linux/mm/page-writeback.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/writeback.h>
  24#include <linux/init.h>
  25#include <linux/backing-dev.h>
  26#include <linux/task_io_accounting_ops.h>
  27#include <linux/blkdev.h>
  28#include <linux/mpage.h>
  29#include <linux/rmap.h>
  30#include <linux/percpu.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/mm_inline.h>
  41#include <trace/events/writeback.h>
  42
  43#include "internal.h"
  44
  45/*
  46 * Sleep at most 200ms at a time in balance_dirty_pages().
  47 */
  48#define MAX_PAUSE               max(HZ/5, 1)
  49
  50/*
  51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52 * by raising pause time to max_pause when falls below it.
  53 */
  54#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  55
  56/*
  57 * Estimate write bandwidth at 200ms intervals.
  58 */
  59#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  60
  61#define RATELIMIT_CALC_SHIFT    10
  62
  63/*
  64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65 * will look to see if it needs to force writeback or throttling.
  66 */
  67static long ratelimit_pages = 32;
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105
 106/*
 107 * The longest time for which data is allowed to remain dirty
 108 */
 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110
 111/*
 112 * Flag that makes the machine dump writes/reads and block dirtyings.
 113 */
 114int block_dump;
 115
 116/*
 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 118 * a full sync is triggered after this time elapses without any disk activity.
 119 */
 120int laptop_mode;
 121
 122EXPORT_SYMBOL(laptop_mode);
 123
 124/* End of sysctl-exported parameters */
 125
 126struct wb_domain global_wb_domain;
 127
 128/* consolidated parameters for balance_dirty_pages() and its subroutines */
 129struct dirty_throttle_control {
 130#ifdef CONFIG_CGROUP_WRITEBACK
 131        struct wb_domain        *dom;
 132        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 133#endif
 134        struct bdi_writeback    *wb;
 135        struct fprop_local_percpu *wb_completions;
 136
 137        unsigned long           avail;          /* dirtyable */
 138        unsigned long           dirty;          /* file_dirty + write + nfs */
 139        unsigned long           thresh;         /* dirty threshold */
 140        unsigned long           bg_thresh;      /* dirty background threshold */
 141
 142        unsigned long           wb_dirty;       /* per-wb counterparts */
 143        unsigned long           wb_thresh;
 144        unsigned long           wb_bg_thresh;
 145
 146        unsigned long           pos_ratio;
 147};
 148
 149/*
 150 * Length of period for aging writeout fractions of bdis. This is an
 151 * arbitrarily chosen number. The longer the period, the slower fractions will
 152 * reflect changes in current writeout rate.
 153 */
 154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 155
 156#ifdef CONFIG_CGROUP_WRITEBACK
 157
 158#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 159                                .dom = &global_wb_domain,               \
 160                                .wb_completions = &(__wb)->completions
 161
 162#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 163
 164#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 165                                .dom = mem_cgroup_wb_domain(__wb),      \
 166                                .wb_completions = &(__wb)->memcg_completions, \
 167                                .gdtc = __gdtc
 168
 169static bool mdtc_valid(struct dirty_throttle_control *dtc)
 170{
 171        return dtc->dom;
 172}
 173
 174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 175{
 176        return dtc->dom;
 177}
 178
 179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 180{
 181        return mdtc->gdtc;
 182}
 183
 184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 185{
 186        return &wb->memcg_completions;
 187}
 188
 189static void wb_min_max_ratio(struct bdi_writeback *wb,
 190                             unsigned long *minp, unsigned long *maxp)
 191{
 192        unsigned long this_bw = wb->avg_write_bandwidth;
 193        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 194        unsigned long long min = wb->bdi->min_ratio;
 195        unsigned long long max = wb->bdi->max_ratio;
 196
 197        /*
 198         * @wb may already be clean by the time control reaches here and
 199         * the total may not include its bw.
 200         */
 201        if (this_bw < tot_bw) {
 202                if (min) {
 203                        min *= this_bw;
 204                        min = div64_ul(min, tot_bw);
 205                }
 206                if (max < 100) {
 207                        max *= this_bw;
 208                        max = div64_ul(max, tot_bw);
 209                }
 210        }
 211
 212        *minp = min;
 213        *maxp = max;
 214}
 215
 216#else   /* CONFIG_CGROUP_WRITEBACK */
 217
 218#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 219                                .wb_completions = &(__wb)->completions
 220#define GDTC_INIT_NO_WB
 221#define MDTC_INIT(__wb, __gdtc)
 222
 223static bool mdtc_valid(struct dirty_throttle_control *dtc)
 224{
 225        return false;
 226}
 227
 228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 229{
 230        return &global_wb_domain;
 231}
 232
 233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 234{
 235        return NULL;
 236}
 237
 238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 239{
 240        return NULL;
 241}
 242
 243static void wb_min_max_ratio(struct bdi_writeback *wb,
 244                             unsigned long *minp, unsigned long *maxp)
 245{
 246        *minp = wb->bdi->min_ratio;
 247        *maxp = wb->bdi->max_ratio;
 248}
 249
 250#endif  /* CONFIG_CGROUP_WRITEBACK */
 251
 252/*
 253 * In a memory zone, there is a certain amount of pages we consider
 254 * available for the page cache, which is essentially the number of
 255 * free and reclaimable pages, minus some zone reserves to protect
 256 * lowmem and the ability to uphold the zone's watermarks without
 257 * requiring writeback.
 258 *
 259 * This number of dirtyable pages is the base value of which the
 260 * user-configurable dirty ratio is the effictive number of pages that
 261 * are allowed to be actually dirtied.  Per individual zone, or
 262 * globally by using the sum of dirtyable pages over all zones.
 263 *
 264 * Because the user is allowed to specify the dirty limit globally as
 265 * absolute number of bytes, calculating the per-zone dirty limit can
 266 * require translating the configured limit into a percentage of
 267 * global dirtyable memory first.
 268 */
 269
 270/**
 271 * node_dirtyable_memory - number of dirtyable pages in a node
 272 * @pgdat: the node
 273 *
 274 * Return: the node's number of pages potentially available for dirty
 275 * page cache.  This is the base value for the per-node dirty limits.
 276 */
 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 278{
 279        unsigned long nr_pages = 0;
 280        int z;
 281
 282        for (z = 0; z < MAX_NR_ZONES; z++) {
 283                struct zone *zone = pgdat->node_zones + z;
 284
 285                if (!populated_zone(zone))
 286                        continue;
 287
 288                nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 289        }
 290
 291        /*
 292         * Pages reserved for the kernel should not be considered
 293         * dirtyable, to prevent a situation where reclaim has to
 294         * clean pages in order to balance the zones.
 295         */
 296        nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 297
 298        nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 299        nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 300
 301        return nr_pages;
 302}
 303
 304static unsigned long highmem_dirtyable_memory(unsigned long total)
 305{
 306#ifdef CONFIG_HIGHMEM
 307        int node;
 308        unsigned long x = 0;
 309        int i;
 310
 311        for_each_node_state(node, N_HIGH_MEMORY) {
 312                for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 313                        struct zone *z;
 314                        unsigned long nr_pages;
 315
 316                        if (!is_highmem_idx(i))
 317                                continue;
 318
 319                        z = &NODE_DATA(node)->node_zones[i];
 320                        if (!populated_zone(z))
 321                                continue;
 322
 323                        nr_pages = zone_page_state(z, NR_FREE_PAGES);
 324                        /* watch for underflows */
 325                        nr_pages -= min(nr_pages, high_wmark_pages(z));
 326                        nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 327                        nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 328                        x += nr_pages;
 329                }
 330        }
 331
 332        /*
 333         * Unreclaimable memory (kernel memory or anonymous memory
 334         * without swap) can bring down the dirtyable pages below
 335         * the zone's dirty balance reserve and the above calculation
 336         * will underflow.  However we still want to add in nodes
 337         * which are below threshold (negative values) to get a more
 338         * accurate calculation but make sure that the total never
 339         * underflows.
 340         */
 341        if ((long)x < 0)
 342                x = 0;
 343
 344        /*
 345         * Make sure that the number of highmem pages is never larger
 346         * than the number of the total dirtyable memory. This can only
 347         * occur in very strange VM situations but we want to make sure
 348         * that this does not occur.
 349         */
 350        return min(x, total);
 351#else
 352        return 0;
 353#endif
 354}
 355
 356/**
 357 * global_dirtyable_memory - number of globally dirtyable pages
 358 *
 359 * Return: the global number of pages potentially available for dirty
 360 * page cache.  This is the base value for the global dirty limits.
 361 */
 362static unsigned long global_dirtyable_memory(void)
 363{
 364        unsigned long x;
 365
 366        x = global_zone_page_state(NR_FREE_PAGES);
 367        /*
 368         * Pages reserved for the kernel should not be considered
 369         * dirtyable, to prevent a situation where reclaim has to
 370         * clean pages in order to balance the zones.
 371         */
 372        x -= min(x, totalreserve_pages);
 373
 374        x += global_node_page_state(NR_INACTIVE_FILE);
 375        x += global_node_page_state(NR_ACTIVE_FILE);
 376
 377        if (!vm_highmem_is_dirtyable)
 378                x -= highmem_dirtyable_memory(x);
 379
 380        return x + 1;   /* Ensure that we never return 0 */
 381}
 382
 383/**
 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 385 * @dtc: dirty_throttle_control of interest
 386 *
 387 * Calculate @dtc->thresh and ->bg_thresh considering
 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 389 * must ensure that @dtc->avail is set before calling this function.  The
 390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 391 * real-time tasks.
 392 */
 393static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 394{
 395        const unsigned long available_memory = dtc->avail;
 396        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 397        unsigned long bytes = vm_dirty_bytes;
 398        unsigned long bg_bytes = dirty_background_bytes;
 399        /* convert ratios to per-PAGE_SIZE for higher precision */
 400        unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 401        unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 402        unsigned long thresh;
 403        unsigned long bg_thresh;
 404        struct task_struct *tsk;
 405
 406        /* gdtc is !NULL iff @dtc is for memcg domain */
 407        if (gdtc) {
 408                unsigned long global_avail = gdtc->avail;
 409
 410                /*
 411                 * The byte settings can't be applied directly to memcg
 412                 * domains.  Convert them to ratios by scaling against
 413                 * globally available memory.  As the ratios are in
 414                 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 415                 * number of pages.
 416                 */
 417                if (bytes)
 418                        ratio = min(DIV_ROUND_UP(bytes, global_avail),
 419                                    PAGE_SIZE);
 420                if (bg_bytes)
 421                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 422                                       PAGE_SIZE);
 423                bytes = bg_bytes = 0;
 424        }
 425
 426        if (bytes)
 427                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 428        else
 429                thresh = (ratio * available_memory) / PAGE_SIZE;
 430
 431        if (bg_bytes)
 432                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 433        else
 434                bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 435
 436        if (bg_thresh >= thresh)
 437                bg_thresh = thresh / 2;
 438        tsk = current;
 439        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 440                bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 441                thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 442        }
 443        dtc->thresh = thresh;
 444        dtc->bg_thresh = bg_thresh;
 445
 446        /* we should eventually report the domain in the TP */
 447        if (!gdtc)
 448                trace_global_dirty_state(bg_thresh, thresh);
 449}
 450
 451/**
 452 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 453 * @pbackground: out parameter for bg_thresh
 454 * @pdirty: out parameter for thresh
 455 *
 456 * Calculate bg_thresh and thresh for global_wb_domain.  See
 457 * domain_dirty_limits() for details.
