linux/mm/ksm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Memory merging support.
   4 *
   5 * This code enables dynamic sharing of identical pages found in different
   6 * memory areas, even if they are not shared by fork()
   7 *
   8 * Copyright (C) 2008-2009 Red Hat, Inc.
   9 * Authors:
  10 *      Izik Eidus
  11 *      Andrea Arcangeli
  12 *      Chris Wright
  13 *      Hugh Dickins
  14 */
  15
  16#include <linux/errno.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/mman.h>
  20#include <linux/sched.h>
  21#include <linux/sched/mm.h>
  22#include <linux/sched/coredump.h>
  23#include <linux/rwsem.h>
  24#include <linux/pagemap.h>
  25#include <linux/rmap.h>
  26#include <linux/spinlock.h>
  27#include <linux/xxhash.h>
  28#include <linux/delay.h>
  29#include <linux/kthread.h>
  30#include <linux/wait.h>
  31#include <linux/slab.h>
  32#include <linux/rbtree.h>
  33#include <linux/memory.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/swap.h>
  36#include <linux/ksm.h>
  37#include <linux/hashtable.h>
  38#include <linux/freezer.h>
  39#include <linux/oom.h>
  40#include <linux/numa.h>
  41
  42#include <asm/tlbflush.h>
  43#include "internal.h"
  44
  45#ifdef CONFIG_NUMA
  46#define NUMA(x)         (x)
  47#define DO_NUMA(x)      do { (x); } while (0)
  48#else
  49#define NUMA(x)         (0)
  50#define DO_NUMA(x)      do { } while (0)
  51#endif
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * A few notes about the KSM scanning process,
  57 * to make it easier to understand the data structures below:
  58 *
  59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  60 * contents into a data structure that holds pointers to the pages' locations.
  61 *
  62 * Since the contents of the pages may change at any moment, KSM cannot just
  63 * insert the pages into a normal sorted tree and expect it to find anything.
  64 * Therefore KSM uses two data structures - the stable and the unstable tree.
  65 *
  66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  67 * by their contents.  Because each such page is write-protected, searching on
  68 * this tree is fully assured to be working (except when pages are unmapped),
  69 * and therefore this tree is called the stable tree.
  70 *
  71 * The stable tree node includes information required for reverse
  72 * mapping from a KSM page to virtual addresses that map this page.
  73 *
  74 * In order to avoid large latencies of the rmap walks on KSM pages,
  75 * KSM maintains two types of nodes in the stable tree:
  76 *
  77 * * the regular nodes that keep the reverse mapping structures in a
  78 *   linked list
  79 * * the "chains" that link nodes ("dups") that represent the same
  80 *   write protected memory content, but each "dup" corresponds to a
  81 *   different KSM page copy of that content
  82 *
  83 * Internally, the regular nodes, "dups" and "chains" are represented
  84 * using the same :c:type:`struct stable_node` structure.
  85 *
  86 * In addition to the stable tree, KSM uses a second data structure called the
  87 * unstable tree: this tree holds pointers to pages which have been found to
  88 * be "unchanged for a period of time".  The unstable tree sorts these pages
  89 * by their contents, but since they are not write-protected, KSM cannot rely
  90 * upon the unstable tree to work correctly - the unstable tree is liable to
  91 * be corrupted as its contents are modified, and so it is called unstable.
  92 *
  93 * KSM solves this problem by several techniques:
  94 *
  95 * 1) The unstable tree is flushed every time KSM completes scanning all
  96 *    memory areas, and then the tree is rebuilt again from the beginning.
  97 * 2) KSM will only insert into the unstable tree, pages whose hash value
  98 *    has not changed since the previous scan of all memory areas.
  99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 100 *    colors of the nodes and not on their contents, assuring that even when
 101 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 102 *    remains the same (also, searching and inserting nodes in an rbtree uses
 103 *    the same algorithm, so we have no overhead when we flush and rebuild).
 104 * 4) KSM never flushes the stable tree, which means that even if it were to
 105 *    take 10 attempts to find a page in the unstable tree, once it is found,
 106 *    it is secured in the stable tree.  (When we scan a new page, we first
 107 *    compare it against the stable tree, and then against the unstable tree.)
 108 *
 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 110 * stable trees and multiple unstable trees: one of each for each NUMA node.
 111 */
 112
 113/**
 114 * struct mm_slot - ksm information per mm that is being scanned
 115 * @link: link to the mm_slots hash list
 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 118 * @mm: the mm that this information is valid for
 119 */
 120struct mm_slot {
 121        struct hlist_node link;
 122        struct list_head mm_list;
 123        struct rmap_item *rmap_list;
 124        struct mm_struct *mm;
 125};
 126
 127/**
 128 * struct ksm_scan - cursor for scanning
 129 * @mm_slot: the current mm_slot we are scanning
 130 * @address: the next address inside that to be scanned
 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 132 * @seqnr: count of completed full scans (needed when removing unstable node)
 133 *
 134 * There is only the one ksm_scan instance of this cursor structure.
 135 */
 136struct ksm_scan {
 137        struct mm_slot *mm_slot;
 138        unsigned long address;
 139        struct rmap_item **rmap_list;
 140        unsigned long seqnr;
 141};
 142
 143/**
 144 * struct stable_node - node of the stable rbtree
 145 * @node: rb node of this ksm page in the stable tree
 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
 149 * @hlist: hlist head of rmap_items using this ksm page
 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 151 * @chain_prune_time: time of the last full garbage collection
 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 154 */
 155struct stable_node {
 156        union {
 157                struct rb_node node;    /* when node of stable tree */
 158                struct {                /* when listed for migration */
 159                        struct list_head *head;
 160                        struct {
 161                                struct hlist_node hlist_dup;
 162                                struct list_head list;
 163                        };
 164                };
 165        };
 166        struct hlist_head hlist;
 167        union {
 168                unsigned long kpfn;
 169                unsigned long chain_prune_time;
 170        };
 171        /*
 172         * STABLE_NODE_CHAIN can be any negative number in
 173         * rmap_hlist_len negative range, but better not -1 to be able
 174         * to reliably detect underflows.
 175         */
 176#define STABLE_NODE_CHAIN -1024
 177        int rmap_hlist_len;
 178#ifdef CONFIG_NUMA
 179        int nid;
 180#endif
 181};
 182
 183/**
 184 * struct rmap_item - reverse mapping item for virtual addresses
 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 188 * @mm: the memory structure this rmap_item is pointing into
 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 190 * @oldchecksum: previous checksum of the page at that virtual address
 191 * @node: rb node of this rmap_item in the unstable tree
 192 * @head: pointer to stable_node heading this list in the stable tree
 193 * @hlist: link into hlist of rmap_items hanging off that stable_node
 194 */
 195struct rmap_item {
 196        struct rmap_item *rmap_list;
 197        union {
 198                struct anon_vma *anon_vma;      /* when stable */
 199#ifdef CONFIG_NUMA
 200                int nid;                /* when node of unstable tree */
 201#endif
 202        };
 203        struct mm_struct *mm;
 204        unsigned long address;          /* + low bits used for flags below */
 205        unsigned int oldchecksum;       /* when unstable */
 206        union {
 207                struct rb_node node;    /* when node of unstable tree */
 208                struct {                /* when listed from stable tree */
 209                        struct stable_node *head;
 210                        struct hlist_node hlist;
 211                };
 212        };
 213};
 214
 215#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 216#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 217#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 218#define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
 219                                /* to mask all the flags */
 220
 221/* The stable and unstable tree heads */
 222static struct rb_root one_stable_tree[1] = { RB_ROOT };
 223static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 224static struct rb_root *root_stable_tree = one_stable_tree;
 225static struct rb_root *root_unstable_tree = one_unstable_tree;
 226
 227/* Recently migrated nodes of stable tree, pending proper placement */
 228static LIST_HEAD(migrate_nodes);
 229#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 230
 231#define MM_SLOTS_HASH_BITS 10
 232static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 233
 234static struct mm_slot ksm_mm_head = {
 235        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 236};
 237static struct ksm_scan ksm_scan = {
 238        .mm_slot = &ksm_mm_head,
 239};
 240
 241static struct kmem_cache *rmap_item_cache;
 242static struct kmem_cache *stable_node_cache;
 243static struct kmem_cache *mm_slot_cache;
 244
 245/* The number of nodes in the stable tree */
 246static unsigned long ksm_pages_shared;
 247
 248/* The number of page slots additionally sharing those nodes */
 249static unsigned long ksm_pages_sharing;
 250
 251/* The number of nodes in the unstable tree */
 252static unsigned long ksm_pages_unshared;
 253
 254/* The number of rmap_items in use: to calculate pages_volatile */
 255static unsigned long ksm_rmap_items;
 256
 257/* The number of stable_node chains */
 258static unsigned long ksm_stable_node_chains;
 259
 260/* The number of stable_node dups linked to the stable_node chains */
 261static unsigned long ksm_stable_node_dups;
 262
 263/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 264static int ksm_stable_node_chains_prune_millisecs = 2000;
 265
 266/* Maximum number of page slots sharing a stable node */
 267static int ksm_max_page_sharing = 256;
 268
 269/* Number of pages ksmd should scan in one batch */
 270static unsigned int ksm_thread_pages_to_scan = 100;
 271
 272/* Milliseconds ksmd should sleep between batches */
 273static unsigned int ksm_thread_sleep_millisecs = 20;
 274
 275/* Checksum of an empty (zeroed) page */
 276static unsigned int zero_checksum __read_mostly;
 277
 278/* Whether to merge empty (zeroed) pages with actual zero pages */
 279static bool ksm_use_zero_pages __read_mostly;
 280
 281#ifdef CONFIG_NUMA
 282/* Zeroed when merging across nodes is not allowed */
 283static unsigned int ksm_merge_across_nodes = 1;
 284static int ksm_nr_node_ids = 1;
 285#else
 286#define ksm_merge_across_nodes  1U
 287#define ksm_nr_node_ids         1
 288#endif
 289
 290#define KSM_RUN_STOP    0
 291#define KSM_RUN_MERGE   1
 292#define KSM_RUN_UNMERGE 2
 293#define KSM_RUN_OFFLINE 4
 294static unsigned long ksm_run = KSM_RUN_STOP;
 295static void wait_while_offlining(void);
 296
 297static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 298static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
 299static DEFINE_MUTEX(ksm_thread_mutex);
 300static DEFINE_SPINLOCK(ksm_mmlist_lock);
 301
 302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 303                sizeof(struct __struct), __alignof__(struct __struct),\
 304                (__flags), NULL)
 305
 306static int __init ksm_slab_init(void)
 307{
 308        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 309        if (!rmap_item_cache)
 310                goto out;
 311
 312        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 313        if (!stable_node_cache)
 314                goto out_free1;
 315
 316        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 317        if (!mm_slot_cache)
 318                goto out_free2;
 319
 320        return 0;
 321
 322out_free2:
 323        kmem_cache_destroy(stable_node_cache);
 324out_free1:
 325        kmem_cache_destroy(rmap_item_cache);
 326out:
 327        return -ENOMEM;
 328}
 329
 330static void __init ksm_slab_free(void)
 331{
 332        kmem_cache_destroy(mm_slot_cache);
 333        kmem_cache_destroy(stable_node_cache);
 334        kmem_cache_destroy(rmap_item_cache);
 335        mm_slot_cache = NULL;
 336}
 337
 338static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 339{
 340        return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 341}
 342
 343static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 344{
 345        return dup->head == STABLE_NODE_DUP_HEAD;
 346}
 347
 348static inline void stable_node_chain_add_dup(struct stable_node *dup,
 349                                             struct stable_node *chain)
 350{
 351        VM_BUG_ON(is_stable_node_dup(dup));
 352        dup->head = STABLE_NODE_DUP_HEAD;
 353        VM_BUG_ON(!is_stable_node_chain(chain));
 354        hlist_add_head(&dup->hlist_dup, &chain->hlist);
 355        ksm_stable_node_dups++;
 356}
 357
 358static inline void __stable_node_dup_del(struct stable_node *dup)
 359{
 360        VM_BUG_ON(!is_stable_node_dup(dup));
 361        hlist_del(&dup->hlist_dup);
 362        ksm_stable_node_dups--;
 363}
 364
 365static inline void stable_node_dup_del(struct stable_node *dup)
 366{
 367        VM_BUG_ON(is_stable_node_chain(dup));
 368        if (is_stable_node_dup(dup))
 369                __stable_node_dup_del(dup);
 370        else
 371                rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 372#ifdef CONFIG_DEBUG_VM
 373        dup->head = NULL;
 374#endif
 375}
 376
 377static inline struct rmap_item *alloc_rmap_item(void)
 378{
 379        struct rmap_item *rmap_item;
 380
 381        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 382                                                __GFP_NORETRY | __GFP_NOWARN);
 383        if (rmap_item)
 384                ksm_rmap_items++;
 385        return rmap_item;
 386}
 387
 388static inline void free_rmap_item(struct rmap_item *rmap_item)
 389{
 390        ksm_rmap_items--;
 391        rmap_item->mm = NULL;   /* debug safety */
 392        kmem_cache_free(rmap_item_cache, rmap_item);
 393}
 394
 395static inline struct stable_node *alloc_stable_node(void)
 396{
 397        /*
 398         * The allocation can take too long with GFP_KERNEL when memory is under
 399         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 400         * grants access to memory reserves, helping to avoid this problem.
