linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pagewalk.h>
  42#include <linux/pfn_t.h>
  43#include <linux/memremap.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/balloon_compaction.h>
  46#include <linux/mmu_notifier.h>
  47#include <linux/page_idle.h>
  48#include <linux/page_owner.h>
  49#include <linux/sched/mm.h>
  50#include <linux/ptrace.h>
  51#include <linux/oom.h>
  52
  53#include <asm/tlbflush.h>
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/migrate.h>
  57
  58#include "internal.h"
  59
  60/*
  61 * migrate_prep() needs to be called before we start compiling a list of pages
  62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  63 * undesirable, use migrate_prep_local()
  64 */
  65int migrate_prep(void)
  66{
  67        /*
  68         * Clear the LRU lists so pages can be isolated.
  69         * Note that pages may be moved off the LRU after we have
  70         * drained them. Those pages will fail to migrate like other
  71         * pages that may be busy.
  72         */
  73        lru_add_drain_all();
  74
  75        return 0;
  76}
  77
  78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  79int migrate_prep_local(void)
  80{
  81        lru_add_drain();
  82
  83        return 0;
  84}
  85
  86int isolate_movable_page(struct page *page, isolate_mode_t mode)
  87{
  88        struct address_space *mapping;
  89
  90        /*
  91         * Avoid burning cycles with pages that are yet under __free_pages(),
  92         * or just got freed under us.
  93         *
  94         * In case we 'win' a race for a movable page being freed under us and
  95         * raise its refcount preventing __free_pages() from doing its job
  96         * the put_page() at the end of this block will take care of
  97         * release this page, thus avoiding a nasty leakage.
  98         */
  99        if (unlikely(!get_page_unless_zero(page)))
 100                goto out;
 101
 102        /*
 103         * Check PageMovable before holding a PG_lock because page's owner
 104         * assumes anybody doesn't touch PG_lock of newly allocated page
 105         * so unconditionally grabbing the lock ruins page's owner side.
 106         */
 107        if (unlikely(!__PageMovable(page)))
 108                goto out_putpage;
 109        /*
 110         * As movable pages are not isolated from LRU lists, concurrent
 111         * compaction threads can race against page migration functions
 112         * as well as race against the releasing a page.
 113         *
 114         * In order to avoid having an already isolated movable page
 115         * being (wrongly) re-isolated while it is under migration,
 116         * or to avoid attempting to isolate pages being released,
 117         * lets be sure we have the page lock
 118         * before proceeding with the movable page isolation steps.
 119         */
 120        if (unlikely(!trylock_page(page)))
 121                goto out_putpage;
 122
 123        if (!PageMovable(page) || PageIsolated(page))
 124                goto out_no_isolated;
 125
 126        mapping = page_mapping(page);
 127        VM_BUG_ON_PAGE(!mapping, page);
 128
 129        if (!mapping->a_ops->isolate_page(page, mode))
 130                goto out_no_isolated;
 131
 132        /* Driver shouldn't use PG_isolated bit of page->flags */
 133        WARN_ON_ONCE(PageIsolated(page));
 134        __SetPageIsolated(page);
 135        unlock_page(page);
 136
 137        return 0;
 138
 139out_no_isolated:
 140        unlock_page(page);
 141out_putpage:
 142        put_page(page);
 143out:
 144        return -EBUSY;
 145}
 146
 147/* It should be called on page which is PG_movable */
 148void putback_movable_page(struct page *page)
 149{
 150        struct address_space *mapping;
 151
 152        VM_BUG_ON_PAGE(!PageLocked(page), page);
 153        VM_BUG_ON_PAGE(!PageMovable(page), page);
 154        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 155
 156        mapping = page_mapping(page);
 157        mapping->a_ops->putback_page(page);
 158        __ClearPageIsolated(page);
 159}
 160
 161/*
 162 * Put previously isolated pages back onto the appropriate lists
 163 * from where they were once taken off for compaction/migration.
 164 *
 165 * This function shall be used whenever the isolated pageset has been
 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 167 * and isolate_huge_page().
 168 */
 169void putback_movable_pages(struct list_head *l)
 170{
 171        struct page *page;
 172        struct page *page2;
 173
 174        list_for_each_entry_safe(page, page2, l, lru) {
 175                if (unlikely(PageHuge(page))) {
 176                        putback_active_hugepage(page);
 177                        continue;
 178                }
 179                list_del(&page->lru);
 180                /*
 181                 * We isolated non-lru movable page so here we can use
 182                 * __PageMovable because LRU page's mapping cannot have
 183                 * PAGE_MAPPING_MOVABLE.
 184                 */
 185                if (unlikely(__PageMovable(page))) {
 186                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 187                        lock_page(page);
 188                        if (PageMovable(page))
 189                                putback_movable_page(page);
 190                        else
 191                                __ClearPageIsolated(page);
 192                        unlock_page(page);
 193                        put_page(page);
 194                } else {
 195                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 196                                        page_is_file_lru(page), -hpage_nr_pages(page));
 197                        putback_lru_page(page);
 198                }
 199        }
 200}
 201
 202/*
 203 * Restore a potential migration pte to a working pte entry
 204 */
 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 206                                 unsigned long addr, void *old)
 207{
 208        struct page_vma_mapped_walk pvmw = {
 209                .page = old,
 210                .vma = vma,
 211                .address = addr,
 212                .flags = PVMW_SYNC | PVMW_MIGRATION,
 213        };
 214        struct page *new;
 215        pte_t pte;
 216        swp_entry_t entry;
 217
 218        VM_BUG_ON_PAGE(PageTail(page), page);
 219        while (page_vma_mapped_walk(&pvmw)) {
 220                if (PageKsm(page))
 221                        new = page;
 222                else
 223                        new = page - pvmw.page->index +
 224                                linear_page_index(vma, pvmw.address);
 225
 226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 227                /* PMD-mapped THP migration entry */
 228                if (!pvmw.pte) {
 229                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 230                        remove_migration_pmd(&pvmw, new);
 231                        continue;
 232                }
 233#endif
 234
 235                get_page(new);
 236                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 237                if (pte_swp_soft_dirty(*pvmw.pte))
 238                        pte = pte_mksoft_dirty(pte);
 239
 240                /*
 241                 * Recheck VMA as permissions can change since migration started
 242                 */
 243                entry = pte_to_swp_entry(*pvmw.pte);
 244                if (is_write_migration_entry(entry))
 245                        pte = maybe_mkwrite(pte, vma);
 246                else if (pte_swp_uffd_wp(*pvmw.pte))
 247                        pte = pte_mkuffd_wp(pte);
 248
 249                if (unlikely(is_zone_device_page(new))) {
 250                        if (is_device_private_page(new)) {
 251                                entry = make_device_private_entry(new, pte_write(pte));
 252                                pte = swp_entry_to_pte(entry);
 253                                if (pte_swp_uffd_wp(*pvmw.pte))
 254                                        pte = pte_mkuffd_wp(pte);
 255                        }
 256                }
 257
 258#ifdef CONFIG_HUGETLB_PAGE
 259                if (PageHuge(new)) {
 260                        pte = pte_mkhuge(pte);
 261                        pte = arch_make_huge_pte(pte, vma, new, 0);
 262                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 263                        if (PageAnon(new))
 264                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 265                        else
 266                                page_dup_rmap(new, true);
 267                } else
 268#endif
 269                {
 270                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 271
 272                        if (PageAnon(new))
 273                                page_add_anon_rmap(new, vma, pvmw.address, false);
 274                        else
 275                                page_add_file_rmap(new, false);
 276                }
 277                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 278                        mlock_vma_page(new);
 279
 280                if (PageTransHuge(page) && PageMlocked(page))
 281                        clear_page_mlock(page);
 282
 283                /* No need to invalidate - it was non-present before */
 284                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 285        }
 286
 287        return true;
 288}
 289
 290/*
 291 * Get rid of all migration entries and replace them by
 292 * references to the indicated page.
 293 */
 294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 295{
 296        struct rmap_walk_control rwc = {
 297                .rmap_one = remove_migration_pte,
 298                .arg = old,
 299        };
 300
 301        if (locked)
 302                rmap_walk_locked(new, &rwc);
 303        else
 304                rmap_walk(new, &rwc);
 305}
 306
 307/*
 308 * Something used the pte of a page under migration. We need to
 309 * get to the page and wait until migration is finished.
 310 * When we return from this function the fault will be retried.
 311 */
 312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 313                                spinlock_t *ptl)
 314{
 315        pte_t pte;
 316        swp_entry_t entry;
 317        struct page *page;
 318
 319        spin_lock(ptl);
 320        pte = *ptep;
 321        if (!is_swap_pte(pte))
 322                goto out;
 323
 324        entry = pte_to_swp_entry(pte);
 325        if (!is_migration_entry(entry))
 326                goto out;
 327
 328        page = migration_entry_to_page(entry);
 329
 330        /*
 331         * Once page cache replacement of page migration started, page_count
 332         * is zero; but we must not call put_and_wait_on_page_locked() without
 333         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 334         */
 335        if (!get_page_unless_zero(page))
 336                goto out;
 337        pte_unmap_unlock(ptep, ptl);
 338        put_and_wait_on_page_locked(page);
 339        return;
 340out:
 341        pte_unmap_unlock(ptep, ptl);
 342}
 343
 344void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 345                                unsigned long address)
 346{
 347        spinlock_t *ptl = pte_lockptr(mm, pmd);
 348        pte_t *ptep = pte_offset_map(pmd, address);
 349        __migration_entry_wait(mm, ptep, ptl);
 350}
 351
 352void migration_entry_wait_huge(struct vm_area_struct *vma,
 353                struct mm_struct *mm, pte_t *pte)
 354{
 355        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 356        __migration_entry_wait(mm, pte, ptl);
 357}
 358
 359#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 360void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 361{
 362        spinlock_t *ptl;
 363        struct page *page;
 364
 365        ptl = pmd_lock(mm, pmd);
 366        if (!is_pmd_migration_entry(*pmd))
 367                goto unlock;
 368        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 369        if (!get_page_unless_zero(page))
 370                goto unlock;
 371        spin_unlock(ptl);
 372        put_and_wait_on_page_locked(page);
 373        return;
 374unlock:
 375        spin_unlock(ptl);
 376}
 377#endif
 378
 379static int expected_page_refs(struct address_space *mapping, struct page *page)
 380{
 381        int expected_count = 1;
 382
 383        /*
 384         * Device public or private pages have an extra refcount as they are
 385         * ZONE_DEVICE pages.
 386         */
 387        expected_count += is_device_private_page(page);
 388        if (mapping)
 389                expected_count += hpage_nr_pages(page) + page_has_private(page);
 390
 391        return expected_count;
 392}
 393
 394/*
 395 * Replace the page in the mapping.
 396 *
 397 * The number of remaining references must be:
 398 * 1 for anonymous pages without a mapping
 399 * 2 for pages with a mapping
 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 401 */
 402int migrate_page_move_mapping(struct address_space *mapping,
 403                struct page *newpage, struct page *page, int extra_count)
 404{
 405        XA_STATE(xas, &mapping->i_pages, page_index(page));
 406        struct zone *oldzone, *newzone;
 407        int dirty;
 408        int expected_count = expected_page_refs(mapping, page) + extra_count;
 409
 410        if (!mapping) {
 411                /* Anonymous page without mapping */
 412                if (page_count(page) != expected_count)
 413                        return -EAGAIN;
 414
 415                /* No turning back from here */
 416                newpage->index = page->index;
 417                newpage->mapping = page->mapping;
 418                if (PageSwapBacked(page))
 419                        __SetPageSwapBacked(newpage);
 420
 421                return MIGRATEPAGE_SUCCESS;
 422        }
 423
 424        oldzone = page_zone(page);
 425        newzone = page_zone(newpage);
 426
 427        xas_lock_irq(&xas);
 428        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 429                xas_unlock_irq(&xas);
 430                return -EAGAIN;
 431        }
 432
 433        if (!page_ref_freeze(page, expected_count)) {
 434                xas_unlock_irq(&xas);
 435                return -EAGAIN;
 436        }
 437
 438        /*
 439         * Now we know that no one else is looking at the page:
 440         * no turning back from here.