 458 */
 459void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 460{
 461        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 462
 463        gdtc.avail = global_dirtyable_memory();
 464        domain_dirty_limits(&gdtc);
 465
 466        *pbackground = gdtc.bg_thresh;
 467        *pdirty = gdtc.thresh;
 468}
 469
 470/**
 471 * node_dirty_limit - maximum number of dirty pages allowed in a node
 472 * @pgdat: the node
 473 *
 474 * Return: the maximum number of dirty pages allowed in a node, based
 475 * on the node's dirtyable memory.
 476 */
 477static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 478{
 479        unsigned long node_memory = node_dirtyable_memory(pgdat);
 480        struct task_struct *tsk = current;
 481        unsigned long dirty;
 482
 483        if (vm_dirty_bytes)
 484                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 485                        node_memory / global_dirtyable_memory();
 486        else
 487                dirty = vm_dirty_ratio * node_memory / 100;
 488
 489        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 490                dirty += dirty / 4;
 491
 492        return dirty;
 493}
 494
 495/**
 496 * node_dirty_ok - tells whether a node is within its dirty limits
 497 * @pgdat: the node to check
 498 *
 499 * Return: %true when the dirty pages in @pgdat are within the node's
 500 * dirty limit, %false if the limit is exceeded.
 501 */
 502bool node_dirty_ok(struct pglist_data *pgdat)
 503{
 504        unsigned long limit = node_dirty_limit(pgdat);
 505        unsigned long nr_pages = 0;
 506
 507        nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 508        nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 509        nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 510
 511        return nr_pages <= limit;
 512}
 513
 514int dirty_background_ratio_handler(struct ctl_table *table, int write,
 515                void __user *buffer, size_t *lenp,
 516                loff_t *ppos)
 517{
 518        int ret;
 519
 520        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 521        if (ret == 0 && write)
 522                dirty_background_bytes = 0;
 523        return ret;
 524}
 525
 526int dirty_background_bytes_handler(struct ctl_table *table, int write,
 527                void __user *buffer, size_t *lenp,
 528                loff_t *ppos)
 529{
 530        int ret;
 531
 532        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 533        if (ret == 0 && write)
 534                dirty_background_ratio = 0;
 535        return ret;
 536}
 537
 538int dirty_ratio_handler(struct ctl_table *table, int write,
 539                void __user *buffer, size_t *lenp,
 540                loff_t *ppos)
 541{
 542        int old_ratio = vm_dirty_ratio;
 543        int ret;
 544
 545        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 546        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 547                writeback_set_ratelimit();
 548                vm_dirty_bytes = 0;
 549        }
 550        return ret;
 551}
 552
 553int dirty_bytes_handler(struct ctl_table *table, int write,
 554                void __user *buffer, size_t *lenp,
 555                loff_t *ppos)
 556{
 557        unsigned long old_bytes = vm_dirty_bytes;
 558        int ret;
 559
 560        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 561        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 562                writeback_set_ratelimit();
 563                vm_dirty_ratio = 0;
 564        }
 565        return ret;
 566}
 567
 568static unsigned long wp_next_time(unsigned long cur_time)
 569{
 570        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 571        /* 0 has a special meaning... */
 572        if (!cur_time)
 573                return 1;
 574        return cur_time;
 575}
 576
 577static void wb_domain_writeout_inc(struct wb_domain *dom,
 578                                   struct fprop_local_percpu *completions,
 579                                   unsigned int max_prop_frac)
 580{
 581        __fprop_inc_percpu_max(&dom->completions, completions,
 582                               max_prop_frac);
 583        /* First event after period switching was turned off? */
 584        if (unlikely(!dom->period_time)) {
 585                /*
 586                 * We can race with other __bdi_writeout_inc calls here but
 587                 * it does not cause any harm since the resulting time when
 588                 * timer will fire and what is in writeout_period_time will be
 589                 * roughly the same.
 590                 */
 591                dom->period_time = wp_next_time(jiffies);
 592                mod_timer(&dom->period_timer, dom->period_time);
 593        }
 594}
 595
 596/*
 597 * Increment @wb's writeout completion count and the global writeout
 598 * completion count. Called from test_clear_page_writeback().
 599 */
 600static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 601{
 602        struct wb_domain *cgdom;
 603
 604        inc_wb_stat(wb, WB_WRITTEN);
 605        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 606                               wb->bdi->max_prop_frac);
 607
 608        cgdom = mem_cgroup_wb_domain(wb);
 609        if (cgdom)
 610                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 611                                       wb->bdi->max_prop_frac);
 612}
 613
 614void wb_writeout_inc(struct bdi_writeback *wb)
 615{
 616        unsigned long flags;
 617
 618        local_irq_save(flags);
 619        __wb_writeout_inc(wb);
 620        local_irq_restore(flags);
 621}
 622EXPORT_SYMBOL_GPL(wb_writeout_inc);
 623
 624/*
 625 * On idle system, we can be called long after we scheduled because we use
 626 * deferred timers so count with missed periods.
 627 */
 628static void writeout_period(struct timer_list *t)
 629{
 630        struct wb_domain *dom = from_timer(dom, t, period_timer);
 631        int miss_periods = (jiffies - dom->period_time) /
 632                                                 VM_COMPLETIONS_PERIOD_LEN;
 633
 634        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 635                dom->period_time = wp_next_time(dom->period_time +
 636                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 637                mod_timer(&dom->period_timer, dom->period_time);
 638        } else {
 639                /*
 640                 * Aging has zeroed all fractions. Stop wasting CPU on period
 641                 * updates.
 642                 */
 643                dom->period_time = 0;
 644        }
 645}
 646
 647int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 648{
 649        memset(dom, 0, sizeof(*dom));
 650
 651        spin_lock_init(&dom->lock);
 652
 653        timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 654
 655        dom->dirty_limit_tstamp = jiffies;
 656
 657        return fprop_global_init(&dom->completions, gfp);
 658}
 659
 660#ifdef CONFIG_CGROUP_WRITEBACK
 661void wb_domain_exit(struct wb_domain *dom)
 662{
 663        del_timer_sync(&dom->period_timer);
 664        fprop_global_destroy(&dom->completions);
 665}
 666#endif
 667
 668/*
 669 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 670 * registered backing devices, which, for obvious reasons, can not
 671 * exceed 100%.
 672 */
 673static unsigned int bdi_min_ratio;
 674
 675int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 676{
 677        int ret = 0;
 678
 679        spin_lock_bh(&bdi_lock);
 680        if (min_ratio > bdi->max_ratio) {
 681                ret = -EINVAL;
 682        } else {
 683                min_ratio -= bdi->min_ratio;
 684                if (bdi_min_ratio + min_ratio < 100) {
 685                        bdi_min_ratio += min_ratio;
 686                        bdi->min_ratio += min_ratio;
 687                } else {
 688                        ret = -EINVAL;
 689                }
 690        }
 691        spin_unlock_bh(&bdi_lock);
 692
 693        return ret;
 694}
 695
 696int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 697{
 698        int ret = 0;
 699
 700        if (max_ratio > 100)
 701                return -EINVAL;
 702
 703        spin_lock_bh(&bdi_lock);
 704        if (bdi->min_ratio > max_ratio) {
 705                ret = -EINVAL;
 706        } else {
 707                bdi->max_ratio = max_ratio;
 708                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 709        }
 710        spin_unlock_bh(&bdi_lock);
 711
 712        return ret;
 713}
 714EXPORT_SYMBOL(bdi_set_max_ratio);
 715
 716static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 717                                           unsigned long bg_thresh)
 718{
 719        return (thresh + bg_thresh) / 2;
 720}
 721
 722static unsigned long hard_dirty_limit(struct wb_domain *dom,
 723                                      unsigned long thresh)
 724{
 725        return max(thresh, dom->dirty_limit);
 726}
 727
 728/*
 729 * Memory which can be further allocated to a memcg domain is capped by
 730 * system-wide clean memory excluding the amount being used in the domain.
 731 */
 732static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 733                            unsigned long filepages, unsigned long headroom)
 734{
 735        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 736        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 737        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 738        unsigned long other_clean = global_clean - min(global_clean, clean);
 739
 740        mdtc->avail = filepages + min(headroom, other_clean);
 741}
 742
 743/**
 744 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 745 * @dtc: dirty_throttle_context of interest
 746 *
 747 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 748 * when sleeping max_pause per page is not enough to keep the dirty pages under
 749 * control. For example, when the device is completely stalled due to some error
 750 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 751 * In the other normal situations, it acts more gently by throttling the tasks
 752 * more (rather than completely block them) when the wb dirty pages go high.
 753 *
 754 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 755 * - starving fast devices
 756 * - piling up dirty pages (that will take long time to sync) on slow devices
 757 *
 758 * The wb's share of dirty limit will be adapting to its throughput and
 759 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 760 *
 761 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 762 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 763 */
 764static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 765{
 766        struct wb_domain *dom = dtc_dom(dtc);
 767        unsigned long thresh = dtc->thresh;
 768        u64 wb_thresh;
 769        unsigned long numerator, denominator;
 770        unsigned long wb_min_ratio, wb_max_ratio;
 771
 772        /*
 773         * Calculate this BDI's share of the thresh ratio.
 774         */
 775        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 776                              &numerator, &denominator);
 777
 778        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 779        wb_thresh *= numerator;
 780        wb_thresh = div64_ul(wb_thresh, denominator);
 781
 782        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 783
 784        wb_thresh += (thresh * wb_min_ratio) / 100;
 785        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 786                wb_thresh = thresh * wb_max_ratio / 100;
 787
 788        return wb_thresh;
 789}
 790
 791unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 792{
 793        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 794                                               .thresh = thresh };
 795        return __wb_calc_thresh(&gdtc);
 796}
 797
 798/*
 799 *                           setpoint - dirty 3
 800 *        f(dirty) := 1.0 + (----------------)
 801 *                           limit - setpoint
 802 *
 803 * it's a 3rd order polynomial that subjects to
 804 *
 805 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 806 * (2) f(setpoint) = 1.0 => the balance point
 807 * (3) f(limit)    = 0   => the hard limit
 808 * (4) df/dx      <= 0   => negative feedback control
 809 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 810 *     => fast response on large errors; small oscillation near setpoint
 811 */
 812static long long pos_ratio_polynom(unsigned long setpoint,
 813                                          unsigned long dirty,
 814                                          unsigned long limit)
 815{
 816        long long pos_ratio;
 817        long x;
 818
 819        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 820                      (limit - setpoint) | 1);
 821        pos_ratio = x;
 822        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 823        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 824        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 825
 826        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 827}
 828
 829/*
 830 * Dirty position control.
 831 *
 832 * (o) global/bdi setpoints
 833 *
 834 * We want the dirty pages be balanced around the global/wb setpoints.
