linux/mm/sparse.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * sparse memory mappings.
   4 */
   5#include <linux/mm.h>
   6#include <linux/slab.h>
   7#include <linux/mmzone.h>
   8#include <linux/memblock.h>
   9#include <linux/compiler.h>
  10#include <linux/highmem.h>
  11#include <linux/export.h>
  12#include <linux/spinlock.h>
  13#include <linux/vmalloc.h>
  14#include <linux/swap.h>
  15#include <linux/swapops.h>
  16
  17#include "internal.h"
  18#include <asm/dma.h>
  19#include <asm/pgalloc.h>
  20#include <asm/pgtable.h>
  21
  22/*
  23 * Permanent SPARSEMEM data:
  24 *
  25 * 1) mem_section       - memory sections, mem_map's for valid memory
  26 */
  27#ifdef CONFIG_SPARSEMEM_EXTREME
  28struct mem_section **mem_section;
  29#else
  30struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  31        ____cacheline_internodealigned_in_smp;
  32#endif
  33EXPORT_SYMBOL(mem_section);
  34
  35#ifdef NODE_NOT_IN_PAGE_FLAGS
  36/*
  37 * If we did not store the node number in the page then we have to
  38 * do a lookup in the section_to_node_table in order to find which
  39 * node the page belongs to.
  40 */
  41#if MAX_NUMNODES <= 256
  42static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  43#else
  44static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  45#endif
  46
  47int page_to_nid(const struct page *page)
  48{
  49        return section_to_node_table[page_to_section(page)];
  50}
  51EXPORT_SYMBOL(page_to_nid);
  52
  53static void set_section_nid(unsigned long section_nr, int nid)
  54{
  55        section_to_node_table[section_nr] = nid;
  56}
  57#else /* !NODE_NOT_IN_PAGE_FLAGS */
  58static inline void set_section_nid(unsigned long section_nr, int nid)
  59{
  60}
  61#endif
  62
  63#ifdef CONFIG_SPARSEMEM_EXTREME
  64static noinline struct mem_section __ref *sparse_index_alloc(int nid)
  65{
  66        struct mem_section *section = NULL;
  67        unsigned long array_size = SECTIONS_PER_ROOT *
  68                                   sizeof(struct mem_section);
  69
  70        if (slab_is_available()) {
  71                section = kzalloc_node(array_size, GFP_KERNEL, nid);
  72        } else {
  73                section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
  74                                              nid);
  75                if (!section)
  76                        panic("%s: Failed to allocate %lu bytes nid=%d\n",
  77                              __func__, array_size, nid);
  78        }
  79
  80        return section;
  81}
  82
  83static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  84{
  85        unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  86        struct mem_section *section;
  87
  88        /*
  89         * An existing section is possible in the sub-section hotplug
  90         * case. First hot-add instantiates, follow-on hot-add reuses
  91         * the existing section.
  92         *
  93         * The mem_hotplug_lock resolves the apparent race below.
  94         */
  95        if (mem_section[root])
  96                return 0;
  97
  98        section = sparse_index_alloc(nid);
  99        if (!section)
 100                return -ENOMEM;
 101
 102        mem_section[root] = section;
 103
 104        return 0;
 105}
 106#else /* !SPARSEMEM_EXTREME */
 107static inline int sparse_index_init(unsigned long section_nr, int nid)
 108{
 109        return 0;
 110}
 111#endif
 112
 113#ifdef CONFIG_SPARSEMEM_EXTREME
 114unsigned long __section_nr(struct mem_section *ms)
 115{
 116        unsigned long root_nr;
 117        struct mem_section *root = NULL;
 118
 119        for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
 120                root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
 121                if (!root)
 122                        continue;
 123
 124                if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
 125                     break;
 126        }
 127
 128        VM_BUG_ON(!root);
 129
 130        return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
 131}
 132#else
 133unsigned long __section_nr(struct mem_section *ms)
 134{
 135        return (unsigned long)(ms - mem_section[0]);
 136}
 137#endif
 138
 139/*
 140 * During early boot, before section_mem_map is used for an actual
 141 * mem_map, we use section_mem_map to store the section's NUMA
 142 * node.  This keeps us from having to use another data structure.  The
 143 * node information is cleared just before we store the real mem_map.