 441         */
 442        newpage->index = page->index;
 443        newpage->mapping = page->mapping;
 444        page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 445        if (PageSwapBacked(page)) {
 446                __SetPageSwapBacked(newpage);
 447                if (PageSwapCache(page)) {
 448                        SetPageSwapCache(newpage);
 449                        set_page_private(newpage, page_private(page));
 450                }
 451        } else {
 452                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 453        }
 454
 455        /* Move dirty while page refs frozen and newpage not yet exposed */
 456        dirty = PageDirty(page);
 457        if (dirty) {
 458                ClearPageDirty(page);
 459                SetPageDirty(newpage);
 460        }
 461
 462        xas_store(&xas, newpage);
 463        if (PageTransHuge(page)) {
 464                int i;
 465
 466                for (i = 1; i < HPAGE_PMD_NR; i++) {
 467                        xas_next(&xas);
 468                        xas_store(&xas, newpage);
 469                }
 470        }
 471
 472        /*
 473         * Drop cache reference from old page by unfreezing
 474         * to one less reference.
 475         * We know this isn't the last reference.
 476         */
 477        page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 478
 479        xas_unlock(&xas);
 480        /* Leave irq disabled to prevent preemption while updating stats */
 481
 482        /*
 483         * If moved to a different zone then also account
 484         * the page for that zone. Other VM counters will be
 485         * taken care of when we establish references to the
 486         * new page and drop references to the old page.
 487         *
 488         * Note that anonymous pages are accounted for
 489         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 490         * are mapped to swap space.
 491         */
 492        if (newzone != oldzone) {
 493                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 494                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 495                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 496                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 497                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 498                }
 499                if (dirty && mapping_cap_account_dirty(mapping)) {
 500                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 501                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 502                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 503                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 504                }
 505        }
 506        local_irq_enable();
 507
 508        return MIGRATEPAGE_SUCCESS;
 509}
 510EXPORT_SYMBOL(migrate_page_move_mapping);
 511
 512/*
 513 * The expected number of remaining references is the same as that
 514 * of migrate_page_move_mapping().
 515 */
 516int migrate_huge_page_move_mapping(struct address_space *mapping,
 517                                   struct page *newpage, struct page *page)
 518{
 519        XA_STATE(xas, &mapping->i_pages, page_index(page));
 520        int expected_count;
 521
 522        xas_lock_irq(&xas);
 523        expected_count = 2 + page_has_private(page);
 524        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 525                xas_unlock_irq(&xas);
 526                return -EAGAIN;
 527        }
 528
 529        if (!page_ref_freeze(page, expected_count)) {
 530                xas_unlock_irq(&xas);
 531                return -EAGAIN;
 532        }
 533
 534        newpage->index = page->index;
 535        newpage->mapping = page->mapping;
 536
 537        get_page(newpage);
 538
 539        xas_store(&xas, newpage);
 540
 541        page_ref_unfreeze(page, expected_count - 1);
 542
 543        xas_unlock_irq(&xas);
 544
 545        return MIGRATEPAGE_SUCCESS;
 546}
 547
 548/*
 549 * Gigantic pages are so large that we do not guarantee that page++ pointer
 550 * arithmetic will work across the entire page.  We need something more
 551 * specialized.
 552 */
 553static void __copy_gigantic_page(struct page *dst, struct page *src,
 554                                int nr_pages)
 555{
 556        int i;
 557        struct page *dst_base = dst;
 558        struct page *src_base = src;
 559
 560        for (i = 0; i < nr_pages; ) {
 561                cond_resched();
 562                copy_highpage(dst, src);
 563
 564                i++;
 565                dst = mem_map_next(dst, dst_base, i);
 566                src = mem_map_next(src, src_base, i);
 567        }
 568}
 569
 570static void copy_huge_page(struct page *dst, struct page *src)
 571{
 572        int i;
 573        int nr_pages;
 574
 575        if (PageHuge(src)) {
 576                /* hugetlbfs page */
 577                struct hstate *h = page_hstate(src);
 578                nr_pages = pages_per_huge_page(h);
 579
 580                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 581                        __copy_gigantic_page(dst, src, nr_pages);
 582                        return;
 583                }
 584        } else {
 585                /* thp page */
 586                BUG_ON(!PageTransHuge(src));
 587                nr_pages = hpage_nr_pages(src);
 588        }
 589
 590        for (i = 0; i < nr_pages; i++) {
 591                cond_resched();
 592                copy_highpage(dst + i, src + i);
 593        }
 594}
 595
 596/*
 597 * Copy the page to its new location
 598 */
 599void migrate_page_states(struct page *newpage, struct page *page)
 600{
 601        int cpupid;
 602
 603        if (PageError(page))
 604                SetPageError(newpage);
 605        if (PageReferenced(page))
 606                SetPageReferenced(newpage);
 607        if (PageUptodate(page))
 608                SetPageUptodate(newpage);
 609        if (TestClearPageActive(page)) {
 610                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 611                SetPageActive(newpage);
 612        } else if (TestClearPageUnevictable(page))
 613                SetPageUnevictable(newpage);
 614        if (PageWorkingset(page))
 615                SetPageWorkingset(newpage);
 616        if (PageChecked(page))
 617                SetPageChecked(newpage);
 618        if (PageMappedToDisk(page))
 619                SetPageMappedToDisk(newpage);
 620
 621        /* Move dirty on pages not done by migrate_page_move_mapping() */
 622        if (PageDirty(page))
 623                SetPageDirty(newpage);
 624
 625        if (page_is_young(page))
 626                set_page_young(newpage);
 627        if (page_is_idle(page))
 628                set_page_idle(newpage);
 629
 630        /*
 631         * Copy NUMA information to the new page, to prevent over-eager
 632         * future migrations of this same page.
 633         */
 634        cpupid = page_cpupid_xchg_last(page, -1);
 635        page_cpupid_xchg_last(newpage, cpupid);
 636
 637        ksm_migrate_page(newpage, page);
 638        /*
 639         * Please do not reorder this without considering how mm/ksm.c's
 640         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 641         */
 642        if (PageSwapCache(page))
 643                ClearPageSwapCache(page);
 644        ClearPagePrivate(page);
 645        set_page_private(page, 0);
 646
 647        /*
 648         * If any waiters have accumulated on the new page then
 649         * wake them up.
 650         */
 651        if (PageWriteback(newpage))
 652                end_page_writeback(newpage);
 653
 654        /*
 655         * PG_readahead shares the same bit with PG_reclaim.  The above
 656         * end_page_writeback() may clear PG_readahead mistakenly, so set the
 657         * bit after that.
 658         */
 659        if (PageReadahead(page))
 660                SetPageReadahead(newpage);
 661
 662        copy_page_owner(page, newpage);
 663
 664        mem_cgroup_migrate(page, newpage);
 665}
 666EXPORT_SYMBOL(migrate_page_states);
 667
 668void migrate_page_copy(struct page *newpage, struct page *page)
 669{
 670        if (PageHuge(page) || PageTransHuge(page))
 671                copy_huge_page(newpage, page);
 672        else
 673                copy_highpage(newpage, page);
 674
 675        migrate_page_states(newpage, page);
 676}
 677EXPORT_SYMBOL(migrate_page_copy);
 678
 679/************************************************************
 680 *                    Migration functions
 681 ***********************************************************/
 682
 683/*
 684 * Common logic to directly migrate a single LRU page suitable for
 685 * pages that do not use PagePrivate/PagePrivate2.
 686 *
 687 * Pages are locked upon entry and exit.
 688 */
 689int migrate_page(struct address_space *mapping,
 690                struct page *newpage, struct page *page,
 691                enum migrate_mode mode)
 692{
 693        int rc;
 694
 695        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 696
 697        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 698
 699        if (rc != MIGRATEPAGE_SUCCESS)
 700                return rc;
 701
 702        if (mode != MIGRATE_SYNC_NO_COPY)
 703                migrate_page_copy(newpage, page);
 704        else
 705                migrate_page_states(newpage, page);
 706        return MIGRATEPAGE_SUCCESS;
 707}
 708EXPORT_SYMBOL(migrate_page);
 709
 710#ifdef CONFIG_BLOCK
 711/* Returns true if all buffers are successfully locked */
 712static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 713                                                        enum migrate_mode mode)
 714{
 715        struct buffer_head *bh = head;
 716
 717        /* Simple case, sync compaction */
 718        if (mode != MIGRATE_ASYNC) {
 719                do {
 720                        lock_buffer(bh);
 721                        bh = bh->b_this_page;
 722
 723                } while (bh != head);
 724
 725                return true;
 726        }
 727
 728        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 729        do {
 730                if (!trylock_buffer(bh)) {
 731                        /*
 732                         * We failed to lock the buffer and cannot stall in
 733                         * async migration. Release the taken locks
 734                         */
 735                        struct buffer_head *failed_bh = bh;
 736                        bh = head;
 737                        while (bh != failed_bh) {
 738                                unlock_buffer(bh);
 739                                bh = bh->b_this_page;
 740                        }
 741                        return false;
 742                }
 743
 744                bh = bh->b_this_page;
 745        } while (bh != head);
 746        return true;
 747}
 748
 749static int __buffer_migrate_page(struct address_space *mapping,
 750                struct page *newpage, struct page *page, enum migrate_mode mode,
 751                bool check_refs)
 752{
 753        struct buffer_head *bh, *head;
 754        int rc;
 755        int expected_count;
 756
 757        if (!page_has_buffers(page))
 758                return migrate_page(mapping, newpage, page, mode);
 759
 760        /* Check whether page does not have extra refs before we do more work */
 761        expected_count = expected_page_refs(mapping, page);
 762        if (page_count(page) != expected_count)
 763                return -EAGAIN;
 764
 765        head = page_buffers(page);
 766        if (!buffer_migrate_lock_buffers(head, mode))
 767                return -EAGAIN;
 768
 769        if (check_refs) {
 770                bool busy;
 771                bool invalidated = false;
 772
 773recheck_buffers:
 774                busy = false;
 775                spin_lock(&mapping->private_lock);
 776                bh = head;
 777                do {
 778                        if (atomic_read(&bh->b_count)) {
 779                                busy = true;
 780                                break;
 781                        }
 782                        bh = bh->b_this_page;
 783                } while (bh != head);
 784                if (busy) {
 785                        if (invalidated) {
 786                                rc = -EAGAIN;
 787                                goto unlock_buffers;
 788                        }
 789                        spin_unlock(&mapping->private_lock);
 790                        invalidate_bh_lrus();
 791                        invalidated = true;
 792                        goto recheck_buffers;
 793                }
 794        }
 795
 796        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 797        if (rc != MIGRATEPAGE_SUCCESS)
 798                goto unlock_buffers;
 799
 800        ClearPagePrivate(page);
 801        set_page_private(newpage, page_private(page));
 802        set_page_private(page, 0);
 803        put_page(page);
 804        get_page(newpage);
 805
 806        bh = head;
 807        do {
 808                set_bh_page(bh, newpage, bh_offset(bh));
 809                bh = bh->b_this_page;
 810
 811        } while (bh != head);
 812
 813        SetPagePrivate(newpage);
 814
 815        if (mode != MIGRATE_SYNC_NO_COPY)
 816                migrate_page_copy(newpage, page);
 817        else
 818                migrate_page_states(newpage, page);
 819
 820        rc = MIGRATEPAGE_SUCCESS;
 821unlock_buffers:
 822        if (check_refs)
 823                spin_unlock(&mapping->private_lock);
 824        bh = head;
 825        do {
 826                unlock_buffer(bh);
 827                bh = bh->b_this_page;
 828
 829        } while (bh != head);
 830
 831        return rc;
 832}
 833
 834/*
 835 * Migration function for pages with buffers. This function can only be used
 836 * if the underlying filesystem guarantees that no other references to "page"
 837 * exist. For example attached buffer heads are accessed only under page lock.