 835 * When the number of dirty pages is higher/lower than the setpoint, the
 836 * dirty position control ratio (and hence task dirty ratelimit) will be
 837 * decreased/increased to bring the dirty pages back to the setpoint.
 838 *
 839 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 840 *
 841 *     if (dirty < setpoint) scale up   pos_ratio
 842 *     if (dirty > setpoint) scale down pos_ratio
 843 *
 844 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 845 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 846 *
 847 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 848 *
 849 * (o) global control line
 850 *
 851 *     ^ pos_ratio
 852 *     |
 853 *     |            |<===== global dirty control scope ======>|
 854 * 2.0 .............*
 855 *     |            .*
 856 *     |            . *
 857 *     |            .   *
 858 *     |            .     *
 859 *     |            .        *
 860 *     |            .            *
 861 * 1.0 ................................*
 862 *     |            .                  .     *
 863 *     |            .                  .          *
 864 *     |            .                  .              *
 865 *     |            .                  .                 *
 866 *     |            .                  .                    *
 867 *   0 +------------.------------------.----------------------*------------->
 868 *           freerun^          setpoint^                 limit^   dirty pages
 869 *
 870 * (o) wb control line
 871 *
 872 *     ^ pos_ratio
 873 *     |
 874 *     |            *
 875 *     |              *
 876 *     |                *
 877 *     |                  *
 878 *     |                    * |<=========== span ============>|
 879 * 1.0 .......................*
 880 *     |                      . *
 881 *     |                      .   *
 882 *     |                      .     *
 883 *     |                      .       *
 884 *     |                      .         *
 885 *     |                      .           *
 886 *     |                      .             *
 887 *     |                      .               *
 888 *     |                      .                 *
 889 *     |                      .                   *
 890 *     |                      .                     *
 891 * 1/4 ...............................................* * * * * * * * * * * *
 892 *     |                      .                         .
 893 *     |                      .                           .
 894 *     |                      .                             .
 895 *   0 +----------------------.-------------------------------.------------->
 896 *                wb_setpoint^                    x_intercept^
 897 *
 898 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 899 * be smoothly throttled down to normal if it starts high in situations like
 900 * - start writing to a slow SD card and a fast disk at the same time. The SD
 901 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 902 * - the wb dirty thresh drops quickly due to change of JBOD workload
 903 */
 904static void wb_position_ratio(struct dirty_throttle_control *dtc)
 905{
 906        struct bdi_writeback *wb = dtc->wb;
 907        unsigned long write_bw = wb->avg_write_bandwidth;
 908        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 909        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 910        unsigned long wb_thresh = dtc->wb_thresh;
 911        unsigned long x_intercept;
 912        unsigned long setpoint;         /* dirty pages' target balance point */
 913        unsigned long wb_setpoint;
 914        unsigned long span;
 915        long long pos_ratio;            /* for scaling up/down the rate limit */
 916        long x;
 917
 918        dtc->pos_ratio = 0;
 919
 920        if (unlikely(dtc->dirty >= limit))
 921                return;
 922
 923        /*
 924         * global setpoint
 925         *
 926         * See comment for pos_ratio_polynom().
 927         */
 928        setpoint = (freerun + limit) / 2;
 929        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 930
 931        /*
 932         * The strictlimit feature is a tool preventing mistrusted filesystems
 933         * from growing a large number of dirty pages before throttling. For
 934         * such filesystems balance_dirty_pages always checks wb counters
 935         * against wb limits. Even if global "nr_dirty" is under "freerun".
 936         * This is especially important for fuse which sets bdi->max_ratio to
 937         * 1% by default. Without strictlimit feature, fuse writeback may
 938         * consume arbitrary amount of RAM because it is accounted in
 939         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 940         *
 941         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 942         * two values: wb_dirty and wb_thresh. Let's consider an example:
 943         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 944         * limits are set by default to 10% and 20% (background and throttle).
 945         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 946         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 947         * about ~6K pages (as the average of background and throttle wb
 948         * limits). The 3rd order polynomial will provide positive feedback if
 949         * wb_dirty is under wb_setpoint and vice versa.
 950         *
 951         * Note, that we cannot use global counters in these calculations
 952         * because we want to throttle process writing to a strictlimit wb
 953         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 954         * in the example above).
 955         */
 956        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 957                long long wb_pos_ratio;
 958
 959                if (dtc->wb_dirty < 8) {
 960                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 961                                           2 << RATELIMIT_CALC_SHIFT);
 962                        return;
 963                }
 964
 965                if (dtc->wb_dirty >= wb_thresh)
 966                        return;
 967
 968                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 969                                                    dtc->wb_bg_thresh);
 970
 971                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 972                        return;
 973
 974                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 975                                                 wb_thresh);
 976
 977                /*
 978                 * Typically, for strictlimit case, wb_setpoint << setpoint
 979                 * and pos_ratio >> wb_pos_ratio. In the other words global
 980                 * state ("dirty") is not limiting factor and we have to
 981                 * make decision based on wb counters. But there is an
 982                 * important case when global pos_ratio should get precedence:
 983                 * global limits are exceeded (e.g. due to activities on other
 984                 * wb's) while given strictlimit wb is below limit.
 985                 *
 986                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 987                 * but it would look too non-natural for the case of all
 988                 * activity in the system coming from a single strictlimit wb
 989                 * with bdi->max_ratio == 100%.
 990                 *
 991                 * Note that min() below somewhat changes the dynamics of the
 992                 * control system. Normally, pos_ratio value can be well over 3
 993                 * (when globally we are at freerun and wb is well below wb
 994                 * setpoint). Now the maximum pos_ratio in the same situation
 995                 * is 2. We might want to tweak this if we observe the control
 996                 * system is too slow to adapt.
 997                 */
 998                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 999                return;
1000        }
1001
1002        /*
1003         * We have computed basic pos_ratio above based on global situation. If
1004         * the wb is over/under its share of dirty pages, we want to scale
1005         * pos_ratio further down/up. That is done by the following mechanism.
1006         */
1007
1008        /*
1009         * wb setpoint
1010         *
1011         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1012         *
1013         *                        x_intercept - wb_dirty
1014         *                     := --------------------------
1015         *                        x_intercept - wb_setpoint
1016         *
1017         * The main wb control line is a linear function that subjects to
1018         *
1019         * (1) f(wb_setpoint) = 1.0
1020         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1021         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1022         *
1023         * For single wb case, the dirty pages are observed to fluctuate
1024         * regularly within range
1025         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1026         * for various filesystems, where (2) can yield in a reasonable 12.5%
1027         * fluctuation range for pos_ratio.
1028         *
1029         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1030         * own size, so move the slope over accordingly and choose a slope that
1031         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1032         */
1033        if (unlikely(wb_thresh > dtc->thresh))
1034                wb_thresh = dtc->thresh;
1035        /*
1036         * It's very possible that wb_thresh is close to 0 not because the
1037         * device is slow, but that it has remained inactive for long time.
1038         * Honour such devices a reasonable good (hopefully IO efficient)
1039         * threshold, so that the occasional writes won't be blocked and active
1040         * writes can rampup the threshold quickly.
1041         */
1042        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1043        /*
1044         * scale global setpoint to wb's:
1045         *      wb_setpoint = setpoint * wb_thresh / thresh
1046         */
1047        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1048        wb_setpoint = setpoint * (u64)x >> 16;
1049        /*
1050         * Use span=(8*write_bw) in single wb case as indicated by
1051         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1052         *
1053         *        wb_thresh                    thresh - wb_thresh
1054         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1055         *         thresh                           thresh
1056         */
1057        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1058        x_intercept = wb_setpoint + span;
1059
1060        if (dtc->wb_dirty < x_intercept - span / 4) {
1061                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1062                                      (x_intercept - wb_setpoint) | 1);
1063        } else
1064                pos_ratio /= 4;
1065
1066        /*
1067         * wb reserve area, safeguard against dirty pool underrun and disk idle
1068         * It may push the desired control point of global dirty pages higher
1069         * than setpoint.
1070         */
1071        x_intercept = wb_thresh / 2;
1072        if (dtc->wb_dirty < x_intercept) {
1073                if (dtc->wb_dirty > x_intercept / 8)
1074                        pos_ratio = div_u64(pos_ratio * x_intercept,
1075                                            dtc->wb_dirty);
1076                else
1077                        pos_ratio *= 8;
1078        }
1079
1080        dtc->pos_ratio = pos_ratio;
1081}
1082
1083static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1084                                      unsigned long elapsed,
1085                                      unsigned long written)
1086{
1087        const unsigned long period = roundup_pow_of_two(3 * HZ);
1088        unsigned long avg = wb->avg_write_bandwidth;
1089        unsigned long old = wb->write_bandwidth;
1090        u64 bw;
1091
1092        /*
1093         * bw = written * HZ / elapsed
1094         *
1095         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1096         * write_bandwidth = ---------------------------------------------------
1097         *                                          period
1098         *
1099         * @written may have decreased due to account_page_redirty().
1100         * Avoid underflowing @bw calculation.
1101         */
1102        bw = written - min(written, wb->written_stamp);
1103        bw *= HZ;
1104        if (unlikely(elapsed > period)) {
1105                bw = div64_ul(bw, elapsed);
1106                avg = bw;
1107                goto out;
1108        }
1109        bw += (u64)wb->write_bandwidth * (period - elapsed);
1110        bw >>= ilog2(period);
1111
1112        /*
1113         * one more level of smoothing, for filtering out sudden spikes
1114         */
1115        if (avg > old && old >= (unsigned long)bw)
1116                avg -= (avg - old) >> 3;
1117
1118        if (avg < old && old <= (unsigned long)bw)
1119                avg += (old - avg) >> 3;
1120
1121out:
1122        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1123        avg = max(avg, 1LU);
1124        if (wb_has_dirty_io(wb)) {
1125                long delta = avg - wb->avg_write_bandwidth;
1126                WARN_ON_ONCE(atomic_long_add_return(delta,
1127                                        &wb->bdi->tot_write_bandwidth) <= 0);
1128        }
1129        wb->write_bandwidth = bw;
1130        wb->avg_write_bandwidth = avg;
1131}
1132
1133static void update_dirty_limit(struct dirty_throttle_control *dtc)
1134{
1135        struct wb_domain *dom = dtc_dom(dtc);
1136        unsigned long thresh = dtc->thresh;
1137        unsigned long limit = dom->dirty_limit;
1138
1139        /*
1140         * Follow up in one step.
1141         */
1142        if (limit < thresh) {
1143                limit = thresh;
1144                goto update;
1145        }
1146
1147        /*
1148         * Follow down slowly. Use the higher one as the target, because thresh
1149         * may drop below dirty. This is exactly the reason to introduce
1150         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1151         */
1152        thresh = max(thresh, dtc->dirty);
1153        if (limit > thresh) {
1154                limit -= (limit - thresh) >> 5;
1155                goto update;
1156        }
1157        return;
1158update:
1159        dom->dirty_limit = limit;
1160}
1161
1162static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1163                                    unsigned long now)
1164{
1165        struct wb_domain *dom = dtc_dom(dtc);
1166
1167        /*
1168         * check locklessly first to optimize away locking for the most time
1169         */
1170        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1171                return;
1172
1173        spin_lock(&dom->lock);
1174        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1175                update_dirty_limit(dtc);
1176                dom->dirty_limit_tstamp = now;
1177        }
1178        spin_unlock(&dom->lock);
1179}
1180
1181/*
1182 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1183 *
1184 * Normal wb tasks will be curbed at or below it in long term.