 144 */
 145static inline unsigned long sparse_encode_early_nid(int nid)
 146{
 147        return (nid << SECTION_NID_SHIFT);
 148}
 149
 150static inline int sparse_early_nid(struct mem_section *section)
 151{
 152        return (section->section_mem_map >> SECTION_NID_SHIFT);
 153}
 154
 155/* Validate the physical addressing limitations of the model */
 156void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
 157                                                unsigned long *end_pfn)
 158{
 159        unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
 160
 161        /*
 162         * Sanity checks - do not allow an architecture to pass
 163         * in larger pfns than the maximum scope of sparsemem:
 164         */
 165        if (*start_pfn > max_sparsemem_pfn) {
 166                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 167                        "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 168                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 169                WARN_ON_ONCE(1);
 170                *start_pfn = max_sparsemem_pfn;
 171                *end_pfn = max_sparsemem_pfn;
 172        } else if (*end_pfn > max_sparsemem_pfn) {
 173                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 174                        "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 175                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 176                WARN_ON_ONCE(1);
 177                *end_pfn = max_sparsemem_pfn;
 178        }
 179}
 180
 181/*
 182 * There are a number of times that we loop over NR_MEM_SECTIONS,
 183 * looking for section_present() on each.  But, when we have very
 184 * large physical address spaces, NR_MEM_SECTIONS can also be
 185 * very large which makes the loops quite long.
 186 *
 187 * Keeping track of this gives us an easy way to break out of
 188 * those loops early.
 189 */
 190unsigned long __highest_present_section_nr;
 191static void section_mark_present(struct mem_section *ms)
 192{
 193        unsigned long section_nr = __section_nr(ms);
 194
 195        if (section_nr > __highest_present_section_nr)
 196                __highest_present_section_nr = section_nr;
 197
 198        ms->section_mem_map |= SECTION_MARKED_PRESENT;
 199}
 200
 201#define for_each_present_section_nr(start, section_nr)          \
 202        for (section_nr = next_present_section_nr(start-1);     \
 203             ((section_nr != -1) &&                             \
 204              (section_nr <= __highest_present_section_nr));    \
 205             section_nr = next_present_section_nr(section_nr))
 206
 207static inline unsigned long first_present_section_nr(void)
 208{
 209        return next_present_section_nr(-1);
 210}
 211
 212#ifdef CONFIG_SPARSEMEM_VMEMMAP
 213static void subsection_mask_set(unsigned long *map, unsigned long pfn,
 214                unsigned long nr_pages)
 215{
 216        int idx = subsection_map_index(pfn);
 217        int end = subsection_map_index(pfn + nr_pages - 1);
 218
 219        bitmap_set(map, idx, end - idx + 1);
 220}
 221
 222void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
 223{
 224        int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
 225        unsigned long nr, start_sec = pfn_to_section_nr(pfn);
 226
 227        if (!nr_pages)
 228                return;
 229
 230        for (nr = start_sec; nr <= end_sec; nr++) {
 231                struct mem_section *ms;
 232                unsigned long pfns;
 233
 234                pfns = min(nr_pages, PAGES_PER_SECTION
 235                                - (pfn & ~PAGE_SECTION_MASK));
 236                ms = __nr_to_section(nr);
 237                subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
 238
 239                pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
 240                                pfns, subsection_map_index(pfn),
 241                                subsection_map_index(pfn + pfns - 1));
 242
 243                pfn += pfns;
 244                nr_pages -= pfns;
 245        }
 246}
 247#else
 248void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
 249{
 250}
 251#endif
 252
 253/* Record a memory area against a node. */
 254void __init memory_present(int nid, unsigned long start, unsigned long end)
 255{
 256        unsigned long pfn;
 257
 258#ifdef CONFIG_SPARSEMEM_EXTREME
 259        if (unlikely(!mem_section)) {
 260                unsigned long size, align;
 261
 262                size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
 263                align = 1 << (INTERNODE_CACHE_SHIFT);
 264                mem_section = memblock_alloc(size, align);
 265                if (!mem_section)
 266                        panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 267                              __func__, size, align);
 268        }
 269#endif
 270
 271        start &= PAGE_SECTION_MASK;
 272        mminit_validate_memmodel_limits(&start, &end);
 273        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 274                unsigned long section = pfn_to_section_nr(pfn);
 275                struct mem_section *ms;
 276
 277                sparse_index_init(section, nid);
 278                set_section_nid(section, nid);
 279
 280                ms = __nr_to_section(section);
 281                if (!ms->section_mem_map) {
 282                        ms->section_mem_map = sparse_encode_early_nid(nid) |
 283                                                        SECTION_IS_ONLINE;
 284                        section_mark_present(ms);
 285                }
 286        }
 287}
 288
 289/*
 290 * Mark all memblocks as present using memory_present(). This is a
 291 * convienence function that is useful for a number of arches
 292 * to mark all of the systems memory as present during initialization.