 838 */
 839int buffer_migrate_page(struct address_space *mapping,
 840                struct page *newpage, struct page *page, enum migrate_mode mode)
 841{
 842        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 843}
 844EXPORT_SYMBOL(buffer_migrate_page);
 845
 846/*
 847 * Same as above except that this variant is more careful and checks that there
 848 * are also no buffer head references. This function is the right one for
 849 * mappings where buffer heads are directly looked up and referenced (such as
 850 * block device mappings).
 851 */
 852int buffer_migrate_page_norefs(struct address_space *mapping,
 853                struct page *newpage, struct page *page, enum migrate_mode mode)
 854{
 855        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 856}
 857#endif
 858
 859/*
 860 * Writeback a page to clean the dirty state
 861 */
 862static int writeout(struct address_space *mapping, struct page *page)
 863{
 864        struct writeback_control wbc = {
 865                .sync_mode = WB_SYNC_NONE,
 866                .nr_to_write = 1,
 867                .range_start = 0,
 868                .range_end = LLONG_MAX,
 869                .for_reclaim = 1
 870        };
 871        int rc;
 872
 873        if (!mapping->a_ops->writepage)
 874                /* No write method for the address space */
 875                return -EINVAL;
 876
 877        if (!clear_page_dirty_for_io(page))
 878                /* Someone else already triggered a write */
 879                return -EAGAIN;
 880
 881        /*
 882         * A dirty page may imply that the underlying filesystem has
 883         * the page on some queue. So the page must be clean for
 884         * migration. Writeout may mean we loose the lock and the
 885         * page state is no longer what we checked for earlier.
 886         * At this point we know that the migration attempt cannot
 887         * be successful.
 888         */
 889        remove_migration_ptes(page, page, false);
 890
 891        rc = mapping->a_ops->writepage(page, &wbc);
 892
 893        if (rc != AOP_WRITEPAGE_ACTIVATE)
 894                /* unlocked. Relock */
 895                lock_page(page);
 896
 897        return (rc < 0) ? -EIO : -EAGAIN;
 898}
 899
 900/*
 901 * Default handling if a filesystem does not provide a migration function.
 902 */
 903static int fallback_migrate_page(struct address_space *mapping,
 904        struct page *newpage, struct page *page, enum migrate_mode mode)
 905{
 906        if (PageDirty(page)) {
 907                /* Only writeback pages in full synchronous migration */
 908                switch (mode) {
 909                case MIGRATE_SYNC:
 910                case MIGRATE_SYNC_NO_COPY:
 911                        break;
 912                default:
 913                        return -EBUSY;
 914                }
 915                return writeout(mapping, page);
 916        }
 917
 918        /*
 919         * Buffers may be managed in a filesystem specific way.
 920         * We must have no buffers or drop them.
 921         */
 922        if (page_has_private(page) &&
 923            !try_to_release_page(page, GFP_KERNEL))
 924                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 925
 926        return migrate_page(mapping, newpage, page, mode);
 927}
 928
 929/*
 930 * Move a page to a newly allocated page
 931 * The page is locked and all ptes have been successfully removed.
 932 *
 933 * The new page will have replaced the old page if this function
 934 * is successful.
 935 *
 936 * Return value:
 937 *   < 0 - error code
 938 *  MIGRATEPAGE_SUCCESS - success
 939 */
 940static int move_to_new_page(struct page *newpage, struct page *page,
 941                                enum migrate_mode mode)
 942{
 943        struct address_space *mapping;
 944        int rc = -EAGAIN;
 945        bool is_lru = !__PageMovable(page);
 946
 947        VM_BUG_ON_PAGE(!PageLocked(page), page);
 948        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 949
 950        mapping = page_mapping(page);
 951
 952        if (likely(is_lru)) {
 953                if (!mapping)
 954                        rc = migrate_page(mapping, newpage, page, mode);
 955                else if (mapping->a_ops->migratepage)
 956                        /*
 957                         * Most pages have a mapping and most filesystems
 958                         * provide a migratepage callback. Anonymous pages
 959                         * are part of swap space which also has its own
 960                         * migratepage callback. This is the most common path
 961                         * for page migration.
 962                         */
 963                        rc = mapping->a_ops->migratepage(mapping, newpage,
 964                                                        page, mode);
 965                else
 966                        rc = fallback_migrate_page(mapping, newpage,
 967                                                        page, mode);
 968        } else {
 969                /*
 970                 * In case of non-lru page, it could be released after
 971                 * isolation step. In that case, we shouldn't try migration.
 972                 */
 973                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 974                if (!PageMovable(page)) {
 975                        rc = MIGRATEPAGE_SUCCESS;
 976                        __ClearPageIsolated(page);
 977                        goto out;
 978                }
 979
 980                rc = mapping->a_ops->migratepage(mapping, newpage,
 981                                                page, mode);
 982                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 983                        !PageIsolated(page));
 984        }
 985
 986        /*
 987         * When successful, old pagecache page->mapping must be cleared before
 988         * page is freed; but stats require that PageAnon be left as PageAnon.
 989         */
 990        if (rc == MIGRATEPAGE_SUCCESS) {
 991                if (__PageMovable(page)) {
 992                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 993
 994                        /*
 995                         * We clear PG_movable under page_lock so any compactor
 996                         * cannot try to migrate this page.
 997                         */
 998                        __ClearPageIsolated(page);
 999                }
1000
1001                /*
1002                 * Anonymous and movable page->mapping will be cleared by
1003                 * free_pages_prepare so don't reset it here for keeping
1004                 * the type to work PageAnon, for example.
1005                 */
1006                if (!PageMappingFlags(page))
1007                        page->mapping = NULL;
1008
1009                if (likely(!is_zone_device_page(newpage)))
1010                        flush_dcache_page(newpage);
1011
1012        }
1013out:
1014        return rc;
1015}
1016
1017static int __unmap_and_move(struct page *page, struct page *newpage,
1018                                int force, enum migrate_mode mode)
1019{
1020        int rc = -EAGAIN;
1021        int page_was_mapped = 0;
1022        struct anon_vma *anon_vma = NULL;
1023        bool is_lru = !__PageMovable(page);
1024
1025        if (!trylock_page(page)) {
1026                if (!force || mode == MIGRATE_ASYNC)
1027                        goto out;
1028
1029                /*
1030                 * It's not safe for direct compaction to call lock_page.
1031                 * For example, during page readahead pages are added locked
1032                 * to the LRU. Later, when the IO completes the pages are
1033                 * marked uptodate and unlocked. However, the queueing
1034                 * could be merging multiple pages for one bio (e.g.
1035                 * mpage_readpages). If an allocation happens for the
1036                 * second or third page, the process can end up locking
1037                 * the same page twice and deadlocking. Rather than
1038                 * trying to be clever about what pages can be locked,
1039                 * avoid the use of lock_page for direct compaction
1040                 * altogether.
1041                 */
1042                if (current->flags & PF_MEMALLOC)
1043                        goto out;
1044
1045                lock_page(page);
1046        }
1047
1048        if (PageWriteback(page)) {
1049                /*
1050                 * Only in the case of a full synchronous migration is it
1051                 * necessary to wait for PageWriteback. In the async case,
1052                 * the retry loop is too short and in the sync-light case,
1053                 * the overhead of stalling is too much
1054                 */
1055                switch (mode) {
1056                case MIGRATE_SYNC:
1057                case MIGRATE_SYNC_NO_COPY:
1058                        break;
1059                default:
1060                        rc = -EBUSY;
1061                        goto out_unlock;
1062                }
1063                if (!force)
1064                        goto out_unlock;
1065                wait_on_page_writeback(page);
1066        }
1067
1068        /*
1069         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1070         * we cannot notice that anon_vma is freed while we migrates a page.
1071         * This get_anon_vma() delays freeing anon_vma pointer until the end
1072         * of migration. File cache pages are no problem because of page_lock()
1073         * File Caches may use write_page() or lock_page() in migration, then,
1074         * just care Anon page here.
1075         *
1076         * Only page_get_anon_vma() understands the subtleties of
1077         * getting a hold on an anon_vma from outside one of its mms.
1078         * But if we cannot get anon_vma, then we won't need it anyway,
1079         * because that implies that the anon page is no longer mapped
1080         * (and cannot be remapped so long as we hold the page lock).
1081         */
1082        if (PageAnon(page) && !PageKsm(page))
1083                anon_vma = page_get_anon_vma(page);
1084
1085        /*
1086         * Block others from accessing the new page when we get around to
1087         * establishing additional references. We are usually the only one
1088         * holding a reference to newpage at this point. We used to have a BUG
1089         * here if trylock_page(newpage) fails, but would like to allow for
1090         * cases where there might be a race with the previous use of newpage.
1091         * This is much like races on refcount of oldpage: just don't BUG().
1092         */
1093        if (unlikely(!trylock_page(newpage)))
1094                goto out_unlock;
1095
1096        if (unlikely(!is_lru)) {
1097                rc = move_to_new_page(newpage, page, mode);
1098                goto out_unlock_both;
1099        }
1100
1101        /*
1102         * Corner case handling:
1103         * 1. When a new swap-cache page is read into, it is added to the LRU
1104         * and treated as swapcache but it has no rmap yet.
1105         * Calling try_to_unmap() against a page->mapping==NULL page will
1106         * trigger a BUG.  So handle it here.
1107         * 2. An orphaned page (see truncate_complete_page) might have
1108         * fs-private metadata. The page can be picked up due to memory
1109         * offlining.  Everywhere else except page reclaim, the page is
1110         * invisible to the vm, so the page can not be migrated.  So try to
1111         * free the metadata, so the page can be freed.
1112         */
1113        if (!page->mapping) {
1114                VM_BUG_ON_PAGE(PageAnon(page), page);
1115                if (page_has_private(page)) {
1116                        try_to_free_buffers(page);
1117                        goto out_unlock_both;
1118                }
1119        } else if (page_mapped(page)) {
1120                /* Establish migration ptes */
1121                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1122                                page);
1123                try_to_unmap(page,
1124                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1125                page_was_mapped = 1;
1126        }
1127
1128        if (!page_mapped(page))
1129                rc = move_to_new_page(newpage, page, mode);
1130
1131        if (page_was_mapped)
1132                remove_migration_ptes(page,
1133                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1134
1135out_unlock_both:
1136        unlock_page(newpage);
1137out_unlock:
1138        /* Drop an anon_vma reference if we took one */
1139        if (anon_vma)
1140                put_anon_vma(anon_vma);
1141        unlock_page(page);
1142out:
1143        /*
1144         * If migration is successful, decrease refcount of the newpage
1145         * which will not free the page because new page owner increased
1146         * refcounter. As well, if it is LRU page, add the page to LRU
1147         * list in here. Use the old state of the isolated source page to
1148         * determine if we migrated a LRU page. newpage was already unlocked
1149         * and possibly modified by its owner - don't rely on the page
1150         * state.