1185 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186 */
1187static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1188                                      unsigned long dirtied,
1189                                      unsigned long elapsed)
1190{
1191        struct bdi_writeback *wb = dtc->wb;
1192        unsigned long dirty = dtc->dirty;
1193        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1194        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1195        unsigned long setpoint = (freerun + limit) / 2;
1196        unsigned long write_bw = wb->avg_write_bandwidth;
1197        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1198        unsigned long dirty_rate;
1199        unsigned long task_ratelimit;
1200        unsigned long balanced_dirty_ratelimit;
1201        unsigned long step;
1202        unsigned long x;
1203        unsigned long shift;
1204
1205        /*
1206         * The dirty rate will match the writeout rate in long term, except
1207         * when dirty pages are truncated by userspace or re-dirtied by FS.
1208         */
1209        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1210
1211        /*
1212         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213         */
1214        task_ratelimit = (u64)dirty_ratelimit *
1215                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1216        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1217
1218        /*
1219         * A linear estimation of the "balanced" throttle rate. The theory is,
1220         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1221         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1222         * formula will yield the balanced rate limit (write_bw / N).
1223         *
1224         * Note that the expanded form is not a pure rate feedback:
1225         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1226         * but also takes pos_ratio into account:
1227         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1228         *
1229         * (1) is not realistic because pos_ratio also takes part in balancing
1230         * the dirty rate.  Consider the state
1231         *      pos_ratio = 0.5                                              (3)
1232         *      rate = 2 * (write_bw / N)                                    (4)
1233         * If (1) is used, it will stuck in that state! Because each dd will
1234         * be throttled at
1235         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1236         * yielding
1237         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1238         * put (6) into (1) we get
1239         *      rate_(i+1) = rate_(i)                                        (7)
1240         *
1241         * So we end up using (2) to always keep
1242         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1243         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1244         * pos_ratio is able to drive itself to 1.0, which is not only where
1245         * the dirty count meet the setpoint, but also where the slope of
1246         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247         */
1248        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1249                                           dirty_rate | 1);
1250        /*
1251         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252         */
1253        if (unlikely(balanced_dirty_ratelimit > write_bw))
1254                balanced_dirty_ratelimit = write_bw;
1255
1256        /*
1257         * We could safely do this and return immediately:
1258         *
1259         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1260         *
1261         * However to get a more stable dirty_ratelimit, the below elaborated
1262         * code makes use of task_ratelimit to filter out singular points and
1263         * limit the step size.
1264         *
1265         * The below code essentially only uses the relative value of
1266         *
1267         *      task_ratelimit - dirty_ratelimit
1268         *      = (pos_ratio - 1) * dirty_ratelimit
1269         *
1270         * which reflects the direction and size of dirty position error.
1271         */
1272
1273        /*
1274         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1275         * task_ratelimit is on the same side of dirty_ratelimit, too.
1276         * For example, when
1277         * - dirty_ratelimit > balanced_dirty_ratelimit
1278         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1279         * lowering dirty_ratelimit will help meet both the position and rate
1280         * control targets. Otherwise, don't update dirty_ratelimit if it will
1281         * only help meet the rate target. After all, what the users ultimately
1282         * feel and care are stable dirty rate and small position error.
1283         *
1284         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1285         * and filter out the singular points of balanced_dirty_ratelimit. Which
1286         * keeps jumping around randomly and can even leap far away at times
1287         * due to the small 200ms estimation period of dirty_rate (we want to
1288         * keep that period small to reduce time lags).
1289         */
1290        step = 0;
1291
1292        /*
1293         * For strictlimit case, calculations above were based on wb counters
1294         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1295         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1296         * Hence, to calculate "step" properly, we have to use wb_dirty as
1297         * "dirty" and wb_setpoint as "setpoint".
1298         *
1299         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1300         * it's possible that wb_thresh is close to zero due to inactivity
1301         * of backing device.
1302         */
1303        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1304                dirty = dtc->wb_dirty;
1305                if (dtc->wb_dirty < 8)
1306                        setpoint = dtc->wb_dirty + 1;
1307                else
1308                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1309        }
1310
1311        if (dirty < setpoint) {
1312                x = min3(wb->balanced_dirty_ratelimit,
1313                         balanced_dirty_ratelimit, task_ratelimit);
1314                if (dirty_ratelimit < x)
1315                        step = x - dirty_ratelimit;
1316        } else {
1317                x = max3(wb->balanced_dirty_ratelimit,
1318                         balanced_dirty_ratelimit, task_ratelimit);
1319                if (dirty_ratelimit > x)
1320                        step = dirty_ratelimit - x;
1321        }
1322
1323        /*
1324         * Don't pursue 100% rate matching. It's impossible since the balanced
1325         * rate itself is constantly fluctuating. So decrease the track speed
1326         * when it gets close to the target. Helps eliminate pointless tremors.
1327         */
1328        shift = dirty_ratelimit / (2 * step + 1);
1329        if (shift < BITS_PER_LONG)
1330                step = DIV_ROUND_UP(step >> shift, 8);
1331        else
1332                step = 0;
1333
1334        if (dirty_ratelimit < balanced_dirty_ratelimit)
1335                dirty_ratelimit += step;
1336        else
1337                dirty_ratelimit -= step;
1338
1339        wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1340        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1341
1342        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1343}
1344
1345static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1346                                  struct dirty_throttle_control *mdtc,
1347                                  unsigned long start_time,
1348                                  bool update_ratelimit)
1349{
1350        struct bdi_writeback *wb = gdtc->wb;
1351        unsigned long now = jiffies;
1352        unsigned long elapsed = now - wb->bw_time_stamp;
1353        unsigned long dirtied;
1354        unsigned long written;
1355
1356        lockdep_assert_held(&wb->list_lock);
1357
1358        /*
1359         * rate-limit, only update once every 200ms.
1360         */
1361        if (elapsed < BANDWIDTH_INTERVAL)
1362                return;
1363
1364        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1365        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1366
1367        /*
1368         * Skip quiet periods when disk bandwidth is under-utilized.
1369         * (at least 1s idle time between two flusher runs)
1370         */
1371        if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1372                goto snapshot;
1373
1374        if (update_ratelimit) {
1375                domain_update_bandwidth(gdtc, now);
1376                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1377
1378                /*
1379                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1380                 * compiler has no way to figure that out.  Help it.
1381                 */
1382                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1383                        domain_update_bandwidth(mdtc, now);
1384                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1385                }
1386        }
1387        wb_update_write_bandwidth(wb, elapsed, written);
1388
1389snapshot:
1390        wb->dirtied_stamp = dirtied;
1391        wb->written_stamp = written;
1392        wb->bw_time_stamp = now;
1393}
1394
1395void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1396{
1397        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1398
1399        __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1400}
1401
1402/*
1403 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1404 * will look to see if it needs to start dirty throttling.
1405 *
1406 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1407 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1408 * (the number of pages we may dirty without exceeding the dirty limits).
1409 */
1410static unsigned long dirty_poll_interval(unsigned long dirty,
1411                                         unsigned long thresh)
1412{
1413        if (thresh > dirty)
1414                return 1UL << (ilog2(thresh - dirty) >> 1);
1415
1416        return 1;
1417}
1418
1419static unsigned long wb_max_pause(struct bdi_writeback *wb,
1420                                  unsigned long wb_dirty)
1421{
1422        unsigned long bw = wb->avg_write_bandwidth;
1423        unsigned long t;
1424
1425        /*
1426         * Limit pause time for small memory systems. If sleeping for too long
1427         * time, a small pool of dirty/writeback pages may go empty and disk go
1428         * idle.
1429         *
1430         * 8 serves as the safety ratio.
1431         */
1432        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1433        t++;
1434
1435        return min_t(unsigned long, t, MAX_PAUSE);
1436}
1437
1438static long wb_min_pause(struct bdi_writeback *wb,
1439                         long max_pause,
1440                         unsigned long task_ratelimit,
1441                         unsigned long dirty_ratelimit,
1442                         int *nr_dirtied_pause)
1443{
1444        long hi = ilog2(wb->avg_write_bandwidth);
1445        long lo = ilog2(wb->dirty_ratelimit);
1446        long t;         /* target pause */
1447        long pause;     /* estimated next pause */
1448        int pages;      /* target nr_dirtied_pause */
1449
1450        /* target for 10ms pause on 1-dd case */
1451        t = max(1, HZ / 100);
1452
1453        /*
1454         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1455         * overheads.
1456         *
1457         * (N * 10ms) on 2^N concurrent tasks.
1458         */
1459        if (hi > lo)
1460                t += (hi - lo) * (10 * HZ) / 1024;
1461
1462        /*
1463         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1464         * on the much more stable dirty_ratelimit. However the next pause time
1465         * will be computed based on task_ratelimit and the two rate limits may
1466         * depart considerably at some time. Especially if task_ratelimit goes
1467         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1468         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1469         * result task_ratelimit won't be executed faithfully, which could
1470         * eventually bring down dirty_ratelimit.
1471         *
1472         * We apply two rules to fix it up:
1473         * 1) try to estimate the next pause time and if necessary, use a lower
1474         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1475         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1476         * 2) limit the target pause time to max_pause/2, so that the normal
1477         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1478         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1479         */
1480        t = min(t, 1 + max_pause / 2);
1481        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482
1483        /*
1484         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1485         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1486         * When the 16 consecutive reads are often interrupted by some dirty
1487         * throttling pause during the async writes, cfq will go into idles
1488         * (deadline is fine). So push nr_dirtied_pause as high as possible
1489         * until reaches DIRTY_POLL_THRESH=32 pages.
1490         */
1491        if (pages < DIRTY_POLL_THRESH) {
1492                t = max_pause;
1493                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1494                if (pages > DIRTY_POLL_THRESH) {
1495                        pages = DIRTY_POLL_THRESH;
1496                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1497                }
1498        }
1499
1500        pause = HZ * pages / (task_ratelimit + 1);
1501        if (pause > max_pause) {
1502                t = max_pause;
1503                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1504        }
1505
1506        *nr_dirtied_pause = pages;
1507        /*
1508         * The minimal pause time will normally be half the target pause time.
1509         */
1510        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1511}
1512
1513static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1514{
1515        struct bdi_writeback *wb = dtc->wb;
1516        unsigned long wb_reclaimable;
1517
1518        /*
1519         * wb_thresh is not treated as some limiting factor as
1520         * dirty_thresh, due to reasons
1521         * - in JBOD setup, wb_thresh can fluctuate a lot
1522         * - in a system with HDD and USB key, the USB key may somehow
1523         *   go into state (wb_dirty >> wb_thresh) either because
1524         *   wb_dirty starts high, or because wb_thresh drops low.