 293 */
 294void __init memblocks_present(void)
 295{
 296        struct memblock_region *reg;
 297
 298        for_each_memblock(memory, reg) {
 299                memory_present(memblock_get_region_node(reg),
 300                               memblock_region_memory_base_pfn(reg),
 301                               memblock_region_memory_end_pfn(reg));
 302        }
 303}
 304
 305/*
 306 * Subtle, we encode the real pfn into the mem_map such that
 307 * the identity pfn - section_mem_map will return the actual
 308 * physical page frame number.
 309 */
 310static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
 311{
 312        unsigned long coded_mem_map =
 313                (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 314        BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
 315        BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
 316        return coded_mem_map;
 317}
 318
 319/*
 320 * Decode mem_map from the coded memmap
 321 */
 322struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
 323{
 324        /* mask off the extra low bits of information */
 325        coded_mem_map &= SECTION_MAP_MASK;
 326        return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
 327}
 328
 329static void __meminit sparse_init_one_section(struct mem_section *ms,
 330                unsigned long pnum, struct page *mem_map,
 331                struct mem_section_usage *usage, unsigned long flags)
 332{
 333        ms->section_mem_map &= ~SECTION_MAP_MASK;
 334        ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
 335                | SECTION_HAS_MEM_MAP | flags;
 336        ms->usage = usage;
 337}
 338
 339static unsigned long usemap_size(void)
 340{
 341        return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 342}
 343
 344size_t mem_section_usage_size(void)
 345{
 346        return sizeof(struct mem_section_usage) + usemap_size();
 347}
 348
 349#ifdef CONFIG_MEMORY_HOTREMOVE
 350static struct mem_section_usage * __init
 351sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 352                                         unsigned long size)
 353{
 354        struct mem_section_usage *usage;
 355        unsigned long goal, limit;
 356        int nid;
 357        /*
 358         * A page may contain usemaps for other sections preventing the
 359         * page being freed and making a section unremovable while
 360         * other sections referencing the usemap remain active. Similarly,
 361         * a pgdat can prevent a section being removed. If section A
 362         * contains a pgdat and section B contains the usemap, both
 363         * sections become inter-dependent. This allocates usemaps
 364         * from the same section as the pgdat where possible to avoid
 365         * this problem.
 366         */
 367        goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
 368        limit = goal + (1UL << PA_SECTION_SHIFT);
 369        nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
 370again:
 371        usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
 372        if (!usage && limit) {
 373                limit = 0;
 374                goto again;
 375        }
 376        return usage;
 377}
 378
 379static void __init check_usemap_section_nr(int nid,
 380                struct mem_section_usage *usage)
 381{
 382        unsigned long usemap_snr, pgdat_snr;
 383        static unsigned long old_usemap_snr;
 384        static unsigned long old_pgdat_snr;
 385        struct pglist_data *pgdat = NODE_DATA(nid);
 386        int usemap_nid;
 387
 388        /* First call */
 389        if (!old_usemap_snr) {
 390                old_usemap_snr = NR_MEM_SECTIONS;
 391                old_pgdat_snr = NR_MEM_SECTIONS;
 392        }
 393
 394        usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
 395        pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 396        if (usemap_snr == pgdat_snr)
 397                return;
 398
 399        if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
 400                /* skip redundant message */
 401                return;
 402
 403        old_usemap_snr = usemap_snr;
 404        old_pgdat_snr = pgdat_snr;
 405
 406        usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
 407        if (usemap_nid != nid) {
 408                pr_info("node %d must be removed before remove section %ld\n",
 409                        nid, usemap_snr);
 410                return;
 411        }
 412        /*
 413         * There is a circular dependency.