1151         */
1152        if (rc == MIGRATEPAGE_SUCCESS) {
1153                if (unlikely(!is_lru))
1154                        put_page(newpage);
1155                else
1156                        putback_lru_page(newpage);
1157        }
1158
1159        return rc;
1160}
1161
1162/*
1163 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1164 * around it.
1165 */
1166#if defined(CONFIG_ARM) && \
1167        defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1168#define ICE_noinline noinline
1169#else
1170#define ICE_noinline
1171#endif
1172
1173/*
1174 * Obtain the lock on page, remove all ptes and migrate the page
1175 * to the newly allocated page in newpage.
1176 */
1177static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1178                                   free_page_t put_new_page,
1179                                   unsigned long private, struct page *page,
1180                                   int force, enum migrate_mode mode,
1181                                   enum migrate_reason reason)
1182{
1183        int rc = MIGRATEPAGE_SUCCESS;
1184        struct page *newpage = NULL;
1185
1186        if (!thp_migration_supported() && PageTransHuge(page))
1187                return -ENOMEM;
1188
1189        if (page_count(page) == 1) {
1190                /* page was freed from under us. So we are done. */
1191                ClearPageActive(page);
1192                ClearPageUnevictable(page);
1193                if (unlikely(__PageMovable(page))) {
1194                        lock_page(page);
1195                        if (!PageMovable(page))
1196                                __ClearPageIsolated(page);
1197                        unlock_page(page);
1198                }
1199                goto out;
1200        }
1201
1202        newpage = get_new_page(page, private);
1203        if (!newpage)
1204                return -ENOMEM;
1205
1206        rc = __unmap_and_move(page, newpage, force, mode);
1207        if (rc == MIGRATEPAGE_SUCCESS)
1208                set_page_owner_migrate_reason(newpage, reason);
1209
1210out:
1211        if (rc != -EAGAIN) {
1212                /*
1213                 * A page that has been migrated has all references
1214                 * removed and will be freed. A page that has not been
1215                 * migrated will have kept its references and be restored.
1216                 */
1217                list_del(&page->lru);
1218
1219                /*
1220                 * Compaction can migrate also non-LRU pages which are
1221                 * not accounted to NR_ISOLATED_*. They can be recognized
1222                 * as __PageMovable
1223                 */
1224                if (likely(!__PageMovable(page)))
1225                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1226                                        page_is_file_lru(page), -hpage_nr_pages(page));
1227        }
1228
1229        /*
1230         * If migration is successful, releases reference grabbed during
1231         * isolation. Otherwise, restore the page to right list unless
1232         * we want to retry.
1233         */
1234        if (rc == MIGRATEPAGE_SUCCESS) {
1235                put_page(page);
1236                if (reason == MR_MEMORY_FAILURE) {
1237                        /*
1238                         * Set PG_HWPoison on just freed page
1239                         * intentionally. Although it's rather weird,
1240                         * it's how HWPoison flag works at the moment.
1241                         */
1242                        if (set_hwpoison_free_buddy_page(page))
1243                                num_poisoned_pages_inc();
1244                }
1245        } else {
1246                if (rc != -EAGAIN) {
1247                        if (likely(!__PageMovable(page))) {
1248                                putback_lru_page(page);
1249                                goto put_new;
1250                        }
1251
1252                        lock_page(page);
1253                        if (PageMovable(page))
1254                                putback_movable_page(page);
1255                        else
1256                                __ClearPageIsolated(page);
1257                        unlock_page(page);
1258                        put_page(page);
1259                }
1260put_new:
1261                if (put_new_page)
1262                        put_new_page(newpage, private);
1263                else
1264                        put_page(newpage);
1265        }
1266
1267        return rc;
1268}
1269
1270/*
1271 * Counterpart of unmap_and_move_page() for hugepage migration.
1272 *
1273 * This function doesn't wait the completion of hugepage I/O
1274 * because there is no race between I/O and migration for hugepage.
1275 * Note that currently hugepage I/O occurs only in direct I/O
1276 * where no lock is held and PG_writeback is irrelevant,
1277 * and writeback status of all subpages are counted in the reference
1278 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1279 * under direct I/O, the reference of the head page is 512 and a bit more.)
1280 * This means that when we try to migrate hugepage whose subpages are
1281 * doing direct I/O, some references remain after try_to_unmap() and
1282 * hugepage migration fails without data corruption.
1283 *
1284 * There is also no race when direct I/O is issued on the page under migration,
1285 * because then pte is replaced with migration swap entry and direct I/O code
1286 * will wait in the page fault for migration to complete.
1287 */
1288static int unmap_and_move_huge_page(new_page_t get_new_page,
1289                                free_page_t put_new_page, unsigned long private,
1290                                struct page *hpage, int force,
1291                                enum migrate_mode mode, int reason)
1292{
1293        int rc = -EAGAIN;
1294        int page_was_mapped = 0;
1295        struct page *new_hpage;
1296        struct anon_vma *anon_vma = NULL;
1297        struct address_space *mapping = NULL;
1298
1299        /*
1300         * Migratability of hugepages depends on architectures and their size.
1301         * This check is necessary because some callers of hugepage migration
1302         * like soft offline and memory hotremove don't walk through page
1303         * tables or check whether the hugepage is pmd-based or not before
1304         * kicking migration.
1305         */
1306        if (!hugepage_migration_supported(page_hstate(hpage))) {
1307                putback_active_hugepage(hpage);
1308                return -ENOSYS;
1309        }
1310
1311        new_hpage = get_new_page(hpage, private);
1312        if (!new_hpage)
1313                return -ENOMEM;
1314
1315        if (!trylock_page(hpage)) {
1316                if (!force)
1317                        goto out;
1318                switch (mode) {
1319                case MIGRATE_SYNC:
1320                case MIGRATE_SYNC_NO_COPY:
1321                        break;
1322                default:
1323                        goto out;
1324                }
1325                lock_page(hpage);
1326        }
1327
1328        /*
1329         * Check for pages which are in the process of being freed.  Without
1330         * page_mapping() set, hugetlbfs specific move page routine will not
1331         * be called and we could leak usage counts for subpools.
1332         */
1333        if (page_private(hpage) && !page_mapping(hpage)) {
1334                rc = -EBUSY;
1335                goto out_unlock;
1336        }
1337
1338        if (PageAnon(hpage))
1339                anon_vma = page_get_anon_vma(hpage);
1340
1341        if (unlikely(!trylock_page(new_hpage)))
1342                goto put_anon;
1343
1344        if (page_mapped(hpage)) {
1345                /*
1346                 * try_to_unmap could potentially call huge_pmd_unshare.
1347                 * Because of this, take semaphore in write mode here and
1348                 * set TTU_RMAP_LOCKED to let lower levels know we have
1349                 * taken the lock.
1350                 */
1351                mapping = hugetlb_page_mapping_lock_write(hpage);
1352                if (unlikely(!mapping))
1353                        goto unlock_put_anon;
1354
1355                try_to_unmap(hpage,
1356                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1357                        TTU_RMAP_LOCKED);
1358                page_was_mapped = 1;
1359                /*
1360                 * Leave mapping locked until after subsequent call to
1361                 * remove_migration_ptes()
1362                 */
1363        }
1364
1365        if (!page_mapped(hpage))
1366                rc = move_to_new_page(new_hpage, hpage, mode);
1367
1368        if (page_was_mapped) {
1369                remove_migration_ptes(hpage,
1370                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1371                i_mmap_unlock_write(mapping);
1372        }
1373
1374unlock_put_anon:
1375        unlock_page(new_hpage);
1376
1377put_anon:
1378        if (anon_vma)
1379                put_anon_vma(anon_vma);
1380
1381        if (rc == MIGRATEPAGE_SUCCESS) {
1382                move_hugetlb_state(hpage, new_hpage, reason);
1383                put_new_page = NULL;
1384        }
1385
1386out_unlock:
1387        unlock_page(hpage);
1388out:
1389        if (rc != -EAGAIN)
1390                putback_active_hugepage(hpage);
1391
1392        /*
1393         * If migration was not successful and there's a freeing callback, use
1394         * it.  Otherwise, put_page() will drop the reference grabbed during
1395         * isolation.
1396         */
1397        if (put_new_page)
1398                put_new_page(new_hpage, private);
1399        else
1400                putback_active_hugepage(new_hpage);
1401
1402        return rc;
1403}
1404
1405/*
1406 * migrate_pages - migrate the pages specified in a list, to the free pages
1407 *                 supplied as the target for the page migration
1408 *
1409 * @from:               The list of pages to be migrated.
1410 * @get_new_page:       The function used to allocate free pages to be used
1411 *                      as the target of the page migration.
1412 * @put_new_page:       The function used to free target pages if migration
1413 *                      fails, or NULL if no special handling is necessary.
1414 * @private:            Private data to be passed on to get_new_page()
1415 * @mode:               The migration mode that specifies the constraints for
1416 *                      page migration, if any.
1417 * @reason:             The reason for page migration.
1418 *
1419 * The function returns after 10 attempts or if no pages are movable any more
1420 * because the list has become empty or no retryable pages exist any more.
1421 * The caller should call putback_movable_pages() to return pages to the LRU
1422 * or free list only if ret != 0.
1423 *
1424 * Returns the number of pages that were not migrated, or an error code.
1425 */
1426int migrate_pages(struct list_head *from, new_page_t get_new_page,
1427                free_page_t put_new_page, unsigned long private,
1428                enum migrate_mode mode, int reason)
1429{
1430        int retry = 1;
1431        int nr_failed = 0;
1432        int nr_succeeded = 0;
1433        int pass = 0;
1434        struct page *page;
1435        struct page *page2;
1436        int swapwrite = current->flags & PF_SWAPWRITE;
1437        int rc;
1438
1439        if (!swapwrite)
1440                current->flags |= PF_SWAPWRITE;
1441
1442        for(pass = 0; pass < 10 && retry; pass++) {
1443                retry = 0;
1444
1445                list_for_each_entry_safe(page, page2, from, lru) {
1446retry:
1447                        cond_resched();
1448
1449                        if (PageHuge(page))
1450                                rc = unmap_and_move_huge_page(get_new_page,
1451                                                put_new_page, private, page,
1452                                                pass > 2, mode, reason);
1453                        else
1454                                rc = unmap_and_move(get_new_page, put_new_page,
1455                                                private, page, pass > 2, mode,
1456                                                reason);
1457
1458                        switch(rc) {
1459                        case -ENOMEM:
1460                                /*
1461                                 * THP migration might be unsupported or the
1462                                 * allocation could've failed so we should
1463                                 * retry on the same page with the THP split
1464                                 * to base pages.
1465                                 *
1466                                 * Head page is retried immediately and tail
1467                                 * pages are added to the tail of the list so
1468                                 * we encounter them after the rest of the list
1469                                 * is processed.
1470                                 */
1471                                if (PageTransHuge(page) && !PageHuge(page)) {
1472                                        lock_page(page);
1473                                        rc = split_huge_page_to_list(page, from);
1474                                        unlock_page(page);
1475                                        if (!rc) {
1476                                                list_safe_reset_next(page, page2, lru);
1477                                                goto retry;
1478                                        }
1479                                }
1480                                nr_failed++;
1481                                goto out;
1482                        case -EAGAIN:
1483                                retry++;
1484                                break;
1485                        case MIGRATEPAGE_SUCCESS:
1486                                nr_succeeded++;
1487                                break;
1488                        default:
1489                                /*
1490                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1491                                 * unlike -EAGAIN case, the failed page is
1492                                 * removed from migration page list and not
1493                                 * retried in the next outer loop.