1525         *   In this case we don't want to hard throttle the USB key
1526         *   dirtiers for 100 seconds until wb_dirty drops under
1527         *   wb_thresh. Instead the auxiliary wb control line in
1528         *   wb_position_ratio() will let the dirtier task progress
1529         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1530         */
1531        dtc->wb_thresh = __wb_calc_thresh(dtc);
1532        dtc->wb_bg_thresh = dtc->thresh ?
1533                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1534
1535        /*
1536         * In order to avoid the stacked BDI deadlock we need
1537         * to ensure we accurately count the 'dirty' pages when
1538         * the threshold is low.
1539         *
1540         * Otherwise it would be possible to get thresh+n pages
1541         * reported dirty, even though there are thresh-m pages
1542         * actually dirty; with m+n sitting in the percpu
1543         * deltas.
1544         */
1545        if (dtc->wb_thresh < 2 * wb_stat_error()) {
1546                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1547                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1548        } else {
1549                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1550                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1551        }
1552}
1553
1554/*
1555 * balance_dirty_pages() must be called by processes which are generating dirty
1556 * data.  It looks at the number of dirty pages in the machine and will force
1557 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1558 * If we're over `background_thresh' then the writeback threads are woken to
1559 * perform some writeout.
1560 */
1561static void balance_dirty_pages(struct bdi_writeback *wb,
1562                                unsigned long pages_dirtied)
1563{
1564        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1565        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1566        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1567        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1568                                                     &mdtc_stor : NULL;
1569        struct dirty_throttle_control *sdtc;
1570        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1571        long period;
1572        long pause;
1573        long max_pause;
1574        long min_pause;
1575        int nr_dirtied_pause;
1576        bool dirty_exceeded = false;
1577        unsigned long task_ratelimit;
1578        unsigned long dirty_ratelimit;
1579        struct backing_dev_info *bdi = wb->bdi;
1580        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1581        unsigned long start_time = jiffies;
1582
1583        for (;;) {
1584                unsigned long now = jiffies;
1585                unsigned long dirty, thresh, bg_thresh;
1586                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1587                unsigned long m_thresh = 0;
1588                unsigned long m_bg_thresh = 0;
1589
1590                /*
1591                 * Unstable writes are a feature of certain networked
1592                 * filesystems (i.e. NFS) in which data may have been
1593                 * written to the server's write cache, but has not yet
1594                 * been flushed to permanent storage.
1595                 */
1596                nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1597                                        global_node_page_state(NR_UNSTABLE_NFS);
1598                gdtc->avail = global_dirtyable_memory();
1599                gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1600
1601                domain_dirty_limits(gdtc);
1602
1603                if (unlikely(strictlimit)) {
1604                        wb_dirty_limits(gdtc);
1605
1606                        dirty = gdtc->wb_dirty;
1607                        thresh = gdtc->wb_thresh;
1608                        bg_thresh = gdtc->wb_bg_thresh;
1609                } else {
1610                        dirty = gdtc->dirty;
1611                        thresh = gdtc->thresh;
1612                        bg_thresh = gdtc->bg_thresh;
1613                }
1614
1615                if (mdtc) {
1616                        unsigned long filepages, headroom, writeback;
1617
1618                        /*
1619                         * If @wb belongs to !root memcg, repeat the same
1620                         * basic calculations for the memcg domain.
1621                         */
1622                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1623                                            &mdtc->dirty, &writeback);
1624                        mdtc->dirty += writeback;
1625                        mdtc_calc_avail(mdtc, filepages, headroom);
1626
1627                        domain_dirty_limits(mdtc);
1628
1629                        if (unlikely(strictlimit)) {
1630                                wb_dirty_limits(mdtc);
1631                                m_dirty = mdtc->wb_dirty;
1632                                m_thresh = mdtc->wb_thresh;
1633                                m_bg_thresh = mdtc->wb_bg_thresh;
1634                        } else {
1635                                m_dirty = mdtc->dirty;
1636                                m_thresh = mdtc->thresh;
1637                                m_bg_thresh = mdtc->bg_thresh;
1638                        }
1639                }
1640
1641                /*
1642                 * Throttle it only when the background writeback cannot
1643                 * catch-up. This avoids (excessively) small writeouts
1644                 * when the wb limits are ramping up in case of !strictlimit.
1645                 *
1646                 * In strictlimit case make decision based on the wb counters
1647                 * and limits. Small writeouts when the wb limits are ramping
1648                 * up are the price we consciously pay for strictlimit-ing.
1649                 *
1650                 * If memcg domain is in effect, @dirty should be under
1651                 * both global and memcg freerun ceilings.
1652                 */
1653                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1654                    (!mdtc ||
1655                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1656                        unsigned long intv = dirty_poll_interval(dirty, thresh);
1657                        unsigned long m_intv = ULONG_MAX;
1658
1659                        current->dirty_paused_when = now;
1660                        current->nr_dirtied = 0;
1661                        if (mdtc)
1662                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1663                        current->nr_dirtied_pause = min(intv, m_intv);
1664                        break;
1665                }
1666
1667                if (unlikely(!writeback_in_progress(wb)))
1668                        wb_start_background_writeback(wb);
1669
1670                mem_cgroup_flush_foreign(wb);
1671
1672                /*
1673                 * Calculate global domain's pos_ratio and select the
1674                 * global dtc by default.
1675                 */
1676                if (!strictlimit)
1677                        wb_dirty_limits(gdtc);
1678
1679                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1681
1682                wb_position_ratio(gdtc);
1683                sdtc = gdtc;
1684
1685                if (mdtc) {
1686                        /*
1687                         * If memcg domain is in effect, calculate its
1688                         * pos_ratio.  @wb should satisfy constraints from
1689                         * both global and memcg domains.  Choose the one
1690                         * w/ lower pos_ratio.
1691                         */
1692                        if (!strictlimit)
1693                                wb_dirty_limits(mdtc);
1694
1695                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1697
1698                        wb_position_ratio(mdtc);
1699                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1700                                sdtc = mdtc;
1701                }
1702
1703                if (dirty_exceeded && !wb->dirty_exceeded)
1704                        wb->dirty_exceeded = 1;
1705
1706                if (time_is_before_jiffies(wb->bw_time_stamp +
1707                                           BANDWIDTH_INTERVAL)) {
1708                        spin_lock(&wb->list_lock);
1709                        __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710                        spin_unlock(&wb->list_lock);
1711                }
1712
1713                /* throttle according to the chosen dtc */
1714                dirty_ratelimit = wb->dirty_ratelimit;
1715                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716                                                        RATELIMIT_CALC_SHIFT;
1717                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718                min_pause = wb_min_pause(wb, max_pause,
1719                                         task_ratelimit, dirty_ratelimit,
1720                                         &nr_dirtied_pause);
1721
1722                if (unlikely(task_ratelimit == 0)) {
1723                        period = max_pause;
1724                        pause = max_pause;
1725                        goto pause;
1726                }
1727                period = HZ * pages_dirtied / task_ratelimit;
1728                pause = period;
1729                if (current->dirty_paused_when)
1730                        pause -= now - current->dirty_paused_when;
1731                /*
1732                 * For less than 1s think time (ext3/4 may block the dirtier
1733                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1734                 * however at much less frequency), try to compensate it in
1735                 * future periods by updating the virtual time; otherwise just
1736                 * do a reset, as it may be a light dirtier.
1737                 */
1738                if (pause < min_pause) {
1739                        trace_balance_dirty_pages(wb,
1740                                                  sdtc->thresh,
1741                                                  sdtc->bg_thresh,
1742                                                  sdtc->dirty,
1743                                                  sdtc->wb_thresh,
1744                                                  sdtc->wb_dirty,
1745                                                  dirty_ratelimit,
1746                                                  task_ratelimit,
1747                                                  pages_dirtied,
1748                                                  period,
1749                                                  min(pause, 0L),
1750                                                  start_time);
1751                        if (pause < -HZ) {
1752                                current->dirty_paused_when = now;
1753                                current->nr_dirtied = 0;
1754                        } else if (period) {
1755                                current->dirty_paused_when += period;
1756                                current->nr_dirtied = 0;
1757                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1758                                current->nr_dirtied_pause += pages_dirtied;
1759                        break;
1760                }
1761                if (unlikely(pause > max_pause)) {
1762                        /* for occasional dropped task_ratelimit */
1763                        now += min(pause - max_pause, max_pause);
1764                        pause = max_pause;
1765                }
1766
1767pause:
1768                trace_balance_dirty_pages(wb,
1769                                          sdtc->thresh,
1770                                          sdtc->bg_thresh,
1771                                          sdtc->dirty,
1772                                          sdtc->wb_thresh,
1773                                          sdtc->wb_dirty,
1774                                          dirty_ratelimit,
1775                                          task_ratelimit,
1776                                          pages_dirtied,
1777                                          period,
1778                                          pause,
1779                                          start_time);
1780                __set_current_state(TASK_KILLABLE);
1781                wb->dirty_sleep = now;
1782                io_schedule_timeout(pause);
1783
1784                current->dirty_paused_when = now + pause;
1785                current->nr_dirtied = 0;
1786                current->nr_dirtied_pause = nr_dirtied_pause;
1787
1788                /*
1789                 * This is typically equal to (dirty < thresh) and can also
1790                 * keep "1000+ dd on a slow USB stick" under control.
1791                 */
1792                if (task_ratelimit)
1793                        break;
1794
1795                /*
1796                 * In the case of an unresponding NFS server and the NFS dirty
1797                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1798                 * to go through, so that tasks on them still remain responsive.
1799                 *
1800                 * In theory 1 page is enough to keep the consumer-producer
1801                 * pipe going: the flusher cleans 1 page => the task dirties 1
1802                 * more page. However wb_dirty has accounting errors.  So use
1803                 * the larger and more IO friendly wb_stat_error.
1804                 */
1805                if (sdtc->wb_dirty <= wb_stat_error())
1806                        break;
1807
1808                if (fatal_signal_pending(current))
1809                        break;
1810        }
1811
1812        if (!dirty_exceeded && wb->dirty_exceeded)
1813                wb->dirty_exceeded = 0;
1814
1815        if (writeback_in_progress(wb))
1816                return;
1817
1818        /*
1819         * In laptop mode, we wait until hitting the higher threshold before
1820         * starting background writeout, and then write out all the way down
1821         * to the lower threshold.  So slow writers cause minimal disk activity.
1822         *
1823         * In normal mode, we start background writeout at the lower
1824         * background_thresh, to keep the amount of dirty memory low.
1825         */
1826        if (laptop_mode)
1827                return;
1828
1829        if (nr_reclaimable > gdtc->bg_thresh)
1830                wb_start_background_writeback(wb);
1831}
1832
1833static DEFINE_PER_CPU(int, bdp_ratelimits);
1834
1835/*
1836 * Normal tasks are throttled by
1837 *      loop {
1838 *              dirty tsk->nr_dirtied_pause pages;
1839 *              take a snap in balance_dirty_pages();
1840 *      }
1841 * However there is a worst case. If every task exit immediately when dirtied
1842 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1843 * called to throttle the page dirties. The solution is to save the not yet
1844 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1845 * randomly into the running tasks. This works well for the above worst case,
1846 * as the new task will pick up and accumulate the old task's leaked dirty
1847 * count and eventually get throttled.