 414         * Some platforms allow un-removable section because they will just
 415         * gather other removable sections for dynamic partitioning.
 416         * Just notify un-removable section's number here.
 417         */
 418        pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
 419                usemap_snr, pgdat_snr, nid);
 420}
 421#else
 422static struct mem_section_usage * __init
 423sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 424                                         unsigned long size)
 425{
 426        return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
 427}
 428
 429static void __init check_usemap_section_nr(int nid,
 430                struct mem_section_usage *usage)
 431{
 432}
 433#endif /* CONFIG_MEMORY_HOTREMOVE */
 434
 435#ifdef CONFIG_SPARSEMEM_VMEMMAP
 436static unsigned long __init section_map_size(void)
 437{
 438        return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
 439}
 440
 441#else
 442static unsigned long __init section_map_size(void)
 443{
 444        return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 445}
 446
 447struct page __init *__populate_section_memmap(unsigned long pfn,
 448                unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 449{
 450        unsigned long size = section_map_size();
 451        struct page *map = sparse_buffer_alloc(size);
 452        phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
 453
 454        if (map)
 455                return map;
 456
 457        map = memblock_alloc_try_nid_raw(size, size, addr,
 458                                          MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 459        if (!map)
 460                panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
 461                      __func__, size, PAGE_SIZE, nid, &addr);
 462
 463        return map;
 464}
 465#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 466
 467static void *sparsemap_buf __meminitdata;
 468static void *sparsemap_buf_end __meminitdata;
 469
 470static inline void __meminit sparse_buffer_free(unsigned long size)
 471{
 472        WARN_ON(!sparsemap_buf || size == 0);
 473        memblock_free_early(__pa(sparsemap_buf), size);
 474}
 475
 476static void __init sparse_buffer_init(unsigned long size, int nid)
 477{
 478        phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
 479        WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
 480        /*
 481         * Pre-allocated buffer is mainly used by __populate_section_memmap
 482         * and we want it to be properly aligned to the section size - this is
 483         * especially the case for VMEMMAP which maps memmap to PMDs
 484         */
 485        sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
 486                                        addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 487        sparsemap_buf_end = sparsemap_buf + size;
 488}
 489
 490static void __init sparse_buffer_fini(void)
 491{
 492        unsigned long size = sparsemap_buf_end - sparsemap_buf;
 493
 494        if (sparsemap_buf && size > 0)
 495                sparse_buffer_free(size);
 496        sparsemap_buf = NULL;
 497}
 498
 499void * __meminit sparse_buffer_alloc(unsigned long size)
 500{
 501        void *ptr = NULL;
 502
 503        if (sparsemap_buf) {
 504                ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
 505                if (ptr + size > sparsemap_buf_end)
 506                        ptr = NULL;
 507                else {
 508                        /* Free redundant aligned space */
 509                        if ((unsigned long)(ptr - sparsemap_buf) > 0)
 510                                sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
 511                        sparsemap_buf = ptr + size;
 512                }
 513        }
 514        return ptr;
 515}
 516
 517void __weak __meminit vmemmap_populate_print_last(void)
 518{
 519}
 520
 521/*
 522 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
 523 * And number of present sections in this node is map_count.
 524 */
 525static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
 526                                   unsigned long pnum_end,
 527                                   unsigned long map_count)
 528{
 529        struct mem_section_usage *usage;
 530        unsigned long pnum;
 531        struct page *map;
 532
 533        usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
 534                        mem_section_usage_size() * map_count);
 535        if (!usage) {
 536                pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
 537                goto failed;
 538        }
 539        sparse_buffer_init(map_count * section_map_size(), nid);
 540        for_each_present_section_nr(pnum_begin, pnum) {
 541                unsigned long pfn = section_nr_to_pfn(pnum);
 542
 543                if (pnum >= pnum_end)
 544                        break;
 545
 546                map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
 547                                nid, NULL);
 548                if (!map) {
 549                        pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
 550                               __func__, nid);
 551                        pnum_begin = pnum;
 552                        goto failed;
 553                }
 554                check_usemap_section_nr(nid, usage);
 555                sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
 556                                SECTION_IS_EARLY);
 557                usage = (void *) usage + mem_section_usage_size();
 558        }
 559        sparse_buffer_fini();
 560        return;
 561failed:
 562        /* We failed to allocate, mark all the following pnums as not present */
 563        for_each_present_section_nr(pnum_begin, pnum) {
 564                struct mem_section *ms;
 565
 566                if (pnum >= pnum_end)
 567                        break;
 568                ms = __nr_to_section(pnum);
 569                ms->section_mem_map = 0;
 570        }
 571}
 572
 573/*
 574 * Allocate the accumulated non-linear sections, allocate a mem_map
 575 * for each and record the physical to section mapping.