1494                                 */
1495                                nr_failed++;
1496                                break;
1497                        }
1498                }
1499        }
1500        nr_failed += retry;
1501        rc = nr_failed;
1502out:
1503        if (nr_succeeded)
1504                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1505        if (nr_failed)
1506                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1507        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1508
1509        if (!swapwrite)
1510                current->flags &= ~PF_SWAPWRITE;
1511
1512        return rc;
1513}
1514
1515#ifdef CONFIG_NUMA
1516
1517static int store_status(int __user *status, int start, int value, int nr)
1518{
1519        while (nr-- > 0) {
1520                if (put_user(value, status + start))
1521                        return -EFAULT;
1522                start++;
1523        }
1524
1525        return 0;
1526}
1527
1528static int do_move_pages_to_node(struct mm_struct *mm,
1529                struct list_head *pagelist, int node)
1530{
1531        int err;
1532
1533        err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1534                        MIGRATE_SYNC, MR_SYSCALL);
1535        if (err)
1536                putback_movable_pages(pagelist);
1537        return err;
1538}
1539
1540/*
1541 * Resolves the given address to a struct page, isolates it from the LRU and
1542 * puts it to the given pagelist.
1543 * Returns:
1544 *     errno - if the page cannot be found/isolated
1545 *     0 - when it doesn't have to be migrated because it is already on the
1546 *         target node
1547 *     1 - when it has been queued
1548 */
1549static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1550                int node, struct list_head *pagelist, bool migrate_all)
1551{
1552        struct vm_area_struct *vma;
1553        struct page *page;
1554        unsigned int follflags;
1555        int err;
1556
1557        down_read(&mm->mmap_sem);
1558        err = -EFAULT;
1559        vma = find_vma(mm, addr);
1560        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1561                goto out;
1562
1563        /* FOLL_DUMP to ignore special (like zero) pages */
1564        follflags = FOLL_GET | FOLL_DUMP;
1565        page = follow_page(vma, addr, follflags);
1566
1567        err = PTR_ERR(page);
1568        if (IS_ERR(page))
1569                goto out;
1570
1571        err = -ENOENT;
1572        if (!page)
1573                goto out;
1574
1575        err = 0;
1576        if (page_to_nid(page) == node)
1577                goto out_putpage;
1578
1579        err = -EACCES;
1580        if (page_mapcount(page) > 1 && !migrate_all)
1581                goto out_putpage;
1582
1583        if (PageHuge(page)) {
1584                if (PageHead(page)) {
1585                        isolate_huge_page(page, pagelist);
1586                        err = 1;
1587                }
1588        } else {
1589                struct page *head;
1590
1591                head = compound_head(page);
1592                err = isolate_lru_page(head);
1593                if (err)
1594                        goto out_putpage;
1595
1596                err = 1;
1597                list_add_tail(&head->lru, pagelist);
1598                mod_node_page_state(page_pgdat(head),
1599                        NR_ISOLATED_ANON + page_is_file_lru(head),
1600                        hpage_nr_pages(head));
1601        }
1602out_putpage:
1603        /*
1604         * Either remove the duplicate refcount from
1605         * isolate_lru_page() or drop the page ref if it was
1606         * not isolated.
1607         */
1608        put_page(page);
1609out:
1610        up_read(&mm->mmap_sem);
1611        return err;
1612}
1613
1614static int move_pages_and_store_status(struct mm_struct *mm, int node,
1615                struct list_head *pagelist, int __user *status,
1616                int start, int i, unsigned long nr_pages)
1617{
1618        int err;
1619
1620        if (list_empty(pagelist))
1621                return 0;
1622
1623        err = do_move_pages_to_node(mm, pagelist, node);
1624        if (err) {
1625                /*
1626                 * Positive err means the number of failed
1627                 * pages to migrate.  Since we are going to
1628                 * abort and return the number of non-migrated
1629                 * pages, so need to incude the rest of the
1630                 * nr_pages that have not been attempted as
1631                 * well.
1632                 */
1633                if (err > 0)
1634                        err += nr_pages - i - 1;
1635                return err;
1636        }
1637        return store_status(status, start, node, i - start);
1638}
1639
1640/*
1641 * Migrate an array of page address onto an array of nodes and fill
1642 * the corresponding array of status.
1643 */
1644static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1645                         unsigned long nr_pages,
1646                         const void __user * __user *pages,
1647                         const int __user *nodes,
1648                         int __user *status, int flags)
1649{
1650        int current_node = NUMA_NO_NODE;
1651        LIST_HEAD(pagelist);
1652        int start, i;
1653        int err = 0, err1;
1654
1655        migrate_prep();
1656
1657        for (i = start = 0; i < nr_pages; i++) {
1658                const void __user *p;
1659                unsigned long addr;
1660                int node;
1661
1662                err = -EFAULT;
1663                if (get_user(p, pages + i))
1664                        goto out_flush;
1665                if (get_user(node, nodes + i))
1666                        goto out_flush;
1667                addr = (unsigned long)untagged_addr(p);
1668
1669                err = -ENODEV;
1670                if (node < 0 || node >= MAX_NUMNODES)
1671                        goto out_flush;
1672                if (!node_state(node, N_MEMORY))
1673                        goto out_flush;
1674
1675                err = -EACCES;
1676                if (!node_isset(node, task_nodes))
1677                        goto out_flush;
1678
1679                if (current_node == NUMA_NO_NODE) {
1680                        current_node = node;
1681                        start = i;
1682                } else if (node != current_node) {
1683                        err = move_pages_and_store_status(mm, current_node,
1684                                        &pagelist, status, start, i, nr_pages);
1685                        if (err)
1686                                goto out;
1687                        start = i;
1688                        current_node = node;
1689                }
1690
1691                /*
1692                 * Errors in the page lookup or isolation are not fatal and we simply
1693                 * report them via status
1694                 */
1695                err = add_page_for_migration(mm, addr, current_node,
1696                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1697
1698                if (err > 0) {
1699                        /* The page is successfully queued for migration */
1700                        continue;
1701                }
1702
1703                /*
1704                 * If the page is already on the target node (!err), store the
1705                 * node, otherwise, store the err.
1706                 */
1707                err = store_status(status, i, err ? : current_node, 1);
1708                if (err)
1709                        goto out_flush;
1710
1711                err = move_pages_and_store_status(mm, current_node, &pagelist,
1712                                status, start, i, nr_pages);
1713                if (err)
1714                        goto out;
1715                current_node = NUMA_NO_NODE;
1716        }
1717out_flush:
1718        /* Make sure we do not overwrite the existing error */
1719        err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1720                                status, start, i, nr_pages);
1721        if (err >= 0)
1722                err = err1;
1723out:
1724        return err;
1725}
1726
1727/*
1728 * Determine the nodes of an array of pages and store it in an array of status.
1729 */
1730static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1731                                const void __user **pages, int *status)
1732{
1733        unsigned long i;
1734
1735        down_read(&mm->mmap_sem);
1736
1737        for (i = 0; i < nr_pages; i++) {
1738                unsigned long addr = (unsigned long)(*pages);
1739                struct vm_area_struct *vma;
1740                struct page *page;
1741                int err = -EFAULT;
1742
1743                vma = find_vma(mm, addr);
1744                if (!vma || addr < vma->vm_start)
1745                        goto set_status;
1746
1747                /* FOLL_DUMP to ignore special (like zero) pages */
1748                page = follow_page(vma, addr, FOLL_DUMP);
1749
1750                err = PTR_ERR(page);
1751                if (IS_ERR(page))
1752                        goto set_status;
1753
1754                err = page ? page_to_nid(page) : -ENOENT;
1755set_status:
1756                *status = err;
1757
1758                pages++;
1759                status++;
1760        }
1761
1762        up_read(&mm->mmap_sem);
1763}
1764
1765/*
1766 * Determine the nodes of a user array of pages and store it in
1767 * a user array of status.
1768 */
1769static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1770                         const void __user * __user *pages,
1771                         int __user *status)
1772{
1773#define DO_PAGES_STAT_CHUNK_NR 16
1774        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1775        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1776
1777        while (nr_pages) {
1778                unsigned long chunk_nr;
1779
1780                chunk_nr = nr_pages;
1781                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1782                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1783
1784                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1785                        break;
1786
1787                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1788
1789                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1790                        break;
1791
1792                pages += chunk_nr;
1793                status += chunk_nr;
1794                nr_pages -= chunk_nr;
1795        }
1796        return nr_pages ? -EFAULT : 0;
1797}
1798
1799/*
1800 * Move a list of pages in the address space of the currently executing
1801 * process.
1802 */
1803static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1804                             const void __user * __user *pages,
1805                             const int __user *nodes,
1806                             int __user *status, int flags)
1807{
1808        struct task_struct *task;
1809        struct mm_struct *mm;
1810        int err;
1811        nodemask_t task_nodes;
1812
1813        /* Check flags */
1814        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1815                return -EINVAL;
1816
1817        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1818                return -EPERM;
1819
1820        /* Find the mm_struct */
1821        rcu_read_lock();
1822        task = pid ? find_task_by_vpid(pid) : current;
1823        if (!task) {
1824                rcu_read_unlock();
1825                return -ESRCH;
1826        }
1827        get_task_struct(task);
1828
1829        /*
1830         * Check if this process has the right to modify the specified
1831         * process. Use the regular "ptrace_may_access()" checks.
1832         */
1833        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1834                rcu_read_unlock();
1835                err = -EPERM;
1836                goto out;
1837        }
1838        rcu_read_unlock();
1839
1840        err = security_task_movememory(task);
1841        if (err)
1842                goto out;
1843
1844        task_nodes = cpuset_mems_allowed(task);
1845        mm = get_task_mm(task);
1846        put_task_struct(task);
1847
1848        if (!mm)
1849                return -EINVAL;
1850
1851        if (nodes)
1852                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1853                                    nodes, status, flags);
1854        else
1855                err = do_pages_stat(mm, nr_pages, pages, status);
1856
1857        mmput(mm);
1858        return err;
1859
1860out:
1861        put_task_struct(task);
1862        return err;
1863}
1864
1865SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1866                const void __user * __user *, pages,
1867                const int __user *, nodes,
1868                int __user *, status, int, flags)
1869{
1870        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1871}
1872
1873#ifdef CONFIG_COMPAT
1874COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1875                       compat_uptr_t __user *, pages32,
1876                       const int __user *, nodes,
1877                       int __user *, status,
1878                       int, flags)
1879{
1880        const void __user * __user *pages;
1881        int i;
1882
1883        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1884        for (i = 0; i < nr_pages; i++) {
1885                compat_uptr_t p;
1886
1887                if (get_user(p, pages32 + i) ||
1888                        put_user(compat_ptr(p), pages + i))
1889                        return -EFAULT;
1890        }
1891        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1892}
1893#endif /* CONFIG_COMPAT */
1894
1895#ifdef CONFIG_NUMA_BALANCING
1896/*
1897 * Returns true if this is a safe migration target node for misplaced NUMA
1898 * pages. Currently it only checks the watermarks which crude
1899 */
1900static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1901                                   unsigned long nr_migrate_pages)
1902{
1903        int z;
1904
1905        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1906                struct zone *zone = pgdat->node_zones + z;
1907
1908                if (!populated_zone(zone))
1909                        continue;
1910
1911                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1912                if (!zone_watermark_ok(zone, 0,
1913                                       high_wmark_pages(zone) +
1914                                       nr_migrate_pages,
1915                                       ZONE_MOVABLE, 0))
1916                        continue;
1917                return true;
1918        }
1919        return false;
1920}
1921
1922static struct page *alloc_misplaced_dst_page(struct page *page,
1923                                           unsigned long data)
1924{
1925        int nid = (int) data;
1926        struct page *newpage;
1927
1928        newpage = __alloc_pages_node(nid,
1929                                         (GFP_HIGHUSER_MOVABLE |
1930                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1931                                          __GFP_NORETRY | __GFP_NOWARN) &
1932                                         ~__GFP_RECLAIM, 0);
1933
1934        return newpage;
1935}
1936
1937static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1938{
1939        int page_lru;
1940
1941        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1942
1943        /* Avoid migrating to a node that is nearly full */
1944        if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1945                return 0;
1946
1947        if (isolate_lru_page(page))
1948                return 0;
1949
1950        /*
1951         * migrate_misplaced_transhuge_page() skips page migration's usual
1952         * check on page_count(), so we must do it here, now that the page
1953         * has been isolated: a GUP pin, or any other pin, prevents migration.