1848 */
1849DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1850
1851/**
1852 * balance_dirty_pages_ratelimited - balance dirty memory state
1853 * @mapping: address_space which was dirtied
1854 *
1855 * Processes which are dirtying memory should call in here once for each page
1856 * which was newly dirtied.  The function will periodically check the system's
1857 * dirty state and will initiate writeback if needed.
1858 *
1859 * On really big machines, get_writeback_state is expensive, so try to avoid
1860 * calling it too often (ratelimiting).  But once we're over the dirty memory
1861 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1862 * from overshooting the limit by (ratelimit_pages) each.
1863 */
1864void balance_dirty_pages_ratelimited(struct address_space *mapping)
1865{
1866        struct inode *inode = mapping->host;
1867        struct backing_dev_info *bdi = inode_to_bdi(inode);
1868        struct bdi_writeback *wb = NULL;
1869        int ratelimit;
1870        int *p;
1871
1872        if (!bdi_cap_account_dirty(bdi))
1873                return;
1874
1875        if (inode_cgwb_enabled(inode))
1876                wb = wb_get_create_current(bdi, GFP_KERNEL);
1877        if (!wb)
1878                wb = &bdi->wb;
1879
1880        ratelimit = current->nr_dirtied_pause;
1881        if (wb->dirty_exceeded)
1882                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1883
1884        preempt_disable();
1885        /*
1886         * This prevents one CPU to accumulate too many dirtied pages without
1887         * calling into balance_dirty_pages(), which can happen when there are
1888         * 1000+ tasks, all of them start dirtying pages at exactly the same
1889         * time, hence all honoured too large initial task->nr_dirtied_pause.
1890         */
1891        p =  this_cpu_ptr(&bdp_ratelimits);
1892        if (unlikely(current->nr_dirtied >= ratelimit))
1893                *p = 0;
1894        else if (unlikely(*p >= ratelimit_pages)) {
1895                *p = 0;
1896                ratelimit = 0;
1897        }
1898        /*
1899         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1900         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1901         * the dirty throttling and livelock other long-run dirtiers.
1902         */
1903        p = this_cpu_ptr(&dirty_throttle_leaks);
1904        if (*p > 0 && current->nr_dirtied < ratelimit) {
1905                unsigned long nr_pages_dirtied;
1906                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1907                *p -= nr_pages_dirtied;
1908                current->nr_dirtied += nr_pages_dirtied;
1909        }
1910        preempt_enable();
1911
1912        if (unlikely(current->nr_dirtied >= ratelimit))
1913                balance_dirty_pages(wb, current->nr_dirtied);
1914
1915        wb_put(wb);
1916}
1917EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1918
1919/**
1920 * wb_over_bg_thresh - does @wb need to be written back?
1921 * @wb: bdi_writeback of interest
1922 *
1923 * Determines whether background writeback should keep writing @wb or it's
1924 * clean enough.
1925 *
1926 * Return: %true if writeback should continue.
1927 */
1928bool wb_over_bg_thresh(struct bdi_writeback *wb)
1929{
1930        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1931        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1932        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1933        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1934                                                     &mdtc_stor : NULL;
1935
1936        /*
1937         * Similar to balance_dirty_pages() but ignores pages being written
1938         * as we're trying to decide whether to put more under writeback.
1939         */
1940        gdtc->avail = global_dirtyable_memory();
1941        gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1942                      global_node_page_state(NR_UNSTABLE_NFS);
1943        domain_dirty_limits(gdtc);
1944
1945        if (gdtc->dirty > gdtc->bg_thresh)
1946                return true;
1947
1948        if (wb_stat(wb, WB_RECLAIMABLE) >
1949            wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1950                return true;
1951
1952        if (mdtc) {
1953                unsigned long filepages, headroom, writeback;
1954
1955                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1956                                    &writeback);
1957                mdtc_calc_avail(mdtc, filepages, headroom);
1958                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1959
1960                if (mdtc->dirty > mdtc->bg_thresh)
1961                        return true;
1962
1963                if (wb_stat(wb, WB_RECLAIMABLE) >
1964                    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1965                        return true;
1966        }
1967
1968        return false;
1969}
1970
1971/*
1972 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973 */
1974int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1975        void __user *buffer, size_t *length, loff_t *ppos)
1976{
1977        unsigned int old_interval = dirty_writeback_interval;
1978        int ret;
1979
1980        ret = proc_dointvec(table, write, buffer, length, ppos);
1981
1982        /*
1983         * Writing 0 to dirty_writeback_interval will disable periodic writeback
1984         * and a different non-zero value will wakeup the writeback threads.
1985         * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1986         * iterate over all bdis and wbs.
1987         * The reason we do this is to make the change take effect immediately.
1988         */
1989        if (!ret && write && dirty_writeback_interval &&
1990                dirty_writeback_interval != old_interval)
1991                wakeup_flusher_threads(WB_REASON_PERIODIC);
1992
1993        return ret;
1994}
1995
1996#ifdef CONFIG_BLOCK
1997void laptop_mode_timer_fn(struct timer_list *t)
1998{
1999        struct backing_dev_info *backing_dev_info =
2000                from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2001
2002        wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2003}
2004
2005/*
2006 * We've spun up the disk and we're in laptop mode: schedule writeback
2007 * of all dirty data a few seconds from now.  If the flush is already scheduled
2008 * then push it back - the user is still using the disk.
2009 */
2010void laptop_io_completion(struct backing_dev_info *info)
2011{
2012        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2013}
2014
2015/*
2016 * We're in laptop mode and we've just synced. The sync's writes will have
2017 * caused another writeback to be scheduled by laptop_io_completion.
2018 * Nothing needs to be written back anymore, so we unschedule the writeback.
2019 */
2020void laptop_sync_completion(void)
2021{
2022        struct backing_dev_info *bdi;
2023
2024        rcu_read_lock();
2025
2026        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2027                del_timer(&bdi->laptop_mode_wb_timer);
2028
2029        rcu_read_unlock();
2030}
2031#endif
2032
2033/*
2034 * If ratelimit_pages is too high then we can get into dirty-data overload
2035 * if a large number of processes all perform writes at the same time.
2036 * If it is too low then SMP machines will call the (expensive)
2037 * get_writeback_state too often.
2038 *
2039 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2040 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2041 * thresholds.
2042 */
2043
2044void writeback_set_ratelimit(void)
2045{
2046        struct wb_domain *dom = &global_wb_domain;
2047        unsigned long background_thresh;
2048        unsigned long dirty_thresh;
2049
2050        global_dirty_limits(&background_thresh, &dirty_thresh);
2051        dom->dirty_limit = dirty_thresh;
2052        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2053        if (ratelimit_pages < 16)
2054                ratelimit_pages = 16;
2055}
2056
2057static int page_writeback_cpu_online(unsigned int cpu)
2058{
2059        writeback_set_ratelimit();
2060        return 0;
2061}
2062
2063/*
2064 * Called early on to tune the page writeback dirty limits.
2065 *
2066 * We used to scale dirty pages according to how total memory
2067 * related to pages that could be allocated for buffers (by
2068 * comparing nr_free_buffer_pages() to vm_total_pages.
2069 *
2070 * However, that was when we used "dirty_ratio" to scale with
2071 * all memory, and we don't do that any more. "dirty_ratio"
2072 * is now applied to total non-HIGHPAGE memory (by subtracting
2073 * totalhigh_pages from vm_total_pages), and as such we can't
2074 * get into the old insane situation any more where we had
2075 * large amounts of dirty pages compared to a small amount of
2076 * non-HIGHMEM memory.
2077 *
2078 * But we might still want to scale the dirty_ratio by how
2079 * much memory the box has..
2080 */
2081void __init page_writeback_init(void)
2082{
2083        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2084
2085        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2086                          page_writeback_cpu_online, NULL);
2087        cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2088                          page_writeback_cpu_online);
2089}
2090
2091/**
2092 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2093 * @mapping: address space structure to write
2094 * @start: starting page index
2095 * @end: ending page index (inclusive)
2096 *
2097 * This function scans the page range from @start to @end (inclusive) and tags
2098 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2099 * that write_cache_pages (or whoever calls this function) will then use
2100 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2101 * used to avoid livelocking of writeback by a process steadily creating new
2102 * dirty pages in the file (thus it is important for this function to be quick
2103 * so that it can tag pages faster than a dirtying process can create them).
2104 */
2105void tag_pages_for_writeback(struct address_space *mapping,
2106                             pgoff_t start, pgoff_t end)
2107{
2108        XA_STATE(xas, &mapping->i_pages, start);
2109        unsigned int tagged = 0;
2110        void *page;
2111
2112        xas_lock_irq(&xas);
2113        xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2114                xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2115                if (++tagged % XA_CHECK_SCHED)
2116                        continue;
2117
2118                xas_pause(&xas);
2119                xas_unlock_irq(&xas);
2120                cond_resched();
2121                xas_lock_irq(&xas);
2122        }
2123        xas_unlock_irq(&xas);
2124}
2125EXPORT_SYMBOL(tag_pages_for_writeback);
2126
2127/**
2128 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2129 * @mapping: address space structure to write
2130 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2131 * @writepage: function called for each page
2132 * @data: data passed to writepage function
2133 *
2134 * If a page is already under I/O, write_cache_pages() skips it, even
2135 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2136 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2137 * and msync() need to guarantee that all the data which was dirty at the time
2138 * the call was made get new I/O started against them.  If wbc->sync_mode is
2139 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2140 * existing IO to complete.
2141 *
2142 * To avoid livelocks (when other process dirties new pages), we first tag
2143 * pages which should be written back with TOWRITE tag and only then start
2144 * writing them. For data-integrity sync we have to be careful so that we do
2145 * not miss some pages (e.g., because some other process has cleared TOWRITE
2146 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2147 * by the process clearing the DIRTY tag (and submitting the page for IO).
2148 *
2149 * To avoid deadlocks between range_cyclic writeback and callers that hold
2150 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2151 * we do not loop back to the start of the file. Doing so causes a page
2152 * lock/page writeback access order inversion - we should only ever lock
2153 * multiple pages in ascending page->index order, and looping back to the start
2154 * of the file violates that rule and causes deadlocks.