 576 */
 577void __init sparse_init(void)
 578{
 579        unsigned long pnum_begin = first_present_section_nr();
 580        int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
 581        unsigned long pnum_end, map_count = 1;
 582
 583        /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
 584        set_pageblock_order();
 585
 586        for_each_present_section_nr(pnum_begin + 1, pnum_end) {
 587                int nid = sparse_early_nid(__nr_to_section(pnum_end));
 588
 589                if (nid == nid_begin) {
 590                        map_count++;
 591                        continue;
 592                }
 593                /* Init node with sections in range [pnum_begin, pnum_end) */
 594                sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
 595                nid_begin = nid;
 596                pnum_begin = pnum_end;
 597                map_count = 1;
 598        }
 599        /* cover the last node */
 600        sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
 601        vmemmap_populate_print_last();
 602}
 603
 604#ifdef CONFIG_MEMORY_HOTPLUG
 605
 606/* Mark all memory sections within the pfn range as online */
 607void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 608{
 609        unsigned long pfn;
 610
 611        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 612                unsigned long section_nr = pfn_to_section_nr(pfn);
 613                struct mem_section *ms;
 614
 615                /* onlining code should never touch invalid ranges */
 616                if (WARN_ON(!valid_section_nr(section_nr)))
 617                        continue;
 618
 619                ms = __nr_to_section(section_nr);
 620                ms->section_mem_map |= SECTION_IS_ONLINE;
 621        }
 622}
 623
 624#ifdef CONFIG_MEMORY_HOTREMOVE
 625/* Mark all memory sections within the pfn range as offline */
 626void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 627{
 628        unsigned long pfn;
 629
 630        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 631                unsigned long section_nr = pfn_to_section_nr(pfn);
 632                struct mem_section *ms;
 633
 634                /*
 635                 * TODO this needs some double checking. Offlining code makes
 636                 * sure to check pfn_valid but those checks might be just bogus
 637                 */
 638                if (WARN_ON(!valid_section_nr(section_nr)))
 639                        continue;
 640
 641                ms = __nr_to_section(section_nr);
 642                ms->section_mem_map &= ~SECTION_IS_ONLINE;
 643        }
 644}
 645#endif
 646
 647#ifdef CONFIG_SPARSEMEM_VMEMMAP
 648static struct page * __meminit populate_section_memmap(unsigned long pfn,
 649                unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 650{
 651        return __populate_section_memmap(pfn, nr_pages, nid, altmap);
 652}
 653
 654static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
 655                struct vmem_altmap *altmap)
 656{
 657        unsigned long start = (unsigned long) pfn_to_page(pfn);
 658        unsigned long end = start + nr_pages * sizeof(struct page);
 659
 660        vmemmap_free(start, end, altmap);
 661}
 662static void free_map_bootmem(struct page *memmap)
 663{
 664        unsigned long start = (unsigned long)memmap;
 665        unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 666
 667        vmemmap_free(start, end, NULL);
 668}
 669
 670static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
 671{
 672        DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
 673        DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
 674        struct mem_section *ms = __pfn_to_section(pfn);
 675        unsigned long *subsection_map = ms->usage
 676                ? &ms->usage->subsection_map[0] : NULL;
 677
 678        subsection_mask_set(map, pfn, nr_pages);
 679        if (subsection_map)
 680                bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
 681
 682        if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
 683                                "section already deactivated (%#lx + %ld)\n",
 684                                pfn, nr_pages))
 685                return -EINVAL;
 686
 687        bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
 688        return 0;
 689}
 690
 691static bool is_subsection_map_empty(struct mem_section *ms)
 692{
 693        return bitmap_empty(&ms->usage->subsection_map[0],
 694                            SUBSECTIONS_PER_SECTION);
 695}
 696
 697static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
 698{
 699        struct mem_section *ms = __pfn_to_section(pfn);
 700        DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
 701        unsigned long *subsection_map;