1954         * The expected page count is 3: 1 for page's mapcount and 1 for the
1955         * caller's pin and 1 for the reference taken by isolate_lru_page().
1956         */
1957        if (PageTransHuge(page) && page_count(page) != 3) {
1958                putback_lru_page(page);
1959                return 0;
1960        }
1961
1962        page_lru = page_is_file_lru(page);
1963        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1964                                hpage_nr_pages(page));
1965
1966        /*
1967         * Isolating the page has taken another reference, so the
1968         * caller's reference can be safely dropped without the page
1969         * disappearing underneath us during migration.
1970         */
1971        put_page(page);
1972        return 1;
1973}
1974
1975bool pmd_trans_migrating(pmd_t pmd)
1976{
1977        struct page *page = pmd_page(pmd);
1978        return PageLocked(page);
1979}
1980
1981/*
1982 * Attempt to migrate a misplaced page to the specified destination
1983 * node. Caller is expected to have an elevated reference count on
1984 * the page that will be dropped by this function before returning.
1985 */
1986int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1987                           int node)
1988{
1989        pg_data_t *pgdat = NODE_DATA(node);
1990        int isolated;
1991        int nr_remaining;
1992        LIST_HEAD(migratepages);
1993
1994        /*
1995         * Don't migrate file pages that are mapped in multiple processes
1996         * with execute permissions as they are probably shared libraries.
1997         */
1998        if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1999            (vma->vm_flags & VM_EXEC))
2000                goto out;
2001
2002        /*
2003         * Also do not migrate dirty pages as not all filesystems can move
2004         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2005         */
2006        if (page_is_file_lru(page) && PageDirty(page))
2007                goto out;
2008
2009        isolated = numamigrate_isolate_page(pgdat, page);
2010        if (!isolated)
2011                goto out;
2012
2013        list_add(&page->lru, &migratepages);
2014        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2015                                     NULL, node, MIGRATE_ASYNC,
2016                                     MR_NUMA_MISPLACED);
2017        if (nr_remaining) {
2018                if (!list_empty(&migratepages)) {
2019                        list_del(&page->lru);
2020                        dec_node_page_state(page, NR_ISOLATED_ANON +
2021                                        page_is_file_lru(page));
2022                        putback_lru_page(page);
2023                }
2024                isolated = 0;
2025        } else
2026                count_vm_numa_event(NUMA_PAGE_MIGRATE);
2027        BUG_ON(!list_empty(&migratepages));
2028        return isolated;
2029
2030out:
2031        put_page(page);
2032        return 0;
2033}
2034#endif /* CONFIG_NUMA_BALANCING */
2035
2036#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2037/*
2038 * Migrates a THP to a given target node. page must be locked and is unlocked
2039 * before returning.
2040 */
2041int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2042                                struct vm_area_struct *vma,
2043                                pmd_t *pmd, pmd_t entry,
2044                                unsigned long address,
2045                                struct page *page, int node)
2046{
2047        spinlock_t *ptl;
2048        pg_data_t *pgdat = NODE_DATA(node);
2049        int isolated = 0;
2050        struct page *new_page = NULL;
2051        int page_lru = page_is_file_lru(page);
2052        unsigned long start = address & HPAGE_PMD_MASK;
2053
2054        new_page = alloc_pages_node(node,
2055                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2056                HPAGE_PMD_ORDER);
2057        if (!new_page)
2058                goto out_fail;
2059        prep_transhuge_page(new_page);
2060
2061        isolated = numamigrate_isolate_page(pgdat, page);
2062        if (!isolated) {
2063                put_page(new_page);
2064                goto out_fail;
2065        }
2066
2067        /* Prepare a page as a migration target */
2068        __SetPageLocked(new_page);
2069        if (PageSwapBacked(page))
2070                __SetPageSwapBacked(new_page);
2071
2072        /* anon mapping, we can simply copy page->mapping to the new page: */
2073        new_page->mapping = page->mapping;
2074        new_page->index = page->index;
2075        /* flush the cache before copying using the kernel virtual address */
2076        flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2077        migrate_page_copy(new_page, page);
2078        WARN_ON(PageLRU(new_page));
2079
2080        /* Recheck the target PMD */
2081        ptl = pmd_lock(mm, pmd);
2082        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2083                spin_unlock(ptl);
2084
2085                /* Reverse changes made by migrate_page_copy() */
2086                if (TestClearPageActive(new_page))
2087                        SetPageActive(page);
2088                if (TestClearPageUnevictable(new_page))
2089                        SetPageUnevictable(page);
2090
2091                unlock_page(new_page);
2092                put_page(new_page);             /* Free it */
2093
2094                /* Retake the callers reference and putback on LRU */
2095                get_page(page);
2096                putback_lru_page(page);
2097                mod_node_page_state(page_pgdat(page),
2098                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2099
2100                goto out_unlock;
2101        }
2102
2103        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2104        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2105
2106        /*
2107         * Overwrite the old entry under pagetable lock and establish
2108         * the new PTE. Any parallel GUP will either observe the old
2109         * page blocking on the page lock, block on the page table
2110         * lock or observe the new page. The SetPageUptodate on the
2111         * new page and page_add_new_anon_rmap guarantee the copy is
2112         * visible before the pagetable update.
2113         */
2114        page_add_anon_rmap(new_page, vma, start, true);
2115        /*
2116         * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2117         * has already been flushed globally.  So no TLB can be currently
2118         * caching this non present pmd mapping.  There's no need to clear the
2119         * pmd before doing set_pmd_at(), nor to flush the TLB after
2120         * set_pmd_at().  Clearing the pmd here would introduce a race
2121         * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2122         * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2123         * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2124         * pmd.
2125         */
2126        set_pmd_at(mm, start, pmd, entry);
2127        update_mmu_cache_pmd(vma, address, &entry);
2128
2129        page_ref_unfreeze(page, 2);
2130        mlock_migrate_page(new_page, page);
2131        page_remove_rmap(page, true);
2132        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2133
2134        spin_unlock(ptl);
2135
2136        /* Take an "isolate" reference and put new page on the LRU. */
2137        get_page(new_page);
2138        putback_lru_page(new_page);
2139
2140        unlock_page(new_page);
2141        unlock_page(page);
2142        put_page(page);                 /* Drop the rmap reference */
2143        put_page(page);                 /* Drop the LRU isolation reference */
2144
2145        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2146        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2147
2148        mod_node_page_state(page_pgdat(page),
2149                        NR_ISOLATED_ANON + page_lru,
2150                        -HPAGE_PMD_NR);
2151        return isolated;
2152
2153out_fail:
2154        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2155        ptl = pmd_lock(mm, pmd);
2156        if (pmd_same(*pmd, entry)) {
2157                entry = pmd_modify(entry, vma->vm_page_prot);
2158                set_pmd_at(mm, start, pmd, entry);
2159                update_mmu_cache_pmd(vma, address, &entry);
2160        }
2161        spin_unlock(ptl);
2162
2163out_unlock:
2164        unlock_page(page);
2165        put_page(page);
2166        return 0;
2167}
2168#endif /* CONFIG_NUMA_BALANCING */
2169
2170#endif /* CONFIG_NUMA */
2171
2172#ifdef CONFIG_DEVICE_PRIVATE
2173static int migrate_vma_collect_hole(unsigned long start,
2174                                    unsigned long end,
2175                                    __always_unused int depth,
2176                                    struct mm_walk *walk)
2177{
2178        struct migrate_vma *migrate = walk->private;
2179        unsigned long addr;
2180
2181        for (addr = start; addr < end; addr += PAGE_SIZE) {
2182                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2183                migrate->dst[migrate->npages] = 0;
2184                migrate->npages++;
2185                migrate->cpages++;
2186        }
2187
2188        return 0;
2189}
2190
2191static int migrate_vma_collect_skip(unsigned long start,
2192                                    unsigned long end,
2193                                    struct mm_walk *walk)
2194{
2195        struct migrate_vma *migrate = walk->private;
2196        unsigned long addr;
2197
2198        for (addr = start; addr < end; addr += PAGE_SIZE) {
2199                migrate->dst[migrate->npages] = 0;
2200                migrate->src[migrate->npages++] = 0;
2201        }
2202
2203        return 0;
2204}
2205
2206static int migrate_vma_collect_pmd(pmd_t *pmdp,
2207                                   unsigned long start,
2208                                   unsigned long end,
2209                                   struct mm_walk *walk)
2210{
2211        struct migrate_vma *migrate = walk->private;
2212        struct vm_area_struct *vma = walk->vma;
2213        struct mm_struct *mm = vma->vm_mm;
2214        unsigned long addr = start, unmapped = 0;
2215        spinlock_t *ptl;
2216        pte_t *ptep;
2217
2218again:
2219        if (pmd_none(*pmdp))
2220                return migrate_vma_collect_hole(start, end, -1, walk);
2221
2222        if (pmd_trans_huge(*pmdp)) {
2223                struct page *page;
2224
2225                ptl = pmd_lock(mm, pmdp);
2226                if (unlikely(!pmd_trans_huge(*pmdp))) {
2227                        spin_unlock(ptl);
2228                        goto again;
2229                }
2230
2231                page = pmd_page(*pmdp);
2232                if (is_huge_zero_page(page)) {
2233                        spin_unlock(ptl);
2234                        split_huge_pmd(vma, pmdp, addr);
2235                        if (pmd_trans_unstable(pmdp))
2236                                return migrate_vma_collect_skip(start, end,
2237                                                                walk);
2238                } else {
2239                        int ret;
2240
2241                        get_page(page);
2242                        spin_unlock(ptl);
2243                        if (unlikely(!trylock_page(page)))
2244                                return migrate_vma_collect_skip(start, end,
2245                                                                walk);
2246                        ret = split_huge_page(page);
2247                        unlock_page(page);
2248                        put_page(page);
2249                        if (ret)
2250                                return migrate_vma_collect_skip(start, end,
2251                                                                walk);
2252                        if (pmd_none(*pmdp))
2253                                return migrate_vma_collect_hole(start, end, -1,
2254                                                                walk);
2255                }
2256        }
2257
2258        if (unlikely(pmd_bad(*pmdp)))
2259                return migrate_vma_collect_skip(start, end, walk);
2260
2261        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2262        arch_enter_lazy_mmu_mode();
2263
2264        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2265                unsigned long mpfn = 0, pfn;
2266                struct page *page;
2267                swp_entry_t entry;
2268                pte_t pte;
2269
2270                pte = *ptep;
2271
2272                if (pte_none(pte)) {
2273                        mpfn = MIGRATE_PFN_MIGRATE;
2274                        migrate->cpages++;
2275                        goto next;
2276                }
2277
2278                if (!pte_present(pte)) {
2279                        /*
2280                         * Only care about unaddressable device page special
2281                         * page table entry. Other special swap entries are not
2282                         * migratable, and we ignore regular swapped page.