 401         */
 402        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 403}
 404
 405static inline void free_stable_node(struct stable_node *stable_node)
 406{
 407        VM_BUG_ON(stable_node->rmap_hlist_len &&
 408                  !is_stable_node_chain(stable_node));
 409        kmem_cache_free(stable_node_cache, stable_node);
 410}
 411
 412static inline struct mm_slot *alloc_mm_slot(void)
 413{
 414        if (!mm_slot_cache)     /* initialization failed */
 415                return NULL;
 416        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 417}
 418
 419static inline void free_mm_slot(struct mm_slot *mm_slot)
 420{
 421        kmem_cache_free(mm_slot_cache, mm_slot);
 422}
 423
 424static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 425{
 426        struct mm_slot *slot;
 427
 428        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 429                if (slot->mm == mm)
 430                        return slot;
 431
 432        return NULL;
 433}
 434
 435static void insert_to_mm_slots_hash(struct mm_struct *mm,
 436                                    struct mm_slot *mm_slot)
 437{
 438        mm_slot->mm = mm;
 439        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 440}
 441
 442/*
 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 444 * page tables after it has passed through ksm_exit() - which, if necessary,
 445 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 446 * a special flag: they can just back out as soon as mm_users goes to zero.
 447 * ksm_test_exit() is used throughout to make this test for exit: in some
 448 * places for correctness, in some places just to avoid unnecessary work.
 449 */
 450static inline bool ksm_test_exit(struct mm_struct *mm)
 451{
 452        return atomic_read(&mm->mm_users) == 0;
 453}
 454
 455/*
 456 * We use break_ksm to break COW on a ksm page: it's a stripped down
 457 *
 458 *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
 459 *              put_page(page);
 460 *
 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 462 * in case the application has unmapped and remapped mm,addr meanwhile.
 463 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 465 *
 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 467 * of the process that owns 'vma'.  We also do not want to enforce
 468 * protection keys here anyway.
 469 */
 470static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 471{
 472        struct page *page;
 473        vm_fault_t ret = 0;
 474
 475        do {
 476                cond_resched();
 477                page = follow_page(vma, addr,
 478                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 479                if (IS_ERR_OR_NULL(page))
 480                        break;
 481                if (PageKsm(page))
 482                        ret = handle_mm_fault(vma, addr,
 483                                        FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 484                else
 485                        ret = VM_FAULT_WRITE;
 486                put_page(page);
 487        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 488        /*
 489         * We must loop because handle_mm_fault() may back out if there's
 490         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 491         *
 492         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 493         * COW has been broken, even if the vma does not permit VM_WRITE;
 494         * but note that a concurrent fault might break PageKsm for us.
 495         *
 496         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 497         * backing file, which also invalidates anonymous pages: that's
 498         * okay, that truncation will have unmapped the PageKsm for us.
 499         *
 500         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 501         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 502         * current task has TIF_MEMDIE set, and will be OOM killed on return
 503         * to user; and ksmd, having no mm, would never be chosen for that.
 504         *
 505         * But if the mm is in a limited mem_cgroup, then the fault may fail
 506         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 507         * even ksmd can fail in this way - though it's usually breaking ksm
 508         * just to undo a merge it made a moment before, so unlikely to oom.
 509         *
 510         * That's a pity: we might therefore have more kernel pages allocated
 511         * than we're counting as nodes in the stable tree; but ksm_do_scan
 512         * will retry to break_cow on each pass, so should recover the page
 513         * in due course.  The important thing is to not let VM_MERGEABLE
 514         * be cleared while any such pages might remain in the area.
 515         */
 516        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 517}
 518
 519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 520                unsigned long addr)
 521{
 522        struct vm_area_struct *vma;
 523        if (ksm_test_exit(mm))
 524                return NULL;
 525        vma = find_vma(mm, addr);
 526        if (!vma || vma->vm_start > addr)
 527                return NULL;
 528        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 529                return NULL;
 530        return vma;
 531}
 532
 533static void break_cow(struct rmap_item *rmap_item)
 534{
 535        struct mm_struct *mm = rmap_item->mm;
 536        unsigned long addr = rmap_item->address;
 537        struct vm_area_struct *vma;
 538
 539        /*
 540         * It is not an accident that whenever we want to break COW
 541         * to undo, we also need to drop a reference to the anon_vma.
 542         */
 543        put_anon_vma(rmap_item->anon_vma);
 544
 545        down_read(&mm->mmap_sem);
 546        vma = find_mergeable_vma(mm, addr);
 547        if (vma)
 548                break_ksm(vma, addr);
 549        up_read(&mm->mmap_sem);
 550}
 551
 552static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 553{
 554        struct mm_struct *mm = rmap_item->mm;
 555        unsigned long addr = rmap_item->address;
 556        struct vm_area_struct *vma;
 557        struct page *page;
 558
 559        down_read(&mm->mmap_sem);
 560        vma = find_mergeable_vma(mm, addr);
 561        if (!vma)
 562                goto out;
 563
 564        page = follow_page(vma, addr, FOLL_GET);
 565        if (IS_ERR_OR_NULL(page))
 566                goto out;
 567        if (PageAnon(page)) {
 568                flush_anon_page(vma, page, addr);
 569                flush_dcache_page(page);
 570        } else {
 571                put_page(page);
 572out:
 573                page = NULL;
 574        }
 575        up_read(&mm->mmap_sem);
 576        return page;
 577}
 578
 579/*
 580 * This helper is used for getting right index into array of tree roots.
 581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 582 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 583 * every node has its own stable and unstable tree.
 584 */
 585static inline int get_kpfn_nid(unsigned long kpfn)
 586{
 587        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 588}
 589
 590static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 591                                                   struct rb_root *root)
 592{
 593        struct stable_node *chain = alloc_stable_node();
 594        VM_BUG_ON(is_stable_node_chain(dup));
 595        if (likely(chain)) {
 596                INIT_HLIST_HEAD(&chain->hlist);
 597                chain->chain_prune_time = jiffies;
 598                chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 599#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 600                chain->nid = NUMA_NO_NODE; /* debug */
 601#endif
 602                ksm_stable_node_chains++;
 603
 604                /*
 605                 * Put the stable node chain in the first dimension of
 606                 * the stable tree and at the same time remove the old
 607                 * stable node.
 608                 */
 609                rb_replace_node(&dup->node, &chain->node, root);
 610
 611                /*
 612                 * Move the old stable node to the second dimension
 613                 * queued in the hlist_dup. The invariant is that all
 614                 * dup stable_nodes in the chain->hlist point to pages
 615                 * that are wrprotected and have the exact same
 616                 * content.
 617                 */
 618                stable_node_chain_add_dup(dup, chain);
 619        }
 620        return chain;
 621}
 622
 623static inline void free_stable_node_chain(struct stable_node *chain,
 624                                          struct rb_root *root)
 625{
 626        rb_erase(&chain->node, root);
 627        free_stable_node(chain);
 628        ksm_stable_node_chains--;
 629}
 630
 631static void remove_node_from_stable_tree(struct stable_node *stable_node)
 632{
 633        struct rmap_item *rmap_item;
 634
 635        /* check it's not STABLE_NODE_CHAIN or negative */
 636        BUG_ON(stable_node->rmap_hlist_len < 0);
 637
 638        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 639                if (rmap_item->hlist.next)
 640                        ksm_pages_sharing--;
 641                else
 642                        ksm_pages_shared--;
 643                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 644                stable_node->rmap_hlist_len--;
 645                put_anon_vma(rmap_item->anon_vma);
 646                rmap_item->address &= PAGE_MASK;
 647                cond_resched();
 648        }
 649
 650        /*
 651         * We need the second aligned pointer of the migrate_nodes
 652         * list_head to stay clear from the rb_parent_color union
 653         * (aligned and different than any node) and also different
 654         * from &migrate_nodes. This will verify that future list.h changes
 655         * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 656         */
 657#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 658        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 659        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 660#endif
 661
 662        if (stable_node->head == &migrate_nodes)
 663                list_del(&stable_node->list);
 664        else
 665                stable_node_dup_del(stable_node);
 666        free_stable_node(stable_node);
 667}
 668
 669enum get_ksm_page_flags {
 670        GET_KSM_PAGE_NOLOCK,
 671        GET_KSM_PAGE_LOCK,
 672        GET_KSM_PAGE_TRYLOCK
 673};
 674
 675/*
 676 * get_ksm_page: checks if the page indicated by the stable node
 677 * is still its ksm page, despite having held no reference to it.
 678 * In which case we can trust the content of the page, and it
 679 * returns the gotten page; but if the page has now been zapped,
 680 * remove the stale node from the stable tree and return NULL.
 681 * But beware, the stable node's page might be being migrated.
 682 *
 683 * You would expect the stable_node to hold a reference to the ksm page.
 684 * But if it increments the page's count, swapping out has to wait for
 685 * ksmd to come around again before it can free the page, which may take
 686 * seconds or even minutes: much too unresponsive.  So instead we use a
 687 * "keyhole reference": access to the ksm page from the stable node peeps
 688 * out through its keyhole to see if that page still holds the right key,
 689 * pointing back to this stable node.  This relies on freeing a PageAnon
 690 * page to reset its page->mapping to NULL, and relies on no other use of
 691 * a page to put something that might look like our key in page->mapping.
 692 * is on its way to being freed; but it is an anomaly to bear in mind.
 693 */
 694static struct page *get_ksm_page(struct stable_node *stable_node,
 695                                 enum get_ksm_page_flags flags)
 696{
 697        struct page *page;
 698        void *expected_mapping;
 699        unsigned long kpfn;
 700
 701        expected_mapping = (void *)((unsigned long)stable_node |
 702                                        PAGE_MAPPING_KSM);
 703again:
 704        kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 705        page = pfn_to_page(kpfn);
 706        if (READ_ONCE(page->mapping) != expected_mapping)
 707                goto stale;
 708
 709        /*
 710         * We cannot do anything with the page while its refcount is 0.
 711         * Usually 0 means free, or tail of a higher-order page: in which
 712         * case this node is no longer referenced, and should be freed;
 713         * however, it might mean that the page is under page_ref_freeze().
 714         * The __remove_mapping() case is easy, again the node is now stale;
 715         * the same is in reuse_ksm_page() case; but if page is swapcache
 716         * in migrate_page_move_mapping(), it might still be our page,
 717         * in which case it's essential to keep the node.
 718         */
 719        while (!get_page_unless_zero(page)) {
 720                /*
 721                 * Another check for page->mapping != expected_mapping would
 722                 * work here too.  We have chosen the !PageSwapCache test to
 723                 * optimize the common case, when the page is or is about to
 724                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 725                 * in the ref_freeze section of __remove_mapping(); but Anon
 726                 * page->mapping reset to NULL later, in free_pages_prepare().
 727                 */
 728                if (!PageSwapCache(page))
 729                        goto stale;
 730                cpu_relax();
 731        }
 732
 733        if (READ_ONCE(page->mapping) != expected_mapping) {
 734                put_page(page);
 735                goto stale;
 736        }
 737
 738        if (flags == GET_KSM_PAGE_TRYLOCK) {
 739                if (!trylock_page(page)) {
 740                        put_page(page);
 741                        return ERR_PTR(-EBUSY);
 742                }
 743        } else if (flags == GET_KSM_PAGE_LOCK)
 744                lock_page(page);
 745
 746        if (flags != GET_KSM_PAGE_NOLOCK) {
 747                if (READ_ONCE(page->mapping) != expected_mapping) {
 748                        unlock_page(page);
 749                        put_page(page);
 750                        goto stale;
 751                }
 752        }
 753        return page;
 754
 755stale:
 756        /*
 757         * We come here from above when page->mapping or !PageSwapCache
 758         * suggests that the node is stale; but it might be under migration.
 759         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 760         * before checking whether node->kpfn has been changed.
 761         */
 762        smp_rmb();
 763        if (READ_ONCE(stable_node->kpfn) != kpfn)
 764                goto again;
 765        remove_node_from_stable_tree(stable_node);
 766        return NULL;
 767}
 768
 769/*
 770 * Removing rmap_item from stable or unstable tree.
 771 * This function will clean the information from the stable/unstable tree.
 772 */
 773static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 774{
 775        if (rmap_item->address & STABLE_FLAG) {
 776                struct stable_node *stable_node;
 777                struct page *page;
 778
 779                stable_node = rmap_item->head;
 780                page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 781                if (!page)
 782                        goto out;
 783
 784                hlist_del(&rmap_item->hlist);
 785                unlock_page(page);
 786                put_page(page);
 787
 788                if (!hlist_empty(&stable_node->hlist))
 789                        ksm_pages_sharing--;
 790                else
 791                        ksm_pages_shared--;
 792                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 793                stable_node->rmap_hlist_len--;
 794
 795                put_anon_vma(rmap_item->anon_vma);
 796                rmap_item->address &= PAGE_MASK;
 797
 798        } else if (rmap_item->address & UNSTABLE_FLAG) {
 799                unsigned char age;
 800                /*
 801                 * Usually ksmd can and must skip the rb_erase, because
 802                 * root_unstable_tree was already reset to RB_ROOT.
 803                 * But be careful when an mm is exiting: do the rb_erase
 804                 * if this rmap_item was inserted by this scan, rather
 805                 * than left over from before.