2155 *
2156 * Return: %0 on success, negative error code otherwise
2157 */
2158int write_cache_pages(struct address_space *mapping,
2159                      struct writeback_control *wbc, writepage_t writepage,
2160                      void *data)
2161{
2162        int ret = 0;
2163        int done = 0;
2164        int error;
2165        struct pagevec pvec;
2166        int nr_pages;
2167        pgoff_t uninitialized_var(writeback_index);
2168        pgoff_t index;
2169        pgoff_t end;            /* Inclusive */
2170        pgoff_t done_index;
2171        int range_whole = 0;
2172        xa_mark_t tag;
2173
2174        pagevec_init(&pvec);
2175        if (wbc->range_cyclic) {
2176                writeback_index = mapping->writeback_index; /* prev offset */
2177                index = writeback_index;
2178                end = -1;
2179        } else {
2180                index = wbc->range_start >> PAGE_SHIFT;
2181                end = wbc->range_end >> PAGE_SHIFT;
2182                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2183                        range_whole = 1;
2184        }
2185        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2186                tag_pages_for_writeback(mapping, index, end);
2187                tag = PAGECACHE_TAG_TOWRITE;
2188        } else {
2189                tag = PAGECACHE_TAG_DIRTY;
2190        }
2191        done_index = index;
2192        while (!done && (index <= end)) {
2193                int i;
2194
2195                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2196                                tag);
2197                if (nr_pages == 0)
2198                        break;
2199
2200                for (i = 0; i < nr_pages; i++) {
2201                        struct page *page = pvec.pages[i];
2202
2203                        done_index = page->index;
2204
2205                        lock_page(page);
2206
2207                        /*
2208                         * Page truncated or invalidated. We can freely skip it
2209                         * then, even for data integrity operations: the page
2210                         * has disappeared concurrently, so there could be no
2211                         * real expectation of this data interity operation
2212                         * even if there is now a new, dirty page at the same
2213                         * pagecache address.
2214                         */
2215                        if (unlikely(page->mapping != mapping)) {
2216continue_unlock:
2217                                unlock_page(page);
2218                                continue;
2219                        }
2220
2221                        if (!PageDirty(page)) {
2222                                /* someone wrote it for us */
2223                                goto continue_unlock;
2224                        }
2225
2226                        if (PageWriteback(page)) {
2227                                if (wbc->sync_mode != WB_SYNC_NONE)
2228                                        wait_on_page_writeback(page);
2229                                else
2230                                        goto continue_unlock;
2231                        }
2232
2233                        BUG_ON(PageWriteback(page));
2234                        if (!clear_page_dirty_for_io(page))
2235                                goto continue_unlock;
2236
2237                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2238                        error = (*writepage)(page, wbc, data);
2239                        if (unlikely(error)) {
2240                                /*
2241                                 * Handle errors according to the type of
2242                                 * writeback. There's no need to continue for
2243                                 * background writeback. Just push done_index
2244                                 * past this page so media errors won't choke
2245                                 * writeout for the entire file. For integrity
2246                                 * writeback, we must process the entire dirty
2247                                 * set regardless of errors because the fs may
2248                                 * still have state to clear for each page. In
2249                                 * that case we continue processing and return
2250                                 * the first error.
2251                                 */
2252                                if (error == AOP_WRITEPAGE_ACTIVATE) {
2253                                        unlock_page(page);
2254                                        error = 0;
2255                                } else if (wbc->sync_mode != WB_SYNC_ALL) {
2256                                        ret = error;
2257                                        done_index = page->index + 1;
2258                                        done = 1;
2259                                        break;
2260                                }
2261                                if (!ret)
2262                                        ret = error;
2263                        }
2264
2265                        /*
2266                         * We stop writing back only if we are not doing
2267                         * integrity sync. In case of integrity sync we have to
2268                         * keep going until we have written all the pages
2269                         * we tagged for writeback prior to entering this loop.
2270                         */
2271                        if (--wbc->nr_to_write <= 0 &&
2272                            wbc->sync_mode == WB_SYNC_NONE) {
2273                                done = 1;
2274                                break;
2275                        }
2276                }
2277                pagevec_release(&pvec);
2278                cond_resched();
2279        }
2280
2281        /*
2282         * If we hit the last page and there is more work to be done: wrap
2283         * back the index back to the start of the file for the next
2284         * time we are called.
2285         */
2286        if (wbc->range_cyclic && !done)
2287                done_index = 0;
2288        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2289                mapping->writeback_index = done_index;
2290
2291        return ret;
2292}
2293EXPORT_SYMBOL(write_cache_pages);
2294
2295/*
2296 * Function used by generic_writepages to call the real writepage
2297 * function and set the mapping flags on error
2298 */
2299static int __writepage(struct page *page, struct writeback_control *wbc,
2300                       void *data)
2301{
2302        struct address_space *mapping = data;
2303        int ret = mapping->a_ops->writepage(page, wbc);
2304        mapping_set_error(mapping, ret);
2305        return ret;
2306}
2307
2308/**
2309 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2310 * @mapping: address space structure to write
2311 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2312 *
2313 * This is a library function, which implements the writepages()
2314 * address_space_operation.
2315 *
2316 * Return: %0 on success, negative error code otherwise
2317 */
2318int generic_writepages(struct address_space *mapping,
2319                       struct writeback_control *wbc)
2320{
2321        struct blk_plug plug;
2322        int ret;
2323
2324        /* deal with chardevs and other special file */
2325        if (!mapping->a_ops->writepage)
2326                return 0;
2327
2328        blk_start_plug(&plug);
2329        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2330        blk_finish_plug(&plug);
2331        return ret;
2332}
2333
2334EXPORT_SYMBOL(generic_writepages);
2335
2336int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2337{
2338        int ret;
2339
2340        if (wbc->nr_to_write <= 0)
2341                return 0;
2342        while (1) {
2343                if (mapping->a_ops->writepages)
2344                        ret = mapping->a_ops->writepages(mapping, wbc);
2345                else
2346                        ret = generic_writepages(mapping, wbc);
2347                if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2348                        break;
2349                cond_resched();
2350                congestion_wait(BLK_RW_ASYNC, HZ/50);
2351        }
2352        return ret;
2353}
2354
2355/**
2356 * write_one_page - write out a single page and wait on I/O
2357 * @page: the page to write
2358 *
2359 * The page must be locked by the caller and will be unlocked upon return.
2360 *
2361 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2362 * function returns.
2363 *
2364 * Return: %0 on success, negative error code otherwise
2365 */
2366int write_one_page(struct page *page)
2367{
2368        struct address_space *mapping = page->mapping;
2369        int ret = 0;
2370        struct writeback_control wbc = {
2371                .sync_mode = WB_SYNC_ALL,
2372                .nr_to_write = 1,
2373        };
2374
2375        BUG_ON(!PageLocked(page));
2376
2377        wait_on_page_writeback(page);
2378
2379        if (clear_page_dirty_for_io(page)) {
2380                get_page(page);
2381                ret = mapping->a_ops->writepage(page, &wbc);
2382                if (ret == 0)
2383                        wait_on_page_writeback(page);
2384                put_page(page);
2385        } else {
2386                unlock_page(page);
2387        }
2388
2389        if (!ret)
2390                ret = filemap_check_errors(mapping);
2391        return ret;
2392}
2393EXPORT_SYMBOL(write_one_page);
2394
2395/*
2396 * For address_spaces which do not use buffers nor write back.
2397 */
2398int __set_page_dirty_no_writeback(struct page *page)
2399{
2400        if (!PageDirty(page))
2401                return !TestSetPageDirty(page);
2402        return 0;
2403}
2404
2405/*
2406 * Helper function for set_page_dirty family.
2407 *
2408 * Caller must hold lock_page_memcg().
2409 *
2410 * NOTE: This relies on being atomic wrt interrupts.
2411 */
2412void account_page_dirtied(struct page *page, struct address_space *mapping)
2413{
2414        struct inode *inode = mapping->host;
2415
2416        trace_writeback_dirty_page(page, mapping);
2417
2418        if (mapping_cap_account_dirty(mapping)) {
2419                struct bdi_writeback *wb;
2420
2421                inode_attach_wb(inode, page);
2422                wb = inode_to_wb(inode);
2423
2424                __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2425                __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2426                __inc_node_page_state(page, NR_DIRTIED);
2427                inc_wb_stat(wb, WB_RECLAIMABLE);
2428                inc_wb_stat(wb, WB_DIRTIED);
2429                task_io_account_write(PAGE_SIZE);
2430                current->nr_dirtied++;
2431                this_cpu_inc(bdp_ratelimits);
2432
2433                mem_cgroup_track_foreign_dirty(page, wb);
2434        }
2435}
2436
2437/*
2438 * Helper function for deaccounting dirty page without writeback.
2439 *
2440 * Caller must hold lock_page_memcg().
2441 */
2442void account_page_cleaned(struct page *page, struct address_space *mapping,
2443                          struct bdi_writeback *wb)
2444{
2445        if (mapping_cap_account_dirty(mapping)) {
2446                dec_lruvec_page_state(page, NR_FILE_DIRTY);
2447                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2448                dec_wb_stat(wb, WB_RECLAIMABLE);
2449                task_io_account_cancelled_write(PAGE_SIZE);
2450        }
2451}
2452
2453/*
2454 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2455 * the xarray.
2456 *
2457 * This is also used when a single buffer is being dirtied: we want to set the
2458 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2459 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2460 *
2461 * The caller must ensure this doesn't race with truncation.  Most will simply
2462 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2463 * the pte lock held, which also locks out truncation.
2464 */
2465int __set_page_dirty_nobuffers(struct page *page)
2466{
2467        lock_page_memcg(page);
2468        if (!TestSetPageDirty(page)) {
2469                struct address_space *mapping = page_mapping(page);
2470                unsigned long flags;
2471
2472                if (!mapping) {
2473                        unlock_page_memcg(page);
2474                        return 1;
2475                }
2476
2477                xa_lock_irqsave(&mapping->i_pages, flags);
2478                BUG_ON(page_mapping(page) != mapping);
2479                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2480                account_page_dirtied(page, mapping);
2481                __xa_set_mark(&mapping->i_pages, page_index(page),
2482                                   PAGECACHE_TAG_DIRTY);
2483                xa_unlock_irqrestore(&mapping->i_pages, flags);
2484                unlock_page_memcg(page);
2485
2486                if (mapping->host) {
2487                        /* !PageAnon && !swapper_space */
2488                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2489                }
2490                return 1;
2491        }
2492        unlock_page_memcg(page);
2493        return 0;
2494}
2495EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2496
2497/*
2498 * Call this whenever redirtying a page, to de-account the dirty counters
2499 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2500 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2501 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2502 * control.
2503 */
2504void account_page_redirty(struct page *page)
2505{
2506        struct address_space *mapping = page->mapping;
2507
2508        if (mapping && mapping_cap_account_dirty(mapping)) {
2509                struct inode *inode = mapping->host;
2510                struct bdi_writeback *wb;
2511                struct wb_lock_cookie cookie = {};
2512
2513                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2514                current->nr_dirtied--;
2515                dec_node_page_state(page, NR_DIRTIED);
2516                dec_wb_stat(wb, WB_DIRTIED);
2517                unlocked_inode_to_wb_end(inode, &cookie);
2518        }
2519}
2520EXPORT_SYMBOL(account_page_redirty);
2521
2522/*
2523 * When a writepage implementation decides that it doesn't want to write this
2524 * page for some reason, it should redirty the locked page via
2525 * redirty_page_for_writepage() and it should then unlock the page and return 0
2526 */
2527int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2528{
2529        int ret;
2530
2531        wbc->pages_skipped++;
2532        ret = __set_page_dirty_nobuffers(page);
2533        account_page_redirty(page);
2534        return ret;
2535}
2536EXPORT_SYMBOL(redirty_page_for_writepage);
2537
2538/*
2539 * Dirty a page.