 702        int rc = 0;
 703
 704        subsection_mask_set(map, pfn, nr_pages);
 705
 706        subsection_map = &ms->usage->subsection_map[0];
 707
 708        if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
 709                rc = -EINVAL;
 710        else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
 711                rc = -EEXIST;
 712        else
 713                bitmap_or(subsection_map, map, subsection_map,
 714                                SUBSECTIONS_PER_SECTION);
 715
 716        return rc;
 717}
 718#else
 719struct page * __meminit populate_section_memmap(unsigned long pfn,
 720                unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
 721{
 722        return kvmalloc_node(array_size(sizeof(struct page),
 723                                        PAGES_PER_SECTION), GFP_KERNEL, nid);
 724}
 725
 726static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
 727                struct vmem_altmap *altmap)
 728{
 729        kvfree(pfn_to_page(pfn));
 730}
 731
 732static void free_map_bootmem(struct page *memmap)
 733{
 734        unsigned long maps_section_nr, removing_section_nr, i;
 735        unsigned long magic, nr_pages;
 736        struct page *page = virt_to_page(memmap);
 737
 738        nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
 739                >> PAGE_SHIFT;
 740
 741        for (i = 0; i < nr_pages; i++, page++) {
 742                magic = (unsigned long) page->freelist;
 743
 744                BUG_ON(magic == NODE_INFO);
 745
 746                maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
 747                removing_section_nr = page_private(page);
 748
 749                /*
 750                 * When this function is called, the removing section is
 751                 * logical offlined state. This means all pages are isolated
 752                 * from page allocator. If removing section's memmap is placed
 753                 * on the same section, it must not be freed.
 754                 * If it is freed, page allocator may allocate it which will
 755                 * be removed physically soon.
 756                 */
 757                if (maps_section_nr != removing_section_nr)
 758                        put_page_bootmem(page);
 759        }
 760}
 761
 762static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
 763{
 764        return 0;
 765}
 766
 767static bool is_subsection_map_empty(struct mem_section *ms)
 768{
 769        return true;
 770}
 771
 772static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
 773{
 774        return 0;
 775}
 776#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 777
 778/*
 779 * To deactivate a memory region, there are 3 cases to handle across
 780 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
 781 *
 782 * 1. deactivation of a partial hot-added section (only possible in
 783 *    the SPARSEMEM_VMEMMAP=y case).
 784 *      a) section was present at memory init.
 785 *      b) section was hot-added post memory init.
 786 * 2. deactivation of a complete hot-added section.
 787 * 3. deactivation of a complete section from memory init.
 788 *
 789 * For 1, when subsection_map does not empty we will not be freeing the
 790 * usage map, but still need to free the vmemmap range.
 791 *
 792 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
 793 */
 794static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
 795                struct vmem_altmap *altmap)
 796{
 797        struct mem_section *ms = __pfn_to_section(pfn);
 798        bool section_is_early = early_section(ms);
 799        struct page *memmap = NULL;
 800        bool empty;
 801
 802        if (clear_subsection_map(pfn, nr_pages))
 803                return;
 804
 805        empty = is_subsection_map_empty(ms);
 806        if (empty) {
 807                unsigned long section_nr = pfn_to_section_nr(pfn);
 808
 809                /*
 810                 * When removing an early section, the usage map is kept (as the
 811                 * usage maps of other sections fall into the same page). It
 812                 * will be re-used when re-adding the section - which is then no
 813                 * longer an early section. If the usage map is PageReserved, it
 814                 * was allocated during boot.
 815                 */
 816                if (!PageReserved(virt_to_page(ms->usage))) {
 817                        kfree(ms->usage);
 818                        ms->usage = NULL;
 819                }
 820                memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 821                /*
 822                 * Mark the section invalid so that valid_section()
 823                 * return false. This prevents code from dereferencing
 824                 * ms->usage array.