 806                 */
 807                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 808                BUG_ON(age > 1);
 809                if (!age)
 810                        rb_erase(&rmap_item->node,
 811                                 root_unstable_tree + NUMA(rmap_item->nid));
 812                ksm_pages_unshared--;
 813                rmap_item->address &= PAGE_MASK;
 814        }
 815out:
 816        cond_resched();         /* we're called from many long loops */
 817}
 818
 819static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 820                                       struct rmap_item **rmap_list)
 821{
 822        while (*rmap_list) {
 823                struct rmap_item *rmap_item = *rmap_list;
 824                *rmap_list = rmap_item->rmap_list;
 825                remove_rmap_item_from_tree(rmap_item);
 826                free_rmap_item(rmap_item);
 827        }
 828}
 829
 830/*
 831 * Though it's very tempting to unmerge rmap_items from stable tree rather
 832 * than check every pte of a given vma, the locking doesn't quite work for
 833 * that - an rmap_item is assigned to the stable tree after inserting ksm
 834 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 835 * rmap_items from parent to child at fork time (so as not to waste time
 836 * if exit comes before the next scan reaches it).
 837 *
 838 * Similarly, although we'd like to remove rmap_items (so updating counts
 839 * and freeing memory) when unmerging an area, it's easier to leave that
 840 * to the next pass of ksmd - consider, for example, how ksmd might be
 841 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 842 */
 843static int unmerge_ksm_pages(struct vm_area_struct *vma,
 844                             unsigned long start, unsigned long end)
 845{
 846        unsigned long addr;
 847        int err = 0;
 848
 849        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 850                if (ksm_test_exit(vma->vm_mm))
 851                        break;
 852                if (signal_pending(current))
 853                        err = -ERESTARTSYS;
 854                else
 855                        err = break_ksm(vma, addr);
 856        }
 857        return err;
 858}
 859
 860static inline struct stable_node *page_stable_node(struct page *page)
 861{
 862        return PageKsm(page) ? page_rmapping(page) : NULL;
 863}
 864
 865static inline void set_page_stable_node(struct page *page,
 866                                        struct stable_node *stable_node)
 867{
 868        page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 869}
 870
 871#ifdef CONFIG_SYSFS
 872/*
 873 * Only called through the sysfs control interface:
 874 */
 875static int remove_stable_node(struct stable_node *stable_node)
 876{
 877        struct page *page;
 878        int err;
 879
 880        page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
 881        if (!page) {
 882                /*
 883                 * get_ksm_page did remove_node_from_stable_tree itself.
 884                 */
 885                return 0;
 886        }
 887
 888        /*
 889         * Page could be still mapped if this races with __mmput() running in
 890         * between ksm_exit() and exit_mmap(). Just refuse to let
 891         * merge_across_nodes/max_page_sharing be switched.
 892         */
 893        err = -EBUSY;
 894        if (!page_mapped(page)) {
 895                /*
 896                 * The stable node did not yet appear stale to get_ksm_page(),
 897                 * since that allows for an unmapped ksm page to be recognized
 898                 * right up until it is freed; but the node is safe to remove.
 899                 * This page might be in a pagevec waiting to be freed,
 900                 * or it might be PageSwapCache (perhaps under writeback),
 901                 * or it might have been removed from swapcache a moment ago.
 902                 */
 903                set_page_stable_node(page, NULL);
 904                remove_node_from_stable_tree(stable_node);
 905                err = 0;
 906        }
 907
 908        unlock_page(page);
 909        put_page(page);
 910        return err;
 911}
 912
 913static int remove_stable_node_chain(struct stable_node *stable_node,
 914                                    struct rb_root *root)
 915{
 916        struct stable_node *dup;
 917        struct hlist_node *hlist_safe;
 918
 919        if (!is_stable_node_chain(stable_node)) {
 920                VM_BUG_ON(is_stable_node_dup(stable_node));
 921                if (remove_stable_node(stable_node))
 922                        return true;
 923                else
 924                        return false;
 925        }
 926
 927        hlist_for_each_entry_safe(dup, hlist_safe,
 928                                  &stable_node->hlist, hlist_dup) {
 929                VM_BUG_ON(!is_stable_node_dup(dup));
 930                if (remove_stable_node(dup))
 931                        return true;
 932        }
 933        BUG_ON(!hlist_empty(&stable_node->hlist));
 934        free_stable_node_chain(stable_node, root);
 935        return false;
 936}
 937
 938static int remove_all_stable_nodes(void)
 939{
 940        struct stable_node *stable_node, *next;
 941        int nid;
 942        int err = 0;
 943
 944        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 945                while (root_stable_tree[nid].rb_node) {
 946                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 947                                                struct stable_node, node);
 948                        if (remove_stable_node_chain(stable_node,
 949                                                     root_stable_tree + nid)) {
 950                                err = -EBUSY;
 951                                break;  /* proceed to next nid */
 952                        }
 953                        cond_resched();
 954                }
 955        }
 956        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 957                if (remove_stable_node(stable_node))
 958                        err = -EBUSY;
 959                cond_resched();
 960        }
 961        return err;
 962}
 963
 964static int unmerge_and_remove_all_rmap_items(void)
 965{
 966        struct mm_slot *mm_slot;
 967        struct mm_struct *mm;
 968        struct vm_area_struct *vma;
 969        int err = 0;
 970
 971        spin_lock(&ksm_mmlist_lock);
 972        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 973                                                struct mm_slot, mm_list);
 974        spin_unlock(&ksm_mmlist_lock);
 975
 976        for (mm_slot = ksm_scan.mm_slot;
 977                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 978                mm = mm_slot->mm;
 979                down_read(&mm->mmap_sem);
 980                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 981                        if (ksm_test_exit(mm))
 982                                break;
 983                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 984                                continue;
 985                        err = unmerge_ksm_pages(vma,
 986                                                vma->vm_start, vma->vm_end);
 987                        if (err)
 988                                goto error;
 989                }
 990
 991                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 992                up_read(&mm->mmap_sem);
 993
 994                spin_lock(&ksm_mmlist_lock);
 995                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 996                                                struct mm_slot, mm_list);
 997                if (ksm_test_exit(mm)) {
 998                        hash_del(&mm_slot->link);
 999                        list_del(&mm_slot->mm_list);
1000                        spin_unlock(&ksm_mmlist_lock);
1001
1002                        free_mm_slot(mm_slot);
1003                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1004                        mmdrop(mm);
1005                } else
1006                        spin_unlock(&ksm_mmlist_lock);
1007        }
1008
1009        /* Clean up stable nodes, but don't worry if some are still busy */
1010        remove_all_stable_nodes();
1011        ksm_scan.seqnr = 0;
1012        return 0;
1013
1014error:
1015        up_read(&mm->mmap_sem);
1016        spin_lock(&ksm_mmlist_lock);
1017        ksm_scan.mm_slot = &ksm_mm_head;
1018        spin_unlock(&ksm_mmlist_lock);
1019        return err;
1020}
1021#endif /* CONFIG_SYSFS */
1022
1023static u32 calc_checksum(struct page *page)
1024{
1025        u32 checksum;
1026        void *addr = kmap_atomic(page);
1027        checksum = xxhash(addr, PAGE_SIZE, 0);
1028        kunmap_atomic(addr);
1029        return checksum;
1030}
1031
1032static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1033                              pte_t *orig_pte)
1034{
1035        struct mm_struct *mm = vma->vm_mm;
1036        struct page_vma_mapped_walk pvmw = {
1037                .page = page,
1038                .vma = vma,
1039        };
1040        int swapped;
1041        int err = -EFAULT;
1042        struct mmu_notifier_range range;
1043
1044        pvmw.address = page_address_in_vma(page, vma);
1045        if (pvmw.address == -EFAULT)
1046                goto out;
1047
1048        BUG_ON(PageTransCompound(page));
1049
1050        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1051                                pvmw.address,
1052                                pvmw.address + PAGE_SIZE);
1053        mmu_notifier_invalidate_range_start(&range);
1054
1055        if (!page_vma_mapped_walk(&pvmw))
1056                goto out_mn;
1057        if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1058                goto out_unlock;
1059
1060        if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1061            (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1062                                                mm_tlb_flush_pending(mm)) {
1063                pte_t entry;
1064
1065                swapped = PageSwapCache(page);
1066                flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1067                /*
1068                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1069                 * take any lock, therefore the check that we are going to make
1070                 * with the pagecount against the mapcount is racey and
1071                 * O_DIRECT can happen right after the check.
1072                 * So we clear the pte and flush the tlb before the check
1073                 * this assure us that no O_DIRECT can happen after the check
1074                 * or in the middle of the check.
1075                 *
1076                 * No need to notify as we are downgrading page table to read
1077                 * only not changing it to point to a new page.
1078                 *
1079                 * See Documentation/vm/mmu_notifier.rst
1080                 */
1081                entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1082                /*
1083                 * Check that no O_DIRECT or similar I/O is in progress on the
1084                 * page
1085                 */
1086                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1087                        set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1088                        goto out_unlock;
1089                }
1090                if (pte_dirty(entry))
1091                        set_page_dirty(page);
1092
1093                if (pte_protnone(entry))
1094                        entry = pte_mkclean(pte_clear_savedwrite(entry));
1095                else
1096                        entry = pte_mkclean(pte_wrprotect(entry));
1097                set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1098        }
1099        *orig_pte = *pvmw.pte;
1100        err = 0;
1101
1102out_unlock:
1103        page_vma_mapped_walk_done(&pvmw);
1104out_mn:
1105        mmu_notifier_invalidate_range_end(&range);
1106out:
1107        return err;
1108}
1109
1110/**
1111 * replace_page - replace page in vma by new ksm page
1112 * @vma:      vma that holds the pte pointing to page
1113 * @page:     the page we are replacing by kpage
1114 * @kpage:    the ksm page we replace page by
1115 * @orig_pte: the original value of the pte
1116 *
1117 * Returns 0 on success, -EFAULT on failure.
1118 */
1119static int replace_page(struct vm_area_struct *vma, struct page *page,
1120                        struct page *kpage, pte_t orig_pte)
1121{
1122        struct mm_struct *mm = vma->vm_mm;
1123        pmd_t *pmd;
1124        pte_t *ptep;
1125        pte_t newpte;
1126        spinlock_t *ptl;
1127        unsigned long addr;
1128        int err = -EFAULT;
1129        struct mmu_notifier_range range;
1130
1131        addr = page_address_in_vma(page, vma);
1132        if (addr == -EFAULT)
1133                goto out;
1134
1135        pmd = mm_find_pmd(mm, addr);
1136        if (!pmd)
1137                goto out;
1138
1139        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1140                                addr + PAGE_SIZE);
1141        mmu_notifier_invalidate_range_start(&range);
1142
1143        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1144        if (!pte_same(*ptep, orig_pte)) {
1145                pte_unmap_unlock(ptep, ptl);
1146                goto out_mn;
1147        }
1148
1149        /*
1150         * No need to check ksm_use_zero_pages here: we can only have a
1151         * zero_page here if ksm_use_zero_pages was enabled alreaady.
1152         */
1153        if (!is_zero_pfn(page_to_pfn(kpage))) {
1154                get_page(kpage);
1155                page_add_anon_rmap(kpage, vma, addr, false);
1156                newpte = mk_pte(kpage, vma->vm_page_prot);
1157        } else {
1158                newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1159                                               vma->vm_page_prot));
1160                /*
1161                 * We're replacing an anonymous page with a zero page, which is
1162                 * not anonymous. We need to do proper accounting otherwise we
1163                 * will get wrong values in /proc, and a BUG message in dmesg
1164                 * when tearing down the mm.
1165                 */
1166                dec_mm_counter(mm, MM_ANONPAGES);
1167        }
1168
1169        flush_cache_page(vma, addr, pte_pfn(*ptep));
1170        /*
1171         * No need to notify as we are replacing a read only page with another
1172         * read only page with the same content.
1173         *
1174         * See Documentation/vm/mmu_notifier.rst
1175         */
1176        ptep_clear_flush(vma, addr, ptep);
1177        set_pte_at_notify(mm, addr, ptep, newpte);
1178
1179        page_remove_rmap(page, false);
1180        if (!page_mapped(page))
1181                try_to_free_swap(page);
1182        put_page(page);
1183
1184        pte_unmap_unlock(ptep, ptl);
1185        err = 0;
1186out_mn:
1187        mmu_notifier_invalidate_range_end(&range);
1188out:
1189        return err;
1190}
1191
1192/*
1193 * try_to_merge_one_page - take two pages and merge them into one
1194 * @vma: the vma that holds the pte pointing to page
1195 * @page: the PageAnon page that we want to replace with kpage
1196 * @kpage: the PageKsm page that we want to map instead of page,
1197 *         or NULL the first time when we want to use page as kpage.
1198 *
1199 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1200 */
1201static int try_to_merge_one_page(struct vm_area_struct *vma,
1202                                 struct page *page, struct page *kpage)
1203{
1204        pte_t orig_pte = __pte(0);
1205        int err = -EFAULT;
1206
1207        if (page == kpage)                      /* ksm page forked */
1208                return 0;
1209
1210        if (!PageAnon(page))
1211                goto out;
1212
1213        /*
1214         * We need the page lock to read a stable PageSwapCache in
1215         * write_protect_page().  We use trylock_page() instead of
1216         * lock_page() because we don't want to wait here - we
1217         * prefer to continue scanning and merging different pages,
1218         * then come back to this page when it is unlocked.