2283                         */
2284                        entry = pte_to_swp_entry(pte);
2285                        if (!is_device_private_entry(entry))
2286                                goto next;
2287
2288                        page = device_private_entry_to_page(entry);
2289                        if (page->pgmap->owner != migrate->src_owner)
2290                                goto next;
2291
2292                        mpfn = migrate_pfn(page_to_pfn(page)) |
2293                                        MIGRATE_PFN_MIGRATE;
2294                        if (is_write_device_private_entry(entry))
2295                                mpfn |= MIGRATE_PFN_WRITE;
2296                } else {
2297                        if (migrate->src_owner)
2298                                goto next;
2299                        pfn = pte_pfn(pte);
2300                        if (is_zero_pfn(pfn)) {
2301                                mpfn = MIGRATE_PFN_MIGRATE;
2302                                migrate->cpages++;
2303                                goto next;
2304                        }
2305                        page = vm_normal_page(migrate->vma, addr, pte);
2306                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2307                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2308                }
2309
2310                /* FIXME support THP */
2311                if (!page || !page->mapping || PageTransCompound(page)) {
2312                        mpfn = 0;
2313                        goto next;
2314                }
2315
2316                /*
2317                 * By getting a reference on the page we pin it and that blocks
2318                 * any kind of migration. Side effect is that it "freezes" the
2319                 * pte.
2320                 *
2321                 * We drop this reference after isolating the page from the lru
2322                 * for non device page (device page are not on the lru and thus
2323                 * can't be dropped from it).
2324                 */
2325                get_page(page);
2326                migrate->cpages++;
2327
2328                /*
2329                 * Optimize for the common case where page is only mapped once
2330                 * in one process. If we can lock the page, then we can safely
2331                 * set up a special migration page table entry now.
2332                 */
2333                if (trylock_page(page)) {
2334                        pte_t swp_pte;
2335
2336                        mpfn |= MIGRATE_PFN_LOCKED;
2337                        ptep_get_and_clear(mm, addr, ptep);
2338
2339                        /* Setup special migration page table entry */
2340                        entry = make_migration_entry(page, mpfn &
2341                                                     MIGRATE_PFN_WRITE);
2342                        swp_pte = swp_entry_to_pte(entry);
2343                        if (pte_soft_dirty(pte))
2344                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
2345                        if (pte_uffd_wp(pte))
2346                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
2347                        set_pte_at(mm, addr, ptep, swp_pte);
2348
2349                        /*
2350                         * This is like regular unmap: we remove the rmap and
2351                         * drop page refcount. Page won't be freed, as we took
2352                         * a reference just above.
2353                         */
2354                        page_remove_rmap(page, false);
2355                        put_page(page);
2356
2357                        if (pte_present(pte))
2358                                unmapped++;
2359                }
2360
2361next:
2362                migrate->dst[migrate->npages] = 0;
2363                migrate->src[migrate->npages++] = mpfn;
2364        }
2365        arch_leave_lazy_mmu_mode();
2366        pte_unmap_unlock(ptep - 1, ptl);
2367
2368        /* Only flush the TLB if we actually modified any entries */
2369        if (unmapped)
2370                flush_tlb_range(walk->vma, start, end);
2371
2372        return 0;
2373}
2374
2375static const struct mm_walk_ops migrate_vma_walk_ops = {
2376        .pmd_entry              = migrate_vma_collect_pmd,
2377        .pte_hole               = migrate_vma_collect_hole,
2378};
2379
2380/*
2381 * migrate_vma_collect() - collect pages over a range of virtual addresses
2382 * @migrate: migrate struct containing all migration information
2383 *
2384 * This will walk the CPU page table. For each virtual address backed by a
2385 * valid page, it updates the src array and takes a reference on the page, in
2386 * order to pin the page until we lock it and unmap it.
2387 */
2388static void migrate_vma_collect(struct migrate_vma *migrate)
2389{
2390        struct mmu_notifier_range range;
2391
2392        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2393                        migrate->vma->vm_mm, migrate->start, migrate->end);
2394        mmu_notifier_invalidate_range_start(&range);
2395
2396        walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2397                        &migrate_vma_walk_ops, migrate);
2398
2399        mmu_notifier_invalidate_range_end(&range);
2400        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2401}
2402
2403/*
2404 * migrate_vma_check_page() - check if page is pinned or not
2405 * @page: struct page to check
2406 *
2407 * Pinned pages cannot be migrated. This is the same test as in
2408 * migrate_page_move_mapping(), except that here we allow migration of a
2409 * ZONE_DEVICE page.
2410 */
2411static bool migrate_vma_check_page(struct page *page)
2412{
2413        /*
2414         * One extra ref because caller holds an extra reference, either from
2415         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2416         * a device page.
2417         */
2418        int extra = 1;
2419
2420        /*
2421         * FIXME support THP (transparent huge page), it is bit more complex to
2422         * check them than regular pages, because they can be mapped with a pmd
2423         * or with a pte (split pte mapping).
2424         */
2425        if (PageCompound(page))
2426                return false;
2427
2428        /* Page from ZONE_DEVICE have one extra reference */
2429        if (is_zone_device_page(page)) {
2430                /*
2431                 * Private page can never be pin as they have no valid pte and
2432                 * GUP will fail for those. Yet if there is a pending migration
2433                 * a thread might try to wait on the pte migration entry and
2434                 * will bump the page reference count. Sadly there is no way to
2435                 * differentiate a regular pin from migration wait. Hence to
2436                 * avoid 2 racing thread trying to migrate back to CPU to enter
2437                 * infinite loop (one stoping migration because the other is
2438                 * waiting on pte migration entry). We always return true here.
2439                 *
2440                 * FIXME proper solution is to rework migration_entry_wait() so
2441                 * it does not need to take a reference on page.
2442                 */
2443                return is_device_private_page(page);
2444        }
2445
2446        /* For file back page */
2447        if (page_mapping(page))
2448                extra += 1 + page_has_private(page);
2449
2450        if ((page_count(page) - extra) > page_mapcount(page))
2451                return false;
2452
2453        return true;
2454}
2455
2456/*
2457 * migrate_vma_prepare() - lock pages and isolate them from the lru
2458 * @migrate: migrate struct containing all migration information
2459 *
2460 * This locks pages that have been collected by migrate_vma_collect(). Once each
2461 * page is locked it is isolated from the lru (for non-device pages). Finally,
2462 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2463 * migrated by concurrent kernel threads.
2464 */
2465static void migrate_vma_prepare(struct migrate_vma *migrate)
2466{
2467        const unsigned long npages = migrate->npages;
2468        const unsigned long start = migrate->start;
2469        unsigned long addr, i, restore = 0;
2470        bool allow_drain = true;
2471
2472        lru_add_drain();
2473
2474        for (i = 0; (i < npages) && migrate->cpages; i++) {
2475                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2476                bool remap = true;
2477
2478                if (!page)
2479                        continue;
2480
2481                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2482                        /*
2483                         * Because we are migrating several pages there can be
2484                         * a deadlock between 2 concurrent migration where each
2485                         * are waiting on each other page lock.
2486                         *
2487                         * Make migrate_vma() a best effort thing and backoff
2488                         * for any page we can not lock right away.
2489                         */
2490                        if (!trylock_page(page)) {
2491                                migrate->src[i] = 0;
2492                                migrate->cpages--;
2493                                put_page(page);
2494                                continue;
2495                        }
2496                        remap = false;
2497                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2498                }
2499
2500                /* ZONE_DEVICE pages are not on LRU */
2501                if (!is_zone_device_page(page)) {
2502                        if (!PageLRU(page) && allow_drain) {
2503                                /* Drain CPU's pagevec */
2504                                lru_add_drain_all();
2505                                allow_drain = false;
2506                        }
2507
2508                        if (isolate_lru_page(page)) {
2509                                if (remap) {
2510                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2511                                        migrate->cpages--;
2512                                        restore++;
2513                                } else {
2514                                        migrate->src[i] = 0;
2515                                        unlock_page(page);
2516                                        migrate->cpages--;
2517                                        put_page(page);
2518                                }
2519                                continue;
2520                        }
2521
2522                        /* Drop the reference we took in collect */
2523                        put_page(page);
2524                }
2525
2526                if (!migrate_vma_check_page(page)) {
2527                        if (remap) {
2528                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2529                                migrate->cpages--;
2530                                restore++;
2531
2532                                if (!is_zone_device_page(page)) {
2533                                        get_page(page);
2534                                        putback_lru_page(page);
2535                                }
2536                        } else {
2537                                migrate->src[i] = 0;
2538                                unlock_page(page);
2539                                migrate->cpages--;
2540
2541                                if (!is_zone_device_page(page))
2542                                        putback_lru_page(page);
2543                                else
2544                                        put_page(page);
2545                        }
2546                }
2547        }
2548
2549        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2550                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551
2552                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553                        continue;
2554
2555                remove_migration_pte(page, migrate->vma, addr, page);
2556
2557                migrate->src[i] = 0;
2558                unlock_page(page);
2559                put_page(page);
2560                restore--;
2561        }
2562}
2563
2564/*
2565 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2566 * @migrate: migrate struct containing all migration information
2567 *
2568 * Replace page mapping (CPU page table pte) with a special migration pte entry
2569 * and check again if it has been pinned. Pinned pages are restored because we
2570 * cannot migrate them.
2571 *
2572 * This is the last step before we call the device driver callback to allocate
2573 * destination memory and copy contents of original page over to new page.
2574 */
2575static void migrate_vma_unmap(struct migrate_vma *migrate)
2576{
2577        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2578        const unsigned long npages = migrate->npages;
2579        const unsigned long start = migrate->start;
2580        unsigned long addr, i, restore = 0;
2581
2582        for (i = 0; i < npages; i++) {
2583                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2584
2585                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2586                        continue;
2587
2588                if (page_mapped(page)) {
2589                        try_to_unmap(page, flags);
2590                        if (page_mapped(page))
2591                                goto restore;
2592                }
2593
2594                if (migrate_vma_check_page(page))
2595                        continue;
2596
2597restore:
2598                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2599                migrate->cpages--;
2600                restore++;
2601        }
2602
2603        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2604                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2605
2606                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2607                        continue;
2608
2609                remove_migration_ptes(page, page, false);
2610
2611                migrate->src[i] = 0;
2612                unlock_page(page);
2613                restore--;
2614
2615                if (is_zone_device_page(page))
2616                        put_page(page);
2617                else
2618                        putback_lru_page(page);
2619        }
2620}
2621
2622/**
2623 * migrate_vma_setup() - prepare to migrate a range of memory
2624 * @args: contains the vma, start, and and pfns arrays for the migration
2625 *
2626 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2627 * without an error.
2628 *
2629 * Prepare to migrate a range of memory virtual address range by collecting all
2630 * the pages backing each virtual address in the range, saving them inside the
2631 * src array.  Then lock those pages and unmap them. Once the pages are locked
2632 * and unmapped, check whether each page is pinned or not.  Pages that aren't
2633 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2634 * corresponding src array entry.  Then restores any pages that are pinned, by
2635 * remapping and unlocking those pages.