2540 *
2541 * For pages with a mapping this should be done under the page lock
2542 * for the benefit of asynchronous memory errors who prefer a consistent
2543 * dirty state. This rule can be broken in some special cases,
2544 * but should be better not to.
2545 *
2546 * If the mapping doesn't provide a set_page_dirty a_op, then
2547 * just fall through and assume that it wants buffer_heads.
2548 */
2549int set_page_dirty(struct page *page)
2550{
2551        struct address_space *mapping = page_mapping(page);
2552
2553        page = compound_head(page);
2554        if (likely(mapping)) {
2555                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2556                /*
2557                 * readahead/lru_deactivate_page could remain
2558                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2559                 * About readahead, if the page is written, the flags would be
2560                 * reset. So no problem.
2561                 * About lru_deactivate_page, if the page is redirty, the flag
2562                 * will be reset. So no problem. but if the page is used by readahead
2563                 * it will confuse readahead and make it restart the size rampup
2564                 * process. But it's a trivial problem.
2565                 */
2566                if (PageReclaim(page))
2567                        ClearPageReclaim(page);
2568#ifdef CONFIG_BLOCK
2569                if (!spd)
2570                        spd = __set_page_dirty_buffers;
2571#endif
2572                return (*spd)(page);
2573        }
2574        if (!PageDirty(page)) {
2575                if (!TestSetPageDirty(page))
2576                        return 1;
2577        }
2578        return 0;
2579}
2580EXPORT_SYMBOL(set_page_dirty);
2581
2582/*
2583 * set_page_dirty() is racy if the caller has no reference against
2584 * page->mapping->host, and if the page is unlocked.  This is because another
2585 * CPU could truncate the page off the mapping and then free the mapping.
2586 *
2587 * Usually, the page _is_ locked, or the caller is a user-space process which
2588 * holds a reference on the inode by having an open file.
2589 *
2590 * In other cases, the page should be locked before running set_page_dirty().
2591 */
2592int set_page_dirty_lock(struct page *page)
2593{
2594        int ret;
2595
2596        lock_page(page);
2597        ret = set_page_dirty(page);
2598        unlock_page(page);
2599        return ret;
2600}
2601EXPORT_SYMBOL(set_page_dirty_lock);
2602
2603/*
2604 * This cancels just the dirty bit on the kernel page itself, it does NOT
2605 * actually remove dirty bits on any mmap's that may be around. It also
2606 * leaves the page tagged dirty, so any sync activity will still find it on
2607 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2608 * look at the dirty bits in the VM.
2609 *
2610 * Doing this should *normally* only ever be done when a page is truncated,
2611 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2612 * this when it notices that somebody has cleaned out all the buffers on a
2613 * page without actually doing it through the VM. Can you say "ext3 is
2614 * horribly ugly"? Thought you could.
2615 */
2616void __cancel_dirty_page(struct page *page)
2617{
2618        struct address_space *mapping = page_mapping(page);
2619
2620        if (mapping_cap_account_dirty(mapping)) {
2621                struct inode *inode = mapping->host;
2622                struct bdi_writeback *wb;
2623                struct wb_lock_cookie cookie = {};
2624
2625                lock_page_memcg(page);
2626                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2627
2628                if (TestClearPageDirty(page))
2629                        account_page_cleaned(page, mapping, wb);
2630
2631                unlocked_inode_to_wb_end(inode, &cookie);
2632                unlock_page_memcg(page);
2633        } else {
2634                ClearPageDirty(page);
2635        }
2636}
2637EXPORT_SYMBOL(__cancel_dirty_page);
2638
2639/*
2640 * Clear a page's dirty flag, while caring for dirty memory accounting.
2641 * Returns true if the page was previously dirty.
2642 *
2643 * This is for preparing to put the page under writeout.  We leave the page
2644 * tagged as dirty in the xarray so that a concurrent write-for-sync
2645 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2646 * implementation will run either set_page_writeback() or set_page_dirty(),
2647 * at which stage we bring the page's dirty flag and xarray dirty tag
2648 * back into sync.
2649 *
2650 * This incoherency between the page's dirty flag and xarray tag is
2651 * unfortunate, but it only exists while the page is locked.
2652 */
2653int clear_page_dirty_for_io(struct page *page)
2654{
2655        struct address_space *mapping = page_mapping(page);
2656        int ret = 0;
2657
2658        VM_BUG_ON_PAGE(!PageLocked(page), page);
2659
2660        if (mapping && mapping_cap_account_dirty(mapping)) {
2661                struct inode *inode = mapping->host;
2662                struct bdi_writeback *wb;
2663                struct wb_lock_cookie cookie = {};
2664
2665                /*
2666                 * Yes, Virginia, this is indeed insane.
2667                 *
2668                 * We use this sequence to make sure that
2669                 *  (a) we account for dirty stats properly
2670                 *  (b) we tell the low-level filesystem to
2671                 *      mark the whole page dirty if it was
2672                 *      dirty in a pagetable. Only to then
2673                 *  (c) clean the page again and return 1 to
2674                 *      cause the writeback.
2675                 *
2676                 * This way we avoid all nasty races with the
2677                 * dirty bit in multiple places and clearing
2678                 * them concurrently from different threads.
2679                 *
2680                 * Note! Normally the "set_page_dirty(page)"
2681                 * has no effect on the actual dirty bit - since
2682                 * that will already usually be set. But we
2683                 * need the side effects, and it can help us
2684                 * avoid races.
2685                 *
2686                 * We basically use the page "master dirty bit"
2687                 * as a serialization point for all the different
2688                 * threads doing their things.
2689                 */
2690                if (page_mkclean(page))
2691                        set_page_dirty(page);
2692                /*
2693                 * We carefully synchronise fault handlers against
2694                 * installing a dirty pte and marking the page dirty
2695                 * at this point.  We do this by having them hold the
2696                 * page lock while dirtying the page, and pages are
2697                 * always locked coming in here, so we get the desired
2698                 * exclusion.
2699                 */
2700                wb = unlocked_inode_to_wb_begin(inode, &cookie);
2701                if (TestClearPageDirty(page)) {
2702                        dec_lruvec_page_state(page, NR_FILE_DIRTY);
2703                        dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2704                        dec_wb_stat(wb, WB_RECLAIMABLE);
2705                        ret = 1;
2706                }
2707                unlocked_inode_to_wb_end(inode, &cookie);
2708                return ret;
2709        }
2710        return TestClearPageDirty(page);
2711}
2712EXPORT_SYMBOL(clear_page_dirty_for_io);
2713
2714int test_clear_page_writeback(struct page *page)
2715{
2716        struct address_space *mapping = page_mapping(page);
2717        struct mem_cgroup *memcg;
2718        struct lruvec *lruvec;
2719        int ret;
2720
2721        memcg = lock_page_memcg(page);
2722        lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2723        if (mapping && mapping_use_writeback_tags(mapping)) {
2724                struct inode *inode = mapping->host;
2725                struct backing_dev_info *bdi = inode_to_bdi(inode);
2726                unsigned long flags;
2727
2728                xa_lock_irqsave(&mapping->i_pages, flags);
2729                ret = TestClearPageWriteback(page);
2730                if (ret) {
2731                        __xa_clear_mark(&mapping->i_pages, page_index(page),
2732                                                PAGECACHE_TAG_WRITEBACK);
2733                        if (bdi_cap_account_writeback(bdi)) {
2734                                struct bdi_writeback *wb = inode_to_wb(inode);
2735
2736                                dec_wb_stat(wb, WB_WRITEBACK);
2737                                __wb_writeout_inc(wb);
2738                        }
2739                }
2740
2741                if (mapping->host && !mapping_tagged(mapping,
2742                                                     PAGECACHE_TAG_WRITEBACK))
2743                        sb_clear_inode_writeback(mapping->host);
2744
2745                xa_unlock_irqrestore(&mapping->i_pages, flags);
2746        } else {
2747                ret = TestClearPageWriteback(page);
2748        }
2749        /*
2750         * NOTE: Page might be free now! Writeback doesn't hold a page
2751         * reference on its own, it relies on truncation to wait for
2752         * the clearing of PG_writeback. The below can only access
2753         * page state that is static across allocation cycles.
2754         */
2755        if (ret) {
2756                dec_lruvec_state(lruvec, NR_WRITEBACK);
2757                dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2758                inc_node_page_state(page, NR_WRITTEN);
2759        }
2760        __unlock_page_memcg(memcg);
2761        return ret;
2762}
2763
2764int __test_set_page_writeback(struct page *page, bool keep_write)
2765{
2766        struct address_space *mapping = page_mapping(page);
2767        int ret, access_ret;
2768
2769        lock_page_memcg(page);
2770        if (mapping && mapping_use_writeback_tags(mapping)) {
2771                XA_STATE(xas, &mapping->i_pages, page_index(page));
2772                struct inode *inode = mapping->host;
2773                struct backing_dev_info *bdi = inode_to_bdi(inode);
2774                unsigned long flags;
2775
2776                xas_lock_irqsave(&xas, flags);
2777                xas_load(&xas);
2778                ret = TestSetPageWriteback(page);
2779                if (!ret) {
2780                        bool on_wblist;
2781
2782                        on_wblist = mapping_tagged(mapping,
2783                                                   PAGECACHE_TAG_WRITEBACK);
2784
2785                        xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2786                        if (bdi_cap_account_writeback(bdi))
2787                                inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2788
2789                        /*
2790                         * We can come through here when swapping anonymous
2791                         * pages, so we don't necessarily have an inode to track
2792                         * for sync.
2793                         */
2794                        if (mapping->host && !on_wblist)
2795                                sb_mark_inode_writeback(mapping->host);
2796                }
2797                if (!PageDirty(page))
2798                        xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2799                if (!keep_write)
2800                        xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2801                xas_unlock_irqrestore(&xas, flags);
2802        } else {
2803                ret = TestSetPageWriteback(page);
2804        }
2805        if (!ret) {
2806                inc_lruvec_page_state(page, NR_WRITEBACK);
2807                inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2808        }
2809        unlock_page_memcg(page);
2810        access_ret = arch_make_page_accessible(page);
2811        /*
2812         * If writeback has been triggered on a page that cannot be made
2813         * accessible, it is too late to recover here.
2814         */
2815        VM_BUG_ON_PAGE(access_ret != 0, page);
2816
2817        return ret;
2818
2819}
2820EXPORT_SYMBOL(__test_set_page_writeback);
2821
2822/*
2823 * Wait for a page to complete writeback
2824 */
2825void wait_on_page_writeback(struct page *page)
2826{
2827        if (PageWriteback(page)) {
2828                trace_wait_on_page_writeback(page, page_mapping(page));
2829                wait_on_page_bit(page, PG_writeback);
2830        }
2831}
2832EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2833
2834/**
2835 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2836 * @page:       The page to wait on.
2837 *
2838 * This function determines if the given page is related to a backing device
2839 * that requires page contents to be held stable during writeback.  If so, then
2840 * it will wait for any pending writeback to complete.
2841 */
2842void wait_for_stable_page(struct page *page)
2843{
2844        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2845                wait_on_page_writeback(page);
2846}
2847EXPORT_SYMBOL_GPL(wait_for_stable_page);
2848