1219         */
1220        if (!trylock_page(page))
1221                goto out;
1222
1223        if (PageTransCompound(page)) {
1224                if (split_huge_page(page))
1225                        goto out_unlock;
1226        }
1227
1228        /*
1229         * If this anonymous page is mapped only here, its pte may need
1230         * to be write-protected.  If it's mapped elsewhere, all of its
1231         * ptes are necessarily already write-protected.  But in either
1232         * case, we need to lock and check page_count is not raised.
1233         */
1234        if (write_protect_page(vma, page, &orig_pte) == 0) {
1235                if (!kpage) {
1236                        /*
1237                         * While we hold page lock, upgrade page from
1238                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1239                         * stable_tree_insert() will update stable_node.
1240                         */
1241                        set_page_stable_node(page, NULL);
1242                        mark_page_accessed(page);
1243                        /*
1244                         * Page reclaim just frees a clean page with no dirty
1245                         * ptes: make sure that the ksm page would be swapped.
1246                         */
1247                        if (!PageDirty(page))
1248                                SetPageDirty(page);
1249                        err = 0;
1250                } else if (pages_identical(page, kpage))
1251                        err = replace_page(vma, page, kpage, orig_pte);
1252        }
1253
1254        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1255                munlock_vma_page(page);
1256                if (!PageMlocked(kpage)) {
1257                        unlock_page(page);
1258                        lock_page(kpage);
1259                        mlock_vma_page(kpage);
1260                        page = kpage;           /* for final unlock */
1261                }
1262        }
1263
1264out_unlock:
1265        unlock_page(page);
1266out:
1267        return err;
1268}
1269
1270/*
1271 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1272 * but no new kernel page is allocated: kpage must already be a ksm page.
1273 *
1274 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1275 */
1276static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1277                                      struct page *page, struct page *kpage)
1278{
1279        struct mm_struct *mm = rmap_item->mm;
1280        struct vm_area_struct *vma;
1281        int err = -EFAULT;
1282
1283        down_read(&mm->mmap_sem);
1284        vma = find_mergeable_vma(mm, rmap_item->address);
1285        if (!vma)
1286                goto out;
1287
1288        err = try_to_merge_one_page(vma, page, kpage);
1289        if (err)
1290                goto out;
1291
1292        /* Unstable nid is in union with stable anon_vma: remove first */
1293        remove_rmap_item_from_tree(rmap_item);
1294
1295        /* Must get reference to anon_vma while still holding mmap_sem */
1296        rmap_item->anon_vma = vma->anon_vma;
1297        get_anon_vma(vma->anon_vma);
1298out:
1299        up_read(&mm->mmap_sem);
1300        return err;
1301}
1302
1303/*
1304 * try_to_merge_two_pages - take two identical pages and prepare them
1305 * to be merged into one page.
1306 *
1307 * This function returns the kpage if we successfully merged two identical
1308 * pages into one ksm page, NULL otherwise.
1309 *
1310 * Note that this function upgrades page to ksm page: if one of the pages
1311 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1312 */
1313static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1314                                           struct page *page,
1315                                           struct rmap_item *tree_rmap_item,
1316                                           struct page *tree_page)
1317{
1318        int err;
1319
1320        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1321        if (!err) {
1322                err = try_to_merge_with_ksm_page(tree_rmap_item,
1323                                                        tree_page, page);
1324                /*
1325                 * If that fails, we have a ksm page with only one pte
1326                 * pointing to it: so break it.
1327                 */
1328                if (err)
1329                        break_cow(rmap_item);
1330        }
1331        return err ? NULL : page;
1332}
1333
1334static __always_inline
1335bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1336{
1337        VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1338        /*
1339         * Check that at least one mapping still exists, otherwise
1340         * there's no much point to merge and share with this
1341         * stable_node, as the underlying tree_page of the other
1342         * sharer is going to be freed soon.
1343         */
1344        return stable_node->rmap_hlist_len &&
1345                stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1346}
1347
1348static __always_inline
1349bool is_page_sharing_candidate(struct stable_node *stable_node)
1350{
1351        return __is_page_sharing_candidate(stable_node, 0);
1352}
1353
1354static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1355                                    struct stable_node **_stable_node,
1356                                    struct rb_root *root,
1357                                    bool prune_stale_stable_nodes)
1358{
1359        struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1360        struct hlist_node *hlist_safe;
1361        struct page *_tree_page, *tree_page = NULL;
1362        int nr = 0;
1363        int found_rmap_hlist_len;
1364
1365        if (!prune_stale_stable_nodes ||
1366            time_before(jiffies, stable_node->chain_prune_time +
1367                        msecs_to_jiffies(
1368                                ksm_stable_node_chains_prune_millisecs)))
1369                prune_stale_stable_nodes = false;
1370        else
1371                stable_node->chain_prune_time = jiffies;
1372
1373        hlist_for_each_entry_safe(dup, hlist_safe,
1374                                  &stable_node->hlist, hlist_dup) {
1375                cond_resched();
1376                /*
1377                 * We must walk all stable_node_dup to prune the stale
1378                 * stable nodes during lookup.
1379                 *
1380                 * get_ksm_page can drop the nodes from the
1381                 * stable_node->hlist if they point to freed pages
1382                 * (that's why we do a _safe walk). The "dup"
1383                 * stable_node parameter itself will be freed from
1384                 * under us if it returns NULL.
1385                 */
1386                _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1387                if (!_tree_page)
1388                        continue;
1389                nr += 1;
1390                if (is_page_sharing_candidate(dup)) {
1391                        if (!found ||
1392                            dup->rmap_hlist_len > found_rmap_hlist_len) {
1393                                if (found)
1394                                        put_page(tree_page);
1395                                found = dup;
1396                                found_rmap_hlist_len = found->rmap_hlist_len;
1397                                tree_page = _tree_page;
1398
1399                                /* skip put_page for found dup */
1400                                if (!prune_stale_stable_nodes)
1401                                        break;
1402                                continue;
1403                        }
1404                }
1405                put_page(_tree_page);
1406        }
1407
1408        if (found) {
1409                /*
1410                 * nr is counting all dups in the chain only if
1411                 * prune_stale_stable_nodes is true, otherwise we may
1412                 * break the loop at nr == 1 even if there are
1413                 * multiple entries.
1414                 */
1415                if (prune_stale_stable_nodes && nr == 1) {
1416                        /*
1417                         * If there's not just one entry it would
1418                         * corrupt memory, better BUG_ON. In KSM
1419                         * context with no lock held it's not even
1420                         * fatal.
1421                         */
1422                        BUG_ON(stable_node->hlist.first->next);
1423
1424                        /*
1425                         * There's just one entry and it is below the
1426                         * deduplication limit so drop the chain.
1427                         */
1428                        rb_replace_node(&stable_node->node, &found->node,
1429                                        root);
1430                        free_stable_node(stable_node);
1431                        ksm_stable_node_chains--;
1432                        ksm_stable_node_dups--;
1433                        /*
1434                         * NOTE: the caller depends on the stable_node
1435                         * to be equal to stable_node_dup if the chain
1436                         * was collapsed.
1437                         */
1438                        *_stable_node = found;
1439                        /*
1440                         * Just for robustneess as stable_node is
1441                         * otherwise left as a stable pointer, the
1442                         * compiler shall optimize it away at build
1443                         * time.
1444                         */
1445                        stable_node = NULL;
1446                } else if (stable_node->hlist.first != &found->hlist_dup &&
1447                           __is_page_sharing_candidate(found, 1)) {
1448                        /*
1449                         * If the found stable_node dup can accept one
1450                         * more future merge (in addition to the one
1451                         * that is underway) and is not at the head of
1452                         * the chain, put it there so next search will
1453                         * be quicker in the !prune_stale_stable_nodes
1454                         * case.
1455                         *
1456                         * NOTE: it would be inaccurate to use nr > 1
1457                         * instead of checking the hlist.first pointer
1458                         * directly, because in the
1459                         * prune_stale_stable_nodes case "nr" isn't
1460                         * the position of the found dup in the chain,
1461                         * but the total number of dups in the chain.
1462                         */
1463                        hlist_del(&found->hlist_dup);
1464                        hlist_add_head(&found->hlist_dup,
1465                                       &stable_node->hlist);
1466                }
1467        }
1468
1469        *_stable_node_dup = found;
1470        return tree_page;
1471}
1472
1473static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1474                                               struct rb_root *root)
1475{
1476        if (!is_stable_node_chain(stable_node))
1477                return stable_node;
1478        if (hlist_empty(&stable_node->hlist)) {
1479                free_stable_node_chain(stable_node, root);
1480                return NULL;
1481        }
1482        return hlist_entry(stable_node->hlist.first,
1483                           typeof(*stable_node), hlist_dup);
1484}
1485
1486/*
1487 * Like for get_ksm_page, this function can free the *_stable_node and
1488 * *_stable_node_dup if the returned tree_page is NULL.
1489 *
1490 * It can also free and overwrite *_stable_node with the found
1491 * stable_node_dup if the chain is collapsed (in which case
1492 * *_stable_node will be equal to *_stable_node_dup like if the chain
1493 * never existed). It's up to the caller to verify tree_page is not
1494 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1495 *
1496 * *_stable_node_dup is really a second output parameter of this
1497 * function and will be overwritten in all cases, the caller doesn't
1498 * need to initialize it.
1499 */
1500static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1501                                        struct stable_node **_stable_node,
1502                                        struct rb_root *root,
1503                                        bool prune_stale_stable_nodes)
1504{
1505        struct stable_node *stable_node = *_stable_node;
1506        if (!is_stable_node_chain(stable_node)) {
1507                if (is_page_sharing_candidate(stable_node)) {
1508                        *_stable_node_dup = stable_node;
1509                        return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1510                }
1511                /*
1512                 * _stable_node_dup set to NULL means the stable_node
1513                 * reached the ksm_max_page_sharing limit.
1514                 */
1515                *_stable_node_dup = NULL;
1516                return NULL;
1517        }
1518        return stable_node_dup(_stable_node_dup, _stable_node, root,
1519                               prune_stale_stable_nodes);
1520}
1521
1522static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1523                                                struct stable_node **s_n,
1524                                                struct rb_root *root)
1525{
1526        return __stable_node_chain(s_n_d, s_n, root, true);
1527}
1528
1529static __always_inline struct page *chain(struct stable_node **s_n_d,
1530                                          struct stable_node *s_n,
1531                                          struct rb_root *root)
1532{
1533        struct stable_node *old_stable_node = s_n;
1534        struct page *tree_page;
1535
1536        tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1537        /* not pruning dups so s_n cannot have changed */
1538        VM_BUG_ON(s_n != old_stable_node);
1539        return tree_page;
1540}
1541
1542/*
1543 * stable_tree_search - search for page inside the stable tree
1544 *
1545 * This function checks if there is a page inside the stable tree
1546 * with identical content to the page that we are scanning right now.
1547 *
1548 * This function returns the stable tree node of identical content if found,
1549 * NULL otherwise.
1550 */
1551static struct page *stable_tree_search(struct page *page)
1552{
1553        int nid;
1554        struct rb_root *root;
1555        struct rb_node **new;
1556        struct rb_node *parent;
1557        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1558        struct stable_node *page_node;
1559
1560        page_node = page_stable_node(page);
1561        if (page_node && page_node->head != &migrate_nodes) {
1562                /* ksm page forked */
1563                get_page(page);
1564                return page;
1565        }
1566
1567        nid = get_kpfn_nid(page_to_pfn(page));
1568        root = root_stable_tree + nid;
1569again:
1570        new = &root->rb_node;
1571        parent = NULL;
1572
1573        while (*new) {
1574                struct page *tree_page;
1575                int ret;
1576
1577                cond_resched();
1578                stable_node = rb_entry(*new, struct stable_node, node);
1579                stable_node_any = NULL;
1580                tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1581                /*
1582                 * NOTE: stable_node may have been freed by
1583                 * chain_prune() if the returned stable_node_dup is
1584                 * not NULL. stable_node_dup may have been inserted in
1585                 * the rbtree instead as a regular stable_node (in
1586                 * order to collapse the stable_node chain if a single
1587                 * stable_node dup was found in it). In such case the
1588                 * stable_node is overwritten by the calleee to point
1589                 * to the stable_node_dup that was collapsed in the
1590                 * stable rbtree and stable_node will be equal to
1591                 * stable_node_dup like if the chain never existed.
1592                 */
1593                if (!stable_node_dup) {
1594                        /*
1595                         * Either all stable_node dups were full in
1596                         * this stable_node chain, or this chain was
1597                         * empty and should be rb_erased.
1598                         */
1599                        stable_node_any = stable_node_dup_any(stable_node,
1600                                                              root);
1601                        if (!stable_node_any) {
1602                                /* rb_erase just run */
1603                                goto again;
1604                        }
1605                        /*
1606                         * Take any of the stable_node dups page of
1607                         * this stable_node chain to let the tree walk
1608                         * continue. All KSM pages belonging to the
1609                         * stable_node dups in a stable_node chain
1610                         * have the same content and they're
1611                         * wrprotected at all times. Any will work
1612                         * fine to continue the walk.
1613                         */
1614                        tree_page = get_ksm_page(stable_node_any,
1615                                                 GET_KSM_PAGE_NOLOCK);
1616                }
1617                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1618                if (!tree_page) {
1619                        /*
1620                         * If we walked over a stale stable_node,
1621                         * get_ksm_page() will call rb_erase() and it
1622                         * may rebalance the tree from under us. So
1623                         * restart the search from scratch. Returning
1624                         * NULL would be safe too, but we'd generate
1625                         * false negative insertions just because some
1626                         * stable_node was stale.