2636 *
2637 * The caller should then allocate destination memory and copy source memory to
2638 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2639 * flag set).  Once these are allocated and copied, the caller must update each
2640 * corresponding entry in the dst array with the pfn value of the destination
2641 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2642 * (destination pages must have their struct pages locked, via lock_page()).
2643 *
2644 * Note that the caller does not have to migrate all the pages that are marked
2645 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2646 * device memory to system memory.  If the caller cannot migrate a device page
2647 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2648 * consequences for the userspace process, so it must be avoided if at all
2649 * possible.
2650 *
2651 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2652 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2653 * allowing the caller to allocate device memory for those unback virtual
2654 * address.  For this the caller simply has to allocate device memory and
2655 * properly set the destination entry like for regular migration.  Note that
2656 * this can still fails and thus inside the device driver must check if the
2657 * migration was successful for those entries after calling migrate_vma_pages()
2658 * just like for regular migration.
2659 *
2660 * After that, the callers must call migrate_vma_pages() to go over each entry
2661 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2662 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2663 * then migrate_vma_pages() to migrate struct page information from the source
2664 * struct page to the destination struct page.  If it fails to migrate the
2665 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2666 * src array.
2667 *
2668 * At this point all successfully migrated pages have an entry in the src
2669 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2670 * array entry with MIGRATE_PFN_VALID flag set.
2671 *
2672 * Once migrate_vma_pages() returns the caller may inspect which pages were
2673 * successfully migrated, and which were not.  Successfully migrated pages will
2674 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2675 *
2676 * It is safe to update device page table after migrate_vma_pages() because
2677 * both destination and source page are still locked, and the mmap_sem is held
2678 * in read mode (hence no one can unmap the range being migrated).
2679 *
2680 * Once the caller is done cleaning up things and updating its page table (if it
2681 * chose to do so, this is not an obligation) it finally calls
2682 * migrate_vma_finalize() to update the CPU page table to point to new pages
2683 * for successfully migrated pages or otherwise restore the CPU page table to
2684 * point to the original source pages.
2685 */
2686int migrate_vma_setup(struct migrate_vma *args)
2687{
2688        long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2689
2690        args->start &= PAGE_MASK;
2691        args->end &= PAGE_MASK;
2692        if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2693            (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2694                return -EINVAL;
2695        if (nr_pages <= 0)
2696                return -EINVAL;
2697        if (args->start < args->vma->vm_start ||
2698            args->start >= args->vma->vm_end)
2699                return -EINVAL;
2700        if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2701                return -EINVAL;
2702        if (!args->src || !args->dst)
2703                return -EINVAL;
2704
2705        memset(args->src, 0, sizeof(*args->src) * nr_pages);
2706        args->cpages = 0;
2707        args->npages = 0;
2708
2709        migrate_vma_collect(args);
2710
2711        if (args->cpages)
2712                migrate_vma_prepare(args);
2713        if (args->cpages)
2714                migrate_vma_unmap(args);
2715
2716        /*
2717         * At this point pages are locked and unmapped, and thus they have
2718         * stable content and can safely be copied to destination memory that
2719         * is allocated by the drivers.
2720         */
2721        return 0;
2722
2723}
2724EXPORT_SYMBOL(migrate_vma_setup);
2725
2726/*
2727 * This code closely matches the code in:
2728 *   __handle_mm_fault()
2729 *     handle_pte_fault()
2730 *       do_anonymous_page()
2731 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2732 * private page.
2733 */
2734static void migrate_vma_insert_page(struct migrate_vma *migrate,
2735                                    unsigned long addr,
2736                                    struct page *page,
2737                                    unsigned long *src,
2738                                    unsigned long *dst)
2739{
2740        struct vm_area_struct *vma = migrate->vma;
2741        struct mm_struct *mm = vma->vm_mm;
2742        struct mem_cgroup *memcg;
2743        bool flush = false;
2744        spinlock_t *ptl;
2745        pte_t entry;
2746        pgd_t *pgdp;
2747        p4d_t *p4dp;
2748        pud_t *pudp;
2749        pmd_t *pmdp;
2750        pte_t *ptep;
2751
2752        /* Only allow populating anonymous memory */
2753        if (!vma_is_anonymous(vma))
2754                goto abort;
2755
2756        pgdp = pgd_offset(mm, addr);
2757        p4dp = p4d_alloc(mm, pgdp, addr);
2758        if (!p4dp)
2759                goto abort;
2760        pudp = pud_alloc(mm, p4dp, addr);
2761        if (!pudp)
2762                goto abort;
2763        pmdp = pmd_alloc(mm, pudp, addr);
2764        if (!pmdp)
2765                goto abort;
2766
2767        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2768                goto abort;
2769
2770        /*
2771         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2772         * pte_offset_map() on pmds where a huge pmd might be created
2773         * from a different thread.
2774         *
2775         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2776         * parallel threads are excluded by other means.
2777         *
2778         * Here we only have down_read(mmap_sem).
2779         */
2780        if (pte_alloc(mm, pmdp))
2781                goto abort;
2782
2783        /* See the comment in pte_alloc_one_map() */
2784        if (unlikely(pmd_trans_unstable(pmdp)))
2785                goto abort;
2786
2787        if (unlikely(anon_vma_prepare(vma)))
2788                goto abort;
2789        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2790                goto abort;
2791
2792        /*
2793         * The memory barrier inside __SetPageUptodate makes sure that
2794         * preceding stores to the page contents become visible before
2795         * the set_pte_at() write.
2796         */
2797        __SetPageUptodate(page);
2798
2799        if (is_zone_device_page(page)) {
2800                if (is_device_private_page(page)) {
2801                        swp_entry_t swp_entry;
2802
2803                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2804                        entry = swp_entry_to_pte(swp_entry);
2805                }
2806        } else {
2807                entry = mk_pte(page, vma->vm_page_prot);
2808                if (vma->vm_flags & VM_WRITE)
2809                        entry = pte_mkwrite(pte_mkdirty(entry));
2810        }
2811
2812        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2813
2814        if (check_stable_address_space(mm))
2815                goto unlock_abort;
2816
2817        if (pte_present(*ptep)) {
2818                unsigned long pfn = pte_pfn(*ptep);
2819
2820                if (!is_zero_pfn(pfn))
2821                        goto unlock_abort;
2822                flush = true;
2823        } else if (!pte_none(*ptep))
2824                goto unlock_abort;
2825
2826        /*
2827         * Check for userfaultfd but do not deliver the fault. Instead,
2828         * just back off.
2829         */
2830        if (userfaultfd_missing(vma))
2831                goto unlock_abort;
2832
2833        inc_mm_counter(mm, MM_ANONPAGES);
2834        page_add_new_anon_rmap(page, vma, addr, false);
2835        mem_cgroup_commit_charge(page, memcg, false, false);
2836        if (!is_zone_device_page(page))
2837                lru_cache_add_active_or_unevictable(page, vma);
2838        get_page(page);
2839
2840        if (flush) {
2841                flush_cache_page(vma, addr, pte_pfn(*ptep));
2842                ptep_clear_flush_notify(vma, addr, ptep);
2843                set_pte_at_notify(mm, addr, ptep, entry);
2844                update_mmu_cache(vma, addr, ptep);
2845        } else {
2846                /* No need to invalidate - it was non-present before */
2847                set_pte_at(mm, addr, ptep, entry);
2848                update_mmu_cache(vma, addr, ptep);
2849        }
2850
2851        pte_unmap_unlock(ptep, ptl);
2852        *src = MIGRATE_PFN_MIGRATE;
2853        return;
2854
2855unlock_abort:
2856        pte_unmap_unlock(ptep, ptl);
2857        mem_cgroup_cancel_charge(page, memcg, false);
2858abort:
2859        *src &= ~MIGRATE_PFN_MIGRATE;
2860}
2861
2862/**
2863 * migrate_vma_pages() - migrate meta-data from src page to dst page
2864 * @migrate: migrate struct containing all migration information
2865 *
2866 * This migrates struct page meta-data from source struct page to destination
2867 * struct page. This effectively finishes the migration from source page to the
2868 * destination page.
2869 */
2870void migrate_vma_pages(struct migrate_vma *migrate)
2871{
2872        const unsigned long npages = migrate->npages;
2873        const unsigned long start = migrate->start;
2874        struct mmu_notifier_range range;
2875        unsigned long addr, i;
2876        bool notified = false;
2877
2878        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2879                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2880                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2881                struct address_space *mapping;
2882                int r;
2883
2884                if (!newpage) {
2885                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2886                        continue;
2887                }
2888
2889                if (!page) {
2890                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2891                                continue;
2892                        if (!notified) {
2893                                notified = true;
2894
2895                                mmu_notifier_range_init(&range,
2896                                                        MMU_NOTIFY_CLEAR, 0,
2897                                                        NULL,
2898                                                        migrate->vma->vm_mm,
2899                                                        addr, migrate->end);
2900                                mmu_notifier_invalidate_range_start(&range);
2901                        }
2902                        migrate_vma_insert_page(migrate, addr, newpage,
2903                                                &migrate->src[i],
2904                                                &migrate->dst[i]);
2905                        continue;
2906                }
2907
2908                mapping = page_mapping(page);
2909
2910                if (is_zone_device_page(newpage)) {
2911                        if (is_device_private_page(newpage)) {
2912                                /*
2913                                 * For now only support private anonymous when
2914                                 * migrating to un-addressable device memory.
2915                                 */
2916                                if (mapping) {
2917                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2918                                        continue;
2919                                }
2920                        } else {
2921                                /*
2922                                 * Other types of ZONE_DEVICE page are not
2923                                 * supported.
2924                                 */
2925                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2926                                continue;
2927                        }
2928                }
2929
2930                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2931                if (r != MIGRATEPAGE_SUCCESS)
2932                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2933        }
2934
2935        /*
2936         * No need to double call mmu_notifier->invalidate_range() callback as
2937         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2938         * did already call it.
2939         */
2940        if (notified)
2941                mmu_notifier_invalidate_range_only_end(&range);
2942}
2943EXPORT_SYMBOL(migrate_vma_pages);
2944
2945/**
2946 * migrate_vma_finalize() - restore CPU page table entry
2947 * @migrate: migrate struct containing all migration information
2948 *
2949 * This replaces the special migration pte entry with either a mapping to the
2950 * new page if migration was successful for that page, or to the original page
2951 * otherwise.
2952 *
2953 * This also unlocks the pages and puts them back on the lru, or drops the extra
2954 * refcount, for device pages.
2955 */
2956void migrate_vma_finalize(struct migrate_vma *migrate)
2957{
2958        const unsigned long npages = migrate->npages;
2959        unsigned long i;
2960
2961        for (i = 0; i < npages; i++) {
2962                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2963                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2964
2965                if (!page) {
2966                        if (newpage) {
2967                                unlock_page(newpage);
2968                                put_page(newpage);
2969                        }
2970                        continue;
2971                }
2972
2973                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2974                        if (newpage) {
2975                                unlock_page(newpage);
2976                                put_page(newpage);
2977                        }
2978                        newpage = page;
2979                }
2980
2981                remove_migration_ptes(page, newpage, false);
2982                unlock_page(page);
2983                migrate->cpages--;
2984
2985                if (is_zone_device_page(page))
2986                        put_page(page);
2987                else
2988                        putback_lru_page(page);
2989
2990                if (newpage != page) {
2991                        unlock_page(newpage);
2992                        if (is_zone_device_page(newpage))
2993                                put_page(newpage);
2994                        else
2995                                putback_lru_page(newpage);
2996                }
2997        }
2998}
2999EXPORT_SYMBOL(migrate_vma_finalize);
3000#endif /* CONFIG_DEVICE_PRIVATE */
3001