 825                 */
 826                ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
 827        }
 828
 829        if (section_is_early && memmap)
 830                free_map_bootmem(memmap);
 831        else
 832                depopulate_section_memmap(pfn, nr_pages, altmap);
 833
 834        if (empty)
 835                ms->section_mem_map = (unsigned long)NULL;
 836}
 837
 838static struct page * __meminit section_activate(int nid, unsigned long pfn,
 839                unsigned long nr_pages, struct vmem_altmap *altmap)
 840{
 841        struct mem_section *ms = __pfn_to_section(pfn);
 842        struct mem_section_usage *usage = NULL;
 843        struct page *memmap;
 844        int rc = 0;
 845
 846        if (!ms->usage) {
 847                usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
 848                if (!usage)
 849                        return ERR_PTR(-ENOMEM);
 850                ms->usage = usage;
 851        }
 852
 853        rc = fill_subsection_map(pfn, nr_pages);
 854        if (rc) {
 855                if (usage)
 856                        ms->usage = NULL;
 857                kfree(usage);
 858                return ERR_PTR(rc);
 859        }
 860
 861        /*
 862         * The early init code does not consider partially populated
 863         * initial sections, it simply assumes that memory will never be
 864         * referenced.  If we hot-add memory into such a section then we
 865         * do not need to populate the memmap and can simply reuse what
 866         * is already there.
 867         */
 868        if (nr_pages < PAGES_PER_SECTION && early_section(ms))
 869                return pfn_to_page(pfn);
 870
 871        memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
 872        if (!memmap) {
 873                section_deactivate(pfn, nr_pages, altmap);
 874                return ERR_PTR(-ENOMEM);
 875        }
 876
 877        return memmap;
 878}
 879
 880/**
 881 * sparse_add_section - add a memory section, or populate an existing one
 882 * @nid: The node to add section on
 883 * @start_pfn: start pfn of the memory range
 884 * @nr_pages: number of pfns to add in the section
 885 * @altmap: device page map
 886 *
 887 * This is only intended for hotplug.
 888 *
 889 * Note that only VMEMMAP supports sub-section aligned hotplug,
 890 * the proper alignment and size are gated by check_pfn_span().
 891 *
 892 *
 893 * Return:
 894 * * 0          - On success.
 895 * * -EEXIST    - Section has been present.
 896 * * -ENOMEM    - Out of memory.
 897 */
 898int __meminit sparse_add_section(int nid, unsigned long start_pfn,
 899                unsigned long nr_pages, struct vmem_altmap *altmap)
 900{
 901        unsigned long section_nr = pfn_to_section_nr(start_pfn);
 902        struct mem_section *ms;
 903        struct page *memmap;
 904        int ret;
 905
 906        ret = sparse_index_init(section_nr, nid);
 907        if (ret < 0)
 908                return ret;
 909
 910        memmap = section_activate(nid, start_pfn, nr_pages, altmap);
 911        if (IS_ERR(memmap))
 912                return PTR_ERR(memmap);
 913
 914        /*
 915         * Poison uninitialized struct pages in order to catch invalid flags
 916         * combinations.
 917         */
 918        page_init_poison(memmap, sizeof(struct page) * nr_pages);
 919
 920        ms = __nr_to_section(section_nr);
 921        set_section_nid(section_nr, nid);
 922        section_mark_present(ms);
 923
 924        /* Align memmap to section boundary in the subsection case */
 925        if (section_nr_to_pfn(section_nr) != start_pfn)
 926                memmap = pfn_to_page(section_nr_to_pfn(section_nr));
 927        sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
 928
 929        return 0;
 930}
 931
 932#ifdef CONFIG_MEMORY_FAILURE
 933static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 934{
 935        int i;
 936
 937        /*
 938         * A further optimization is to have per section refcounted
 939         * num_poisoned_pages.  But that would need more space per memmap, so
 940         * for now just do a quick global check to speed up this routine in the
 941         * absence of bad pages.
 942         */
 943        if (atomic_long_read(&num_poisoned_pages) == 0)
 944                return;
 945
 946        for (i = 0; i < nr_pages; i++) {
 947                if (PageHWPoison(&memmap[i])) {
 948                        num_poisoned_pages_dec();
 949                        ClearPageHWPoison(&memmap[i]);
 950                }
 951        }
 952}
 953#else
 954static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 955{
 956}
 957#endif
 958
 959void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
 960                unsigned long nr_pages, unsigned long map_offset,
 961                struct vmem_altmap *altmap)
 962{
 963        clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
 964                        nr_pages - map_offset);
 965        section_deactivate(pfn, nr_pages, altmap);
 966}
 967#endif /* CONFIG_MEMORY_HOTPLUG */
 968