1627                         */
1628                        goto again;
1629                }
1630
1631                ret = memcmp_pages(page, tree_page);
1632                put_page(tree_page);
1633
1634                parent = *new;
1635                if (ret < 0)
1636                        new = &parent->rb_left;
1637                else if (ret > 0)
1638                        new = &parent->rb_right;
1639                else {
1640                        if (page_node) {
1641                                VM_BUG_ON(page_node->head != &migrate_nodes);
1642                                /*
1643                                 * Test if the migrated page should be merged
1644                                 * into a stable node dup. If the mapcount is
1645                                 * 1 we can migrate it with another KSM page
1646                                 * without adding it to the chain.
1647                                 */
1648                                if (page_mapcount(page) > 1)
1649                                        goto chain_append;
1650                        }
1651
1652                        if (!stable_node_dup) {
1653                                /*
1654                                 * If the stable_node is a chain and
1655                                 * we got a payload match in memcmp
1656                                 * but we cannot merge the scanned
1657                                 * page in any of the existing
1658                                 * stable_node dups because they're
1659                                 * all full, we need to wait the
1660                                 * scanned page to find itself a match
1661                                 * in the unstable tree to create a
1662                                 * brand new KSM page to add later to
1663                                 * the dups of this stable_node.
1664                                 */
1665                                return NULL;
1666                        }
1667
1668                        /*
1669                         * Lock and unlock the stable_node's page (which
1670                         * might already have been migrated) so that page
1671                         * migration is sure to notice its raised count.
1672                         * It would be more elegant to return stable_node
1673                         * than kpage, but that involves more changes.
1674                         */
1675                        tree_page = get_ksm_page(stable_node_dup,
1676                                                 GET_KSM_PAGE_TRYLOCK);
1677
1678                        if (PTR_ERR(tree_page) == -EBUSY)
1679                                return ERR_PTR(-EBUSY);
1680
1681                        if (unlikely(!tree_page))
1682                                /*
1683                                 * The tree may have been rebalanced,
1684                                 * so re-evaluate parent and new.
1685                                 */
1686                                goto again;
1687                        unlock_page(tree_page);
1688
1689                        if (get_kpfn_nid(stable_node_dup->kpfn) !=
1690                            NUMA(stable_node_dup->nid)) {
1691                                put_page(tree_page);
1692                                goto replace;
1693                        }
1694                        return tree_page;
1695                }
1696        }
1697
1698        if (!page_node)
1699                return NULL;
1700
1701        list_del(&page_node->list);
1702        DO_NUMA(page_node->nid = nid);
1703        rb_link_node(&page_node->node, parent, new);
1704        rb_insert_color(&page_node->node, root);
1705out:
1706        if (is_page_sharing_candidate(page_node)) {
1707                get_page(page);
1708                return page;
1709        } else
1710                return NULL;
1711
1712replace:
1713        /*
1714         * If stable_node was a chain and chain_prune collapsed it,
1715         * stable_node has been updated to be the new regular
1716         * stable_node. A collapse of the chain is indistinguishable
1717         * from the case there was no chain in the stable
1718         * rbtree. Otherwise stable_node is the chain and
1719         * stable_node_dup is the dup to replace.
1720         */
1721        if (stable_node_dup == stable_node) {
1722                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1723                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1724                /* there is no chain */
1725                if (page_node) {
1726                        VM_BUG_ON(page_node->head != &migrate_nodes);
1727                        list_del(&page_node->list);
1728                        DO_NUMA(page_node->nid = nid);
1729                        rb_replace_node(&stable_node_dup->node,
1730                                        &page_node->node,
1731                                        root);
1732                        if (is_page_sharing_candidate(page_node))
1733                                get_page(page);
1734                        else
1735                                page = NULL;
1736                } else {
1737                        rb_erase(&stable_node_dup->node, root);
1738                        page = NULL;
1739                }
1740        } else {
1741                VM_BUG_ON(!is_stable_node_chain(stable_node));
1742                __stable_node_dup_del(stable_node_dup);
1743                if (page_node) {
1744                        VM_BUG_ON(page_node->head != &migrate_nodes);
1745                        list_del(&page_node->list);
1746                        DO_NUMA(page_node->nid = nid);
1747                        stable_node_chain_add_dup(page_node, stable_node);
1748                        if (is_page_sharing_candidate(page_node))
1749                                get_page(page);
1750                        else
1751                                page = NULL;
1752                } else {
1753                        page = NULL;
1754                }
1755        }
1756        stable_node_dup->head = &migrate_nodes;
1757        list_add(&stable_node_dup->list, stable_node_dup->head);
1758        return page;
1759
1760chain_append:
1761        /* stable_node_dup could be null if it reached the limit */
1762        if (!stable_node_dup)
1763                stable_node_dup = stable_node_any;
1764        /*
1765         * If stable_node was a chain and chain_prune collapsed it,
1766         * stable_node has been updated to be the new regular
1767         * stable_node. A collapse of the chain is indistinguishable
1768         * from the case there was no chain in the stable
1769         * rbtree. Otherwise stable_node is the chain and
1770         * stable_node_dup is the dup to replace.
1771         */
1772        if (stable_node_dup == stable_node) {
1773                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1774                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1775                /* chain is missing so create it */
1776                stable_node = alloc_stable_node_chain(stable_node_dup,
1777                                                      root);
1778                if (!stable_node)
1779                        return NULL;
1780        }
1781        /*
1782         * Add this stable_node dup that was
1783         * migrated to the stable_node chain
1784         * of the current nid for this page
1785         * content.
1786         */
1787        VM_BUG_ON(!is_stable_node_chain(stable_node));
1788        VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1789        VM_BUG_ON(page_node->head != &migrate_nodes);
1790        list_del(&page_node->list);
1791        DO_NUMA(page_node->nid = nid);
1792        stable_node_chain_add_dup(page_node, stable_node);
1793        goto out;
1794}
1795
1796/*
1797 * stable_tree_insert - insert stable tree node pointing to new ksm page
1798 * into the stable tree.
1799 *
1800 * This function returns the stable tree node just allocated on success,
1801 * NULL otherwise.
1802 */
1803static struct stable_node *stable_tree_insert(struct page *kpage)
1804{
1805        int nid;
1806        unsigned long kpfn;
1807        struct rb_root *root;
1808        struct rb_node **new;
1809        struct rb_node *parent;
1810        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1811        bool need_chain = false;
1812
1813        kpfn = page_to_pfn(kpage);
1814        nid = get_kpfn_nid(kpfn);
1815        root = root_stable_tree + nid;
1816again:
1817        parent = NULL;
1818        new = &root->rb_node;
1819
1820        while (*new) {
1821                struct page *tree_page;
1822                int ret;
1823
1824                cond_resched();
1825                stable_node = rb_entry(*new, struct stable_node, node);
1826                stable_node_any = NULL;
1827                tree_page = chain(&stable_node_dup, stable_node, root);
1828                if (!stable_node_dup) {
1829                        /*
1830                         * Either all stable_node dups were full in
1831                         * this stable_node chain, or this chain was
1832                         * empty and should be rb_erased.
1833                         */
1834                        stable_node_any = stable_node_dup_any(stable_node,
1835                                                              root);
1836                        if (!stable_node_any) {
1837                                /* rb_erase just run */
1838                                goto again;
1839                        }
1840                        /*
1841                         * Take any of the stable_node dups page of
1842                         * this stable_node chain to let the tree walk
1843                         * continue. All KSM pages belonging to the
1844                         * stable_node dups in a stable_node chain
1845                         * have the same content and they're
1846                         * wrprotected at all times. Any will work
1847                         * fine to continue the walk.
1848                         */
1849                        tree_page = get_ksm_page(stable_node_any,
1850                                                 GET_KSM_PAGE_NOLOCK);
1851                }
1852                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1853                if (!tree_page) {
1854                        /*
1855                         * If we walked over a stale stable_node,
1856                         * get_ksm_page() will call rb_erase() and it
1857                         * may rebalance the tree from under us. So
1858                         * restart the search from scratch. Returning
1859                         * NULL would be safe too, but we'd generate
1860                         * false negative insertions just because some
1861                         * stable_node was stale.
1862                         */
1863                        goto again;
1864                }
1865
1866                ret = memcmp_pages(kpage, tree_page);
1867                put_page(tree_page);
1868
1869                parent = *new;
1870                if (ret < 0)
1871                        new = &parent->rb_left;
1872                else if (ret > 0)
1873                        new = &parent->rb_right;
1874                else {
1875                        need_chain = true;
1876                        break;
1877                }
1878        }
1879
1880        stable_node_dup = alloc_stable_node();
1881        if (!stable_node_dup)
1882                return NULL;
1883
1884        INIT_HLIST_HEAD(&stable_node_dup->hlist);
1885        stable_node_dup->kpfn = kpfn;
1886        set_page_stable_node(kpage, stable_node_dup);
1887        stable_node_dup->rmap_hlist_len = 0;
1888        DO_NUMA(stable_node_dup->nid = nid);
1889        if (!need_chain) {
1890                rb_link_node(&stable_node_dup->node, parent, new);
1891                rb_insert_color(&stable_node_dup->node, root);
1892        } else {
1893                if (!is_stable_node_chain(stable_node)) {
1894                        struct stable_node *orig = stable_node;
1895                        /* chain is missing so create it */
1896                        stable_node = alloc_stable_node_chain(orig, root);
1897                        if (!stable_node) {
1898                                free_stable_node(stable_node_dup);
1899                                return NULL;
1900                        }
1901                }
1902                stable_node_chain_add_dup(stable_node_dup, stable_node);
1903        }
1904
1905        return stable_node_dup;
1906}
1907
1908/*
1909 * unstable_tree_search_insert - search for identical page,
1910 * else insert rmap_item into the unstable tree.
1911 *
1912 * This function searches for a page in the unstable tree identical to the
1913 * page currently being scanned; and if no identical page is found in the
1914 * tree, we insert rmap_item as a new object into the unstable tree.
1915 *
1916 * This function returns pointer to rmap_item found to be identical
1917 * to the currently scanned page, NULL otherwise.
1918 *
1919 * This function does both searching and inserting, because they share
1920 * the same walking algorithm in an rbtree.
1921 */
1922static
1923struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1924                                              struct page *page,
1925                                              struct page **tree_pagep)
1926{
1927        struct rb_node **new;
1928        struct rb_root *root;
1929        struct rb_node *parent = NULL;
1930        int nid;
1931
1932        nid = get_kpfn_nid(page_to_pfn(page));
1933        root = root_unstable_tree + nid;
1934        new = &root->rb_node;
1935
1936        while (*new) {
1937                struct rmap_item *tree_rmap_item;
1938                struct page *tree_page;
1939                int ret;
1940
1941                cond_resched();
1942                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1943                tree_page = get_mergeable_page(tree_rmap_item);
1944                if (!tree_page)
1945                        return NULL;
1946
1947                /*
1948                 * Don't substitute a ksm page for a forked page.
1949                 */
1950                if (page == tree_page) {
1951                        put_page(tree_page);
1952                        return NULL;
1953                }
1954
1955                ret = memcmp_pages(page, tree_page);
1956
1957                parent = *new;
1958                if (ret < 0) {
1959                        put_page(tree_page);
1960                        new = &parent->rb_left;
1961                } else if (ret > 0) {
1962                        put_page(tree_page);
1963                        new = &parent->rb_right;
1964                } else if (!ksm_merge_across_nodes &&
1965                           page_to_nid(tree_page) != nid) {
1966                        /*
1967                         * If tree_page has been migrated to another NUMA node,
1968                         * it will be flushed out and put in the right unstable
1969                         * tree next time: only merge with it when across_nodes.
1970                         */
1971                        put_page(tree_page);
1972                        return NULL;
1973                } else {
1974                        *tree_pagep = tree_page;
1975                        return tree_rmap_item;
1976                }
1977        }
1978
1979        rmap_item->address |= UNSTABLE_FLAG;
1980        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1981        DO_NUMA(rmap_item->nid = nid);
1982        rb_link_node(&rmap_item->node, parent, new);
1983        rb_insert_color(&rmap_item->node, root);
1984
1985        ksm_pages_unshared++;
1986        return NULL;
1987}
1988
1989/*
1990 * stable_tree_append - add another rmap_item to the linked list of
1991 * rmap_items hanging off a given node of the stable tree, all sharing
1992 * the same ksm page.
1993 */
1994static void stable_tree_append(struct rmap_item *rmap_item,
1995                               struct stable_node *stable_node,
1996                               bool max_page_sharing_bypass)
1997{
1998        /*
1999         * rmap won't find this mapping if we don't insert the
2000         * rmap_item in the right stable_node
2001         * duplicate. page_migration could break later if rmap breaks,
2002         * so we can as well crash here. We really need to check for
2003         * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2004         * for other negative values as an undeflow if detected here
2005         * for the first time (and not when decreasing rmap_hlist_len)
2006         * would be sign of memory corruption in the stable_node.
