
1444 * Return: The deleted entry, or %NULL if it was not present.
1445 */
1446void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1447{
1448        return radix_tree_delete_item(root, index, NULL);
1449}
1450EXPORT_SYMBOL(radix_tree_delete);
1451
1452/**
1453 *      radix_tree_tagged - test whether any items in the tree are tagged
1454 *      @root:          radix tree root
1455 *      @tag:           tag to test
1456 */
1457int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1458{
1459        return root_tag_get(root, tag);
1460}
1461EXPORT_SYMBOL(radix_tree_tagged);
1462
1463/**
1464 * idr_preload - preload for idr_alloc()
1465 * @gfp_mask: allocation mask to use for preloading
1466 *
1467 * Preallocate memory to use for the next call to idr_alloc().  This function
1468 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1469 */
1470void idr_preload(gfp_t gfp_mask)
1471{
1472        if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1473                preempt_disable();
1474}
1475EXPORT_SYMBOL(idr_preload);
1476
1477void __rcu **idr_get_free(struct radix_tree_root *root,
1478                              struct radix_tree_iter *iter, gfp_t gfp,
1479                              unsigned long max)
1480{
1481        struct radix_tree_node *node = NULL, *child;
1482        void __rcu **slot = (void __rcu **)&root->xa_head;
1483        unsigned long maxindex, start = iter->next_index;
1484        unsigned int shift, offset = 0;
1485
1486 grow:
1487        shift = radix_tree_load_root(root, &child, &maxindex);
1488        if (!radix_tree_tagged(root, IDR_FREE))
1489                start = max(start, maxindex + 1);
1490        if (start > max)
1491                return ERR_PTR(-ENOSPC);
1492
1493        if (start > maxindex) {
1494                int error = radix_tree_extend(root, gfp, start, shift);
1495                if (error < 0)
1496                        return ERR_PTR(error);
1497                shift = error;
1498                child = rcu_dereference_raw(root->xa_head);
1499        }
1500        if (start == 0 && shift == 0)
1501                shift = RADIX_TREE_MAP_SHIFT;
1502
1503        while (shift) {
1504                shift -= RADIX_TREE_MAP_SHIFT;
1505                if (child == NULL) {
1506                        /* Have to add a child node.  */
1507                        child = radix_tree_node_alloc(gfp, node, root, shift,
1508                                                        offset, 0, 0);
1509                        if (!child)
1510                                return ERR_PTR(-ENOMEM);
1511                        all_tag_set(child, IDR_FREE);
1512                        rcu_assign_pointer(*slot, node_to_entry(child));
1513                        if (node)
1514                                node->count++;
1515                } else if (!radix_tree_is_internal_node(child))
1516                        break;
1517
1518                node = entry_to_node(child);
1519                offset = radix_tree_descend(node, &child, start);
1520                if (!tag_get(node, IDR_FREE, offset)) {
1521                        offset = radix_tree_find_next_bit(node, IDR_FREE,
1522                                                        offset + 1);
1523                        start = next_index(start, node, offset);
1524                        if (start > max || start == 0)
1525                                return ERR_PTR(-ENOSPC);
1526                        while (offset == RADIX_TREE_MAP_SIZE) {
1527                                offset = node->offset + 1;
1528                                node = node->parent;
1529                                if (!node)
1530                                        goto grow;
1531                                shift = node->shift;
1532                        }
1533                        child = rcu_dereference_raw(node->slots[offset]);
1534                }
1535                slot = &node->slots[offset];
1536        }
1537
1538        iter->index = start;
1539        if (node)
1540                iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1541        else
1542                iter->next_index = 1;
1543        iter->node = node;
1544        set_iter_tags(iter, node, offset, IDR_FREE);
1545
1546        return slot;
1547}
1548
1549/**
1550 * idr_destroy - release all internal memory from an IDR
1551 * @idr: idr handle
1552 *
1553 * After this function is called, the IDR is empty, and may be reused or
1554 * the data structure containing it may be freed.
1555 *
1556 * A typical clean-up sequence for objects stored in an idr tree will use
1557 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1558 * free the memory used to keep track of those objects.
1559 */
1560void idr_destroy(struct idr *idr)
1561{
1562        struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1563        if (radix_tree_is_internal_node(node))
1564                radix_tree_free_nodes(node);
1565        idr->idr_rt.xa_head = NULL;
1566        root_tag_set(&idr->idr_rt, IDR_FREE);
1567}
1568EXPORT_SYMBOL(idr_destroy);
1569
1570static void
1571radix_tree_node_ctor(void *arg)
1572{
1573        struct radix_tree_node *node = arg;
1574
1575        memset(node, 0, sizeof(*node));
1576        INIT_LIST_HEAD(&node->private_list);
1577}
1578
1579static int radix_tree_cpu_dead(unsigned int cpu)
1580{
1581        struct radix_tree_preload *rtp;
1582        struct radix_tree_node *node;
1583
1584        /* Free per-cpu pool of preloaded nodes */
1585        rtp = &per_cpu(radix_tree_preloads, cpu);
1586        while (rtp->nr) {
1587                node = rtp->nodes;
1588                rtp->nodes = node->parent;
1589                kmem_cache_free(radix_tree_node_cachep, node);
1590                rtp->nr--;
1591        }
1592        return 0;
1593}
1594
1595void __init radix_tree_init(void)
1596{
1597        int ret;
1598
1599        BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1600        BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1601        BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1602        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1603                        sizeof(struct radix_tree_node), 0,
1604                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1605                        radix_tree_node_ctor);
1606        ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1607                                        NULL, radix_tree_cpu_dead);
1608        WARN_ON(ret < 0);
1609}
1610