2007         */
2008        BUG_ON(stable_node->rmap_hlist_len < 0);
2009
2010        stable_node->rmap_hlist_len++;
2011        if (!max_page_sharing_bypass)
2012                /* possibly non fatal but unexpected overflow, only warn */
2013                WARN_ON_ONCE(stable_node->rmap_hlist_len >
2014                             ksm_max_page_sharing);
2015
2016        rmap_item->head = stable_node;
2017        rmap_item->address |= STABLE_FLAG;
2018        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2019
2020        if (rmap_item->hlist.next)
2021                ksm_pages_sharing++;
2022        else
2023                ksm_pages_shared++;
2024}
2025
2026/*
2027 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2028 * if not, compare checksum to previous and if it's the same, see if page can
2029 * be inserted into the unstable tree, or merged with a page already there and
2030 * both transferred to the stable tree.
2031 *
2032 * @page: the page that we are searching identical page to.
2033 * @rmap_item: the reverse mapping into the virtual address of this page
2034 */
2035static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2036{
2037        struct mm_struct *mm = rmap_item->mm;
2038        struct rmap_item *tree_rmap_item;
2039        struct page *tree_page = NULL;
2040        struct stable_node *stable_node;
2041        struct page *kpage;
2042        unsigned int checksum;
2043        int err;
2044        bool max_page_sharing_bypass = false;
2045
2046        stable_node = page_stable_node(page);
2047        if (stable_node) {
2048                if (stable_node->head != &migrate_nodes &&
2049                    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2050                    NUMA(stable_node->nid)) {
2051                        stable_node_dup_del(stable_node);
2052                        stable_node->head = &migrate_nodes;
2053                        list_add(&stable_node->list, stable_node->head);
2054                }
2055                if (stable_node->head != &migrate_nodes &&
2056                    rmap_item->head == stable_node)
2057                        return;
2058                /*
2059                 * If it's a KSM fork, allow it to go over the sharing limit
2060                 * without warnings.
2061                 */
2062                if (!is_page_sharing_candidate(stable_node))
2063                        max_page_sharing_bypass = true;
2064        }
2065
2066        /* We first start with searching the page inside the stable tree */
2067        kpage = stable_tree_search(page);
2068        if (kpage == page && rmap_item->head == stable_node) {
2069                put_page(kpage);
2070                return;
2071        }
2072
2073        remove_rmap_item_from_tree(rmap_item);
2074
2075        if (kpage) {
2076                if (PTR_ERR(kpage) == -EBUSY)
2077                        return;
2078
2079                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2080                if (!err) {
2081                        /*
2082                         * The page was successfully merged:
2083                         * add its rmap_item to the stable tree.
2084                         */
2085                        lock_page(kpage);
2086                        stable_tree_append(rmap_item, page_stable_node(kpage),
2087                                           max_page_sharing_bypass);
2088                        unlock_page(kpage);
2089                }
2090                put_page(kpage);
2091                return;
2092        }
2093
2094        /*
2095         * If the hash value of the page has changed from the last time
2096         * we calculated it, this page is changing frequently: therefore we
2097         * don't want to insert it in the unstable tree, and we don't want
2098         * to waste our time searching for something identical to it there.
2099         */
2100        checksum = calc_checksum(page);
2101        if (rmap_item->oldchecksum != checksum) {
2102                rmap_item->oldchecksum = checksum;
2103                return;
2104        }
2105
2106        /*
2107         * Same checksum as an empty page. We attempt to merge it with the
2108         * appropriate zero page if the user enabled this via sysfs.
2109         */
2110        if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2111                struct vm_area_struct *vma;
2112
2113                down_read(&mm->mmap_sem);
2114                vma = find_mergeable_vma(mm, rmap_item->address);
2115                if (vma) {
2116                        err = try_to_merge_one_page(vma, page,
2117                                        ZERO_PAGE(rmap_item->address));
2118                } else {
2119                        /*
2120                         * If the vma is out of date, we do not need to
2121                         * continue.
2122                         */
2123                        err = 0;
2124                }
2125                up_read(&mm->mmap_sem);
2126                /*
2127                 * In case of failure, the page was not really empty, so we
2128                 * need to continue. Otherwise we're done.
2129                 */
2130                if (!err)
2131                        return;
2132        }
2133        tree_rmap_item =
2134                unstable_tree_search_insert(rmap_item, page, &tree_page);
2135        if (tree_rmap_item) {
2136                bool split;
2137
2138                kpage = try_to_merge_two_pages(rmap_item, page,
2139                                                tree_rmap_item, tree_page);
2140                /*
2141                 * If both pages we tried to merge belong to the same compound
2142                 * page, then we actually ended up increasing the reference
2143                 * count of the same compound page twice, and split_huge_page
2144                 * failed.
2145                 * Here we set a flag if that happened, and we use it later to
2146                 * try split_huge_page again. Since we call put_page right
2147                 * afterwards, the reference count will be correct and
2148                 * split_huge_page should succeed.
2149                 */
2150                split = PageTransCompound(page)
2151                        && compound_head(page) == compound_head(tree_page);
2152                put_page(tree_page);
2153                if (kpage) {
2154                        /*
2155                         * The pages were successfully merged: insert new
2156                         * node in the stable tree and add both rmap_items.
2157                         */
2158                        lock_page(kpage);
2159                        stable_node = stable_tree_insert(kpage);
2160                        if (stable_node) {
2161                                stable_tree_append(tree_rmap_item, stable_node,
2162                                                   false);
2163                                stable_tree_append(rmap_item, stable_node,
2164                                                   false);
2165                        }
2166                        unlock_page(kpage);
2167
2168                        /*
2169                         * If we fail to insert the page into the stable tree,
2170                         * we will have 2 virtual addresses that are pointing
2171                         * to a ksm page left outside the stable tree,
2172                         * in which case we need to break_cow on both.
2173                         */
2174                        if (!stable_node) {
2175                                break_cow(tree_rmap_item);
2176                                break_cow(rmap_item);
2177                        }
2178                } else if (split) {
2179                        /*
2180                         * We are here if we tried to merge two pages and
2181                         * failed because they both belonged to the same
2182                         * compound page. We will split the page now, but no
2183                         * merging will take place.
2184                         * We do not want to add the cost of a full lock; if
2185                         * the page is locked, it is better to skip it and
2186                         * perhaps try again later.
2187                         */
2188                        if (!trylock_page(page))
2189                                return;
2190                        split_huge_page(page);
2191                        unlock_page(page);
2192                }
2193        }
2194}
2195
2196static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2197                                            struct rmap_item **rmap_list,
2198                                            unsigned long addr)
2199{
2200        struct rmap_item *rmap_item;
2201
2202        while (*rmap_list) {
2203                rmap_item = *rmap_list;
2204                if ((rmap_item->address & PAGE_MASK) == addr)
2205                        return rmap_item;
2206                if (rmap_item->address > addr)
2207                        break;
2208                *rmap_list = rmap_item->rmap_list;
2209                remove_rmap_item_from_tree(rmap_item);
2210                free_rmap_item(rmap_item);
2211        }
2212
2213        rmap_item = alloc_rmap_item();
2214        if (rmap_item) {
2215                /* It has already been zeroed */
2216                rmap_item->mm = mm_slot->mm;
2217                rmap_item->address = addr;
2218                rmap_item->rmap_list = *rmap_list;
2219                *rmap_list = rmap_item;
2220        }
2221        return rmap_item;
2222}
2223
2224static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2225{
2226        struct mm_struct *mm;
2227        struct mm_slot *slot;
2228        struct vm_area_struct *vma;
2229        struct rmap_item *rmap_item;
2230        int nid;
2231
2232        if (list_empty(&ksm_mm_head.mm_list))
2233                return NULL;
2234
2235        slot = ksm_scan.mm_slot;
2236        if (slot == &ksm_mm_head) {
2237                /*
2238                 * A number of pages can hang around indefinitely on per-cpu
2239                 * pagevecs, raised page count preventing write_protect_page
2240                 * from merging them.  Though it doesn't really matter much,
2241                 * it is puzzling to see some stuck in pages_volatile until
2242                 * other activity jostles them out, and they also prevented
2243                 * LTP's KSM test from succeeding deterministically; so drain
2244                 * them here (here rather than on entry to ksm_do_scan(),
2245                 * so we don't IPI too often when pages_to_scan is set low).
2246                 */
2247                lru_add_drain_all();
2248
2249                /*
2250                 * Whereas stale stable_nodes on the stable_tree itself
2251                 * get pruned in the regular course of stable_tree_search(),
2252                 * those moved out to the migrate_nodes list can accumulate:
2253                 * so prune them once before each full scan.
2254                 */
2255                if (!ksm_merge_across_nodes) {
2256                        struct stable_node *stable_node, *next;
2257                        struct page *page;
2258
2259                        list_for_each_entry_safe(stable_node, next,
2260                                                 &migrate_nodes, list) {
2261                                page = get_ksm_page(stable_node,
2262                                                    GET_KSM_PAGE_NOLOCK);
2263                                if (page)
2264                                        put_page(page);
2265                                cond_resched();
2266                        }
2267                }
2268
2269                for (nid = 0; nid < ksm_nr_node_ids; nid++)
2270                        root_unstable_tree[nid] = RB_ROOT;
2271
2272                spin_lock(&ksm_mmlist_lock);
2273                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2274                ksm_scan.mm_slot = slot;
2275                spin_unlock(&ksm_mmlist_lock);
2276                /*
2277                 * Although we tested list_empty() above, a racing __ksm_exit
2278                 * of the last mm on the list may have removed it since then.
2279                 */
2280                if (slot == &ksm_mm_head)
2281                        return NULL;
2282next_mm:
2283                ksm_scan.address = 0;
2284                ksm_scan.rmap_list = &slot->rmap_list;
2285        }
2286
2287        mm = slot->mm;
2288        down_read(&mm->mmap_sem);
2289        if (ksm_test_exit(mm))
2290                vma = NULL;
2291        else
2292                vma = find_vma(mm, ksm_scan.address);
2293
2294        for (; vma; vma = vma->vm_next) {
2295                if (!(vma->vm_flags & VM_MERGEABLE))
2296                        continue;
2297                if (ksm_scan.address < vma->vm_start)
2298                        ksm_scan.address = vma->vm_start;
2299                if (!vma->anon_vma)
2300                        ksm_scan.address = vma->vm_end;
2301
2302                while (ksm_scan.address < vma->vm_end) {
2303                        if (ksm_test_exit(mm))
2304                                break;
2305                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2306                        if (IS_ERR_OR_NULL(*page)) {
2307                                ksm_scan.address += PAGE_SIZE;
2308                                cond_resched();
2309                                continue;
2310                        }
2311                        if (PageAnon(*page)) {
2312                                flush_anon_page(vma, *page, ksm_scan.address);
2313                                flush_dcache_page(*page);
2314                                rmap_item = get_next_rmap_item(slot,
2315                                        ksm_scan.rmap_list, ksm_scan.address);
2316                                if (rmap_item) {
2317                                        ksm_scan.rmap_list =
2318                                                        &rmap_item->rmap_list;
2319                                        ksm_scan.address += PAGE_SIZE;
2320                                } else
2321                                        put_page(*page);
2322                                up_read(&mm->mmap_sem);
2323                                return rmap_item;
2324                        }
2325                        put_page(*page);
2326                        ksm_scan.address += PAGE_SIZE;
2327                        cond_resched();
2328                }
2329        }
2330
2331        if (ksm_test_exit(mm)) {
2332                ksm_scan.address = 0;
2333                ksm_scan.rmap_list = &slot->rmap_list;
2334        }
2335        /*
2336         * Nuke all the rmap_items that are above this current rmap:
2337         * because there were no VM_MERGEABLE vmas with such addresses.
2338         */
2339        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2340
2341        spin_lock(&ksm_mmlist_lock);
2342        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2343                                                struct mm_slot, mm_list);
2344        if (ksm_scan.address == 0) {
2345                /*
2346                 * We've completed a full scan of all vmas, holding mmap_sem
2347                 * throughout, and found no VM_MERGEABLE: so do the same as
2348                 * __ksm_exit does to remove this mm from all our lists now.
2349                 * This applies either when cleaning up after __ksm_exit
2350                 * (but beware: we can reach here even before __ksm_exit),
2351                 * or when all VM_MERGEABLE areas have been unmapped (and
2352                 * mmap_sem then protects against race with MADV_MERGEABLE).
2353                 */
2354                hash_del(&slot->link);
2355                list_del(&slot->mm_list);
2356                spin_unlock(&ksm_mmlist_lock);
2357
2358                free_mm_slot(slot);
2359                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2360                up_read(&mm->mmap_sem);
2361                mmdrop(mm);
2362        } else {
2363                up_read(&mm->mmap_sem);
2364                /*
2365                 * up_read(&mm->mmap_sem) first because after
2366                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2367                 * already have been freed under us by __ksm_exit()
2368                 * because the "mm_slot" is still hashed and
2369                 * ksm_scan.mm_slot doesn't point to it anymore.
2370                 */
2371                spin_unlock(&ksm_mmlist_lock);
2372        }
2373
2374        /* Repeat until we've completed scanning the whole list */
2375        slot = ksm_scan.mm_slot;
2376        if (slot != &ksm_mm_head)
2377                goto next_mm;
2378
2379        ksm_scan.seqnr++;
2380        return NULL;
2381}
2382
2383/**
2384 * ksm_do_scan  - the ksm scanner main worker function.
2385 * @scan_npages:  number of pages we want to scan before we return.
2386 */
2387static void ksm_do_scan(unsigned int scan_npages)
2388{
2389        struct rmap_item *rmap_item;
2390        struct page *uninitialized_var(page);
2391
2392        while (scan_npages-- && likely(!freezing(current))) {
2393                cond_resched();
2394                rmap_item = scan_get_next_rmap_item(&page);
2395                if (!rmap_item)
2396                        return;
2397                cmp_and_merge_page(page, rmap_item);
2398                put_page(page);
2399        }
2400}
2401
2402static int ksmd_should_run(void)
2403{
2404        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2405}
2406
2407static int ksm_scan_thread(void *nothing)
2408{
2409        unsigned int sleep_ms;
2410
2411        set_freezable();
2412        set_user_nice(current, 5);
2413
2414        while (!kthread_should_stop()) {
2415                mutex_lock(&ksm_thread_mutex);
2416                wait_while_offlining();
2417                if (ksmd_should_run())
2418                        ksm_do_scan(ksm_thread_pages_to_scan);
2419                mutex_unlock(&ksm_thread_mutex);
2420
2421                try_to_freeze();
2422
2423                if (ksmd_should_run()) {
2424                        sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2425                        wait_event_interruptible_timeout(ksm_iter_wait,
2426                                sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2427                                msecs_to_jiffies(sleep_ms));
2428                } else {
2429                        wait_event_freezable(ksm_thread_wait,
2430                                ksmd_should_run() || kthread_should_stop());
2431                }
2432        }
2433        return 0;
2434}
2435
2436int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2437                unsigned long end, int advice, unsigned long *vm_flags)
2438{
2439        struct mm_struct *mm = vma->vm_mm;
2440        int err;
2441
2442        switch (advice) {
2443        case MADV_MERGEABLE:
2444                /*
2445                 * Be somewhat over-protective for now!
2446                 */
2447                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2448                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2449                                 VM_HUGETLB | VM_MIXEDMAP))
2450                        return 0;               /* just ignore the advice */
2451
2452                if (vma_is_dax(vma))
2453                        return 0;
2454
2455#ifdef VM_SAO
2456                if (*vm_flags & VM_SAO)
2457                        return 0;
2458#endif
2459#ifdef VM_SPARC_ADI
2460                if (*vm_flags & VM_SPARC_ADI)
2461                        return 0;
2462#endif
2463
2464                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2465                        err = __ksm_enter(mm);
2466                        if (err)
2467                                return err;
2468                }
2469
2470                *vm_flags |= VM_MERGEABLE;
2471                break;
2472
2473        case MADV_UNMERGEABLE:
2474                if (!(*vm_flags & VM_MERGEABLE))
2475                        return 0;               /* just ignore the advice */
2476
2477                if (vma->anon_vma) {
2478                        err = unmerge_ksm_pages(vma, start, end);
2479                        if (err)
2480                                return err;
2481                }
2482
2483                *vm_flags &= ~VM_MERGEABLE;
2484                break;
2485        }
2486
2487        return 0;
2488}
2489EXPORT_SYMBOL_GPL(ksm_madvise);
2490
2491int __ksm_enter(struct mm_struct *mm)
2492{
2493        struct mm_slot *mm_slot;
2494        int needs_wakeup;
2495
2496        mm_slot = alloc_mm_slot();
2497        if (!mm_slot)
2498                return -ENOMEM;
2499
2500        /* Check ksm_run too?  Would need tighter locking */
2501        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2502
2503        spin_lock(&ksm_mmlist_lock);
2504        insert_to_mm_slots_hash(mm, mm_slot);
2505        /*
2506         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2507         * insert just behind the scanning cursor, to let the area settle
2508         * down a little; when fork is followed by immediate exec, we don't
2509         * want ksmd to waste time setting up and tearing down an rmap_list.
2510         *
2511         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2512         * scanning cursor, otherwise KSM pages in newly forked mms will be
2513         * missed: then we might as well insert at the end of the list.
2514         */
2515        if (ksm_run & KSM_RUN_UNMERGE)
2516                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2517        else
2518                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2519        spin_unlock(&ksm_mmlist_lock);
2520
2521        set_bit(MMF_VM_MERGEABLE, &mm->flags);
2522        mmgrab(mm);
2523
2524        if (needs_wakeup)
2525                wake_up_interruptible(&ksm_thread_wait);
2526
2527        return 0;
2528}
2529
2530void __ksm_exit(struct mm_struct *mm)
2531{
2532        struct mm_slot *mm_slot;
2533        int easy_to_free = 0;
2534
2535        /*
2536         * This process is exiting: if it's straightforward (as is the
2537         * case when ksmd was never running), free mm_slot immediately.
2538         * But if it's at the cursor or has rmap_items linked to it, use
2539         * mmap_sem to synchronize with any break_cows before pagetables
2540         * are freed, and leave the mm_slot on the list for ksmd to free.
2541         * Beware: ksm may already have noticed it exiting and freed the slot.
2542         */
2543
2544        spin_lock(&ksm_mmlist_lock);
2545        mm_slot = get_mm_slot(mm);
2546        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2547                if (!mm_slot->rmap_list) {
2548                        hash_del(&mm_slot->link);
2549                        list_del(&mm_slot->mm_list);
2550                        easy_to_free = 1;
2551                } else {
2552                        list_move(&mm_slot->mm_list,
2553                                  &ksm_scan.mm_slot->mm_list);
2554                }
2555        }
2556        spin_unlock(&ksm_mmlist_lock);
2557
2558        if (easy_to_free) {
2559                free_mm_slot(mm_slot);
2560                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2561                mmdrop(mm);
2562        } else if (mm_slot) {
2563                down_write(&mm->mmap_sem);
2564                up_write(&mm->mmap_sem);
2565        }
2566}
2567
2568struct page *ksm_might_need_to_copy(struct page *page,
2569                        struct vm_area_struct *vma, unsigned long address)
2570{
2571        struct anon_vma *anon_vma = page_anon_vma(page);
2572        struct page *new_page;
2573
2574        if (PageKsm(page)) {
2575                if (page_stable_node(page) &&
2576                    !(ksm_run & KSM_RUN_UNMERGE))
2577                        return page;    /* no need to copy it */
2578        } else if (!anon_vma) {
2579                return page;            /* no need to copy it */
2580        } else if (anon_vma->root == vma->anon_vma->root &&
2581                 page->index == linear_page_index(vma, address)) {
2582                return page;            /* still no need to copy it */
2583        }
2584        if (!PageUptodate(page))
2585                return page;            /* let do_swap_page report the error */
2586
2587        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2588        if (new_page) {
2589                copy_user_highpage(new_page, page, address, vma);
2590
2591                SetPageDirty(new_page);
2592                __SetPageUptodate(new_page);
2593                __SetPageLocked(new_page);
2594        }
2595
2596        return new_page;
2597}
2598
2599void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2600{
2601        struct stable_node *stable_node;
2602        struct rmap_item *rmap_item;
2603        int search_new_forks = 0;
2604
2605        VM_BUG_ON_PAGE(!PageKsm(page), page);
2606
2607        /*
2608         * Rely on the page lock to protect against concurrent modifications
2609         * to that page's node of the stable tree.
2610         */
2611        VM_BUG_ON_PAGE(!PageLocked(page), page);
2612
2613        stable_node = page_stable_node(page);
2614        if (!stable_node)
2615                return;
2616again:
2617        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2618                struct anon_vma *anon_vma = rmap_item->anon_vma;
2619                struct anon_vma_chain *vmac;
2620                struct vm_area_struct *vma;
2621
2622                cond_resched();
2623                anon_vma_lock_read(anon_vma);
2624                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2625                                               0, ULONG_MAX) {
2626                        unsigned long addr;
2627
2628                        cond_resched();
2629                        vma = vmac->vma;
2630
2631                        /* Ignore the stable/unstable/sqnr flags */
2632                        addr = rmap_item->address & ~KSM_FLAG_MASK;
2633
2634                        if (addr < vma->vm_start || addr >= vma->vm_end)
2635                                continue;
2636                        /*
2637                         * Initially we examine only the vma which covers this
2638                         * rmap_item; but later, if there is still work to do,
2639                         * we examine covering vmas in other mms: in case they
2640                         * were forked from the original since ksmd passed.
2641                         */
2642                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2643                                continue;
2644
2645                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2646                                continue;
2647
2648                        if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2649                                anon_vma_unlock_read(anon_vma);
2650                                return;
2651                        }
2652                        if (rwc->done && rwc->done(page)) {
2653                                anon_vma_unlock_read(anon_vma);
2654                                return;
2655                        }
2656                }
2657                anon_vma_unlock_read(anon_vma);
2658        }
2659        if (!search_new_forks++)
2660                goto again;
2661}
2662
2663bool reuse_ksm_page(struct page *page,
2664                    struct vm_area_struct *vma,
2665                    unsigned long address)
2666{
2667#ifdef CONFIG_DEBUG_VM
2668        if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2669                        WARN_ON(!page_mapped(page)) ||
2670                        WARN_ON(!PageLocked(page))) {
2671                dump_page(page, "reuse_ksm_page");
2672                return false;
2673        }
2674#endif
2675
2676        if (PageSwapCache(page) || !page_stable_node(page))
2677                return false;
2678        /* Prohibit parallel get_ksm_page() */
2679        if (!page_ref_freeze(page, 1))
2680                return false;
2681
2682        page_move_anon_rmap(page, vma);
2683        page->index = linear_page_index(vma, address);
2684        page_ref_unfreeze(page, 1);
2685
2686        return true;
2687}
2688#ifdef CONFIG_MIGRATION
2689void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2690{
2691        struct stable_node *stable_node;
2692
2693        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2694        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2695        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2696
2697        stable_node = page_stable_node(newpage);
2698        if (stable_node) {
2699                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2700                stable_node->kpfn = page_to_pfn(newpage);
2701                /*
2702                 * newpage->mapping was set in advance; now we need smp_wmb()
2703                 * to make sure that the new stable_node->kpfn is visible
2704                 * to get_ksm_page() before it can see that oldpage->mapping
2705                 * has gone stale (or that PageSwapCache has been cleared).
2706                 */
2707                smp_wmb();
2708                set_page_stable_node(oldpage, NULL);
2709        }
2710}
2711#endif /* CONFIG_MIGRATION */
2712
2713#ifdef CONFIG_MEMORY_HOTREMOVE
2714static void wait_while_offlining(void)
2715{
2716        while (ksm_run & KSM_RUN_OFFLINE) {
2717                mutex_unlock(&ksm_thread_mutex);
2718                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2719                            TASK_UNINTERRUPTIBLE);
2720                mutex_lock(&ksm_thread_mutex);
2721        }
2722}
2723
2724static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2725                                         unsigned long start_pfn,
2726                                         unsigned long end_pfn)
2727{
2728        if (stable_node->kpfn >= start_pfn &&
2729            stable_node->kpfn < end_pfn) {
2730                /*
2731                 * Don't get_ksm_page, page has already gone:
2732                 * which is why we keep kpfn instead of page*
2733                 */
2734                remove_node_from_stable_tree(stable_node);
2735                return true;
2736        }
2737        return false;
2738}
2739
2740static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2741                                           unsigned long start_pfn,
2742                                           unsigned long end_pfn,
2743                                           struct rb_root *root)
2744{
2745        struct stable_node *dup;
2746        struct hlist_node *hlist_safe;
2747
2748        if (!is_stable_node_chain(stable_node)) {
2749                VM_BUG_ON(is_stable_node_dup(stable_node));
2750                return stable_node_dup_remove_range(stable_node, start_pfn,
2751                                                    end_pfn);
2752        }
2753
2754        hlist_for_each_entry_safe(dup, hlist_safe,
2755                                  &stable_node->hlist, hlist_dup) {
2756                VM_BUG_ON(!is_stable_node_dup(dup));
2757                stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2758        }
2759        if (hlist_empty(&stable_node->hlist)) {
2760                free_stable_node_chain(stable_node, root);
2761                return true; /* notify caller that tree was rebalanced */
2762        } else
2763                return false;
2764}
2765
2766static void ksm_check_stable_tree(unsigned long start_pfn,
2767                                  unsigned long end_pfn)
2768{
2769        struct stable_node *stable_node, *next;
2770        struct rb_node *node;
2771        int nid;
2772
2773        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2774                node = rb_first(root_stable_tree + nid);
2775                while (node) {
2776                        stable_node = rb_entry(node, struct stable_node, node);
2777                        if (stable_node_chain_remove_range(stable_node,
2778                                                           start_pfn, end_pfn,
2779                                                           root_stable_tree +
2780                                                           nid))
2781                                node = rb_first(root_stable_tree + nid);
2782                        else
2783                                node = rb_next(node);
2784                        cond_resched();
2785                }
2786        }
2787        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2788                if (stable_node->kpfn >= start_pfn &&
2789                    stable_node->kpfn < end_pfn)
2790                        remove_node_from_stable_tree(stable_node);
2791                cond_resched();
2792        }
2793}
2794
2795static int ksm_memory_callback(struct notifier_block *self,
2796                               unsigned long action, void *arg)
2797{
2798        struct memory_notify *mn = arg;
2799
2800        switch (action) {
2801        case MEM_GOING_OFFLINE:
2802                /*
2803                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2804                 * and remove_all_stable_nodes() while memory is going offline:
2805                 * it is unsafe for them to touch the stable tree at this time.
2806                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2807                 * which do not need the ksm_thread_mutex are all safe.
2808                 */
2809                mutex_lock(&ksm_thread_mutex);
2810                ksm_run |= KSM_RUN_OFFLINE;
2811                mutex_unlock(&ksm_thread_mutex);
2812                break;
2813
2814        case MEM_OFFLINE:
2815                /*
2816                 * Most of the work is done by page migration; but there might
2817                 * be a few stable_nodes left over, still pointing to struct
2818                 * pages which have been offlined: prune those from the tree,
2819                 * otherwise get_ksm_page() might later try to access a
2820                 * non-existent struct page.
2821                 */
2822                ksm_check_stable_tree(mn->start_pfn,
2823                                      mn->start_pfn + mn->nr_pages);
2824                fallthrough;
2825        case MEM_CANCEL_OFFLINE:
2826                mutex_lock(&ksm_thread_mutex);
2827                ksm_run &= ~KSM_RUN_OFFLINE;
2828                mutex_unlock(&ksm_thread_mutex);
2829
2830                smp_mb();       /* wake_up_bit advises this */
2831                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2832                break;
2833        }
2834        return NOTIFY_OK;
2835}
2836#else
2837static void wait_while_offlining(void)
2838{
2839}
2840#endif /* CONFIG_MEMORY_HOTREMOVE */
2841
2842#ifdef CONFIG_SYSFS
2843/*
2844 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2845 */
2846
2847#define KSM_ATTR_RO(_name) \
2848        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2849#define KSM_ATTR(_name) \
2850        static struct kobj_attribute _name##_attr = \
2851                __ATTR(_name, 0644, _name##_show, _name##_store)
2852
2853static ssize_t sleep_millisecs_show(struct kobject *kobj,
2854                                    struct kobj_attribute *attr, char *buf)
2855{
2856        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2857}
2858
2859static ssize_t sleep_millisecs_store(struct kobject *kobj,
2860                                     struct kobj_attribute *attr,
2861                                     const char *buf, size_t count)
2862{
2863        unsigned long msecs;
2864        int err;
2865
2866        err = kstrtoul(buf, 10, &msecs);
2867        if (err || msecs > UINT_MAX)
2868                return -EINVAL;
2869
2870        ksm_thread_sleep_millisecs = msecs;
2871        wake_up_interruptible(&ksm_iter_wait);
2872
2873        return count;
2874}
2875KSM_ATTR(sleep_millisecs);
2876
2877static ssize_t pages_to_scan_show(struct kobject *kobj,
2878                                  struct kobj_attribute *attr, char *buf)
2879{
2880        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2881}
2882
2883static ssize_t pages_to_scan_store(struct kobject *kobj,
2884                                   struct kobj_attribute *attr,
2885                                   const char *buf, size_t count)
2886{
2887        int err;
2888        unsigned long nr_pages;
2889
2890        err = kstrtoul(buf, 10, &nr_pages);
2891        if (err || nr_pages > UINT_MAX)
2892                return -EINVAL;
2893
2894        ksm_thread_pages_to_scan = nr_pages;
2895
2896        return count;
2897}
2898KSM_ATTR(pages_to_scan);
2899
2900static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2901                        char *buf)
2902{
2903        return sprintf(buf, "%lu\n", ksm_run);
2904}
2905
2906static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2907                         const char *buf, size_t count)
2908{
2909        int err;
2910        unsigned long flags;
2911
2912        err = kstrtoul(buf, 10, &flags);
2913        if (err || flags > UINT_MAX)
2914                return -EINVAL;
2915        if (flags > KSM_RUN_UNMERGE)
2916                return -EINVAL;
2917
2918        /*
2919         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2920         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2921         * breaking COW to free the pages_shared (but leaves mm_slots
2922         * on the list for when ksmd may be set running again).
2923         */
2924
2925        mutex_lock(&ksm_thread_mutex);
2926        wait_while_offlining();
2927        if (ksm_run != flags) {
2928                ksm_run = flags;
2929                if (flags & KSM_RUN_UNMERGE) {
2930                        set_current_oom_origin();
2931                        err = unmerge_and_remove_all_rmap_items();
2932                        clear_current_oom_origin();
2933                        if (err) {
2934                                ksm_run = KSM_RUN_STOP;
2935                                count = err;
2936                        }
2937                }
2938        }
2939        mutex_unlock(&ksm_thread_mutex);
2940
2941        if (flags & KSM_RUN_MERGE)
2942                wake_up_interruptible(&ksm_thread_wait);
2943
2944        return count;
2945}
2946KSM_ATTR(run);
2947
2948#ifdef CONFIG_NUMA
2949static ssize_t merge_across_nodes_show(struct kobject *kobj,
2950                                struct kobj_attribute *attr, char *buf)
2951{
2952        return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2953}
2954
2955static ssize_t merge_across_nodes_store(struct kobject *kobj,
2956                                   struct kobj_attribute *attr,
2957                                   const char *buf, size_t count)
2958{
2959        int err;
2960        unsigned long knob;
2961
2962        err = kstrtoul(buf, 10, &knob);
2963        if (err)
2964                return err;
2965        if (knob > 1)
2966                return -EINVAL;
2967
2968        mutex_lock(&ksm_thread_mutex);
2969        wait_while_offlining();
2970        if (ksm_merge_across_nodes != knob) {
2971                if (ksm_pages_shared || remove_all_stable_nodes())
2972                        err = -EBUSY;
2973                else if (root_stable_tree == one_stable_tree) {
2974                        struct rb_root *buf;
2975                        /*
2976                         * This is the first time that we switch away from the
2977                         * default of merging across nodes: must now allocate
2978                         * a buffer to hold as many roots as may be needed.
2979                         * Allocate stable and unstable together:
2980                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2981                         */
2982                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2983                                      GFP_KERNEL);
2984                        /* Let us assume that RB_ROOT is NULL is zero */
2985                        if (!buf)
2986                                err = -ENOMEM;
2987                        else {
2988                                root_stable_tree = buf;
2989                                root_unstable_tree = buf + nr_node_ids;
2990                                /* Stable tree is empty but not the unstable */
2991                                root_unstable_tree[0] = one_unstable_tree[0];
2992                        }
2993                }
2994                if (!err) {
2995                        ksm_merge_across_nodes = knob;
2996                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2997                }
2998        }
2999        mutex_unlock(&ksm_thread_mutex);
3000
3001        return err ? err : count;
3002}
3003KSM_ATTR(merge_across_nodes);
3004#endif
3005
3006static ssize_t use_zero_pages_show(struct kobject *kobj,
3007                                struct kobj_attribute *attr, char *buf)
3008{
3009        return sprintf(buf, "%u\n", ksm_use_zero_pages);
3010}
3011static ssize_t use_zero_pages_store(struct kobject *kobj,
3012                                   struct kobj_attribute *attr,
3013                                   const char *buf, size_t count)
3014{
3015        int err;
3016        bool value;
3017
3018        err = kstrtobool(buf, &value);
3019        if (err)
3020                return -EINVAL;
3021
3022        ksm_use_zero_pages = value;
3023
3024        return count;
3025}
3026KSM_ATTR(use_zero_pages);
3027
3028static ssize_t max_page_sharing_show(struct kobject *kobj,
3029                                     struct kobj_attribute *attr, char *buf)
3030{
3031        return sprintf(buf, "%u\n", ksm_max_page_sharing);
3032}
3033
3034static ssize_t max_page_sharing_store(struct kobject *kobj,
3035                                      struct kobj_attribute *attr,
3036                                      const char *buf, size_t count)
3037{
3038        int err;
3039        int knob;
3040
3041        err = kstrtoint(buf, 10, &knob);
3042        if (err)
3043                return err;
3044        /*
3045         * When a KSM page is created it is shared by 2 mappings. This
3046         * being a signed comparison, it implicitly verifies it's not
3047         * negative.
3048         */
3049        if (knob < 2)
3050                return -EINVAL;
3051
3052        if (READ_ONCE(ksm_max_page_sharing) == knob)
3053                return count;
3054
3055        mutex_lock(&ksm_thread_mutex);
3056        wait_while_offlining();
3057        if (ksm_max_page_sharing != knob) {
3058                if (ksm_pages_shared || remove_all_stable_nodes())
3059                        err = -EBUSY;
3060                else
3061                        ksm_max_page_sharing = knob;
3062        }
3063        mutex_unlock(&ksm_thread_mutex);
3064
3065        return err ? err : count;
3066}
3067KSM_ATTR(max_page_sharing);
3068
3069static ssize_t pages_shared_show(struct kobject *kobj,
3070                                 struct kobj_attribute *attr, char *buf)
3071{
3072        return sprintf(buf, "%lu\n", ksm_pages_shared);
3073}
3074KSM_ATTR_RO(pages_shared);
3075
3076static ssize_t pages_sharing_show(struct kobject *kobj,
3077                                  struct kobj_attribute *attr, char *buf)
3078{
3079        return sprintf(buf, "%lu\n", ksm_pages_sharing);
3080}
3081KSM_ATTR_RO(pages_sharing);
3082
3083static ssize_t pages_unshared_show(struct kobject *kobj,
3084                                   struct kobj_attribute *attr, char *buf)
3085{
3086        return sprintf(buf, "%lu\n", ksm_pages_unshared);
3087}
3088KSM_ATTR_RO(pages_unshared);
3089
3090static ssize_t pages_volatile_show(struct kobject *kobj,
3091                                   struct kobj_attribute *attr, char *buf)
3092{
3093        long ksm_pages_volatile;
3094
3095        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3096                                - ksm_pages_sharing - ksm_pages_unshared;
3097        /*
3098         * It was not worth any locking to calculate that statistic,
3099         * but it might therefore sometimes be negative: conceal that.
3100         */
3101        if (ksm_pages_volatile < 0)
3102                ksm_pages_volatile = 0;
3103        return sprintf(buf, "%ld\n", ksm_pages_volatile);
3104}
3105KSM_ATTR_RO(pages_volatile);
3106
3107static ssize_t stable_node_dups_show(struct kobject *kobj,
3108                                     struct kobj_attribute *attr, char *buf)
3109{
3110        return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3111}
3112KSM_ATTR_RO(stable_node_dups);
3113
3114static ssize_t stable_node_chains_show(struct kobject *kobj,
3115                                       struct kobj_attribute *attr, char *buf)
3116{
3117        return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3118}
3119KSM_ATTR_RO(stable_node_chains);
3120
3121static ssize_t
3122stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3123                                        struct kobj_attribute *attr,
3124                                        char *buf)
3125{
3126        return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3127}
3128
3129static ssize_t
3130stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3131                                         struct kobj_attribute *attr,
3132                                         const char *buf, size_t count)
3133{
3134        unsigned long msecs;
3135        int err;
3136
3137        err = kstrtoul(buf, 10, &msecs);
3138        if (err || msecs > UINT_MAX)
3139                return -EINVAL;
3140
3141        ksm_stable_node_chains_prune_millisecs = msecs;
3142
3143        return count;
3144}
3145KSM_ATTR(stable_node_chains_prune_millisecs);
3146
3147static ssize_t full_scans_show(struct kobject *kobj,
3148                               struct kobj_attribute *attr, char *buf)
3149{
3150        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3151}
3152KSM_ATTR_RO(full_scans);
3153
3154static struct attribute *ksm_attrs[] = {
3155        &sleep_millisecs_attr.attr,
3156        &pages_to_scan_attr.attr,
3157        &run_attr.attr,
3158        &pages_shared_attr.attr,
3159        &pages_sharing_attr.attr,
3160        &pages_unshared_attr.attr,
3161        &pages_volatile_attr.attr,
3162        &full_scans_attr.attr,
3163#ifdef CONFIG_NUMA
3164        &merge_across_nodes_attr.attr,
3165#endif
3166        &max_page_sharing_attr.attr,
3167        &stable_node_chains_attr.attr,
3168        &stable_node_dups_attr.attr,
3169        &stable_node_chains_prune_millisecs_attr.attr,
3170        &use_zero_pages_attr.attr,
3171        NULL,
3172};
3173
3174static const struct attribute_group ksm_attr_group = {
3175        .attrs = ksm_attrs,
3176        .name = "ksm",
3177};
3178#endif /* CONFIG_SYSFS */
3179
3180static int __init ksm_init(void)
3181{
3182        struct task_struct *ksm_thread;
3183        int err;
3184
3185        /* The correct value depends on page size and endianness */
3186        zero_checksum = calc_checksum(ZERO_PAGE(0));
3187        /* Default to false for backwards compatibility */
3188        ksm_use_zero_pages = false;
3189
3190        err = ksm_slab_init();
3191        if (err)
3192                goto out;
3193
3194        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3195        if (IS_ERR(ksm_thread)) {
3196                pr_err("ksm: creating kthread failed\n");
3197                err = PTR_ERR(ksm_thread);
3198                goto out_free;
3199        }
3200
3201#ifdef CONFIG_SYSFS
3202        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3203        if (err) {
3204                pr_err("ksm: register sysfs failed\n");
3205                kthread_stop(ksm_thread);
3206                goto out_free;
3207        }
3208#else
3209        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3210
3211#endif /* CONFIG_SYSFS */
3212
3213#ifdef CONFIG_MEMORY_HOTREMOVE
3214        /* There is no significance to this priority 100 */
3215        hotplug_memory_notifier(ksm_memory_callback, 100);
3216#endif
3217        return 0;
3218
3219out_free:
3220        ksm_slab_free();
3221out:
3222        return err;
3223}
3224subsys_initcall(ksm_init);
3225